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ABSTRACT

We obtain a classification of the irreducible quasi-
simple representations of most semisimple Lie groups, in-
cluding all the classical ones. We also prove for these
groups the conjecture that every irreducible representation
contains some representation of a maximal compact subgroup
with multiplicity one. The techniques involved are essen-
tially algebraic, and are much simpler than those used by
Langlands in his classification ([17]) of the representa-
tions for linear groups.

Let G he (say) a finite cover of a classical semisimple
Lie group, and K a maximal compact subgroup. We define an
ordering on K (essentially by the length of the highest
weight.) Then every irreducible representation m of G has
a minimal K~-type p e K; this is just the smallest K-type
occurring in T[K. To each p we associate a cuspidal para-
bolic subgroup P = MAN of G, and a tempered irreducible
unitary representation § £ M, in the "limit of the discrete
series.” For each v ¢ A, set 7V = Ind (§ ® v ® 1l). Then

MAN+G

W is the minimal X-type of wv, and occurs with multiplicity
one. Let 7Y denote the unigle irreducible subquotient of
TV containigg the K-type u. Then {wV} is precisely the set
o irreducible representations of G With minimal K-type u.
The only difficult part of this program is showing that
there are not too many irreducible represe.tations with
" minimal K-type u. This is done as follows. One proves
first that certain other XK-types are smaller than p. (This
is done case-by-case, and occupies the bulk of the thesis.)
If m has minimal K-type p, it follows that these K-types do
not occur in w; and one car use spectral sequence techniques
to show that certain cohomology groups do not vanish. _Tt is
shown that this greatly restricts the action of U(o )K on the
H-primary component cf 7w, and hence greatly restricfs m.

Thesis supervisor: Bertram Kostant
Title: Professor of Mathematics
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1. Introduction

The beautiful simplicity and power of representation
.theory for compact Lie groups have inspired many atfempts
at generalization. This thesis concerns one of the
simplest possibilitieslwhich_has been considered, namely

a classification theory for the irreducible K-finite
representations of a semisimple Lie group. Such a theory,
for linear groups, is provided by the work of Harish-Chandra,
Langlands, and Knapp and Zuckerman ([17], [151). . Unfor-
tunately their theory relies on rather deep analysis on
the group, and the results are less than explicit from an
algebraic perspective: an arbitrary representation is
realized, roughly speaking, as the image of a certain
integral intertwining operator between two induced repre- -
sentations, which are specified in terms of the asymptotic
behavior of matrix coefficients of the representation.

FPor the classical groups, and some of the exceptional
groups, this thesis provides-an essentially algebraic
classification theory. The basic notion is -that of a
minimal R-type (Definition 4.1.) Theorem 3.12 relates
the existence of a nice minimal K-type for a representation
to the structure of certain Lie algebra cohomology groups.

According to Theorem 3.15, this in turn gives a great deal
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‘s

of information about the action of U(g’)k on the minimal
.K—type. In ﬁhis way the "uniqueness" part of a classifi-
cation theory is reduced to showing that the minimal
K-type of any representation is nice (conjecture 4.2).
This essentially geometric problem is dealt with in
section 4 for a number of examples, including all the
classical groups. In particular we prove for these examples
_the well known conjecture that every irfeducible K-finite
representation has a K-type (the minimal one)-which occurs
with multiplicity one. The "oxistence" part of the
classification theory is proved along fairly standard lines
{(Thecrem 6.2). | |

Not surprisingly, it turns out (for purely formal
reasons) that this algebraic-classification is very closely
felated to the analytic one. The algebraic translations
of some of Langlands' results prbvide rather explicit cyeclic
vectors in certain induced representations (Corollary 6.7);
this is a par£ia1 generalization of results of Kostant and
Helgason fbr the spherical principal series, and may be of
independent interest.

2bout two-thirds of this thesis is devoted to the
proofs of Theorems 4.6 and 5.4, which proceed on a

case-by-case basis. It seems reasonable to hope that these



7.

arguments can be greatly improved before too long, and
they should probably be omitted on a first reading. Al-
though the results are crucial, the proofs have no bearing

on the rest of the development.
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2. Preliminary results and notation

dne or two general ccmments about the terminology
are-in order. This thesis might better have been called
"Little tiny K-types," aﬁd it may require some effort to
keep track of the various notions of little tiny. The
key concepts are "% -minimal in X" (Definition 3.11);
fminimal &R ~type" (Definition 4.1); and "small Jiutype"
(Definition 5.3). Conceptually the distinctions among
these are gquite straightforward: keeping them -in mind may

make the overall structure of the arguments clearer. Most

Of the proofs below are qﬁite easy, and one only has to

WOrry about putting them in the right order.

"The real dual of a vector space V is written V'; an
asterisk denotes the complex dual. Especially in section 3,
‘however, an asterisk may alsoc mean "plunk," as in A*V, the
exterior algebra of V. XY denotes the centralizer of Y in X,
6r the subspace of X annihilated by Y, etc. |

Much of the material in the preéent section may be
found in Warner's book [25], but a number of proofs are
sketched‘for the convenience of the reader.

Let G be a connected reductive Lie group. The Lie
algebra of G will be denoted by g}o, with complexification

(g 0)(‘.- = (g, and universal enveloping algebra U( g) .



9.

Analogous notation for other groups (i.e. H, ﬂﬂo, ﬂl, U(pl))
- is followed throughout without further comment. Choose a
Cartan involution 8 of %}0, and a non-singular invariant
bilinear form < , > on 970. ® induces a Cartan decom-
position gb = &0 +f70 of go: here JRO is a compact

Lie algebra. Let K be the connected subgroup of G with

Lie alygebra ﬂkoz notice that K need not be compact.

Definition 2.1 G (or rather the triple (G, 6,< , >)) is

said to satisfy definition 2.1 if
. e ;
i) ﬁ’G =‘&0 with respect to < , >
3i) = 5 >]&0 is negative definite, and < , >|{5 is
positiYe definite ,
iii)' K X£?o + G by (x,y) - x-exp(y) is an anal?tic

diffeomorphism.

Henceforth G will be assumed to satisfy Definition 2.1.
(Notice that this is certainly the case if G is semi-
simple and < , > is the Killing form.) In particular K
is a closed subgroup. By passing to a finite cover G, we
can write G =_ﬁ2il(exp§7%)(exp%7g), where (ﬁlexpﬁjé) is
semisimple, and iz(eXPGJg) is central in G. One easily
deduces the existence of an Iwasawa decomposition of G,

and obvious generalizations of Harish-Chandra's representation
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theory for semisimple groups. These will be cited as they

are needed.

Let T < K be a Cartan subgroup of K: T is con-
z x £
nected. Put ft = g =_&;r+g7 = x‘+£3 .

Lemma 2.2. f§ is a Cartan subalgebra of ¢f.
[#

Proof. The Lie algebra.ﬁo + %PO is compact,.so all its
subalgebras are reductive. But ﬂL= (ib + %ng: , . and
L.+ i -'UC p{ + ig.; 56 h is reductive Since

0 1?0 =10 o’ *

@g‘g 91’_:01 , it remains only to check that J1 is abelian.
Lﬁ,ﬂ] is semisimple or zero,.so it will suffice to show
4./ gzil Clearly [%,4] = [I,f;j = 0, and

£ T
[Ej‘trﬁft] g__— {5‘7:?} _C_:.@L:I- So 7 i
S i
M = .41 + [t‘.gftl + [391’,5]1:] g f. Q.E.D.
.
Let A < {, denote the set of non-zero roots of
. 1 1
ﬂ\ 1n.¢?;'1t is easy to check that in fact A < 1f0 + (&b)'.
The form < , > induces a nonsingular form (also written
< , >) on Jh*, which is positive definite on ii% + (fg)'.
L * * o5, ' .
The decomposition .ﬂ =X + (f ) . is orthogonal; write

*
elements of fl as (a,B) accordingly. Set
<(a,B), (a',B")> = <a,a'> + <B,B'>
r -PL (}]

with obvious notation. If vy = (a,B8), v' = (a',B"),

it will occasionally be convenient to write <Y,y'>&
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instead of <a,a'>p .

Since = £)7, every root has support on- Xt : i.e.

if (e,B) € A, o ¥ 0. We write A = Aiﬁ

and complex roots, where

g = {(a/8) e a]8 = 0}, Ap = {(c,B) & A]B # O}.

If X is a root vector of weight (a,B), then 68X is a
root vector of weight 6(a,B) = (a,-B). So A is
p-invariant, AiR'is precisely the set of 6-fixed roéts,

and the elements of A occur in O-conjugate pairs.

C
If _ﬂt?j: # 0, the decomposition g =R @d’s is not
invariant under %.. For this reason it will be important

to understand the structure of the system of roots
restricted to £, which we call JZ-roots. Suppose
(e,B) € A, and X 1is a non-zero root vector of weight

{(e.,B), as above, so that 86X is.a ndn—zero root wvector

of weight (a,-B). If B8 0, then the fact that the

root spaces are one dimensional forces 06X = cX; and 62 =

U Ags the imaginary

kY

implies c? =1, i.e. ¢=+1. If c =1, then X ek, and

we call (o,0) a compact root. If ec¢=-1, X eﬁ?, and

. (a,0) 1is a noncompact root. If B # 0, then X and 6X

are linearly independent, so X isneither in &k nor in §7.

But X + 6X is a non-zero element of { , and is a root

vector for X . with weight a«. Similarly X - 8X is a
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non-zero U -root vector in 24 also of weight a. We claim
" that these span the space of X -root Qectors of weight a.
What must be shown is that if (a,B') & A, then B' = + B.
Replacing B by =R if.necessary, we may assume

<(c,B), (a,B")> > <a,a, > 0. By abstract root theory,

this implies that (a,B) - (a,B') = (0,B-B') is a root,
which forces B = R'. This proves the claim. X + 08X

ahd X - 68X are called the compact and noncompact % -root

vectors of weight o. Depending on which of these is under

consideration, we will speak of the compact root o or the

nencompact root . One could make this quite rigorous by

speaking of .t -6 roots, i.e. the weights of A-invariant,
e-invariant subswvaces of g ; but no confusion should arise

as long as the reader is aware of the situation.

If VvV is a X -invariant subspace of o, we write

. Ai(v) for the corresponding set of _{-roots with mul-
tiplicities; if V 1is also ﬁx—invariant, A(V) will be
the corresponding set of roots. When there is no possibi-
lity of confusion, the subscript X in A .(V) may be
dropped to simplify the notation. If V is @-invariant,
we may refer to the compact and noncompact X -roots in
Ax(V), in accordance with the preceding paragraph. In

this case a * -root is called imaginary or complex
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depending on whether it corresponds to an imaginary h-root
or to a f-conjugate pair of complex ﬁ1 -roots. This dis-

cussion may be summarized as

Proposition 2.3 The imaginary elements of Af(cy ) occur

with multiplicity one; the complex elements occur with

multiplicity two, namely one compact and one noncompact

XL ~root.

I'ix once and for all an algebraic ordering } -of ii'(;,
and let AT(R) = A;(—P{) = fo e A (R) |a ¢ O] be the associated
system oﬁ compact positive roots. To every ‘ Y E i)t; which
is dominant with- respect to &* (k) , we associate a positive
root system i |
A+G§) = {{(a,B) € ;5(03)[<a >y * 0, or <aryy = 0 and a & -a}.

“Then A+ is a f-invariant positive root system for JZ in ’

Og , and A;t" = A+ (&) . AT will be regarded as fixed in this

section and the next. Put = 1 . X (¢,B). Since A+
2 +
‘ . (a,B) el
. *
is f-invariant, 6-p = p, i.e..p € t : write p = (p,0).

Let qo = g; be the nilpotent sui:algebra corresponding to
a*, and jf—o = -7"(0 + Ju the associated Borel subalgebra.

" All of these are f-invariant, so ,U—O = ,&—Onﬂz + ,Q/‘;Oﬂﬁ?? ;
etc. _Qyoﬂ_ L = 7‘(0 N & + £ is a Borel subalgebra of fx.

The associated set of positive roots is Atk .

Let WK = W(.k, ,-[j) be the Weyl group of Jd in ,ai:
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this will be referred to as the compact Weyl group. In

the interest of mathematical purity, we would like to

consider WK as a subgroup of tﬂ(g, A). Let o be a

compact X -root. If o is imaginary, we send the re-

flection s, e W(Rk,t) to S(a,0) © W(%],ﬂl). If a

r

corresponds to the complex root (a,p), we know

(e,B) - (¢,~B) 4is not a root. There are two cases:
i) (2a,0) = (&,B) + (a,-B) is a root. Send su to

5(2a,0)°

ii) {c,B) + (c,-B) is not a root. Then by abstract
- root theory, <(a,B), {(a,-B)> = 0, i.e. <a,u§&-= <B,B?j,
By direct computation, this implies

Sta,8)5(a,-8) " S(a,_B)s(a'B)r-their common value on

2<X,Ct>k . 2<y, B}

Y
<u,aﬁtaf <s,s?,B)' Hap 8

(x,v) € b is (x,¥) - ( .

to this element of Eﬂ(g, h). Let W, be the free group

K
generated by the s,- We have defined a map @ : ﬁk -+ W(g,&};

~

and of course there¢ is a natural map ¢ : WK_+ WK' By
- . o i -
inspection, these maps satisfy ¢(o)|£f = ¢(o). Suppose

N . "
that ¢(o) = 1. Since p e % , the preceding observation

1l

implies 5(8)'0 = ¢(8)-p = lep p. But the only element

of W(g,%} which fixes p is the identity, so 5(5) = 1.

Thus 5 actuaily defines a map ¢ : Wy = W(g,ﬁ), satisfying

*
(o) |t = o. Clearly ¢ is an embedding; henceforth Wy
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will be freely identified as a subgroup of W(gﬁ&). The
problem of finding a more natural way to do this is left

to the readér.

We will be gquite interested in a certain special

class of groups.

Definition 2.4 go is said to be split if the real
semisimple Lie algebra [@[r @0] is split in the usual
sense, i.e. 1if [cg’o, go] rl,SZ] contains a Cartan éub—

algebra of [g 0,%}0].

Tt will be useful to have another description of such Eyo.
Recall that a subset {al...an} of the positive roots in

an :abstract ropt system is said to be strongly orthogonal

*

L . + 2 - * i . . .
if e, + ey is not a root for any i, J Lgt & — be

. *
the span of Ai in .

root

: *
Proposition 2.5 %}0 is split if and only if [ is

spanned by a strongly orthogonal set of (positive) noncompact

.-

imaginary roots.

Proof. It is enough to assume (g, is semisimple, so that
% ' -

=z d th i L
't —_— . Extend the abelian algebra 4JQ to a

maximal abelian subalgebra 010 et 670. Then

£
_0’{0 < 90?590 =,zm0. Clearly g7 1is reductive, and
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centains ) as a Cartan subalgebra; and Aan) = AiR s

MMy is an equal rank Lie algebra, i.e. [#1y,713] A &

contains a Cartan subalgebra of [mﬂo,ﬁﬂb];

Suppose cy 0 is split. Then 070 is a Cartan
subalgebra of gLO, and therefore of JTZO; in particular
am is split. Also dﬂo is maximal abelian in :4ﬂ0, SO
Jt does not meet the center of /1. It follows that
At(mt) = A;p Spans i:*; SO 2?0 is a compact Cartan
subalgebra of the split semisimple equal rank group
[4n0,¢W0]. By a theorem of Martens (see Schmid [22])

Jf% is spanned by a stroﬁgly orthogonal set of positive
noncompact roots of [mno,anol, i.e. by a strongly ortho-

gonal set of positive noncompact imaginary roots.

For the converse, this argument may be reversed -
Martens' theorem is a necessary and sufficient condition.
This amounts to writing down the split Cartan subalgebra
cofresponding to a strongly orthogonal set of noncompact

imaginary roots, using a Cayley transform. Q.E.D.

Let > jro be an arbitrary 6-invariant parabolic
. subalgebra of g} ; with nil radical 77 and Levi subalgebra
{ >0k ; then b- = f +7t . We claim that A is the

complexification of a real subalgebra / Let bar

0-
denote conjugation with respect to the real form gjo;
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we must show A(f) = A(f). If (o,B) € A, then a € i,fl')

and Be (d;:g)', so

(0,B) = (~a,B).= - (a,-B).
Hence
(2.6) (@,8) € A => (a,B) = - 0(a,B).

Since A(f{) 1is stable under -1 and 6, the assertion

is proved.

Let C = j';++o(+_c_:_ i+§jr be the center of f .

Notice that £ ~ = (j,+)-'L corresponds under < , >  to
9 - .
torooe( )i thus L7 =2 arf.¢1.

+
Proposition 2.7 ) = QJI

-Proof. Clearly J/ a c(;;’t+ By the general thecry of
parabolic subalgebras, we can find (x,v) & (O so that
((a,B)) (x,y) > 0 whenever (a,B) e AY, with equality
precisely for (o,B) e A(7) N A, Now suppose

(a,B) & AT - A(f). since this set is 8-iavariant,
(x,~8) .E 2t - a({). Thus {(a,+B)) (x,y) > 0, which forces
x (@, B)

a(x) > 0. Hence the corresponding root vector does

+
not commute with x; so X(G'B) g gi . This proves

+
ﬂ.‘:'J_ O}t' Q.E.D.

s :
Set L =G 4 . Then L 1is a closed subgroup of G,
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with Lie .algebra ﬁo. The decomposition G = K-exp 2 0
- is invariant under conjugation by exp (,tg), SO

] t-!- + Jt+
L =KY «(exp &753 ). That K is connected is a

standard fact for K compact, easily generalized to the

present situation. Hence L satisfies definition 2.1

with respect to the restriction of < , > and 6.

PutR:dim MY, S = dim nafe . 1£ 'V ccp isa
& -invariant subspace, with A = Ay (V), write

p(V) = p(a) = %_ I oe ij*
GEA
We use the same notation for /i -invariant subspaces and A;
in other words, if V 4is an ﬁt—invariant subspace,
p(V) € jl*. An unqualified p will always mean
p(Tto) = p(A+). We also define
oy = pre’ AR = patd).

Finally, we need a little representation theory. For
details see Warner [25]. Finite dimensional irreducible
modﬁles for K, R, LA K, T, etc., will be freely iden-
tified with their highest weights (with respect to £ and
an appropriate part of 77 0 ﬂ.@t.) The set of all equiva-
lence classes of such modules will be written ﬁ,.@, etc.
Let V be a complete locally convex space, and m : G + Aut V

a continuous irreducible representation. V has a dense
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subspace v® of differentiable vectors, on which U(g )
acts. Suppose the center of G acts by scalars on V
.(e.é. if Vv is a Banach space and w is topologically
completely irreducible (TCI)). Then v decomposes
nicely into K-primary components Vi, Y € K. Let

ﬁ)(g,) = U(g )@L denote the éenter of U(g Y. w is said

to admit a central character Xg * 5,(% }) = € if every
Z € ;(C}) acts on V_ by a scalar xﬁ.(z) (e.g. if =

is TCI as above). In this case each V: is finite

(o]

dimensional, and the U(? )} module VK = I_V is
YeEK Y

algebraically irreducible. Even if 1 is not irreducible,

Definition 2.8 T is called admissible if V" decomnposes

into finite dimensional K-primary components V?; the U(%L)module

Ve = L, v is called the Harish-Chandra module of m.
' YEK

In case 7 1is admissible, VK is algebraically

irreducible iff V is topologically irreducible. Both

V.

X and V have (possibly infinite) composition series;

the subgquotients are admissible and irreducible. Two

such representations are called infinitesimally equivalent

if their Harish-Chandra modules are algebraically equivalent.
(This is the same as Naimark equivalence or, in the unitary

case, unitary equivalence.) Let U & be the centralizer
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of £ in U(gf). This ring preserves the R -primary
(.

decomposition of Vgr SO V: becomes a U module for
each Y ¢ f.
Theorem 2.9 (Harish-Chandra) If « is admissible and

ik

irreducible, and Vj # 0, then thz U module structure

of V? determines &  up to infinitesimal equivalence.

Of course all of this works for L as well as for
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3. Lie algebra cohomology

Most of £he basic results on Lie algebra cohomology
éndAspectral sequences used here may be found in
Cartan-Eilenberg [2]. The proofs of Theorems 3.3 and
3.5 were inspired by a paper of Casselman and Osborne-([4]);
Allan Cooper suggested that their result (a weak form of
Theorem 3.3) could be formulated along the more natural

lines adopted here.

WritF U(g ) = [U(L) ® U] & 7 Ulg ). énd'let

_ E:‘U@g) -+ U(L) @ U(ﬁ) be the corresponding projection.
The idea of the proof of Proposition 2.7 shows that if

u € U(g)t, then g(u) € U(Pjt; notice that this is not
quite standard since X ' is not a full Cartan subalgebra
of g’. But the usual argument does show that EiU(g)I

is a homomorphism, and that

E 1 2(p 3
k

{3.1) ‘
o™~ o™

et
.

Now R + S = dim (Olﬂ.f_j) + dim (7ta k) = dim 77, so 2RS4

is a one dimensional ! module. For m e [, let ¢ (m)
denote the scalar by which m acts on AR+§T. Then
m-+m + ¢(m) defines a Lie algebra homomorphism of A

into U({), which extends to an algebra autbmorphism 5 of
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I

U()). Define § $ o E; then

£ 5l > )

(3.2)
U(g})k + U(G)En

k

Jry
(1]

Suppose X is a.g—module. Write Hi(AJX) for the
ith Lie algebra cohomology group of X with respect to
the subalgebra = of :y. Recall that there is an operator
d : Hom (Aiﬁf,x) + Hom (Ai+1/?,x),

the coboundary operator of Lie algebra cohomology, and

that Hl(n ;,X) 1is defined to be the ith cohomology group
of the resulting cochain complex. If 4 E.g normalizes /t ,

then Hl(q ¥} has the structure of an « module.

Hom (Aﬁw ;X) can be made intc a f(gj) module, by
acting only on the second factor. This action clearly
commutes with d (because gw(g ) centralizes 77 ) so that
H*(Q 1 X) .is a ‘}(gj) module. In the case of Ho(fy,x),

this is just the fact that ka

is invariant under ;;(%?).
One knows that the action of jigj) on X?? factors through
a certain homomorphism of 5/“?). into ;{f ) = this ob-
servation is the key to the computation of the central
characters of the finite dimensional represe@tations of ﬁ'.'
The following theorem is a fairly straightforward generali-

zation to arbitrary cohomology; of course the proof is by

*dimension shifting."
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i
Theorem 3.3 If z e 5(¢) and w e H (77,X), then

p2d ~

Z'U..\:E‘(Z)'w

Here the action on the left side of the equation is that

just defined, and the action on the right is the usual

Q;module structure.

Proof. Proceed by downward induction on i, starting
s
with the case i =R + S = dim /7 . It is immediate from

the definition that

-~ -~

5 (77,%) = Hom W% x/x) = (0FF

-
71) © X/7X.
Since P normalizes /7, /¥ 1is invariant under £ . Thus
both (AR+Srz)" and X/77 X are ﬂ'modules. As an ﬁjmodule,
HR+S(R',X) is their tensor product. The action of

3,(§]) on HR+S(??,X) is on the X/7»7 X factor alone.

If x e X, write X for the corresponding element

*
of X/r1 X. Suppose that N € (ARt%) X € X, and that

w=N® i-e HR+S(77,X). Then 2z » w =N 8 = X. Also

11

z E'(z) mod HU(@)',_ _and U (g] . c/]X; so

z - w=0N®E(z) - x. On the other hand, suppose m € f >

Recall that m acts on ARf% by the scalar ¢(m). Since
*
N e (AR+507)) M * N = - ¢(m)N. By the definition of a

tensor product of ‘ﬁ modules,



24,

Bm) c (N@X = (m+¢(m) + (N&x

m+N) 8x+NOm<=x+ ¢(m) (N6 %)

-¢(m) (N ® %3 +NOem - X+ ¢ (m) (N & §3

=N ®

E

-~

Since ¢ is an automorphism df U(/ ), this implies

(3.4) for all y e u({), g(y) c (N®@x) =N®Yy » X .

) = E{(z) " w.

%l

In particular, z = w = N & E(z) s x = 5(5(2}) < (N ®

This establishes the result for i = R + S.

‘Suppose that the theorem holds for soﬁe i L < R% 8,
By choosing a set of generators for X, one can find a free
U(g) module F and a submodule FD so that
0.+ Fp* F+X~»0 is exact. There is then a long exact
sequence |

i i & i41 |

cee P H (7 ,F) > H (71,X) > H ~(n,Fg) > ...
Now U(gj) lis a free U(7y ) module, so F is also free
as a U(7r) module. It follows that Hj(fz,F) = 0 for
j <dimsy =R + 8. Since i ; 1 <R+ 3, Hi(gl,F) = 0.
Thus & 1is injective. By the inductive hypothesis,
z ¢ 8§(w) = £&(z) * 8(w). It is standard tha£ § commutes
with the action of U(f), so that E£(z) - &(w) = 8§(E(z) * w).

We have observed that the action of 3167) commutes with d
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on the cochain level; it follows easily that
z « 8(w) = 6{(z * w). So &(z - w) = §(&(z) - w). Since

§ is injective, z * w = E(z) * w. Q.E.D.

Notice that the argument was entirely formal: the

definitions of this section are much deeper than the theorems.

*
The next result is a little more subtle. Hom (A 714 f2,X)
| % .
can be made into a U(q}) module, by acting only on the
second factor. This action commutes with 4, so that
% . ﬁi *
I {(mak,X) is a Ulg) module. TIn many cases H (o k %)

' is quite large, and this action will reflect all of the

vl
3]

U(a})cl structure of X; so one cannot hope to compute it
easily as the :5(% ) action.. The appropriate rabbit is
the following. . "
E o ’

The decomposition A ;-[A*(Jzﬂﬁt)] ® [A*(Jinp )1

Fal
R i
At Rfr( > A mnk ) ® AR(mn?’-{),

induces projections w; :
and thus extensions

i ' R x i+R . ,
Hom (A" (/x ak).X) @ [A (01n§7)] > Hom (A~ /7n,%X). (Recall
~ that R = dim ¢1ng7.) It is not difficult to.see that these
extensions intertwine 4 ® 1 and d (i.e. they define a
map of cochain complexes.) This will be proved in the

course of establishing Theorem 3.14, but the reader can

easily provide a direct argument. We therefore have maps

HR+J_

m ot H(nnk X) @ [AR(rnnga)]* >

i (1, X)
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which preserve the £nRkR module structure.

%

H (rt ,X) tends to be relatively small, so that Ty
in géneral has a large kernel. Theorem 3.5 computes the
U(cg )Da action modulo this kernel; the rest of section 3

is devoted to finding conditions for T to be non-trivial.

k .
Theorem 3.5 If u e Ulg) , we H‘l-(o‘gn?a (X), and

Pe M(map)l”, then 7, ((u - w) ® B) = £(u) +.7;(w ® P)

Proof. Proceed by downward induction on i, starting with

the case ‘i = dim nafk = S. Then

S T 8 X/ (k)X

e

B ( senk ,X)

B mx) = W T exmx S WS e (AR(maoo)_)*M/’?X'

With respect to these identifications,

o 8 * ) R *
g 2 (AW (n0k)) @ X/(nak)X e (A (72 n@))

* 'Y * . -
> (As(mnh)) ® (-AP(rn n,ga )) 8 X/:/]X is just the obvious
map induced by the projection X/( naR)X > X//ﬂx. The

k.

action of U(c;;) on Hs(azn@; ;X) 1is on the x/(rrm,&)x

factor only.

If x e X, write EEX/(f,q nik )X, EsX/;IX. Suppose
S 5 *
w=08xe H (»mnhkh,X), with Q ¢ (As(mﬂh)) ; e X,
Then u » w=Q®u - x, so Trs((u-m)eP)=(Q®P)®u-x.

Now u = £(u) modch(cJ), and ﬂU(g) * X ¢ nX; so
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mg((u « w) ®P) = (0 ©P) ® E(u) + x. By (3.4),

QO PO LM +x=g¢(E) + (QOPOX =& + (150w 8 P)).
This proves the result when i = S.

Suppose then that the theorem holds for some i + 1 < S.
Choose an exact sequence of & modules 0 -+ Fo > F >+ X0,
with F a free U(g ) module. The two long exact seqﬁences

in cohomology give

£8,81

| * 3 ) s &
B (anf )@ (A" (4p)) 2 H (10 K0 (AR (map) ) S (kP ) @ (AR (np) )
- +ﬂi ‘+wi _ i - +Wi+l
HR+l(n,F) - HRflGT,X) _g> HR+1+l(tho)

Since i < g, HR+1(n,F) = 0; so 62_ is injective. By the

inductive hypothesis,

Tip (= 8, (W) @ P) = E(u) = m;,,(6;(w) & P). We have
observed that the action of U % commutes with d on the

" c¢ochain leﬁel; it is immediate that u - Sl(w) = Gl(u - w).
The maps 7, intertwine d and d ® 1 on the cochain
level; so Fi+l(°l @ 1) = Gzni._Thus

Gz(ni((u'- w) @ P) = g£(u) - ngﬂi(m ® P)). Finally, it

is standard that the action of / commutes with 8, so

It

that &,(m ((u « w) © P) §,(8(u) « m.(w ® P)). Since &

2
is injective, ﬂi((u cw) ® P) = £(u) - wi(m ® P). Q.E.D.

Hencefdrth it will be assumed that X is a
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Harish-—-Chandra module, i.e. that there is a £ ~invariant

‘decomposition X = I, X(y). Here X(y) 1is a finite

dimensional y-primary semisimple /% -module. Recall that

we are identifying A& -modules with their highest 4 -weights.
Suppose then that vy € ﬁ, and let F be an irreducible |

f -module in the equivalence class y. Write F' for the
highest weight épace of F, i.a. the subspace of F

rY

annihilated by =n°%k ; is one dimensional and has

I:—ﬁeight Y. Similarly, define XYti.X(Y) to be the

_subspace of X of Jf{-weight Y which is annihilated

by 71°nA%k . Then the dimension of x¥ is precisely the

multiplicity of v in X. xY is stable under U(g )k}

and the corresponding action completely determines the
i \

action of tJ(g) on X(y). We make a similar convention

for fak ana [.

Now 77y and X are semisimple Ink modules, and it
*
follows easily that H (77,X) is as well. The maps L

may be restricted to the various highest weight spaces

with respect to £nk : write

w7 s ek X)) 8 (AR (aag)) 1YT2RP) L giFR g ) Yo 20 (a0gr)

Since AR(ﬂqn&y) is one dimensional and has A-weight

2p(¢1n&3y, this may be rewritten as

(3.6) 7} B lnnk 07 0 W(nap)) > BN 0) Y20 )
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To study these maps, we need some information about
Hl(gznh_,X), which (as the reader might guess) requires

a little more notatien. If o

m

WK, set

+ + -1 - : .

Ac(k) = fae A (E)]o “(e) e A (k)}. (Clearly this
refers to 1 -roots; it should be rather obvious why the
subscript £ in A, has been omitted.) As is well known,

and easy to check,

(3.7) Zp(A:(ﬁq)) = I, a=p -0-p_ .
aeld (&) c =
o
Define (o) = ]A:(k)] (the number of elements of Az(ﬁ)h
wl ot e 1aten , 1,.. _ i 4 .
Te = {o e We|ATR) € AMnak)l, W(d) = do e WIJ::M‘(U) = 9}

Suppose ¥ E ﬁ, with  F € y an irreducible k -module.

Theorem 3.8 (Kostant [16]) Hj(¢u1k_,F)u = 0 unless

1.
"= G(Y+pc) = P for some o € WE(]). .In .that case the

space is one dimensionati, i.e. the Jak -type u occurs

with multiplicity one in Hj(ﬂznﬂl,F).

The maps ﬂl can now be studied by standard spectral
'séquence techniques. Consider the graded £ module

% *
A” = Hom (A N,;X), with differential @ (the coboundary

operator of Lie algebra cohomology.) Pick a sequence
N . . *
v} .o ©of { & -invariant subspaces of A (Jjn&j) so

that
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I

1) Vg = A (mnp) = ¢

2) v c A¥@)

a (nafp )i and a < a' => r(a) < r(a')

3) (mak) .+ VYV, ©<Vjpree. V1>

This is always possible: choosing x € ,t* = (cent f ) £
aé in the proof of Lemma 2.7, we see that if E < A*(qQﬂ§”
is fak irreducible, and x acts on E by the scalar c,
then x acts on' (nnk) * E with eigenvalues strictly
greater than c. Using the eigenspaces of x in A*(¢1ny),
we may therefore arrange (3).

Filter A" by A% = {f e A"|f(q" TAp") = O
whenever g™ F ¢ An—r(qinkh) and pr g Va, for some a' < a}l.
= A, Al ;’{f]f = 0 on A%(fzaﬁa)}; etc. There are

{af module maps

’ - *
;a2 > Hom (A @) (rak).x) e v, .

An—r(a)

For Hom ( (reak ),X) ® v: = mom ([A™T@) (ram)] @ V_.X);

n . . . . -
and Ta is just t-e natural restriction map corresponding

to the inclusion (A" (, R)] @ v c A" Then

1) f e Az iff Tﬁ,(f) = for all a' < a; in particular,
; n n . n _
1§ f e Aa’ then £ ¢ Aa+1 iff Ta(f)-— 0.
2) 1If a®, ‘then %1 = n .
) £f e e en T, {df) {d(ﬂnﬁi) ® 1) (Ta(f)), and
tn+l(df) = 0 for a' < a..

al
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Statement 1) follows immediately from the definitions.
For 2), suppose £ g Ag. rix

n-r{a')+1

a' i a, 0 = gyi...rq e A (e1alR),

n-r(a')

and P = & Va" (An element of Va, is

A A
Pn-r(a')+l "'Ipn
actually a linear combination of such terms; since the
argument would be unchanged in general, we take P of
. this form to simplify the notation.) By definition,

- ¥
n+l(df) is a map from An+l £ ia )(ﬂTnfL) ® Va. to X;
(df)(Q ® P) = df(QAP). Recall that in general,

at (yOA _— .Ayn) =

o .1 = i+5 2

T (1) y.E(y Aeeoy... Y }+ L(-1) f([Y fY Iny ..y ...y..“)
i=0 l_ g A B 0<i<j<n d- ]
{Here the circumflex indicates that the argument is to

be omitted.) Thus

: n-r(a') i
1) df(QrP) = iio [} qi-f(qgﬂ-- q Ip_r (an)AP)
n %, ~
ii) + - £ (04 e iDiaalA
= i=n—§(a')+l( Y7ps (? Ph-r(a'y+1°°Pi Pp)
iii) + z iy 33 7 ~
i<jen-r(at) ("1 TE(193/951000 ¢ Gy - e oGy AT (g 0)AF)

S per@) 7 on Jan -ria ) , Pi P
iv) + 3 (DL -1) F(ﬂ@ S Qe Aqneead ™ T BT ARy BiAR)
dan-vr )+
; i+ -~ ~
v) z (-1) £([p; Py ]AQAp r(a')“"'pi"'pj"'Apn)'

n-r{a')+l<i<j
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Since f € AZ, £E(X AY) =0 if X € AQ(;nrzh), for some
%2 >n —r{a). Since r(a') < r(a), every term in lines (ii)
and (v) is of this form. Line (iv) may be rewritten as

~

n
I o+ gy ...qg..eqy n (q;-P)).

-r{a')

By assumption {3) in the definition of the Va,
; n
qi-P £ <VG,...Va,_l> €-<V0"'{Va—1>' Since f ¢ Aa’

*
f(XA ¥Y) = 0 whenever X e A (41nk) and Y e Vygree-sV _1>-

=1

Thus line (iv) is zero. If a' < a, P ¢ EVO...V =]}

a<1”"
lines (i) and (iii) vanish. This proves the second state-
ment of claim (2). Finally, if a = a', lines (i) and (iii)

are precisely (dﬂzn& @ l)(Tg(f))(Q ® P). This proves (2).
From (1) and (2) one deduces immediately
(3) aa, A

(4) T: induces a map from AZ/AQ to

+1

(An—r(a)

Hom (maR),X) 8 V; which is an isomor-

phism of differential {Jnk modules.

The spectral sequence of the filtration A now gives

b =9 Ha+b(n,X).

Theorem 3.9  There is a spectral sequence Ef

ab

Ey

AT, r(a)(rhqﬁ_,x) ® V_: here V_ < Ar(a)qlqp . The

differential d, has bidegree (t,1-t) and is an !N module

IE!
f
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Corollary 3.10 Hl(ﬂ,x) 1s a Harish-Chandra module for @.

The corollary follows rather easiiy from Kostant's
theorem 3.8; in fact Ei? already has the £ngk structure

of a Harish-Chandra module.'

An apology may be in order for the proof of the pre-

ceding theorem. "Amﬁiiéhtly'stronger version (i.e. smaller

ab
1

spectral sequence ([10]). However, I know of no applications

E terms) can be read off from the famous Hochschild-Serre
of the improvement, and the grubbier approach adopted above
may indicate what's going on a little more clearly.

rfix a k-type u of X with X(u) # 0.

~

Definition 3.11 yu is 7 -minimal in X if whenever y e &,

J>1, and F € v is an irreducible & module, then

(@ k7 @ 10T (rap) 1YHT2PMP) 4 g implies x(y) = o.

Thus the condition is that certain k -types <y should not
occur in X. A more computable formulation is given by

Proposition 4.8.

Theorem 3.12 Suppose u is 77 -minimal in X. Then

wg : B0(maf, )" © [AR(-”?/PF 11 » gRey,x)Hm2P IP)

is injective.

Proof. Let N be the index with VN = ARIJInP ); of course

r(N) = R. Then AN+1 = 0, and it is easy to see that
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R4n

AN is precisely the image of T In fact,
%
(U Hom (An(47nk_),x) ® VN -+ Hom (AR+2Q,X)
. . R+tn ;
is the inverse of ™ (We can now settle a point left

open earlier. Recall that we proved

TR+n+l R+n

5 (AF) = (06 ® 1) (T (£)) for f ¢ A.;H-n = image of m_.

Tt follows that d(ﬂn(ﬁ)) = (d ® 1(h)) for

Trn+1
* : * . '

A e Hom (A (malk),X) ® VN; this was used in the proof

of Theorem 3.5.) Thus the assertion of the present theorem

N,R—N)u-Zpgﬂnf)

' is that the term (El of the spectral sequence

in Theorem 3.9 “"persists to E_." Since the bidegre of dt
is (t,l-t), it suffices to check‘that (Eib)UHZD(ﬂQF) = 0

whenever a+b = R-1. In this case,

(Eib)u—2p(ﬂn$) = @@ L) e v;)u-Ep(md;)

c I 1 nik,x(n)) 8 R (rap) 1) P20 (0D
YEk )

here we put J R-r(a). This vanishes by Definition 3.14.

0, E.D;
*
Because of the symmetry of H (nnf ,X) with respect
£ §
to WK

*
more information about H (71,X) from the assumption that yu

( cf. Theorem 3.8) one can actually get considerably

is 7¢-minimal. This is probably important for relating

#
H (7,X) to the global structure of ¥X; but that problem will



w
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.

not be pursued here.

We want to study the action of U(g Yk' on X(u) in
case u is 7l-minimal. By definition of the action of UE{
on Mafg -cohomology, this is the same as studying

Xu = Ho(ﬂn&,x)p as a Uﬁ{ module.

Combining Theorems 3.5 and 3.12, we see that this

U&‘action factors through the homomorphism £. This can

be improved a little, using Corollary 3.10. Let J u e Uk
be the kernel of the representation p, and put

- _ &
T. = Iu(@ ) = U(% )T (1 [U(gj).cgu]. Then we have the follow-

ing more precise version of Theorem 2.9.

. A,
Proposition 3.13 Iﬁ is a two-sided ideal in U , and the

action of Upq on Y" factors through U}L+ U“ﬂa'/IL1 for any

Harish-Chandra mcdule ¥. This establishes a one to one

correspondence between irreducible Harish-Chandra modules Y

with Y(p) # 0 and irreducible U(gf&/Iu modules.

For a proof, see Lepowsky-McCollum [2 ]. We will apply
' *
this result to ﬂ-, and the Harish-Chandra module H (#7,X).

Let

_ u k N fak
(3.14) g 2 u) uk) /Iu_zpmﬂp)(d)

be the composition of £ with the quotient map. Notice
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that 2p(f{ﬂ&3) is the weight of a one dimensional
fﬂh, module, so that u-2p(nap) 1is Ink dominant

integral. By 3.5, 3.12, and 3.13, we have proved

Theorem 3.15 Suppose p is 7t -minimal in X. Then the

action of U(CT)R on X" factors through &Y.

The consequences of this theorem are dealt with in
detail in section 4, but the following example indicates
its usefulness and limitations quite clearly. For details,
the reader may consult Schmid [23]. Suppose that 5§ 0 is
semisimple and equal rank (so that £ =) and that G has
finite centesr. Let & < iié denote the lattice of differ-
entials of characters of T. An element A of A+p is

said to be non-singular if <A,a> # 0 for every a & A.

Let (A+p)' be the set of nonsingular elements of A+p.
Héfish—chandra has shown that the discrete series of G is
parametrized by the 7°A & dominant weights in (A+p)"'.

ILet XA be such a weight, and X the Harish—éhandra module
of the correspénding discrete series representation. Let

A+ be the pbsitive root system associated to A (defined in §2)
and let b = [°. put yu = A=py *+ p(71°0@ ) (which is the

'highest welght of a K-type).

Theorem 3.16 (Schmid) With notation as in the preceding

paragraph, y is N° minimal in X, and occurs with multiplicity
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"one. Suppose u is 77°minimal in the irreducible

Harish-Chandra module ¥Y; then ¥ is eguivalent to X.

proof. Schmid has proved that p is 7’ minimal in X (in

'particular that X(u) # 0.) In the present case,
ink

l=x="0ak 5 so U(L) =UW . Iy on(meap) T dtp-Zp(‘f’TdﬂF)

is just the kefnel of the character u-2p(7°n9) : U(L) + C.
0% B u b

Thus U({ ) /—In_zp(non&?)(ﬁ) = ¢, and £" : U(g)" +C

is a character of U(g }R. By Theorem 3.15 and

Proposition 3.13, Xu and Y! are irreducible modules for
. (g #i/ker Eu = ¢; so obviously they are equivalent and
one dimensional. So u occurs with multiplicity one in X;

-~

and the second part of Proposition 3.13 gives X = Y. Q.E.D.

Notice that the proof actually exhibits the action of
k i3 :
U on X" rather explicitly. This character has also been
computed (in a slightly different form) by Enright and

Varadarajan ([7]).

Schmid's proof that u is 72° minimal in X, while
basicaliy analytic, invokes a mucﬂ stronger form of the
pfeceding result. With a little more work, however, the
results of this section car be applied in his argument
(cf. the proof of Lemma 6.3), giving a complete proof of
Theorem 3.16 independent of his (rather difficult) algebraic
computations: we omit the details. In any case one doe not

get his estimates for the multiplicities of_othér K types in X.
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4. The Classification Problem

We would like to produce a classification theory for
Harish-Chandra modules, based on the results of section 3.

= ]
Recall the algebraic ordering < of iio. Define a second

ordering < on .iio by vy < v, if

<Yyt 2p,0 Yyt 2p> < <Y, +.20 4 Y, * 2p > or
<Yyt 20,0 Yyt 20> = <Yy F 2p.0 Yy *2p 7 and

\}1 { Y, Put Pyl =<y + 20, Y+20> .

Let X be an irreducible Harish-Chandra module for g..
]

To avoid some minor complications, assume that vy € ixo

whenever X(y) # 0, i.e. that X is a unitarizable

kfmodule. f will henceforth refer only to vy of this sort.

‘(In case X is the Harish-Chandra module of a representation
and K is compact, this condition is automatic.) The
irreducibility of X implies that {y|X(y) # 0} 1is
contained in a certain translate of the lattice of . -roots
in ité. Hence the minimum of the positive real numbers
{l1¥]] | X(y) # 0} is attained on a finite non-empty set

of y. The following definition therefore makes sense.

Definition 4.1 The minimal k-type u of X 1is the

unique minimal element of {v|X(y) # 0} with respect to <.
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u  is essentially the f-type with [[u]|| minimal.
The main reason for using |[u|| instead of the "compact
Casimir" <u+pc, u+pc> is that Definition 4.1 produces
Schmid's "lowest typé" ([23]1) for discrete series
representations: and one can (with some effort) produce

examples in which the u+pc definition does not.

To solve the classification problem, it is clearly
enought to describe the set of Harish-Chandra modules with
a fixed minimal R ~type p. To apply the machinery of
section 3, we need some e;invariant parabolics. Let AT
be the positive root systém associated to u+2pc; recall
that if o ¢ Ai(%f)' o E'A+ iff <a,u+2pc> > 0 or <a,u+2pd>==0
and o } —a. Thus we have a f6-invariant Borel subalgebra
b? 2 [ és in section 2, with nii radical ﬂo; A(fP) = A+.
it remains to define the parabolic _irfiﬂp. It is not clear
how to do'this in general, but eﬁamples (cf. Theorem 4.6
and Corollary 4.16) support | |

Conjecture 4.2 The 6-invariant subalgebra ﬂ‘ilbp may -

be chosen in such a way that

i) whenever u is the minimal ( -type of the Harish-

R
Chandra module X, then the action of U(¢y) on xM

factors through the homomorphism g” (Definition 3.14)

ii) the Levi- subalgebra 0 of 4 is split

(befinition 2.4)
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iii) the {4k -tvpe of highest weight u-2p(71np ) is

- small

iv) if ﬁ'—2p(¢1np ) is a small [f0% -type associated

to u—2p(ﬂ_n? ), and u' is dominant for Jh:then u ﬁ u'

v) ﬁ+2pc—p is dominant with respect to the positive

imaginary roots supported on it

For the definitions of "small" and "associated",
see section 5. Conditions iv) and v) are needed only to
prove the existence of the representations described by

Theorem 4.5.

The philosophy is this. Recall that ol +_ﬂ% is
the center of £ . Let (id.g [ﬂ,?}tlgjo be a Cartan sub-
algebra of [fo,ﬂo} (which exists because QO is split).
Set g = ol{y) = fﬁ +cﬁ; t+hen .t* + (7 is a Cartan subalgebra
of { , and hence also of g . - Harish-Chandra often works
with the reductive group th (which will appear in the

realizations of Section 6). The present drvelopment is

+ . .
" goncentrating on L = GI . According to, for instance,

Kostant's quantization theory, the really fundamental
. P
objects are the Cartan subcroups G .

The problem with dealing directly with these is that (in

Kostant's language) the associated polarizations are
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usually neither real (the split principal series case) nor
purely complex (the discrete series case.) In Harish-
Chandra's point of view, the discrete series are taken as
fundamental building blocks, and one works essentially with
real polarizations (i.e. induced ~epresentations). Here

we start with the principal series for split groups, and

use purely complex polarizations (il.e. 71 —cohomology) .

When Conjecture 4.2 holds, the "unigueness" part of
the classification problem reduces to a study.of the
_ representations of a-split group containing a small
K-type {see Thecrem 4.5 below). These representations can
be described almost completely, using Harish-Chandra's

subgquotient theorem (Theorém 5.2). The result is

Theorem 4.3. Let G = KAN be an Iwasawa decomposition of a

split reductive group, and let | € X be small. Then there

is an analytic family {“ﬁ}vsﬁ of admissible representa-

tions of G (namely a certain principal series) so that

i)‘_ﬂ: contains exacfly.once; and the other small

K-types in ﬂz are precisely those associated to u.

ii) ﬂﬁ is irreducibl: for almost all v, and has a

finite composition series in general.
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8 \¥) v . is s
1ii) Wu and ﬂﬂ have equivalent composition series

iff v =0 « v' for some ¢ in a certain subgroup

WU of the Weyl group of A in G.

By i), m¥ has a unique irreducible subquotient W:

- u
containing the K-type p. Then

iv) The representations {ﬂ:} exhaust the infinitesimal

equivalence classes of admissible irreducible representations

of G containing u.

Since the only proof available for i) is very long,

this theorem will be proved in section 5.

Corollary 4.4 An irreducible Harish-Chandra module for a

split group contains ﬁ—types from at most one family of

associate small R-types. If such a family exists, the

minimal.ﬁ—type belongs to it, and each element occurs with

multiplicity one or zero.

| Suppase that Conjecture 4.2 holés for the f-type y;
‘choose A accordingly. Recall that mb = UNuJO =}%0 + mg"
' is a maximal abelian subalgebra of 4fn§% . Apply
Theorem 4.3 to‘the split reductive group L, and the small

{ng type u=-2p(nnp ). We may choose the subgroup A(u)
from the Iwasawa decomposition of I, to have Lie algebra

o N
UHu)O. Suppese v e ¢l(p) = A(p). By 4.3 (i), the highest
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weight space of the (n2 type u-2p(mag ) in ﬁﬁ is a
fnh

one dimensional module for Ru=1j(£j i

Iu—ZD(ﬂnp)(g)'

Let Hy = RU + € be the corresponding homomorphism.
Recall the map Eu : U(g)& - R11 (3.14); define characters

ES : U(gﬁk > C by Es =¥y ® gy. Then

Theorem 4.5 Tt X be an irreducible Harish-Chandra

module with minimal k-type p, and suppose that Conjecture 4.2

(i-iii) holds for u. With notation as in the preceding

*
paragraph, there is a v e 0l (u) so that the action of

'U(g)& on X' is given by the character EE- In particular,

U occurs with multiplicity one.

Proof. By 4.2 (i) and Proposition Fwd 3 y " is an
irreducible module for Eu(Uh) & Ru. Let Z < Ru be the
image of the center of U(f) wunder the quotient map

U(L’)an

> R, since Eulg(g) is essentially a Harish-
Chandra hcmomorphism, g”(é(g))_+_z is an integral ring
extension. By Cor:llary 5.5,.Ru is commutative, and Z -+ Ru
- is an integral extension. Hence .gu(Uk) & Rﬁ is an
.integral extension; so X lifts to an irreducible module
for Ru. By Proposition 3.13 again, this lifted module is
just the action of R1IJ in the u~2p(nnf)—type of some

irreducible Harish-Chandra module for ﬁ. By Theorem 4.3 (iv),

Ru must therefore act on X" by the scalars X, some
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%
Vv € d(p) . But this is precisely the conclusion of the

" theorem. 0.E.D,

It should be remarked that the ring theory here is all
avoidable. We will prove Conjecture 4.2 (i) by exhibiting
explicitly certain cohomology groups on which ¢ acts;
so the necessary liftings appéar adtomaticallf (although not
uniquely, just as above). In some cases the construction
of the cohomology is a little subtle, however; and it seemed
best to make Conjecture 4.2 as simple as possible, despite

the resulting uglinees of the preceding proof.

The existence theorem corresponding to 4.5 is

Theorem 6.2.

By a'straightforward reduction, it suffices to prove
Conjecture 4.2 for G simply connected and gO a simple
Lie algebra. A case-by-case attack is therefore not utterly

ridiculous. Let G denote the universal covering group of G.

. Theorem 4.6 Conjecture 4.2 holds in the following cases

a) G has bnly one conjugacy class of Cartan subgroups

~ o _ '
b) G = sSL(n,R) £) G'= s0 (2n)
. ‘ g o
c) G = SU(p,q) g) G = s50(p,q)
7~
d) G = SP(p,q) h) G = split form of G2
e} G = SP(n,R) i) G = rank one form of F

4
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For every case but g), we will actually prove the following

stronger versions of parts of 4.2:

4.2 (i)': Whenever ﬁ is the minimal [z-type of the Harish-

Chandra module ¥, then ﬂ is 77-minimal in X. (Definition 3.14)

4,2 (iii-iv)' u-2p (1ny) is principal series minimal

(Definition 5.3)

That 4.2 (i)' => 4.2 (i) is precisely Theorem 3.15. That

4.2 (iii-iv)' => 4.2 (iii) and 4.2 (iv) is trivial from the

definitions (see section 5). We will in general'say little
about 4.2 (v) - the reader may observe that in each case

much stronger conditions will be proved in the course cI

establishing 4.2 (i).

We will say that the k-type pu is 7y-minimal if when-

ever y is the minimal f -type of an irreducible Harish-Chandra
module X, then p is 7, -minimal in X. The first step toward
proving Theorem 4.6 is to give some computable conditions

for u to be 7 -minimal, for a fixed @-invariant ﬁ-z 1}0.

- ; * r
Definition 4.7 The weight ¢ e ¢ is sald to give rise to

J-cohomology larger than u if there is a f%—type Y > u so

.that if F is an irreducible kR module of highest weight vy,

then HJ(rT[ﬂkrF)(b 5& 0.

Write A(nap) = {Bl,...,BR}, Alnap) = {ml...as}

(the noncompact and compact £-roots in 77, respectively).
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Proposition 4.8 Suppose that for any non-empty subset

{Bi -« .By } of Alfag) , the weight n-B. ...-B, does not
1 J 1 J

give rise to J-1 cohomology larger than p . Then ﬁ is

7t=minimal.

Proof. Suppose that F 1is an irreducible £ module of
highest weight vy, and that ,

@7 ke, F) @ (A% (aag) 1T T2P (AR 4 g,

By the_definition of 7 -minimal, together with
Definitions 4.1 and 3.11, what we must show is that

Y < ﬁ. By a standard fact about highest weights in a

tenscr product, there are weights ¢ and ¢ such that
s *
HJ l % F)¢ # 0, ¢y is a weight of [A fnqp)] , .and
o+ = u-2p nng). Thus 1 = —(gi +...+Bﬂ ) for some
1 R-J
R-J element subset of A(nnp). ‘Recall that
R g
2p(ﬂq?) = z B = 1L Bi. It is immediate that
BsAGﬂqp) i=1 :

¢ = u-f; ...-B;, , where {B. } is the complement of
1 J J -

'{81_} in A{q%;). Now H {mn&,F)¢ # 0; but by hypothesis,
i
¢ does not give rise to J-1 cohomology larger than p. By

Definition 4.7, this forces vy < yu. Q.E.D.

J
Suppose then that J > 1, {Bi } ggA(nﬂ?), and that
j J=1

H=B. ...-B. gives rise to J-1 cohomology larger than yu.
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Let Yy be the corresponding ﬁl—type. To get some

restrictions on the {Bi_}, we want to compute
4

]|ﬁ[|‘]l¥[|? since y > ﬁ, this number must be non-positive.
By Kostant's theorem 3.8, there is a o € W%(J~1) with
(4.9) B = By «-.e=B, = o(y+p.) - p_..
iy iy c c
Thus
Y#20_ = o L[ (u+2p )-8, ...~B, —(p _-c+p )]
c c il"' iJ C c' "

Since g is an isometry, it follows that
Hvl] = <lwt2og) -2 ~(pg=0"0g) s ‘“*29c’“zﬂij‘(Dc‘c'pc)>£L-

By a short computation, this may be written as

Huld =11y l=2<u+29chBij+pc-o-pc> —<ZBij+pc"O“‘DcrEBij-!-pc—o-.pc)

By (3.7), —g-pc£2p(A;(k)).' Since g € Wi(J-l),

Pe

A;(&) is a J-1 element subset of A(naRk), say {ui ey }e

1 J-1
So l]u[|"]]Y[I=2<u+2pc,28i.+Zai'ﬁ{—<28i'+2ai_,EBi‘+Eai.{k
3 J 3 ] J J
I = -, — .
Hull=11v}]=2<u+20, D'ZBij+Eaiji;+<29 (EBij+Z“ij)'EBij+E“ijﬁa

-

Definition 4.10 A= A(u) = + 2pc - p.
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For an equal rank semisimple group, (4.10) is the
equation relating Harish-Chandra's discrete series
parameter A and the discrete series' "lowest" [, -type u
(Schmid [23]). This obseivation, which came out of some

very helpful discussions with H. Hecht, was the original

motivation for Definition 4.1.

1 J~1
last equation may now be written as

Set B ={u; ...;, ) u {Bil...Bi } €A Up. The
J

(.11)  [ull-1lvIl = 2<d@), 2B, + Zo; 3,
: 3 j

+ <2p(8%), 2p(B)>, .

Here B® = At(no) - B, so that p(B®) + p(B) = Py

Suppose we can show that the right side of (4.11) is always

‘positive {(Or zero, with y £ u): Then Proposition 4.8 will

imply that p is 77-minimal. Now % Eno, and

Ap = u+2pc is dominant with respect to /70 (by the

choice of fto). So <k+p,Bi>'and <k+p;ai> are non-negative
for all i; it follows that the first term of 4.11 is never
very negative. The second”term is easy to handle, as we
shall see.

If 1 ¢ W(g,ﬁ), set A:{g) = {a e A+|T_ld e A"}. Then
+
(4.12) 20(A_(g)) = L , a = p-T+p
: T 9 usAi(g)
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Because it preserves A, it is easy to see that the Cartan
involution 6 defines an automorphism 1T + 8190 of W(?,ﬁ).

. * + .. . .
We claim that T = 616 <=> T1-p & £ <=> A_(f) is 8-invariant.

L ) .
For suppose that A%(g) is @ invariant. Then clearly
* *
2p(Ai(g)) is f-invariant, i.e. is in £ . Hence p-T°p € 1 ;
. * . . . * . *

since p e A , this implies Tt+p e £ . If T°p € 1z , then
8(tep) = T°p; since 6p = p, (GTB)-p = fep, l.e.

T-l(ere)-p = p. The only element of W(ﬁ,ﬁ) fixing op

is the identity, so T = 6t1t06. Finally, if 1 commutes
with 6, it is clear that Ai(?) is f-invariant.
Temma 4,12 Suppose B < A+, R® = A+ - B. Then

<2p(B),2p(Bc)ﬁw > 0. Equality holds iff B = Ai(g) for

some T € W(¢,h) which commutes with 8.

‘Proof. (Kostant) By a short cémputation,

<2p(B),20(B%)3 = <p,p> - <p-2p(B),p-2p(B)3% -

o b

Consider the finite dimensionai irreducible representa-
tion of ¢ with highest weight p. Its weights (with respect
toaﬂ) are precisely the various p-2p(B), B < A+. By the
Cartan-Weyl theory, each weight of a finite dimensional
representation is at most as long as the highest one, wiéh

equality precisely for the extremal weights. Thus

<p,p> - <p-2p(B),p-2p(B)> > 0, with equality iff
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p-2p (B) T-p for some T & W(g,h). One knows that

5 & _ + 4
p-2p (B) Tp 1ff B = AT(#).

*

pet , so <p,p> = <¢,pﬁk. p—-2p(B) is a sum of roots,

) *
so <p-2p(B),p—2p(B)§? > 0, with equality iff p-2p(B) e [ .
Thus <p-2p(B),p~-2p (B)> 3t<p—2p(B),b—2p(B)§l, with equality
*
iff p-2p(B) € f . Assembling these inequalities,
c ]

<2p(B),2p(B7)3 = <p,py = <p-2p(B),p-2p(B)3 2> O,

Fod
with equality iff B = Ai(@), and T°p ef . - Q0.E.D.

Definition 4.14 A noncompact imaginary positive root B

is bad if there is a o € Wé such that

a). A;(&) consist; entirely of complex roots

b) A is singular with respect to B and each
o € A;(ﬁ)

c) if‘the noncompact imaginary roots in A:( ) are
¢1.;.¢£, then c"1(¢l+...+¢2—3) & 0 (in the

1 2
ordering / of i 0.)

Propcosition 4.15 Suppose A (u) satisfies

i) A({u) is dominant with respect to 27

ii) <og,)\(u)>fft > 0 for a € Aim(nnk)

iii) Aiﬂ(nny) contains no bad roots.
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Then - 4 is y7-minimal.

Procf. By Lemma 4.13 and hypothesis i), both terms in 4.11
are non-negative. If one is positive we are done; so
suppose both terms are zérO'(so that |[y|| = |]ul].) By
Lemma 4.13, there is a 8-invariant T € W(g,ﬁ) such that

B = A:(g). Since the first térm of (4.11) is zero,
<A(w),ayp = 0 whenever o e E. By hypothesis (ii), it

"follows that o. ...d. are all in A_{7thk). Since B
iy i1 C

is @-invariant, it must contain the J-1 corresponding

noncompact complex roots (cf. the discussion preceding

Proposition 2.3). So we may assume 'ai = Bi for
J 3

3 = l...J-1. The remaining Bi is necessarily 6-fixed,

J
i.e. SiJ ; AiR(ﬂqp). By (4.9),
. J-1 )
Y = 0_1((u-8- ) - I B, +p )-p_ = o_l((u~8 J=La, +p_)-p

i i. e’ Fe q, i."Pe! Fg"

J =1 3 J j

_.l ) -—
By (3.7}, ¢ " (- Za; +p )-p_ =0 1(~pc+d°pc+pc)-oc = 0.
]
So y = G—Lu - c_lsi s
' J

Since <A,a>il = 0 for all o ¢ A;(k), g*A = A; i.e.
u+2pc—p = U(u+2pé"p). Rearranging, and applying (3.7) and

(4.12), we get
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(*) w=ou = 0=0+p-2(p =o+p ) = 20(A) () ~ 4p (AT (R)).

Now A;(g) contains A;(h) and the corresponding non-
compact complex roots, together with (say) ¢l:"¢2'
. + _ + ! i
Clearly 2p(AG(g)) = 4p(Ac(k)) + ¢l+"'+¢2' Thus (*)

becomes
* — L] i
[x%) om0l =gy + eal o+ by

Every compact root in AZ g) is already:hlﬂz(ﬁ); 1.E
follows that the ¢i are all noncompact imaginary roots.

Y=o u-0o "8, =u+ o t((u-ow)-g, )
-J

= u + c-l'(¢l+;..+d)2’-81- ).
By ~J

What we need for 77 -minimality is u > Y; since

[1yll = [|u]], this amounts to u-y & 0. since B,
. . lJ

is not a bad root, u-y = - 0"1(¢l+...+¢2-8i )'é 0. Q.E.D.
- J

Corollary 4.16 Sunpose A(u). satisfies

i) xlw) is 712 dominant

ii) -A(u) is non-singular with respect to AiR(qfq k)

iii) AiR(ﬂpn{P) contains no bad roots (Definition 4.14;

‘in particular if A(p)is non-singular with respect

; 0
to AiR(ﬂ nd).)
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Then ﬁ is 7?0 minimal. Thus Conjecture 4.2 holds for

such u, with f/=[y, and afu) 4 = Fo-

Proof. By Proposition 4.15, u is 7YO minimal. [ =h is
abelian, and therefore split, with every {nk +type principal

series minimal. 0.E.D.

It is fairly clear that the conditions of 4.16 hold
for "most" u, i.e. when p is sufficiently far from every
root wall in iﬁé. In thag case Enright {[6])Ahas in fact
proﬁed Theorem 4.5 (that the representations with minimal
type ¢ are more or less parametrized by ng)*) using a much
stronger non-singularity condition on u. ‘“The condition
given here seems to be more nearly precise; this should

be clear from the considerations of section 6.

An example may be enlighténing.

ILet G = SL(3,R). The H ~roots of g are pictured
m‘ below. Here A

8 ; ‘? is one dimensional
=% X : . (the vertical

(3'3“:)1t z direction) and JJt

is one dimensional

L (the horizontal).
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The complex roots (i.e. those with support on gﬁd are
{+a,+6a}; B is imaginary and noncompact. There is one
compact positive root, namely the compact £ -root
corresponding to the complex root «; we call this o also,

as a L -root. Then the noncompact £ -roots are o and

R = 2a. (All of this is easily checked by finding the
cos 8 sin 8 0
eigenvectors of T = |-sin 8 cos © 0 c K = S0(3)
0 0 1 -

in s2(3,R).) A % -weight ra is dominant integral with
+ . . .

respect to A (k) = {0} iff r is non-negative and

2r ¢ Z. So let u = %wx; the associated positive root

system is necessarily {ao,60,B} = A{rzo). We want con-

ditions for u to be ??U minimal. 2pc = o, and

%(a+8a+8) = f = 20 as a ;t;root. So

1

P
A= u+2pc~p = (%4tl-2)a = (E%g)u. If n> 2, A is
dominant and non-singular with respect-to QO. By
Corollary 4.15} u is 77 0 minimal; since din fo = 1, there
is at most a one (complex) parameter family of representa-
tions of G with minimal R-type p. (It is not hard to see
that these may be realized essentially as a principal
series associated tc a maximal cuspidal parabolic subgroup
of G.) Ifn=20, 1, or 2 {(i.e. p is the 1, 2, or 3 dimen-

sional representation of S0(3)) then u is in fact principal
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series minimal (see Table 5.8). Theorem 4.3 describes the
2 parameter family of representations of G with minimal
ﬂL¥type ¢ in those cases; in particular, there are too
many representations for pu to have been fio minimal. Let
us see why Corollary 4.16 does not apply to the case

p=oa (i.e. n = 2, the 3 dimensional representation of K.)
Here A = E%gwx= 0, so A is dominant with respect to 7?0.
AiR(fioﬂﬂi) is empty, since there are no imaginary compact
roots; so the second condition of (4.16) is vacuously
satisfied. Hence the third condition must fail, which
means that B must be a bad root in the sense of
‘Definition 4.14. This can be seen directly as follows.

Set o= -1 ¢ W

k- Clearly AZ(%} = {a}, and o is indeed a

complex root; and A;(g) = at = {a,Ba,B}. As f -roots,

_AZ(?) therefore consists precisely of AZ(&J, the corresponding
noncempact root, and B = ¢1; SO U"l(¢l—5) =0, and B is a

bad root. Finally, the problem can be seen from the per-

spectivé of Proposition 4.8. Consider the two noncompact

roots o and B = 2a. Then
u-a-8 = y-3a = o-3a = -2a¢ = G(a+pc)-pc = U(u+pc)—pc.

Thus the R-type u has 1 cohomoclogy of weight u-a-f, which

prevents n from being Tio minimal.

So far we have classified the irreducibleuadmissible

representations of a rank two group, explained a mysterious
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definitior, and illustrated the structure theory of

section 2 in one fell swoop. Still more mileage can be
gotfen out of this example, however. One might hope that
all discussion of higher cohomology is irrelevant. There
are a number of results about the uniqueness of the discrete
series (see for example [23]) which assert that if a
representation contains a Jg—type'ﬁ, but does not contzin
ﬁ—s for any noncompact positive root B; then the representa-
tion is equivalent to a certain discrete series representa-
tion; or in general that there is at most a (dimg7§) para-
.meter family of suph representationé.. All of these results
require strong non-singularity hypotheses on u, however.

In the present case(G = SL(3,R),u=a) the minimality of ﬁ

in X implies that uy-o¢ = 0 cannot occur in X; and

- =‘ﬁ-2m =" -0 1is not even dominant. Yet there are a
great many representations with minimal &k -type p (more

than a dim f§—= 1 parameter family.) To explain this,

one must consider the fact that p-a-p gives rise to

1~cohomolagy which can occur in X.

"Proof of 4.6(a). Since 9o has 6nly one conjugacy class

of Cartan subalgebras, &grmu%F be a maximal abelian
t
° t B
subalgebra of ‘PO' Thus ( ﬂf N@b:&%. Now q) 2_@ '
[&}
and the rocots of & in gj are obviously the imaginary

roots of f in g. So AiR(rﬁr1§) is empty. Since
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Ac(rﬂmgg } = AC(71”\&_) by Proposition 2.3, it follows
that every # ~root is equal tc a compact Jf—root; In
particulaxr ﬁ is dominant with respect to 770. To prove
that the conditions of Corollary 4.16 hold, it is there-

fore enouch to show that 2pc—p is dominant with respect

to no and non-singular with respect to Aiﬂtﬁh,f1@).
- == e 21 = a(-“‘ e ! s ]
2pmp = pmp(7NF) = p (A, (TLAR) ) +p (An (71R2) ) —p (Mg (MOap) )

=_p(AiR(¢v%ﬁ}) by the preceding remarks.

AiR(Q) is a root systgm in its own right, with Aia(fﬁﬂi)

. as positive roots. It follows immediately that 2pc—p is
dominant a2nd nor-singular with respect to AiRPﬂm&). Let
(d,B) be a simple positive root of A. We want to show
<29c{dﬁa - <p,uﬁk.3f0. If B = 0, this has just been
proved; so assume B #¥ 0. Then (a,B8) - (a,-8) = (0,28)
is not a root. We claim that («,B) + (a,-B) = (2a,0)

is not a rocot. Let X be a non-zero root vector of
weight (a,8); put Xy, = X + 68X, Xp = X - 8X. Then

Xp ek Bpepy Xy bR =.2X,‘and» Xp - Xp = 20X, If
(20.,0) were a root, [X,06X] would be a non—ze£o root wvector
for (20,0). But [X,0X] = Flx +x,, % -xp] = = 3lx %1 €
so (2a,0) would be an imaginary noncompact root. No such
roots exist, which proves the claim. By abstract root

theory, <(a,B8),(a,-B)> = 0, i.e. <a,a> or

& - <Br823 r
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<(a,B),(¢,B)> = 2<a,a> . Since (a,8) 1is simple,
[
: ; <p,a> _ .
2<p, (a,8)> TR L __ )
1 = gl = i.e. <p,a> = <o,0% . Since
<(a,B)+ (0, B)>  <a,ay @ TS PSR 'y
¢ is necessarily a positive compact root, €2pc,a§k z_<u,ai_;

SO <2pc,u>¥L - <p,az; > 0. This completes the proof that

2pc-p is fiondominant, and 4.6(a) follows.

Proof of 4.6(b) Here K = S0(n), the universal cover

of 80(n). We omit the famous case n = 2 (which is of
course well understood; in any case it will appear
.later'as SU(1,1)). Thus K = Spin (n), a two-sheeted
cover. of SO(n). For definiteness assume n is even; hence-
forth it will be written as 2n. On the S0(2n) level, a

torus is -

cos 8; sin @ s Take the 6,
. as coordi-
~gin 81 cos el
nates in Z;
) in the dual
. coordinates,
cos Bn sin 8 i
. B iih is then
-sin @ cos 6
n n

identified with R". After normalization, < , ﬁk is the

. n
usual inner product on R .
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A straightforward computation produces the weight
"vectors of £ in s£(2n,R). With respect to the usual

basis eq-..€, of Rn, the compact roots are

;j: =+ e, * Y I < i< j < n. The noncompact roots
3 — i pail =
£+ | _+ T

= o = .+ . = = ¥ b9 ;
are Plj te; * g and py =+ 2e; hY has
dimension n-1. Clearly the complex roots are the
+ ++ : G
Ij and pzﬁ“ ; for according to Proposition 2.3, a

1+ —root occurs with multiplicity two iff it is conplex.

The imaginary roots are the p% .

I o~
Order itb = r" - lexicographically. Then the
++ ‘

compact roots are the qiji r S0 that

2pc = (2(n-1),2(n-2);...2,0) by an easy computation. A
weight (al...an) is dominant integral iff (a;) is
decreasing, a1 + ag > 0, and either all a; € Z or

1 _ ;
all a; € 2 + 5 Suppose u = (ul...nn) is a ﬂkwtype,

i.e. p is dominant integral. Then

.u+2pc = (u1+2(n—l),...un_l+2,un). "Recall tne definition

: 0 ++ _ ++ .
of -". Ql_arly <pi§, u+2pc> = <qi§, u+2pc> > 0; so

++ 0 : : . : :
qi§~e A(77). Since (ui) is decreasing and un—l+un > 0,

My > 0 for 1 < n. Thus <p;,u+2pc> > 0 for i < n. If
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sgn Y, - & - _
. u+29c> > 0. If yu_ = 0, Py u+2pc> = 0,

H ?'501 <p n

n n
-— 1 . .

and p: % = (recall that ilo is ordered lexicographi-

cally.) Define sgn (0) = + ; then we have shown that

sgn u.
0 ++
Ay (LA ) = {pi3 p; 11

s

One computes immediately that p = 2pc + (l,i...l,sgn un),

so that
(4.17) u+2p-p = Al = (y-L,uy-1,.c.u _4-1,u -sgn wL) -

If fe = 1, set s = n; otherwise let s denote

the largest index with |u_| > i. Let £ >} 'be the

5|

p-invariant subalgebra corresponding to the # -roots

perpendicular to e

ceeE 3

1

r+  EF
A_/t(ﬂ) = {q35 /P

ok Pl
ijr P‘fllr] > s}

Let 71 be the span of the root vectors corresponding
to the remainiﬁg positive roots;

$p Came B0 Hg

(4.18) A7) = day5r By Py |i < st
' 10 . ‘ . .
Then [~ = le 7 = b is a f6-invariant parabolic.
% ; =
The span Jtroot(P ) of the # -roots of / in £ is
sgn .
clearly R and {pi l|i > s} 1is a strongly

orthogonal spanning set of noncompact imaginary roots for
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* . 13 3 . -
%‘root(ﬂ ). By Proposition 2.5, ﬁO is split; in fact
it is easy to see that the semisimple ideal of 10 is

isomorphic to s&(2(n-s),R).

We check first that p-2p(s71§) is principal series
“minimal for { . If s =n, then [ =f is abelian, and

there is nothing to prove. Suppose then that s < n.

From (4,18), we deduce

++ . .
.= i < .
;50 pili < st

Aylmap) = {p

. Thus 2p(fznp) vanishes on the last n~s coordinates,
and un2p{nn§>) = (...ﬁ5+1,..;ur). By the definition
of s, lﬁs+l| < 1; since u 1is dominant integral, it

follows that the only possibilities for (us+l...un)

are (L ss sda 0 owed) (with at least one zero),
o T O i 0 - 2 (%,.-.%. + %). Consulting Table 5.8,

we see that these are all principal series minimal for
the semisimple ideal s&(2(n-s),R) of A X and it is
immediate that u—ZQ(TZﬂF) is principal s.ries minimal

for £ .

To show that § 1is 71-minimal, we apply Proposi-
tion 4.15. Since AiR(Jk) is empty, condition ii) will
always be vacuously satisfied. Suppose first that s = n

and- L. > 1; thus {4 = ﬂbo. Since (ui) is decreasing,
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Wy > 1 for all i. It is clear from (4.17) that p 1is

"dominant with respect to 7g" Suppose a noncompact

positive imaginary root P, 1is bad. Notice that since

. .
i.to is ordered lexicographically, every pI is » 0,

Suppose 0 & Wy is as in Definition 4.14. One knows

n

' - =
that Wy operates on iio = R’ by permutation and

changing an even number of signs. It follows easily

that A:(%,) contains on even number of p;,_say

{¢l,..¢39. There are now two cases. If U—lp;.e A",

‘then p: € A:{g;), say p: = ¢l. Then

6-1(¢l+...+¢2{p:) = 5—1(¢2+.;.+¢2£. Every c_l¢i is A

negative noncompact imaginary root, i.e. some p;.
Thus their sum is < 0, contradicting c) of Definition 4.14.

-— — | &
If, on the other hand, ¢ lp; E A+, then o ‘(—p;) and

every o ¢i is a negative noncompact imaginary root;

so again U_l(¢1+"'+¢zfp:) < 0, contradicting 4.14 c¢).

So there are no bad roots in this case; by Proposition 4.15,
y is o minimal.

In every other case, |us|-> 1, so that [p;| > 1 for
i < s. By (4.17), A(u)i # 0 for i < s, and

Egn'l(ﬁ)i = Sgn p.. We have seen that

sgn My .
AiR(T?ngj) = {pi [i < s} (see (4.18)), so A(p) is
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dominant and non-singular with respect to AiR(Q11p ¥ s
In particular there are no bad roots. We claim that

~A(u) is 77 dominant. By (4.18), it remains only to show
: (ot TL bl o =
this for the roots pif’l < s}; reca at pij = q5;

: : ++ . . .
as i?froots. Consider for example p. Since i < j < n,

i

ﬂi is positive; and we have seen Iﬁi] > 1. Thus u, > 1.

Also
<pit,A> = <e.tE.,A> = A,4A. = W, tn.-l-sgn Q.
qdf i "3 i "3 i "3 3
If g 0s 40 T A5 = flgte 3 0 sinee w ds Honinank
Uj 7 ?ij' = Ui ]-Ij = ce |y 1s do .
_ 5 .
Suppose then that uj > 0, so that <pij,k> = ui+uj-2.

If ﬁi € Z, then Uy 1 implies uy > 2; so u.+uj—2 > 0.

If y. € 2 + 1 then yu,

3
£ 57 5 3.7, and also_uj e Z 4+ =

(ST

Hs: > 5, and ui+ﬁj—2 > 0. In every case <p:;,k> > 0.

J
A similar argument can be given for PZE' Thus u is
indeed 7 dominant, and so 77 minimal by Proposition 4.15.
’ A ~

This proves 4.6 (b) for SL(2n,R). SL(2n+l,R) is

similar but considerably less messy; so the details are

left to the reader.

To continue, we need a refinement of 4.11. ILet

L ]
Vv E ito; then by 4.11, with notation as in that situation,
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(4.19)  |juli-11vH = 2<A(U)+%v,28i +Zoy > +<2p (B®)-v,2p (B) > .
' "] J

I

Lemma 4.20 Suppose Vv X 2.8 U 2g

< 1.
6€A+(£)-6 -

8.

Then <2p(Bc)—v,2p(B)>_ > 0. Equality holds 1EE

/

i) B':'Aj(g)‘for some T € W(g,h) commuting with 6.

ii)  <8,p-tep> = 0 for all § e A" ({) with cg # O.

Proof. By taking appropriate convex combinations, it is

enough to do this in case ¢, = 0 or 1; so that v = Zai

)
for some subset {Gi} of A+(ﬂ). Define

0
i

o =18 eat)|s #6,, any i, ana <2p(B) , 8% > 0}

C

H

1 {aii<2p(B),6i > 0}.

&

Considering the positive root system for ] defined by

2p(B), it 'is easy to see that C = COiJ Cl = Aj (), for
S

some Ty € wil, & commuting with 8. By Lemma 4.13,
+ ( L
(*) <2p(a"(§))-2p(Cy)-2p(Cy),2p(Cy)+2p(C,y) 3, = O.

. Since 7y is invariant under £, <p(n),6@k==0 for all § 8A+(£).

Put C, = {a.i} = Cyi so 2p(C,) + 2p(Cy) = v. Applying

these observations, we computé
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<2p(8)-v, 20 (B)>, = <20-20(B)~20(C)~20(C;) " 20 (B) %

1

<2p-2p (B)-2p(C) —2p (Cq) ,2p (B) % +<2p (Cqy)—2p(C5) ,2p(B) %

= - o o %
= <2p-2p(Bv CDU Cl),2p(BLJCOU Cl)?b <2p=2p(BUC, U Cl),2p(C0 Cl)ﬁ%

0
+ <2p(C0)—2p(C2)}2p{B)> . Call the first term (), and

write 2p = 2p(7) + 2p(AT(L)). Then ‘ s

<2p(BC)—v,2p(B)>=(I)w<29@7),2p(COLJCl}&U+<2p(§) 12p(Cqu Cq &1

~<2p(8% (0))-2p(Cy) =20 (C;) ;20 (C) 20 (Cq) 3 +<2p (B) ,2p(C() =20 (C)) 3

= (I) + <2D(B);4D(C0)+20(Cl)—2p(02)%, by (*) and the

N
remarks following it. By Lemma 4.13, (I) > 0; and the
second term is non-negative by the definition of Cor Cq-

and C,- This proves the desired inequality. In case of

equality, necessarily CO and Cl are empty, (I) = 0,

and -<2p{B), 2p(c ¥L= ~<2p(B),EGi>& = (0. By Lemma 4.13,

this is equivalent to the conditions stated (recall that

p=Tp = 2p(Af§(@)).) 0.E.D.

By choosing v = Ecaﬁ appropriately, it will always

"be possible to arrange for A(u) + —v = l(u vﬂ% to

be dominant with respect to 770 in the cases we consider.

(The reader may easily see how this would be done for

s%(n,R).) This is the strong form of conjecture 4.2 (v)
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which was alluded to after the statement of Theorem 4.5.

-~

It is easy to check whether A is 71 dominant

for let 61....6m . be the simple roots in 7To* Since

‘ <'6i'p>-k. w5
2———— =1, A will be dominant iff
<§.,8.> .
T ¥
. 1 4 <6'i16'> . ' S
<u+2pc+-§-v,6i>k 2_———5-5— for all i. Furthermore )\ is

singular preciseély with respect to those simple roots for

which equality holds.

To illustrate the methods, let G = SU(p,q) (p < q)
and put u = 0, the trivial representation of K. X is

S{U(p) x U(g)), and has a torus consisting of the diagonal

matrices
{ [ig
T 0 \\
T = - lep ! _
e zei + Z¢j =0{-

| r

e 1
h 0 ig
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ib may then be identified with the subspace

P Y B g
\ bt -
{1(01...9p),(¢1.,.¢q,]Izei + z¢j 0} of R ® R~;

- ]
similarly iib is identified with the same space, with
the usual inner product for < "ii’ G is an egual
£ . ke _ .
rank group, so $ = 0. Identifying % = (go)c with
s (p+g,€C), one checks easily that the roots of £ in g}

are the following (with respect to the basis

{ei,s?] 1 <i<p,1 < | i.q} of Rp @ Rq):

J
- _ 1 1 ] '
compact: €, 4 T EJTEL, l<i, i'<p, i#1i
; =

c2_ 2 - . ;
: vy = = ] < '
fj'3 €578y 1 <3, 3 a, 3 # 3

L L. 2 . o
noncompact: gij— + (ei- j) 1l <1<p,1<73<aq.

We will sometimes refer to ei as the i-coordinates and

]
€§ as the j-coordinates. Order -iIb E:Rp ® R7

£, [1<1 J<3! },

lexicographically. Then A+(EL) = L&, .,
. i1 .3

and one computés easily that
ZDC'—"[ (P~LyP-3, v oep=24fl, o . o={D=1) ) s {G~1; os s G=2%1 4 - = (g=1)) 1]

Since u.= 0, p + 2pc = 2pc. By the definition of Eﬁa

1l

A(f?ng7)

J|p 2i+l > g-2j+1} v {g |p-21+l < g-2j+1}

$i.ml 1 L . :
{gljljul > Sla-p)}tu tgijlj-l < 5(g-p)}.



68.
Assume for definiteness that g-p is even, so that 32

. . . ; +
1s a non-negative integer. The simple roots of A are

precisely those which cannot be expressed as a sum of
two other positive roots. Using this, one can check that

the simple roots are

; 1e3.97P 7 gtp oL S o= ) .
j'j+1|153§fjr"lf_2”.§ i<alvudig a-p,.'9, g-p.. | “1<i<pd~
lp 2 +l l’T+l—l

Let ér‘z_g—o be the (6-invariant) parabolic corresponding

{f

to the simple noncompact roots .&;+ Since these

.
are strongly orthogonal, the semisimple ideal of ﬂo is

" a product of p copies of s&(2,R): so jb is split. We
leave to the reader the straightforward verification

that p - 2p@1n§7) is principal series minimal for 6?0'

P
Set v = I g+ _ . Then by direct computation
. i:l irqu[l
) 1 1 .3 3 -
W20 + 5V = [P -Freepm2i+ 5, - (p-3) a1, .. .q-2(LB) 41,

-2 (2P 1 na X L B, 1
Q-2 (551 +5, .. .q-2345. .., q 2 (F5=) 5

q-2(3§E+1)+1,...—(q-l))].

From this one computes



' : a-p atp _ -
<f ,j+1’U+Zp 5V 2 L<3J=5 5 1y =<3 < g
<f 1 +2|D‘ + > = =
+p g+p, . "
qu,qull c R 2
+ 1 o mi.3 59D, -
<g' - ;,u+2pc+§v¢L =p 21+2 (g 2(—§—+1) -+ 2)
l'T‘+l
=1 , 1 i‘i <P
o T8 1 e W EEP L ey 3o
<g N ’U+2pc+§vﬁ\ = q 2(—§—+1 l)+2 .(p 21+2)
1,~§—+1—l .
=1 2<1ic<p

- ' i _ 1, _ 3
<g q_-p-,.'1_[-*-..':‘_,|Dc'1"g'i.i'>(Q = (P"‘l)"(P"'i) = 5
l;T
Since all roots have length 2, the remarks following
Lemma 4.20 imply that A will be ?YO dominant if
{u+2pc+%v,6> > 1 for each simple root §; this has just

been verified.

With the usual notation, suppose'now that

J
u~- I By gives rise to J-1 cohomology larger than u;

j=1 3

J-1
recall that {ai } are the corresponding compact roots,
j Ji=1 :
and B = {ai }u {Bi }. By (4.19) and Lemma 4.20, there
J J _

p . +
isa t¢e W(g,%} with B = A_(g); also ull = |vl]-

Since ﬂ = 0, it follows that <y = 0; so by (4.9) and (3.7)
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_EBi. - H"ZBi. = U(Y+pc)_pc = 0%PgmPy = ~La .
] ] J
s0 'ZBi. = Zai.; since p-T*p = ZBi. + Zai.,_lt follows
] J d J 3
that
(*) every coordinate of p-Tep is even.

.Lemma 4.20 and (4.19) also imply that every root in Ai(gy)
is a sum of the simple roots annihilating A, namely

{g" |1 < &< p} wilg - |2 < i < p}. Since
1,88 i
W(g,&) is the permutation group on the coordinates, it

is not difficult to deduce that +t acts only on the

i coordinates, and the j coordinates between E%E+1 and

gt+p ; _ 1 1 1 2 Dy & 1 _
g Write p = [(pl,p_,_,---,pp),(pl,---pq)]r say py = n.

{Actually, n = Eg:l’ but this is unimportant.) Since

2

+ - . '
g g-p . and g q-p, : are simple roots of length 2,
i;—z——“l‘l ' l,"z—"["i—l

+ i 2. I .2
lL=<pg 4 > =<peej-e__ > =pi-p__

i'qu,i b qu,i i qz;,i, and
1 = 2 _ 1

=P D, ; Pi41 -
ﬂfdi.

We deduce immediately that pi = n-2i+2, DQ%E+1 = n-2i+1

for 1 < i < p. (Henceforth such computations will often

be left to the reader.) By (*), = Preserves the
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i coordinates and the j coordinates separately; say

T =_[01,02] with obvious notation. We claim that

Ul(i) = 02(352+i) - Q%E for 1 < i < p. If not, a

finite set argument shows that necessarily

: qg-p Yy _ 9P ; .
01(1) > 02( 5 + i) x for some i. Then
] + . ' 1 2
<T (g _ J,p>), = <g e TeP> = p_ .=p _ < 0
1,98, k i, L2 9% 4. (F2B44)
2 2 2 2
. -1 +
by the computation of p. So 1 " (g B ) would be
i, L85
_ 2
a negative root, i.e. g+ _ £ A+(g) < A(71). But
. 'q?P!i T
g+ o is a root of { ; a contradiction. So
i,32B+1
ol(i) = 02(352+i) - Q%E . We deduce that, as automor-

phisms of ité, det [Ul,l] = det [1,02], so that

det T = (det [01,1])2. Now if w ¢ W(gbﬂ), one knows

that det w = (—l)g(w); so it follows that &(1) is even.

On the other hand, &(t) = B] = J+J-1 = 27-1; a
contradiction. So y cannot exist, and u is 77-minimal,

proving Conjecture 4.2 in this case.

By Theorem 4.5, we have proved that SU(p,q) has
at most a p-parameter family of spherical representations.
This is of course less than earthshaking; the point was to

indicate the idea of the following computations in a
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relatively simple situation. The reader may consider

himself warned.

Proof of 4.6 (c) - This is the case 90 = su(p,q), p‘i q;

: ‘1 " ;
n = [(”i""”p)'(“l""ué)] an arbitrary }kthpe; we

retain the notation of the preceding example. Since y

is dominant integral, both sequences (u;) and (u?) decrease
1 ]

by integers. Set ﬁ+2pc = g = I(ai,...aé),(ai,...aé)};

then the positive root system defined by a satisfies

o — ot al_ ;2 i X 2
A(71°np ) {gijl i aj>0} {g Ial aj<0}
; 1_.2_ . .1 _ .2 e _ ’ '..
Define aD = By = 2ot aﬂ+l = (formally). For

1 <i<p, define j(i), 0 < j(i) < g, so that
2 3 .,
B3(1) 7 % 2 Fj )+

transitional if ai_l > a?(i}' and lower transitional

: 2 . 1 ; . ‘o .
if aj(i)+l > ay.q- It is called upper crltlcal 1E

9 - gL
j(i) i

The index i 1is called upper

o v 1 2
< - . - . . -
0 a“ < l{ and lower critical if Q < ay aj(l)+l <1

The simple roots in A" are then

- {e

1,4+l ji is not lower transitional and i+l is not upper transitionallv
= . s - 7 . U (] . . . - -
() {fj j+lt}1snotj(1)fo? any i} 1gi’j(i)Lflsuppertran51tlona1}
Lﬂéf ..o i is lower transitional)

~¥1,3(i)+1 °
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By the integrzlity of yu, ai-a? = € mod Z, for some
“fixed e e [0,1). It follows that i is upper critical
iff aﬁ(i) ~a; =1 -¢, and i is lower critical iff

ar 2 = g. Within the i coordinates or the

i ™ 3y
j coordinates, Pe - necessarily decreases by 1; so

1 g
2 v %

2

: . g : o ;
> 2, and aj - aj+l > 2. Omne de@uces easily

that every ﬁpper (respectively lower) critical index jisg
also upper (lower) transitional. We can therefore let fr

"be the parabolic corresponding to the simple roots

. ) _ _ " o
IR EENE i - i U {g: ...
{gl,j(l)ll is upper criticall {g1,3(1)+1il T, —

critical}l. We claim that these are strongly orthogonal;
since they are simple, it suffices to show that the sum

of two of them is never a root. For pairs of the same

. § . : - +
sign this is obvious; so suppose gi,j(i) + gi',j(i')+l

is a root. By the description of the root system,
either i = i', or j(i) = ja'")+1l. If i =1i', i is
both upper and lower critical,. so that

2 2

_ - 2
%5 T f)

2
= (a 5 (i)+1)

1 §
j(i)-ai) + (ai—a

= l-eg+e = 1,
which is impossible since (a?) decreases by at least 2.
Similarly one can rule out j(i) = j(i') + 1, proving the
claim. Thus the semisimple ideal of ﬁo is a product of

copies of s%(2,R), and is therefore split. Since AR+SfT
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is a one dimensional [ -module of weight

.29(470y) + 2p(nrak), u —-2b(71np) is principal series
minimal iff u + 2p{(71nk) is; Here 71N{R = m°nk, so

20 () = 2p,; so we must show that a = ﬁ+2pc is
principal series minimal for P . This is immediate from
the characterizatioh of criticél indices, and the
description of principal series minimal types in Table 5.8;
details are left to the reader; It remains to show that

¥ is 77 minimal.

. - +

Set v = £ E8G: = pany F z (I-e)g. .,.
i upper i,3(1) i lower 1,3(1)+1
critica oritical

We claim that Ai = ﬁ + 2pc'+ %v - p is ?7O—dominant.

All roots have length 2; so according to the method

outlined after Lemma 4.20, we must show that
<u + ch + %v, 8> > 1 whenever § is a simple root.

Consider first a simple root e We know from (%)

i,i+1°
that i is not lower critical, and i+l is not upper

‘critical. Using the definition of v, this implies that

1. 1
- e §.<v,si> <0 0 < <V'Ei+1> < l-g; so
; 1 _ : 1 1
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Similarly, if £ is a simple root,

J.i+l

) 1 : - .
gu f 2pc + Ev"fj,j+l> > 5. Suppose -gi,j(i) is a

B

simple root not in A(ﬂ ). Then i is not upper critical,
2 1.

SO aj(i) - ai > 1 -~ eg; by integrality, this forces
2 X . ' 1 2°
aj(i) - ai‘i\Z - €. Now <v,si> and <v,ej(i)> can be
non-zero only if i is lower critical or Jj(i) = J(i') + 1
and i' 1is lower critical; in any case
0-4 <v el>:< l-g, 0 > <v 52' > > = (l-g) Thus
P fi ly 7 e ;j(i) il .
1 - 2 1 :
<p+ +=v, g, .,..> > as,..—-a. + =(-(1- - -
WH2e043Yr 93,5007k 2 331721 F - (1me) - (A-e))

> 2 - g - (1-2) = 1.

Suppose that equality holds; then ai(i) - ai =2 = g3
) C s 1l 2 = g
i is lower critical, so ay aj(i)+l = g; and
j(i) = §(i') + 1, with al, - a2,.. = ¢. These imply
r ll J(l)
ai, - ai = 2, so that i' = i - 1, and that
a2 - a2 = 2 Since a = + 2 - it follows ti t.
5 (1) §(1)+1 . b Pgr L 1O 1
‘u is s;pgular with iespect to ei;l,i and fj]i),j(i)+l'
Also Vil < l-e = Vi’ vj(i) = =-(l-e) = Vj(i)+l’ so v is

singular with respect to these compact roots. To
‘ ‘ L - _ s sy
summarize: jif <u+2pc+§-v,gi,j(i)>‘.k = 1, then 3(%—1)+1 = g 1),

and the noncompact roots g;_l 4189 and gT-.
. r

in A(f). p and v are singular with respect to the
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compact roots e. . and £

i-1,1 ](l)rj(l)"'l.

Suppose next that g; (1) 4L - is a simple root not
- 14

in f . If e # 0, we argue exactly as above, and get
jdentical results. If & = 0, we still get

, 1 + - .
<”+2pc+§v'gi,j(i)+l>k > 1. Suppose that equality holds.

i,5(4)" say, is a root of | ;
r

We cannot deduce that g

1 = _ :
but suppose <u+2pc+fv’gi,j(i)%k = 1. In thlg case
3.3(1)
preceding paragraph would imply that gi,j(i)+l is a

g is necessarily in A( 2); for otherwise the

root of { , which we have assumed is not the case.

Exactly as before, we dedice that "u and Vv are
singular with respect to the compact root fj(i),j(i)+l'
Gl ; 1 - .

Similarly, 1if <u+290+iv'gi+l,j(i)+lﬁk = 1, then

j(i+l) = 3(i) + 1, gi+l,j(i)+1 is a root of £ , and u

and v are singular with respect to e, .. ,-
i,i+1

Finally, it is very easy to check that

<u+2pc+%v,5> =1 if 6 1is a simple root in A( ).
This proves that Ai is qoﬂdominant.
. J
Suppose then that u - I BiJ gives rise to J-1
j=1 3

cohomology greater than u, with all notation as usual.
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By (4.19) and Lemma 4.20, [|u[]| = [|y||, all a, and B,
' ' 3 3

are sums of simple roots annihilating A, and B

AT ()

for some f-invariant T € W(Ej,ﬁ). TLet EO E?ﬂ be the

subalgebra of cﬁo corresponding to the roots which

annihilate X. Then the simplé roots in A(ﬁo) are certain
' +

noncompact simple roots g;_ which are described above

(namely those whose inner product with u+290+%v is 1.)

There is a natural notion of adjacency among- the
simple foots of q = s&(n,C); two simple roots 61,62 are

adjacent 1ff 61+6 is a root. Call the sequence 61...6r

2

of simple roots contiguous if the Si are distinet, and Si

is adjacent to §; for 1 < i <r-l. Then ¢ + ... + ¢

+1 r

is a root iff (61) is a contiguous seguence, and these

are all the roots. If the Gi are noncompact, 61 + eas ¥ 6r

is a compact root iff r is even. Thus the simple roots

i
of §nlk are the 61+62, where 61,62 are adjacent simple

" roots of ﬂ. Such a pair is clearly of the form

-—

+ -
94,501)" 91,5 @y+1) % ¢ ). By

I -
%i,3(1)7 141,35 (i+1)
the remarks in the proof that A is ﬁb dominant, exactly
one root of such a pair is in A({). The coriesponding

compact roots are £f. respectively;

J(i),3(iy+1 °F ©i,i+1
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we saw that y and v are necessarily singular with respect

to such roots. Since A;(K) c A(E fL&), it follows that

v = o-lv, U = o u; and since by definition the roots

fn EUPY apnililate %, @ ~ () = s

Now ﬂ decomposes as a direct sum of simple sub-

lad ~g

algebras { i 568 (plus center) corresponding to

maximal contiguous sets of simple roots in A({J); we
call these components blocks. Assume the blocks are

.ordered in accordance with the lexicographic ordering

[ +4 :
of ify : if gy ¥y, u < v,

NTL +
131 e A( 7), gy 5 € Al

272
then il < iz. The first simple root in a fixed block

is either gz (type I) or ggj (type II). The key

]
observation is that, since A:(A) < A(E.ﬁﬁa), and

A:(q)} E_A(ﬁ), both T and ¢ respect the block decompo-

sition. We write _%P for the part of h oin 2N

. _ -1, . -
.Recall (4.9) that v = o “(u ZBij+pc) Poi thus
_ =1 1. -1 .
Y = o “{u+2p _t5v-p)-o (pc+§v—p+zﬁij)-pc
-1,7 -1 1
=g " {(A)-o .(pc-U’pC+§V‘(D“ZBi_))‘2Dc
3 1 1 ]
= A-g (?ui.+§v-(p—28i.)"2pc (by 3.7)

<73 3
R T W -1 .- : .
u+2pc 5V=p=50 “v+o "~ (p (Eai +ZBi_)) 2p

3 .
j j &
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¥ = u+%(v—a—lv)-p+0_1(r-p) (by 4.12)

(4.21) Yy = u+%(v—o-1V)-(p—(cﬂlT)'o)

(Here we used only the fact that the roots in A;(k)

-~

annihilate A; accordingly we may apply 4.21 in later
computations.) In the present case, of coursé, v = c-lv,
so the middle term may be ignored. We claim that for
each u, v = u on'ﬂﬁ, énd length (Tlﬂp) is even. The
claim is proveé by induction on u; suppose it is known
for u'< u. Consider first the type II case, so that the

first simple root in A(Qu) is g.

;o’j(io}' From the proof

that X is 770 dominant, we deduce that gT e ACY),

+

] ~u —
and that the simple roots of %~ are g. io,j(io)+l'

§ g +r g
- +

gio+1'j(iq)+l' 2y etc.; every second root,

Zra nr
0+1,%(10}+2

i.e. each gq.

l,j(i), is in A(J). Since <p,$ >, = 1 for

each simple root §, it follows that the Ku part of p is

(io place) _ j(ig)place

4 |

"[(eeen-1, -3, n-5..){c.. n,n-2, h -4 ...]1]

~

Suppose that u # y on the i coordinates of B, By

induction, y = vy on the earlier i coordinates; since
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Y > 1 in the lexicographic ordering, we deduce that

there ig an il > ]

> i, so that Y; = M for 1 < iqr and

1

Y > Mg - Since 1 is annihilated by the compact roots
i 5 1

in f, the seguence (ui) is constant on each block;
similarly for (pj). On the other hand, y is dominant,

so (Yi) is decreasing; it follows that il = i0 is the
leading i cﬁordinate of Eu. Recall that W(éu,ﬁf) ~acts
by permuting the coordinates. We deduce from (4.21)

that the calT(io} coordinate of p is greater than the

-IO coordinate of p, which is possible only if

(o7 11(10) = j(iO)' Suppose that for some i in the

u ; T - . . _
E block, T(l? 30' gi,j(i) is a simple root of ﬁ,
and thus cannot occur in A:@g) c MA@y ; but

-1 - -

< ° _ " ‘ > —— T < _ 2 i ° >
(T )93, 51) P78 = “931,5(5) 7P
= <ﬂs% + e%, T=p>

L J
T TPro@) MPron

= =-n+ (n-k) < 0

by our description of p. This proves g; 4 (3) € Ai(g),
r

a contradiction. So j(io) = T(jz) for some j2 = j(iz).

Consider the last j coordinate j3 of the block Eu_

Clearly p -1 ) > pj‘-l; since vy is dominant, (4.21)
o T(j3) 3
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implies that p -1 ' P B~ 1 faF Al J 1h Bhe blogk
o “t(3)
{®. . In particular, o 't(j(iy)) = j(i,) or i,. Since
é_lT(i ) = (i) we sk have oan(‘(i Y} = 1., and
0 4314g Jig 0’

thus (by the dominance of <y again) c“lT(j) = i(3j)
for all j. Setting J = jz, we get i(jz) = o—lr(jz) =
0_1(j0) = j4 since o0 e Wy ﬁnich preserves the i and
j coordinates. Since no i coordinate can equal a

j coordinate, this is a contradiction; thus p = y on

the i coordinates of _AF. By (4.21), Py =P _q for
: s : o “Tt(i)
" i o . ] u — - -~y —l i ”“!.1

each i coordinate in Jy . It follows that o "1}

‘preserves the 1 coordinates, and hence also the j coordi-
nates. Every such permutation is in WK(EU); since

A u s . +
»G £ WK' Tl& £ WK(Q ) - The compact roots in AT(@-)

are '{ui } = A:(ﬁ); so in fact T =g on HA". By (4.21)
3 .
again, ﬁ = vy on ,ﬁu. The proof that length (TI}F) is

even proceeds just as in the spherical case. The argument
for the type I case proceeds along the same lines; the
assumption that u # vy on the i coordinates in }P leads

almost immediately to a contradiction. We omit the details.

Since length (T[ﬂ?) is even for all u, length (1) is
even. (actually, one can see fairly easily that we have

deduced that [{ai H o= ]{Bi }|. This will be needed later
' J 3
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on for the program described in the following paragraph.)
But length (1) = 2J-1; a contradiction. So no such y can
exist; and p is indeed 7{ minimal. This completes the

proof of 4.6 (d).

Although it would be difficult to formulate a general
lemma, we will need the arguments above repeatedly. What
haﬁpens is that the more complicated algebras contain
assorted subalgebras isomorphic *to su(p,q). It will
often be possible to deal with these separateiy; fhis
- will generally be done with a reference to the "su(p,q)
theory.” ¥%We have tried in such cases to arrange the
notation so as to make the.argument clear, and details
will Ee left to the reader. The next case illustrates

the technique.

Proof of 4.6 (d) Here <y0 = sp(p,g9), P < g. We take
for T +the usual Cartan subgroup of
XK = sP(p) x SP(q) € SP(p,q); T consists of diagonal

¥
matrices. This gives an identification of iib  with

rRP @ RY witn respect to the usual inner product. Again

1

we refer to RFP as the "i coordinates," with basis {ei

b,
and RY as the "j coordinates™ with basis {e?}. E?O is

equal rank, so y = 0. The compact roots .are
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+ + *

e S 1 1 . . - _ 1

Cgir T EyEE WAy =X Jeg.

+ +

LN 2 2 . . — 2 :

oo =S5 & gl & g < 4') and d. = + .. The

j50 =L ey Leg 0 <30 i =%

ik s G N 1 2

noncompact rodts are gij = i(ai—sj), hij = i(€i+sj)'

P
Order ifo = RP @ R? lexicographically. The

corresponding positive compact roots are

wooo,

e, r ., T

+ : s s .
iir 3¢ E5q ¢ and dj (recall } < £', 4 € §%).

One checks easily that the simple compact roots are

+- e +
ei,i+l' Cp’ fj,j+l' and dq, and that
26, = [(2Dy 20-24sas 2) s (2as 202450+ 2)]« Fix a k-type

c
IR A D 2 : . ;
n = [(ul,...gp)(ul,...uq)]. Since 1y 1is dominant

integral, ui e Z, ui > U% > iee > u; > 0; similarly for

; : ' _ _ 1 1 2 2
the j coordinates. Set u+2pc = a = [(al,...ap)(al,...aq)].
, ' 1_.2__ 1 _ .2 _og. .04
Define (formally) ag = ag = = ap+l = aq+l = 0; and for

1 < i < p, define j(i), 0 < j(i) < q, so that

2 1. .2 ' . ..
aj(i) > ay > a:j(i)+l' Call the index 1 upper
1 2

siti L 3 : > a. ..
transitional if a; ; > a5 ()"

and lower transitional if

22
5 (1)+1

r . o . 2 1
> ay,,7 upper critical if 0 < aj(i) ay < 1,
‘ 1 2
i 7 By S

Lo~ XE 7“(0 is

and lower critica% if 0 < a
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paraboli

{95,5)
aAs for

and u-2

to check

Set

A = n+2p
roots of
for defi

. 2 o
(el =

84.

L;{g;j[ai“ag < 0}. It can be deduced that the simple
+
roots of A are
'{e;—i+l | i is not lower transitional and i+l is not upper transitional}
T B
'{fff. | 3 # j(i) for any i}LJ{c+ or d accoréing as a_ < a
B s S P q P
> U i{gT .,. i i iti

or a, > aq} {gl{j(l) | i is upper transitionall

+ Do s _ . s
{gi,j(i)+l | i is lower transitional}. By the ;ntegrallty
of a, 1 is upper critical iff ai(i) - ai = 1, and lower
critical iff al - a2 = 0 Just as for suf )

N (i)+1 . P.49) .

itical index is transitional. Let J} be the
¢ corresponding to the simple roots

| i is upper critical}u {g

i,9(1)+1 | i lower criticall.
r

su(p.q), Q is a product of copies of s1(2,R),

p(T(qp) is principal series minimal. It remains
that u is s7-minimal.
v‘— pX g+ We claim that
i lower i,30(10)+1
critical ’

. 0 . : g
c—p+%v 1s 71 dominant. For the various simple
length 2 this is proved as for su(p,q). Assume
niteness that the simple root of length 4 is d+.

> 2. No coordinate of lv is

' 2
Y s = +
S0 a (u+2p ) 5
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less than - i =fe)

2(
R ch + %v, d;> = <p + 2pc + %v, 2g§>
. 1.2
=2.(u+2pc+:2—V)
q +"+
1 <dgrdg?
32(2—§)=3>2——~—2—.

~

It follows that X is actually nonsingular with respect
to d;. Let E'? . be the subalgebra corresﬁonding to
the roots annihilating i; since the simple root of length 4
is not in I’, one can now apply the su(p,q) theory to

deduce that ¢ 1is 77 -minimal. This completes the proof

of 4.6 (d).

Proof of 4.6 (e) Here iyo = sp(n,R). We use the

]
description of & given in section 5; thus iib is
identified with Rn, with the usual inner product for

< , >P{ go is equal rank, so g)r= 0. Let ‘[Ei]‘ be

A

the usual basis of iLO = R". We order R" lexicographi-

cally. Then the compact roots are Biy = E; = €4¢ which
is positive for i < j. The noncompact roots are

* | s - |

. = . + . . = 4 . i3 -t
glj T (g ej), and d;, = + 2e,. Fix a k-type
p o= (pl,...un). Since yu 1is dominaht integral, (ui)
is decreasing, and u; = e mod ¥ for some fixed e; say

0 < e < 1. One computes easily that
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20, = (n-1,n-3,...-(n-1)). Set a = p+2p_ = (aj,...2 ).

Let bp be the Borel subalgebra asspciated to a; then

sgn(a,+a.) sgn a,

8rnp) = lg;g AN )

(as usual sgn 0 = +). We want to describe the simple
roots of A+. Define r so that a; > 0 for i< r,
aj < 0 for j > r; we call the coordinates up to r the

i coordinates, and those after r the j coordinates.

"Define a ==~ o, For 1 < i< r, define j(i) so that

n+l

T 2% 5 T Fj(yene

(Clearly we want r < j(i) < n. With this restriction

> a..

(i) may not exist, since we may have - a..q i

-This will cause no difficulties, however, so we will not

correct the notation.) The index i 1is called upper

. transitional if - a.,. < a. ; lower transitional if
j(i) — "i-1. _

aj(i) > a;,q7 upper critical if 0 < -~ a; - aj(i)+1 < 1;

and lower critical if 90 < a, < 1l. Set § = 2¢

RS TER

if 26 <1, and § = 2¢ - 1 if 2 > 1. Then 0 < & < 1;

by the integrality of a, one sees that i is upper

critical iff - a; - aj(i)+l =1 - 8§, and lower critical

iff a, +

i aj(i) = ¢§. Just as for su(p,q), a critical
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index is necessarily transitional.

Define the permutation w of {l,...n} so that

n

If |a, la.], i # 3,

Ia‘n‘(l)l £ [a’lT(Z)l > oeee 2 Ea‘ﬂ-(n)" _-,_] 5

then (since (ai) is strictly decreasing) a; = - aj # 0;

and we list the positive element first. In terms of =,

it is easy to see that the simple roots of At are

sgn aTr (Il)

d , and the various
7 (n)
n; = [sgn aﬁ(i)jeﬂ(i) - [sgn aﬂ(i+l)]€w(i+l) (3 < 4 £ m=l)s
Notice that w(n) = r or 'r+l, according as
a. < = a,.q7 0T &, 2= B Thus the simple roots of

A+ are {e., . Il < i< r, i is not lower transitional,
i,i+l -
i+l is not upper transitionalld

}[r <j <mn, jis not (i) for any i}V

(e, .

d.l:lrj':'

{gz,j(i)li is lower transitional} Y
; = sgn a“(n)
da. .,. . i b it J 1.
‘g;,3(1)+l!3 is upper tr1n51t19nal} {d1T ]

Next we must define ﬁ . Choose s as small as

possible so that 0 < aﬁ(s) < n-s+l, or 0 < - < n-s+l.

aﬂ(s) —
If these are not satisfied for any s, s is undefined, and
the corresponding set of simple roots in ! (to be defined)

x 0 .
is empty. Let ( 2 J- correspond to the simple roots



{ni, s < i< n, and d1T a (if s is defined)}-

U{g;,j(i)+lli is upper criticallu {gi,j(i)ii is lower criticall.

(The first set is just the simple roots supported on the

. | +
coordinates w(s)...w(n).) Le# 93,5(i)+1 € A" (f) be
51mpl§, so that i 1is upper critical; say gi,j{i)+l il
Suppose k+1 > s; then we claim that actually k > s, so

that Ny is supported on w(s)...m{n). If not, then

k+1l = s, and so 0 <a, <n-s + 1; since a is-integral,

i

this forces € < a, <n-s + . Now i is upper critical,

kR

£+ {1-¢) € - - s+ e + (1-8).

q5qi)+1 = 1

Since 0<eg, § <1, e +1-68>0, ande -1 - § < 0; thus

g < n- (s-1) + 1 + (g-1-8)

Ty 2

<n- (s-1) + 1.

This contradicts the definition of s. A sirilar argument

‘may be given for simple roots g+ £ A+(ﬂ). We have

_ i,3(1)
shown that the simple roots of /[ may be divided into
two subsets: P% consisting of those supported on

T(l)...mw(s-1); and Pz, consisting of those supported on

m(s)...m(n). Clearly these two sets are stfongly orthogonal
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to each other. Arguing as for su(p,qg), one sees that
the first set is pairwise strongly orthogonal; the
corresponding ideal of , is a product of copies of
s%(2,R), and is therefore split. The ideal corresponding
to P2 is clearly just sp(n-s+1,R), which is of course

split; the strongly orthogonal spanning set is

sgn a

)P v : p
{dw(i) }i=s', Thus { is split. (The s;lghtly

complicated nature of f ~ reflects the slightly complicated

set of conjugacy classes of Cartan subalgebras of sp(n,R}.)

Next we must show that u-2p(7znpP) 1is principal
series minimal for { . on the Pl ideal this proceeds
as for su(p,q); we omit the details. The P2 ideal requires
a little more work. Since AR+%7 is a cne dimensional
ﬂnmodule of weight Zp&nngl) + 2p(qinﬁ), it is equivalent to

‘consider the weight u~2phiq?) +.2phqqp} +Zp(41n&) =

I

wh2p (MnR) = u+2p - 2p(dntnk) = a - 2pdam’nRk) = b,
say. To simplify the notation we may assume s = 1; thus
20({nMon k) = 20, = (n-1,...-(n-1)). Since a is
decreasing, w(l) = 1 or n;.asshme for definiteness that
-ﬁ(l) = n. By the definition of s, 0 < -a, < n-1l+l = n.

So b =a + (n-1) > - 1. On the other hand, since

m(l) =n, -a_ > [ail for all i; in particular,
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n>-a > Iali, so that a; < n. Thus
bl =a; - (n-1) < n - (n-1) = 1. We know from the
general theory that b is dominant integral for

lnf = &k : so since 1 > by, b, > -1, b is of the form

(¢yeeea, 0~-1,...a-1), with 1 > g > 0. From Table 5.8,

we see that b is principal series minimal. - Thus

u—2pw7n§} 1s principal series minimal.

It remains to check that ﬂ is 51 minimal. It is

convenient to treat several cases separately.

Case I s undefined; i.e. a_,., >n -i+ 1 or
T{i) —
- > - i a i.
aw(i) n i+ 1, all i Set
V=B -89 st T 89] s A =a-p+l
i lower rdd i upper .t
critical . .critical

-~

By the su(p,q) theory, A is dominant with respect to

all the simple roots 7,. Necessarily a > 1, or

i m{n)

aﬁ(n) < - 1. For definiteness we assume a

other case is similar.

a) aﬂ(n—l) > 0. By the definition of w, and the

fact that a decreases by at least 2, this forces

P Py

Mp-1r® T qrpey) T ) 2
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Thus n is not critical, so the mw({n) coordinate of v

n-1

is zero; and the w(n-1) coordinate is at most 1 in

abscolute value. Hence

< o _
A> = <nn_l,a ptzv> > 2 1 +

5 2

=%_>0

bo| =

Mp-17

(we have used <nn_1,p> = 1, since N, has length 2.)

1

Also <d+ A> = <d+
7({n

1 N .
T (n)’ )ra‘Q+_V> > 2 -2=0. B5So A is

2

>

dominant. Let (2 { be the subalgebra on which is

singular. Just as for sul(p,q), the n-minimality of u

reduces to a problem on f . But we have shown that
n,_3 ¥ A(f); so A({) decomposes into the roots supported
on (w(l)...w(n-1)), and those supported on w(n). The

first piece is handled by the su(p,g) theory, and the

second by the sp(l,R) = su(l,l) theory; one sees that

B is in fact ri-minimal.

B) Bopeety & Or Ty = Sty otns1)

is upper critical.

E _ . > _ . £ 3 i )
Then aﬂ(n#l) n (=33 4 1 2, and so by integrality,

By 2 3 - e. Also B 1) " ErlEy 1 -4, so
.an(n) >3 =g = (l-6) =2 =~¢g + 6. In the ﬂ(n—l),ﬂ(n)

: 1.1, - TR PR PP
coordinates, zv is 56 gn(n),ﬂ(n—l) = 55,‘ 25), so the
m(n)}) coordinate of A =a - p + lv is

2
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; - 1 - 7 - 1
Ttn) = Preeye T 2%l T Fppwy T ¥ T 5°

1

> 2 -+ 85 -1 - 56
= (1-¢) + %6 >0
+

: 2<d p>
= 1.4t = m(n)’ =
(Here we have used Pt} 2<dﬂ(n):p> at T 1.)

x(n) "%r )’

-

Hence A is dominant and non-singular with respect to

* 3

d“(n)m If we let correspond to the roots annihilated

L

by ip ther the su{p,g) theory applies to ¢ , and p is
rp-minimal.

. a) 2 n-1) L0, n 4= 9o 1) s la—1s is not upper critical.

Then the w(n} coordinate of v 1is zero, and it is immediate

+
T({n)"°

~

that X is dominant with respect to d If it is

non-singular, we can apply the su(p,g) theory as in case b).

-~

If 1t is singular, then 0 = An(n) w.aﬂ(n)-p“(n) = aﬂ(n) - 1;
1.e.. aﬁ(n) = 1. Hence aﬂ(n+l) 18 a negative integer.
Since: s is undefined, _aﬂ(ﬂ—l) >n - (n-1) + 1 = 2,

Cl.e. mEL 9y 2 3. The w‘n-l) coordinate of v is at

most ¥ in abselute value, so

B b=
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So A .is nonsingular with respect to Ny and we can

argue as 1in case a).

Case 1T s is defined. ‘Set

+ -
= - . G + "
Vi : .E(l 2 9i,j(i)+1 % 9i,54)
i lower critical i upper critical
+ 1 -
e . s . i g P
9i,3(1)+1%P - F,50°
0 on coordinates w{l)...w(s-1)
vV, =
2(p—a) on 7w(s)...m(n).

It is not difficult to check that, since u - 29(77”&”

is principal series minimal, Vo is of the form required

by Lemma 4.20. Put v = vl-%vz, A=a-p+ %v. By the

su(p,g) theory, A 1is dominant with respect to

MNy=eeNg_oi and since obV1ousLy7 A

0 on #({s)...w(n)

coordinates, A is dominant with respect to Tgmen ol 0y 7

sgn a
and 4 m(n)

_— . Suppose tha? in fact

* <ns_1,l> > 0.

Let /[ correspond to the roots annihilated by A; then
{ = ﬂl +‘£2, with ﬂl corresponding to roots supported

on w(l)...w(s-1), and ,Qz to roots supported on

o

m(s)...m(n). The su(p,q) theory applies to Ql; and
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Ez < [, so p-minimality is trivial there. It follows

" that u is 77-minimal. So it is enough to show (*).

Assume for definiteness that a > 0. By the

w(s—lf
definition of s, an(s—l) ol R (s-1) + 1; by
integrality, aﬂ(s—l) = n o= (s=1l) + 1 + . We have
already seen that n__; is not a critical root. So
if Vﬁ(S“l) # 0, necessarily Ng_p, 18 critical; since
aw(5wl) > 0, this forces ~a“(s_2) - aﬁ(s—l) =1 -6,
vv(s—l) = - §. Finally, it is easy to see that -
By B {s=d) + l. _Hence
< x> = <e + g - amp+£v>
s-1" T(s-1) — “n(s)" 2
= a -(n—(s~l)+i)+iv (since I =0)
T(s-1) 2 'm(s-1) T(s)
% 1 1
> (n-(s—l)+l)+s—(n—(s—1)+l)—§6 =e-3 8

Now 6 = 2¢ or 2t - 1l; sog - %G > 0. Hence

<ns_l,l> > 0. Suppose equality holds. Then necessarily

Ar(s=1) = O " (s-1) + 1 + €; and if & # 0, Vo (s=1) # 0,
- so that -
- aﬂ(s—Z} = aﬂﬁs,l) + 1 -6

(i - {g~1) + 2} +e+1~-38

il

(n - (s=2) + 1) +e ~6 c
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Because of the eguality, we also have ¢ = %6; SO

= (n - {(s~2) + 1) - %5 £ #H - (s-2) + 1,

which contradicts the definition of s. BSo in fact

§ =0, € = 0, and = 0. (Zf we had considered

vﬂ(S*l)

instead A (s-1) < 0, we would have gotten <nS_l,A> > 0

in general.)

We must now investigate this last case, i.e.
= - = - ._ 1
N _qrA> 0. We have seen that 8 i (a=1) n (s-1) + 1,

~and that né_z is not a critical root. It follows

~

easily that <n_,.2> > 2; and hence that A is

non-singular with respect to n__,- Thus we can define

AL

= ﬁl + E as usual, and treat ﬁl by the sul(p,q)

theory; and we are left with.,éz, which corresponds to
. roots supported on  w(s-1l)...w(n). To simplify the

notation, we may assume s = 1, Then a = n forces

m(1)
p=(1,4...1,0...0). It 1s not difficult to see that
A gp = {leqred |2 < i < ntu '{251}'

Let Y, 0, T, {Bi_},'{ai } be as usual. Recall

_ ;| J
that A;(ﬁ) = {uij} E;A+(7znﬁj ='{(sl—€j)}. Now the

compact Weyl group acts by permutation on the ey It

is easy to deduce that
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G(bl...bn) = (bel..,bJ_le+l...an;

and in this case A;(&J = {El-siiZ < i < J}. On the

other hand, by (4.9), (recall PP, = - Lo, )

H=B. w..—-B. = o-y + PP,

(YgrY¥qreeeYg_ 7 Ygpp- Y+ (-(-1),1,...1,0...0)

—
*

S

=
[

™~

jos)
|

i = (YJ_(J—l)’Y1+1"'YJ~1+1’YJ}1""Yn)

Hence Yl{l = U, - (c); here ¢ = 0 or 1 according as

'(el+ez} is or is not a Bi.; (Zf J = 1, this fails; but:
|

an easy special argument shows Yy = 0 or -1). Hence

Y1 = 0, -1, or -2. Since Hvll = lull, and vy = 1,

this implies that vy < u, and hence ¥ cannot occur. So

H is ;Tminimal in every case; which completes the proof

of 4.6 (e).

4.6 (f) is quite similar{ but much easier: the
root system of S0%*.2n) is just that of SP(n,R), except
that there are nc long roots. One can copy the preceding

argument, omitting all reference to "fz“.

We have now dealt with all the classical groups
except the SO0{(p,g). These are by far the most complicated.

To begin with, we need a more delicate technique for
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proving Conjecture 4.2. Suppose f~ is chosen s=o that

4.2 (ii-v) hold. Suppose furthermore that there is a
g-invariant parabolic E~2_&-, {r= {+7., with the following

properties.

N
(4.22) a) the ﬁftype u is J-minimal.

b) the ﬂfﬂh*type u—Zo(fEngﬂ is unifqrmlv minimal

in { ; i.e. it is the minimal ﬁﬂﬁ{ type of

every irreducible Harish-Chandra module for

N
J in which it occurs.

~ o o
c) u—Zp(riqy) is 71n { -minimal in ¢ .

Then we claim that 4.2 (i) holds, i.e. that the action

of U(g)ﬁ' on xH

factors through the homomorphism Eu.
Essentially this is left to the reader, modulo the following
hints. Using b), c), Theorem 3.15, and Corollary 5.5, one
can deduce that u—2p(;%g3) occurs with multiplicity Zero

or one in each irreducible Harish-Chandra module for ¢

By results of Lepowsky [18], it follows that

U(?il)Q i O{/

1 & s is abelian. £ £h
ur2p(q0&)) abelian The rest of the
argument is quite formal: essentially one uses

Theorem 3.15 to study H*(fV]Q,H*(ﬁ,X)) instead of

B* (17,X) .
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Proof of 4.6 (qg) We give details only for the

" simplest of the various possibilities of parity, namely

g0'= so(2p+l,2g+l), p < gq. If p =0, then G has only
one conjugacy class of Cartan subgroups, and we are done;

SO assume p > 1. ﬂL is identified with so(2p+l1l) x.so(2g+1l)
in the usual way; choosing a maximal torus in each factor

cos 8. sin 6.
i el

as usual (i.e. with (' ) blocks on the

.$in 8. cos 0.
i ) i
o El T D q :
SO (2p+l) level) we get 1t0 = R® ® R%. This we order
: ; g : 1,P 2,49
lexicographically; as a basis, choose {Ei}i=l and {gj}j:l

as usual. Since rank (?0) = [2p+l ; 2q+1] =p+ g+ 1,

necessarily dimgﬂi = 1. One computes (more or less

easily, depending on one's point of wview) that the

: . 1 1 C 2 2 ' 1 2
compact roots are + o + €5 s + Ej 4 Ej" i-Ei’ and + Ej.
1 2 1
the noncompact roots are + ey + Ej’ + Eyr and + .. So
the complex roots are just the + si and + E;? since all

roots of so(2p+2g+2,C) have the same length, thess have

complex length two (i.e. if a € A, a[z = + si, then

<a,a> = <o,ay + <c1,a>dJ = 2). The positive compact roots

1 2
are E.:.!'-l- Exye F_‘,:!', e, % 5:2.

2 . s
g & Bg i j L E5ir Ey (i <i', j < 3'"). Hence

20, = (2p+1, 2p-1,...1) (2g+1, 2g-1,...1).
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Fix a f-type u = [(ul...ul), (uz...uz)], and set
l: P 1 q

a= u+2pc. Since u 1is dominant, the coordinates of u

are non-negative and decreasing on each block. Since u

is integral, all ui are integers, or all are = %—mod Z;

similarly for the ui. The coordinates of a are thus

half integers > 1, decreasing by at least two on each block.

We now arrange (a) in decreasing order: define a map
T :'{1,2,...,p+q}“+'{ei,s?} so that (with obvious

3 - - 3 N
notation) & < m => aﬂ(g) > aﬁ(m), equality should hold
only if «(%) is an i coordinate and m(m) is a j coordinate.

Cne ccmputes easily that =P+ qg- 2%+ 1, and that

Pre;

the simple roots are €r(e) " € (2+1) Eﬁ(p+q)'

Let § € [0,1) be defined so that ai - a?

o J
all i, j; of course & = 0 or %. We leave the definition

§ mod Z,

of critical roots to the reader.

Let So be the largest integer such that

< 4s,. -~ .1

* &
*) aw(p+q—280+l) 4.aw(p+q-250+2) - 0

It is not hard to verify that (*) must also hold with

S replaced by any & X Sp- On the other hand, a = 13

T{p+tq) —
and it follows easily from the value of 2pc that

qr(prg-21) > 2% + 1, all & > 0. If the root
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Eﬁ(p+qf2£ﬂi) - Eﬂ(p+q—22) is compact, then

aﬂ-(p+q—2§.+l) > 2 4+ 3, and

.

20 (prq-2 (2+1)+1) T3 (prg-2 (a+1)+2) 2 A(2+1)5 so 4+l > s,

0

So for & < s is noncompact.

o' Eﬂ(p+qﬂ2£~i) - Ew(p+q-21)
; ; o | T S
By induction, mw{p+g-22+1, p+qf2£+2} = {Ep-l’eq—l} <8 <5,

. . 0 ] l , ‘.2'
Furthermore, condition (*) forces up—k + u

We define s = Sg unless ﬂ(p+q-so+l) = €

" 2
= 1, and pq_50_1

uﬁ(p+q—80+1) > 1; - in this case

s = sa—l, Set

)
i

‘{critical roots supported on ﬂ{l,;..p+q—2so}}

P2

'{roots'supported on w{p+g-2s+1,...p+ql}

We let ﬁr be the parabolic corresponding to the simple

roots in Pl J PZ{ then ﬁ = [l + @2, according to
)

A(ﬁ) = PliJ P”, Clearly Qz = so{2s+1,2s+1), and ﬁl is

a product of copies of sl(2,Rf; so ﬂ is rplit. By the

su(p,q) theofy, u—2p(ﬁn@)|gi is principal series minimal.

On the ,@2 piece, we must check that u—29{¢tﬁP) satisfies
| Conjecture 4.2 (ii-iv). Since ﬁmr\[ﬂz,ﬂz] ; so(2s+1l)xs0(2s+1)
is centerless, and 2pw?qp ) is the weight of a one-dimensional

{0 k-module, this amounts to considering
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[(Uéﬁsr---u;): (Ué_s,...ﬂé)]. We have seen that

1 2

up—i + < 1; so on these coordinates ﬁ is

Hgeg <

[(0...0)(1...1,0...0)1, [(%.(.%)(0...0)], [(0...0)(%...%)],

1
P

the first four are principal series minimal, and hence

[(3,.. (3...3)1, or [(l...1, 0...0)1. By Table 5.8,
satisfy 4.2 (ii-iv). The last is a small ﬁﬂ%type, and
the only associate one is [(0...0)(1,1...1,0...0)]. Since

by the definition of s, u2 < 1, this is not dominant

p-s~1
for &.? so 4.2 (iii-iv) are satisfied.

Henceforth we assume s is defined, i.e. s < p+qg;
the other case is rather easy and is left to the reader.
It should be pointed out that, although

. Eﬂ(p+q—2s) = Eﬂ(p+q—2s+1) may be a critical root, it is

not included in .@.

; i 2 ) 2 1
Set v, = E (1-68) (e, -7 ,. ) + I "8(sl,.,—€el)
= i lower 1 3+ i upper 342l
critical . critical
ﬂ_l(i)<p+q-2s ' ﬂﬂl(i)§p+q—25
0 on w(l)...w{p+g-2s)
Vs =
2(p-a) on T7{p+g-2s+l)...w(p+qg).
Just as for sp(n,R), one can easily check that v, is a
sum of positive roots in P2, with coefficients 0 < c_ < 1.

o
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= 1

= owp —_ s == = _J.'.
Set v = vyt Vo, A= a p + 5V A+ 5V . Then clearly
A=0 on w(ptg-2s+l)...m(p+qg); by the su(lp,g) theory,
A is dominant with respect to (e E PP

n(l)_ T(2)

To show that .l is
+ Ly
T (p+g—-2s) 2 7w (ptg-2s)

(Eﬂ(p+q~25—l} - ETr(p+q-—2s))'

dominant, we must show that a

-~

~ Pr(prg-28) > 0 (recall kw(p+q—2s+l) = 0). Now
pw(p+q~25) = 2s + 1, and aﬂ(p+q—25) = uw(p+q-25) + 2s + 1:;
and 1 = 0 unless

ivw(p+q-25) Eﬂ(p+q—2s—-l) - ETr-(p+q—25)

. o . . . . 1 ;
is a critical root, in which case it is > - vl Recalling
the definition of critical, we see that the desired

inequality holds, unless 0, and

Mo (prg-2s) T

1 |
Uy (prq-2s-1) — 0°0F 37 also m{p+g-2s,ptg-2s-1} must

consist of one i coordinate and one j coordinate. But

it is easy to See that this contradicts the definition

-~

of S. So A is dominant.

n~

Let J correspond to the simple rocts annihilated
A

by A. We want to split { into two pieces, roughly
corresponding to Pl and Pzg'so suppose A is zero on

‘n(r)...w(p+q), and Aﬁ(r-l) # 0, (of course r < p+g-2s+l).

o~

Then ﬁ== ﬂl + Qz, corresponding to roots supported on

w(r)...m(r-1), and 7w (r)...m(p+qg) respectively. Suppose
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Ye or T, log 1, and {8, } are as usual. By the
- 3 J

su(p,q) theory, y = u 'and there are equally-many

'{ai } and '{Bi } in Pl; so we need only consider
3 J '

iz. If r=p+g-=2s + 1, then Ez = ﬂz, so that

77r1ﬂ£ =0, and J = ]{Bj }| = 0, a contradiction. So
]

suppose r < p + g - 2s + 1. This means that

-~

Aﬁ(p+q—2s} = 0; so by the remarks of the preceding
1 ;
+ = = 0.
paragraph un(p+q-25) ZVﬂ(p+q—2s) 0 Since
- . s — =, and 1 is a non-negative
2 ' n(ptg-2s) — 2' w{p+a-2s)

half-integer, there are very few possibilities:

i ¢

I? L v'n(p+q-~25)

EF(P+q—28) - 1. In this case,

e Boge B . R
by the definition of critical root, ”ﬁ(p+q—25—l) = 5
and {w(ptg-2s-1), m(p+g-2s)} consists of one i coordinate

and one j coordinate. This contradicts the definition of s.

II) = 0., In this case,

By (ptg-2s) = %7 Vi (prg-2s)

T - < 0. :
by the definition of v, vﬂ(p+q~25—l) <0 Since

-~

> 0, this forces &1 (prg-28-1) il pﬂ(p+q_2sﬂl)

A-n(p+q—25—1)

l1r(p+q—2s—l)

= 2s + 2. Suppose that in fact = 0. It

follows easily that e (p+g-2s-1) ~ Ex(p+g-2s) S
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noncompact; so that (2pc) = 25 + 1, and

7 (p+q-2s5-1)
.U?P(P+q~—2s-.-l) =1 - v'n' (P+q—25“l) . S0 u‘lT(p-l-q-Zs-l) =1
of‘%w One easily rules out %; for in that case ¢ = %,
that =0o0or - L. so 4
so a Vn(P+q—stl) z z° uﬂ(p+g725—l) .

This contradicts the definition of s unless w(ptg—-2s-1)
is an i-coordinate, and mw(p+g-2s) 1is a j-coordinate.

(Note that l# this case €r(ptg-2s-1) ~ Ew(p+g-2s) I8

not a critical root.) Also we must have (again from the

definition of s) ﬁ? > 1; it follows easily that

g-s-2

-~

Ar(prg-2s-2) T 0

To summarize, II) breaks into two cases:

-~

a) Aﬂ(p+q~25—l) > 0, and
b) lﬂ{p+q-25—l) = 0. In this case ln(p+q—2s-2) 0,
Mo (ptg-2s-1) (an i1 coordinate) is 1, and uﬂ(p+q-2s)
{a 7 coordinate) is 0.

Consider first a). Since we are interested only

in fz, we may as well assume p+g = 2s-1; thus

gb = so(2(s=-1)+1,2s+1l), u = [(c,...c,O...O)(O...O)]
(c = 0, %, or 1) and J is the so(2(s-1)+1,2(s-1)+1)

which excludes the first j-coordinate. (We may have
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interchanged the i and j coordinates here, but the reader
may convince himself that this is irrelevant.) Since
A;(ﬁg € A(77), it is immediate that ¢ is trivial on

the first so(2(s—l)+l) factor of ﬁi. Hence U-ﬁ = ﬁ;

so by (4.9)
- -1 -1
Y=1u-ga (ZBij) - (pc o DC)
- -1 -1
= U - O (ZBi.) + i (pc—c-pc)
J
: -1
(**) y = -0 (EBi.-Zai_) by (3.7).
J J

Now A(7) consists of those positive roots with

support on the first j coordinate eJ. Clearly

HN M

T (2s-1) = ei, so these are si and €7 + €

w(¢)

(L < §<p+g). There are J Bi and J-1 di ; SO
3 3

ZBi_ - Zai = 1 in the ei coordinate. Now the Weyl
J J '

group of so(2s+l) acts by sign changes and permutation

on the E?: it is e€asy to deduce that

2 2¢ . 2 2 2 2 2
U{bl---bs) - (i br' b_l_...br—l' br+1-¢-bs).
Since Eai_ = pc-c-pc, we have
J
Eai = {(#, -1, ... -1, 0...0) on the j coordinates.
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Hence ZBi - zai = (1, 1...1, 0...0) on the j coordinates,

and U_‘l(ZBi - Zo; ) = (1,...1, #1, 0...0); so by (*¥),

y=(1, ... -1, + 1, 0...0) on the j coordinates.

y : _ 2 25 o PP 1l 2
This forces r =1, d(bl...bs) = ( bl’b2f"bs)'
Yy = (2,0...0) on the j-coordinates. Also A;(R) = A(rrak),

which has 2(s-1)+1 elements. So J = 2(s-1)+2; but
|A(?7ﬂ?j[ = 2(s-1)+1, a contradiction. So u is M-minimal

in this case.

For b), we must applf (4.22). In this case

gb = so(2s+1,2s+1), v = [(1,1...1,0...0)(0...0)]1, and

? is the so(2s-1,2s-1) omitting the first i-coordinate
and the first j-coordinate. Let E’ be the so(2s-1,2s+1)
émitting the first i-coordinate,:with é;Jj‘ the obvious
(maximal) parabolic. By the argument just given (used
twice) u is ;E—minimal, and u[f is ¢1n6' minimal in E’.
One.can use the subquotient theorem to show that UIE is
. uniformly minimal in E ; or one can simply observe that
the preceding paragraph never uses the minimality of ||n|]:
¥ cannot exist for purely algebraic reasons. In either

case, this completes the argument for 4.6 (g); as promised,

we will spare the reader a detailed argument for
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so(2p+1,2g) and so(2p,2q).

Any reader who has actually followed the computations
to this point could undoubtedly treat the exceptional
groups mentioned in .(4.6) in his sleep: no machinery of
- any kind is needed, other than a knowledge of the root
sys£ems in a convenient basis. We therefore omit the

details, Q.E.D.



jo8.

5. The Subquotient Theorem

This section is devoted to the proof of Theorem 4.3.

Choose a maximal abelian subalgebra CQ of 523, and
an associated system of positive roots, so that G = KAN
is an Iwasawa decomposition of G; Let M denote the
centralizer of A in  K; then MAN is a élosed subgroup
of G, and N is normal in MAN. Let o ¢ ﬂ be a

(necessarily finite dimensional) irreducible represen-

tation of M, and VvV £ A a non-unitary character of A.

Then &8 ® v defines a representation of MA = MAN/N,
and hance of MAN. Define
I... .= Ind (6 ® v), a principal series representation

68v

MAN+G

of G. This representation is non-unitary in general;
appropriate p's are introduced in the definition of
induced representation so that Tﬁeorem 5.1 holds as stated
below. Let M' denote the normalizer of A in K:

?
M /M is a finite group W, the Weyl group of A (in G).

Wacts on A and M; e.g. if we M', W e W, then w8 is
a representation of M on the representation space of §

defined by

Gty ol = 8 i <
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Theorém 5.1 (Bruhat, Harish-Chandra) Idﬁu is an

admissible representation with a finite composition series.

I6®v and IS'@v' have egquivalent composition series 1ff

(§',v') = (c*§,0°v) for some o & W. For each §, IG@v

is irreducible for almost all v.

Theorem 5.2 (Harish-Chandra's subgquotient theorem)

Every admissible -irreducible representation of G is

infinitesimally equivalent to a composition factor

("subguotient") of some 16

Qv "

I+ should be remarked that Lepowsky has given a purely
algebraic proof of this result ([18]); in fact even his
arguments can be substanﬁially simplified for the cases

we will need.

From the Iwasawa decomposition it is clear that

= Ind §. By general facts about induced represen-

I
5®”IK MAK

tations, Ind § is equivalent to Ind c-8 for any o e W.
s M+X M+X

By Frobenius reciprocity, the multiplicity with which any

K-type p occurs in Ind § 1is just the multiplicity of
M+K

§ in M.

Suppose that G is split. Let A(S) E'K be the

collection of K-types 1y such that § occurs in ulM, and
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that ||u|| is minimal with respect to this property.

Definition 5.3 The K-type u is small if uy e A(S), some

" :
§ ¢ M. It is porincipal series minimal if it is the minimal

element of A(68) with respect to'< . Two Kwtyggszul, uét

.are éssociaté il 'ul, u, € A(S), some & & M.fi’;

Another characterization of small K-types is given

[

by. Proposition 5.11.

Theorem 5.4 Suppose u is small, say u € A(S8). Then

ulM is the sum of the M representations in the W orbit of 3§
Fal

in M, each occurring with multiplicity one.

(It is very likely that this result is known by Bernstein,
Gelfand, and Gelfand ([1l]); but it was obtained independently

for this thesis.)
Assume Theorem 5.4‘for a moment.

Proof of Theorem 4.3. Since yp is small, p € A({d)

for some §. Set wﬁ = IG@v“ For i), the multiplicity of
p in ﬂ; 'is just the multiplicity of vy .in wu, which is

one. Suppose nﬁ contains the small X-type u' e A(S8'); we
‘"eclaim A(S) = A(6'). & must occur in u'lM, since py occurs

in Ind 8. Since u' is small, Theorem 5.4 implies that
M+R

§' = g8 for some 0o & W. By the remarks following
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I

Theorem 5.2, Ind § Ind 6'; taking the "small" elements
MK M4+ R

t

of each side, A(S) A(8'). Statements 1i) and iii) are
just Theorem 5.1; the subgroup WU mentioned in 1ii)
is the stabilizer of & in W. For iv), suppose the
K-type u occurs in an admissible irreducible represen-

tation w of G. By Theorem 5.2, T is infinitesimally

equivalent to a composition factor of some Ig,g.7 in

particular, &' occurs in u[M. By Theorem 5.3, 6' = 0¢8

for some o0 € W. By Theorem 5.1, ﬂg V=1 -1 and

IG'@v

infini%esimally equivalent to some subguotient of

have equivalent composition series. Thus 7 is

-1 ' =1

wi V. But the only irreducible subquotient of ﬁﬁ ¥
' oty
containing the X-type u 1is Lo . Q:B:D.
&
Recall the ideal Iu & Uﬁ; set Ru = U /Iu. Another

consecuence of Theorem 5.4 is

Corollary 5.5 Suppose U £ A(§) is small. Let Wé cw

)wwae‘the stabilizer of § in W (with resvect to the

SATRAE

~

‘action of W on M.) Then there is an injection

W

R, <>U) ° e ula).
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. - . » = W
The image of F{¢f) is precisely U{(c{) .
A

Proof. This follows easily from results of

Lepowsky [18].

s

It should be noted that U(01) need not be a

polynomial ring. It is known (cf. . Knapp and Stein [13])

that W admits a factorization W, = W(A')-R; here

3 S

W(A') is a normal subgroup generated by reflections,

and R 1is a product of Z.'s, (Knapp and Stein assume

2

G is linear, but the non-linear cases can easily be
checkad from the proof of Theorem 5.4;i It seems likely
that we may arrange |R| = |A(8)]|; +this would imply that

W

U'(o‘i)"S

is a polynomial ring when {[A(8)]| = 1. It can

_be shown that Ru and U(0( )Wfs have the same field of
fractions, so that their integral closures are isomorphic.
It would be nice if the map given by the corollary were
an isomorphism; but if W # W, this is probably very

hard to prove.

-~

Proof of Theorem 5.4. Let G denote the universal

covering groun of G. Since A is connected, the centralizer
0of A~ in X~ is just the preimage of M in G; similarly
G G
for M'. Thus WG = W. , so it is enough to prove the
: G
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theorem for é. Now é is a direct product of simply

' connected groups with simple Lie algebras, and abelian
groups; by standard facts about the representation theory
of direct products, it suffices to prove the theorem for
each factor. For the abelian faétors, M=M'= K, and
the result is trivial. It remains to investigate the
universal covers of the simple split groups: up to
‘coverings, these. are SP(n,R) (n > 1), SL(n,R) (i > 3),
SO (n,n) (n > 4), SO(ntl,n) (n > 3), and the split forms

of G F4, B E7, and E_. These we check one by one.

2° 6’ 8

Except for the universal covering group of 3P(n,R), all
have finite center; so K 1is compact énd M is finite.
Accordingly we make heavy use of simple arguments from
representation theory for finite groups, notably the

~

following ones. If {61.;.62} = M, and the representation

then Edi = |M

% (This

space of ‘Si has dimension di,

is usually usgd to show that some set of representations
of M exhausts ﬁ.} If a representation of M' (for
example a ﬁ—type restricted to M') contains an M-type 6,
then it contains all the M—tyﬁes in the W orbit of §

in ﬁ, each with the same multiplicity. If some M-type
occurs with multiplicity one, and the repreéentation is

irreducible under M', then it is the sum of the M types

in the W orbit of §, each occurring with multiplicity one.
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In every case the argument will run along roughly
similar lipes. First we compute M. Next we exhibit a
collection of representations of K, and show that, after
restriction to ¥, these exhaust the representations of M;
and that the representations of 4 occur with multiplicity
one. The proof that the K-types listed are actually the
small ones is often left to the reader. (Details are
given‘for"SP(n,R), which is one of the most tedious cases.)
The final step is to show that the K-types listed are
irreducible under M'. Thus it is never necessary-to com-
pute M" completely, but only to exhibit enough elements

to act irreducibly on the K-types in guestion.

Some attem?tihas been made to keep notation consistent
with Helgasecn ([9]), especially Chapter IX, section 4. If

H<G, we write H for the preimage of H in G. Thus

-4 ~

X is the universal covering group of X, so that K = bes
i.e. the representations of K are indexed precisely

by the dominant integral weights for A_.

Case 1 G = 5P(n,R) = {g ¢ GL(Zn,R)itg-Jng =J }

. (Helgason ([9]) p. 342; recall that Jn = ¥,
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A = An A. >0 . X consists of the
-l i
Ay
0 e
n
. o 4
matrices such that X + iY¥.e U(n), and this
-y X

defines an isomorphism of X onto U(n). Since A
contains elements with a2ll diagonal entries distinct,

M= KA consists of the diagonal elements in K, i.e.

M= |e; =+ 1/ In the U(n) picture,

M is therefore the diagonal matrices with all entries + 1.
P 0

"Clearly M' C \ P is a permutation matrix};
o P

so in U(n), M' includes all the permutation matrices.

(The other generators of M', as elements of U{n), are
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the diagonal matrices with all entries + 1 or + i.

It follows that the index of ™M in M' is 2n-n!, which

Choose T to be tne diagonal matrices ’

—~ ~

in U(n). Mc¢ T, sc M S T. We use the 6, as

coordinates in #; after normalization, the restriction
of the invariant form < , > is the negative of the usual

]
inner product. iio may be identified with n-tuples

(al...an) of real numbers in the dual coordinates to

; . . n

Bi; so < , > 1s the usual inner product on R . The
*

compact roots are aij = (0,...0,+1,0,...0

-for i < j; of course the non-zero entries are in the

ith and jth

pl 3 O s s 0

places. By the Cartan-Weyl theory, a

-~

weight a = (al...an) gives rise to a character of T

big 28R

e o5 © 2 for every compact root o. This says

2« (a.-a.) .
i ] _ _ i = . N
—d 5T - ay aj e Z, 1l.e. a; = aj mod 2 for all i,j.

T may be identified as ib modulo the kernel A of
the exponential map for G. Clearly A is just the lattice

2" with respect to the coordinates Bi. A* = (22)" is the
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Al

nreimage of M, so M = /A. A contains a smaller

1 4
- lattice AO (the dual of the integral weights in ifo)
' ~ = Zg ~ T AT bl
such that T = /AO. Clearly M = /AO. Using these

jdentifications, it is essentially obvious that two
.weights a and a' have the same restriction to M

]
iff a; = a; mod 2 for all i. The permutation matrices

L)
in M' normalize T, and in fact act on iib by

permutation. Thus if (ai) is a permutation .of (ai),

-~

9 .
the restrictions of (ai) and (ai) +to M 1lie in the

~

same W orbit in M. (For &P(n,R) the groups WK and W

are closely related; but they should not be cenfused.)

Order i? lexicographically, i.e. caa

- -

] . T l.
.gal...an)-< (ay...a)) iff a;] = aj...a; = a;,
' . ’
a5, <ajq- The corresponding set of positive (compact)

N A
roots is {aij}. . A weight (al...an) is dominant if its

inner product with every positive root is non-negative.

This says a; - aj >0 when 1 < gy daiBa (al...an)

is decreasing. The sum of the positive roots is easily

computed to be ZQC = (n~1,n-3,... —=(n=1)); so

~

(20 ); =n - 2i + 1. Let § be a fixed element of M,

and let 1 be a small K-type containing &§. u has
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highest weight (u;s...u )i since u 1is dominant integral,

”i'”j is a noa-negative integer for i < j. Some weight
b = (bl...bn) of up must transform according to & under
M. We know that A(§) depends only on the W orbit of §&;

so, replacing § by a W-translate o-§, we nay permute
the by and assuma b 1is dom%nant integral‘(every weight
of a representation is integral.) Since the permutation
matrices in ﬁ' ‘normalize all of %, b is still a

weight of the K-type p. It is well known that whenever

a is a weight of u, <u+pc,u+pc> > <a+pc,a+pc> , with

equality iff a = u; the sawe argument shows ||u|| > |a]],
with ‘equality iff p = a. Suppose u # b. By the

preceding observation, the %-type b (i.e. the %—type with
highest weight b) is strictly smaller than u in the sense
of section 4; but the K-type bli still contains &, since
the weigh£ b]ﬁ is 0°8. This contradicts the minimality

of p. Thus p = b; i.e. the highest weight of u trans-
forms under Y according to an element of the W orbit

of 8. So among all dominant weights whose‘restriction

to M is 0+6, ¢ has the smallest possible norm ||u]|]|.

Obviously some element of the W orbit of § is the
restriction of a T-weight of the form (B,...B,8-1,B8-1...8-1);

here the first r' terms are B, and we may assume 0 < B < 2.
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If B i 1, replace this by (B-1,...f-1,f-2 ...B=2); here
the first n-r' terms aré'B—l. The restriction of this
weight to & is in the same W-orbit as y. So in any
case, there is a dominant‘weight (€5 enEsB=Llinus€-1l),
with the first r terms ; e, 0 <e <1, which restricts

to an element of M in the W orbit of y. If e = 0, there

is also (1,...1,0,...0), with the first n-r terms = l.

We know that if (bl,...bn) is such that r of

the bi are ='s mod 2%, and the rest are = -1 mod 2Z,
then the restriction of b . to M is in the W orbit of §.
Clearly this produces (2) {the binomial coeificient)
elements of this orbit. On the other hand, the represen-
tation of % with highest weight (¢,...g,e-1,...e=1)

(or (1,...1,0...0)) has dimension [} ; this is well

‘known, or may be checked using Weyl's dimension formula.

So the W orbit of § has at most (n) elements, so we
r

have them all. Furthermore the restriction of this
i—type to ﬂ must be the sum of one copy £ each element
of the orbit. To prove Theofem 5.4 in this case, it
remains only to check £hat L= {g;ssu8,8"L,«.c8~1l) & AlE)
(ani (1,...1,0...0) € A(§) if ¢ = 0). This we do in
several steps. In each step, it i shown that if u did

not have some property, there would be a K-type u' with
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u'[& in the same W orbit as u|M, but [[u'|] < [[u]].
By the minimaiity of-p,lit follows that u;must have the

stated property.

<

1) my = wyyy OF wy = wy, + 1, all i

Proof. Suppbse not. Since pj is decreasing,

it follows that My > Uy, + 2 for some iz XX

- ” l - ¥ - . ' — L3 »
ui_+ (n-2i+¥1) > 1, set e to= oy 24 uj uj for i # j.

Then p' is dominant, and u'|M = u|M, but

[lali - Hwt]d

<ut2p,ut2p > - <u'+2p,,u'+2p >"

2

(ny+(n-2i+1))% = ((ug-2) + (n-2i31}) 2

ll

4(ui+(n—2i+1)—1) > 0.
So u' < u, a contradiction. If uy + (n-2i+1) < 1, then

Boiq = (n=2(i+1)+1) < u; + (n-2i+l) - 4 < -3 < -1, and
]

one can use the same argument with Migq = Ui + 2. //

ii) The sequence (u,;) contains no subsequence

(.. o‘-X'&‘l,X- - -X’X'—l- a -) -

Proof. Suppose that such a subsequence occurs, with’

the last x+1 in the ith Place and the first x-1 in the
£h ith place ith place
j place. Setting U' = (ees X.; X oua X, %=1, X=L; wws)
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we see that p|M and u'|M are in the same W orbit
(' is obtained from y by transposing the ith and (j-1)th

. places, and subtracting 2 from the (j-1)th place.)

Also
Flul =1 u]] = <u+2pc,u+2pc> - <u'+2pc,u‘+2pc>
' 2 2
= {x+1+(n-2i+1)) = (x+{n-2i+1)
. 2 . 2

o+ (2 (n-2(j-1)+1))" - (x=-1+(n-2(j-1)+1))
= 4((n-i-j+2)+x)

which is positive if x > - (n-i-j+2). Similarly,

iith place Jth place
" = (... x+1, x+1, X, ... ¥, ¥, x-1 ...) is smaller
than u if x < - (n-i-j); so in any case the minimality

of uy is contradicted. //

It follows from i) and ii) that p is of the form

(B,B.-.B,B-1,...B~1); it remains to show that 0 <8 <1

Say the first r' terms are Bg.

iii) 0 < B < 2

Proof. Suppose not, e.g. B > 2. Set

= (B-2,...8-2,B-3,...B-3), with the first r' terms

n
B-2. Then p|M = p'|M, but
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ul =11l = =

[{B+ (n=-21i41) ) 2= (8-24 (n~2i+1} ) %]
i=1 :

n . 2 . 2
+ I [{E-14{n=2L+1]) = (=3 {m=2141) 3
r

i=r'+1
! n
= I 4(B-1+(n-2i+1)) + & 4(B-2+(n-21i+1))
i=1 ) i=r'+1l
n n -
=4 ¥ (B-l+(n-2i+l1)) + 4 ¥ (-1)
i=1 i=r'+1
. 'n
= 4n(B-1l) - 4(n-r'") since Z (n-2i41) =0
i=1 :
> 4n - 4(n-r) > 0.
We get equality only if B =2 and r' = 0. 1In
that case we may rewrite u = (B’,...Bi), with 8' = 1.

iv) 0 < B < 1.

Proof. Suppose not, i.e. 1.< B < 2. Set
u' = (B-1,...8-1,B-2,...B-2); here the first n-r' terms

are B-1. Then' u'|M is in the same W orbit as u|M, and

. r' 9 n 5
[lell=]le*]l = I (B+n-2i+1)° + =z (B-1l+n-2i+1)
i=1 Cdi=r'+l
n-r' 2 n 5
- I (R=14+n-2i+1)" = z (B~2+n-2i+1) "~
i=1 i=n-r'+1
n 2 "
= I ((B-1)+n-2i+1)" + I [2(B-1+(n-2i+1))+1]
i=1 i=1
n 2 n
- I (B-l+(n-2i+1))° + L [2(B-1+(n-2i+1)-1].

i=1 i=n-r'+1
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Changing the last index,

rl
T {[2(g-1+(n-2i+1))+1] + [2(B-1-(n-2i+1))-1]1}
i=1

I

4r' (g-1) > 0.

Equality holds iff r' = 0. In that case, u = (B~-1,...R=-1);
defining r =n, € = B8 - 1, u is in the desired form.

This completes Case 1.

Case 2 G = sL(2n,R), n > 2. Here of course,

-

N = 1 L s |%; >0, %Fa, =1{, an@ X is £0{2n).
0 A,

One knows (cf. Chevalley [5]) that the fundamental group

of K has order 2; so G is a two-sheeted cover of G,
and K = Spin (2n). Clearly
0

=i
M= { ~u I g. = +1, Te, = 1}, and M' consists
_ i - i

G €

n

- of the permutation matrices of determinant 1. So

2n—-1 2n k

[M] = 2 , and |M| = 2°7. Since M is abelian, M

has at least 92n-1

-~

one dimensional representations.

K = Spin (2n) has two representations of dimension 2“'1,
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. ; i = ;
which we call spin and spin . We will eventually show
that these are irreducible and inequivalent as represen-

tations of M. Sinee [M] = 22% = 22771.(32) & @"h24 27712,

these exhaust the representations of ﬁ. Leaving to the
reader the easy fact that spin+ and spin are actually
the small i—types of the corresponding representations
of ﬁ, this will prove Theorem 5.3 for the &—types

.t ; " :
spin-[M. So we consider the one dimensional represen-

tations of M £first.

Embed M in the full group D of diégonal matrices

in O(n). D has order 22n. If s ¢ {1,2...2n}, define

gl
GS e D by GS - = 'H €~ This exhausts D,
; e 1eS
2n
k ) ) ~ * El
so the 6S]M exhaust M. Since e M iff
£
' n
ey = 1, §g1M = 8g. M iff s=8' or §-= (s")C.

-~

If o e W, and ¢ is the corresponding permutation (recall

that M' consists of permutation matrices) U-SS = 65-8'

~

It follows that the orbits of W in M each contain

exactly one representation § ““"for 0 < r < n.

B 6{1,2,..r}

Consider first the case r < n. Then W-ﬁr' is clearly in
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1-1 correspondence with the r element subsets of

"{1,...,2n}; so |W-s | = (i?). Let u_ be the

representation of S0(2n) on [Ar(Rzn)] If

c
’ ; - 2

€., is the usual basis of R n’ then e. A ... Ae

1l Zn 1 r

clearly transforms according to ¢ under M. Thus

o
§  occurs in urlM. On the other hand,
dim p_ = % = |Wwes_ |, so u_|M must contain every
o r it = r
element of W-6r exactly once. (In particular p

i
is irreducible, which is of course well known.) Ah
“argument along the lines of that given for SP{(n,R)
shows that. M. is in fact the unique small K-type con-

taining Sr' which proves Theorem 5.3 for the Sr, r < n.

To consider Sn and the spin representations, we

need a little more structure. Let

cos 0, sin ©

& 1

-=sin el CcoSs 81

T = n. ’ I'eieR

cos B_ sin ©
n n

-sin 6_ cos B
n n

be the usual torus in K. We use the Gi as coordinates

1
in £, again identifying i%, with R" (with < , > the
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usual inner product). The Weyl group of L in K, Wees

acts by permuting the coordinates and changing an even

)
number of the signs of the coordinates. We order iib
lexicographically in these coordinates. The positive

(compact) roots are then (0""1r0""i1""0)’ o]

2pc = (2n,2n-2,...2,0). A weight (al...an) is dominant

if it is decreasing and a_ ; + 2, > 0; it is integral

. i : : i
if every a; is an integer or if every a; - 3 1s an

integer. All this may be checked just as we checked the

corresponding statements for U(n) above.

. & : c
Consider now 6 . The pairs {5,5°} of n~element

subsets of {1,2...2n} are in 1-1 correspondence with
the W orbit of 6n in M. It follows that this orbit

1

has 7.(§F) elements. The weights of the (Rzn) represen-

C
tation of + K are (O,...O,il,O..lO),_ a + 1 in the
ith place corrgspondlng to the weight vector e,. ; 1 1€,;

in the usual basis. These weights occur with multiplicity

n_2n

one. Hence the weights of the (ATR™) rebresentation

C
are (el...en); here r of the e; are 1, s are -1,
and the rest are zero; furthermore n-(r+s) is necessa-

rily even, since +1 weights and -1 weights can cancel

only in pairs. 1In particular the dominant weights
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+ _ = » ) —
poo= (L,...1) and un(l,...l, 1) occur, and o o+ oa

does not occur for any compact positive root a. It

follows that (AnfRzn)C contains the two irreducible
+
K-types u;l By Wayl's dimension formula,
+ .
. —-_1 2n, _1 .. n. 2n, T, 20 I =
dlmg_\n-—-zv-(n)—-zalm(ﬂlR )GZ' so (AR )03 unﬁun.

2n 2n

Using the usual basis of R™, it is clear that APw

contains theAM—type 6n twice (the corresponding vectors

A N n_2n
are elk --. Ney and €t i wa & ezn). Hence # R

contains each element of W-Gn at least twice; since

jwes | = %{i?), each element occurs exactly twice. It
follows that the conclusion cf Theorem 5.4 holds for

7 + - - Fiy -
either u_  or ‘u . One can compute that llunll llun||,
and it is easily verified that A(én) = u%.

It remains to show that spin+ and spin are
irreducible and inequivalent under M. By Schur's lemma,

- - %
it is enough to show that v==(spin+ﬂaspm1) ®(spin+easpin )

contains only two copies of the trivial M { pe. But it is
2n

-

E x
well known that 7w = (A R2n) the exterior algebra of R

ﬁ:l

Since ARZD = g2o-ig2n o o K-module, our previous

results show that the only M invariants in 7 are

AORzn ] Aznﬁzn. This completes Case 2. The case of
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G'= SL(2n+1,R) is considerable simpler for more or less

obvious reasons, so we leave it to the reader.

Case 3 G = 50(2p+1,2p),.p > 2. G is the subgroup'of

SL(4p+1l) consisting of matrices preserving the quadratic

2 2 2 x? (c£:. Helgason ([9])

SORI Sy S 0 gy g PR tea Bl Ly

p. 340). Let {eij} be the usual basis of the

4p+l x 4p+]l matrices. As a basis for the Lie algebra mU

of'A, we may use {e,

i,2p+l1+i * e2p+l+i,i ! 12412 2pl.

X 0
K is { ( ) l X e SO(2p+1l), Y € 80(2p)}. A matrix

C Y
X 0\ : .
commutes with 0 iff X.. =Y.. =0 for
0 Y . 3 +J
i#3, i, < p, and X34 = Y¥;; for i <p. For

(X,Y) & SO(2p+l) x SC(2p), this implies

o

P is a 2p x 2p permutation matrix, det P = 1, then

e M'; and if D, 1is diagonal, det D; = 1, then
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D1 0

) € M'. These assertions may be checked by direct
0 D :
2

calculation.

Clearly M has order 22p~l. On the other hand,

K = Spin (2p+l) x Spin (2p) is a 4 sheeted cover of X.
so |M| = 2?P*L ¢ has a 2 sheeted linear cover

Spin (2p+l1,2p). For a linear group, M is abelian

(cf. Warner [25], theorem 1.4.1.5, or the proof of

~

Lemma 5.5 below), So M has at least 22P one dimensional
representations.
Let T, denote the projection of K onto Spin (2p).

-~ ~ ~ ~
Then ﬁz(M) is "M for SL(2p).," and ﬂz(M') contains

"M' for SL(2p);:;" this follows from the corresponding
remarks on the 8SO0(2p+l1l,2p) level. If H 1is a subgroup

of XK, and R2 is a representation of Spin (2p), then

the representation 1 © R2 {(outer tensor product) of K,

restricted to H, is trivial on ker Tos and corresponds to

the representation R, restricted to ﬂz(ﬁ). It follows

immediately that the various 1 ® W 0 <r <n, and
18 u;, are irreducible under M', and correspond to

229_1 distinct one dimensional representations of M.

+
Also the two representations 1 ® spin are irreducible

-~

under M and inequivalent; each has dimension Zp_l
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- ~ ~ -~
Next, notice that M' contains "M for SL(2p+1}" x "M
~S .

for SL(2p;" again this follows from the corresponding state-

ment for M' on the 50(2p+l,2p) level. It follows that

K-type spin ® spin is irreducible under M'; it has

dimension 2p.2p”1_= 22P"l. (Here "spin" is the 2P dimen-
sional spin representation of SO0(2p+l). The proof of
Theorem 5.4 for G = SL(2p+1,R) shows that spin is
irreducible under "ﬁ for SL(2p+1,R);" this proceeds
exactly as for SL(2p,R).) It is not difficult to verify
~that spin @ spin  actually lives on the two-sheeted cover
of K in the linear cover of G, but not on K. ﬁ at this
level is abelian, so spiE ® spin” provides 229_1 more one
dimensional elements of ﬁ - we need only show that they
are distinct. This can be done in the following way.

f 0
Let H denote the standard SO(2p) < SO(2p+l), h C——at )

0 1
Let. Ml C H denote "M for SL(2p)", and let M2 be the
corresponding,subgroup of nz(K) = S0(2p). Then My = Mgy,
so it makes sense to speak cf the diagonal subgroup
& M is 5 y M M) = A' = M
A.__Ml X Mz, A is just M. Thus M E;A(Ml X MZ) A Ml.

We will show that spin ® spin |A' already consists of

22P*1 distinct components. First, one knows that

. - + . = 3
spin|~. = spin ® spin . So as a representation of
H



131.

L4

% = - . o . e . -
aY = My, epin ® spin is simply (spin -pin ) ® spin

" (here © means inner -7 .- rpLuu'To.)  As a representation

or A(é v o2rj - = Spin [(2p), this 1s s..0om Lo be

p-1 =
[( L ur) ® u_ ], which we know (from Case 2) cons: of
r=0 e
2p-1

-~

2 distinct M, = A'-types.

L

Finally, consider the K-type spin & 1. Let Ty
denote the projection of K on Spin (2p+l). Arguing as
J3-
for 1 ® spin , we see that spin ® 1 is equivalent as an

-~

M representation to the representation of Wl(M) on

~ ~

spin | my (M) . Now Ty (M) = M; ¢ H (since this holds on
the sSO(2p+l,2p) level) and spin[ﬁ = spin+ ® spin . So

spin ® 1 splits into two irreducible M components of
dimension 2p—l; they are inequivalent. We need to show
that spin ® 1l:is M' irreducible; but ﬂl(M') 2 "ﬁ for

SL(2p+1)," which acts irreducibly on spin.

In this way (i.e. by hook and by crook) we get

~

2p-L 2l one dimensional representations of M, and

2 + 2

four 2p-l dimensional representations. Since

2 . <
; this exhausts M.
-

Leaving to the reader the proof that the K types exhibited

* 2p+l _ . 2p- " .
] = 2°PFL = 2%P71 oy 52p-1 L 9P ]

are the small ones, we have proved Theorem 5.4 in Case 3.
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The various otu. .,ji4 orthogonal groups are similar and

easier.

For ine exceptional groups, the following lemumwsz

are helpful.

Lemma 5.6. Let 7 : K > SO ) be the ; representation
et e O 0 .

of . K. Choose Gq--.0, @ strongly orthogonal set of

o o
: . P ; 1 n
noncompact imaginary roots, and let X ~...X be

non-zero elements of the corrresponding weight spaces

of § = (@O)C. Suppose that for each i there is an

element o, 1in the normalizer of T in K, such that

oha

Oj°0; = —0;y and ﬁ(oiz) = 1. Then the space (7 spanned

. O s o .
by {X * 4 n(ci)-x l} and 57I- is an abelian subalgebra

ofjo . Also Ol = 0(, so that U(r—'(cro)c for some abelian

subalgebra Wo of Y,-

Proof. That O{ is abelian follows immediately from

the strong orthogonality of the oy notice that 37‘
. :
commutes with X * since a, is an imaginary root. Since

——

% t :
y = P+ it suffices to see that

a; Lo ey @y oy _
(X + m(0.)X 7)) =C (X + w{(c.)X 7) for each i; here
1 a.i i

C . € €. For simplicity of notation, we drop the subscript i.

O .
i
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N(U)Xa clearly has weight -a. By (2.6), x% has weight

"—-fo = =g since o is imaginary. Since the weight spaces

are one dimensional, x% = Caw(c)Xa. Apply 7 (o) +to both
sides; since 7w 1is a real representation, w(o) commutes

with conjugation. Thus H(G)Xa = Cuﬂ(cr)ﬂ(cr)xcx = Caw(cz)xa =

caxu; so (X%*+71(a)x™) = x%* + caxOl = cu(w(o)xu+xa). QED.

Lemma 5.7. Suppose that G is a split semisimple matrix

group. Then M is abelian, and [M]| < gy, B

Proof. By hypothesis, G < GL(n,R), so that
g{o-g g% (n,R), and %‘15 gﬁ.(-n,C). Let Gg denote the
connected suﬁgroup of GL{(n,€) with Lie algebra g}. If
bar denotes the natural conjugation in GL(n,C), then G © G@
is just the identity component of {g ¢ GCIE = gl.

The center of a connected Lie group consists precisely
of the elements which act trivially in the adjoint
rep?esentation. Since ¢ = (Jg) ¢+ it follows that the
center of G 1s c ntained in the center af GC' A complex
semisimple Lie group has finite center, so the center of G

is finite, and therefore X 1is compact. Since M <€ K 1is

closed and discrete, M is finite.

" Let AC = exp‘n. One knows (or it follows from the

; a7
results of section 2) that A, = G ; hence M cC A

c The

c*
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kernel of explJz is a lattice A ¢ idq,, and exp ig,

is isomorphic to a product of d.imq:oT = rank G circles.
Supéose m € M;_choose X,¥ € Gq)so that exp (x+iy) = m.
Since M is finite, mN = 1 for some positive integer N;
this implies Nx + Niy € A. Since A C iﬁo, it follows
that x = 0, so m € exp iOZO. On the other hand, since
me G, m=m= exp (iy) = exp.(—iy) = m—l, 5o’ mi> = L.

A product of r circles has exactly 2r elements of order 2,

so M| < 2rank G- GED.

One can give a much shorter proof using known results -
for instance the fact that M < exp (iﬂfa) is a special
case of a theorem of Osborne and Rader (cf. Warner [25],
proposition 1.4.1.3). But is seems likely that anyone

familiar with these results knows the preceding proposition.

Case 4. G = simply connected split form of G2' Here
K = SU(2) x SU(2) = {((i E) ; ( 1 i))1[a|2+|5|2=[~r12+|6|2=1}.
=B o _ -6 Y
We let the first fuctor here correspond to the long compact
root in the diagram below. Each SU(2) acts on polynomials
in two variables (say (x,y) and (z,w) respectively) so that
K acts on polynomials in x, y, z, and w. The irreducible
representations of X are the actions on polynomials of

degree n in (x,y) and m in (z,w); we call this
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representation (n+l) @ (m+l), these numbers being dimensions.
Weight vectors with respect to the usual Cartan subgroup T
of K (consisting of pairs of diagonal matrices) are the
monomials. The 67 repreéentation is isomorphic to 2 @ 4.
Such an isomorphism is indicated in the following root

diagram for G with respect to .

73]

3 2 2 35
Xz XZ°W | XZW xw ti ﬂl

[T

B——

Py

E433
z y
&

ILet o £ N(T) be the element

, 0 1 0 1 5 :
' . o = (-I,-I); since -I acts by -1
-1 0 -1 0

in every even dimensional irreducible representation of

strongly orthogonal
2 2
z°w Zw 3

Y Y ¥ noncompact roots.

su(2), 02 acts by (-1)-(-1) = 1 in 57. The root vectors
xzﬁz and sz correspond to strongly orthogonal roots,
so we may apply Lemma 5.6. Since o-(x,y,2,W) = (-y,x,-w,2),
U-(xzwz) = (—y)(—w)z2 = yzzw; and c-(x23) = (—y)(-WJ3 = yw3:
so we may take x_zw2 + yzzw and xz3 + yw3 as a basis

for . (I (of course 270 is equal rank, so y =0}, It



136.

is easy to check that the eight elements

8—316 0 ele 0 sis
, | e = 1 U
0 e319 0 -16

e
' -3ig i |
;
0 e 0 & 4ig .
e = 1} £ix 0.
- r —-=n-
_e318 0 —o i8 0

We claim that G is a two-sheeted cover of its adjoint
.group. The center of G 1is just the centralizer of P

in the centexr of K. The center of K 1is (£I;+I); (I.-I)
and (-I,I) act by -1 on (@, so the center of G is
{(,1), (~I,-I)}. This has order two, which proves the
¢laim. The adjoint repfesentation is faithful for the
adjoint group, so Lemma 5.7 applies to it:

"M for the adjoint group" hasat most 22 = 4 elements.

Thus |M| < 8, so the 8 eléments listed above exhaust M.

It also follows that M has at least 4 one dimensional
representations. It is easy to check that 1 ® 3|M
consists of 3 inequivalent non-trivial M-types, spanned
by 22+w2, zz—wz, and zw. 18 1 is of course the trivial
M-type. We claim that 1 ® 2 is irreducible under M:

recalling that © denotes internal tensor product, we

compute

(1©2) 6 (10©2) =10(262) =(181) 0 (L8 3)
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which qontains only one copy of the trivial M-type by the
preceding remérks. By Schur's lemma, 1 ® 2 is M-irreducible.
Since 3 + 1 + 22 = 8, this shows that 1 & 1, 1 ® 2, and

1 ® 3 exhaust ﬁ, each M type occurring with multiplicity

one. Leaving to the reader the verification that these

are small, it remains to check that they are M'-irreducible.
Of course 1 ® 1 and 1 ® 2 are élready M-irreducible.

Choose £ e € so that 52 = i; then one checks easily
73 o £ 0
that Pl = 7 | and
oy o £ 0o £

1 1 1 ] 1 1
P2 = — ) , — are in M'. The
/2\-1 1 Y2 +1 1,

three weight spaces 22, zw, and w2 of 1 ® 3 transform

'aCCording to distinct scalars under Pl; and

Pz-(zz) = (—l(z~w))2, which has a non-zero component in
V2
each weight space. It follows that Pl and P, act

irreducibly on 1 ® 3. This completes Case 4.

e,

Case 5 G = simply connected split real form of F Here

4°
K = SU(2) x SP(3). A torus for K consists of the pairs

of diagonal matrices
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ieo e 1
= 0 i0 O i8 ig
’ 2 _ 0 3
-iB e =[e P 1.
0 e d 106
3
e
-181
) e
() e—le2
—i83
e
. ]
We use the ei as coordinates in io; then iio is

identified with R4 in the dual coordinates, with the
dual basis {eo,el,e2,e3}; after normalization, the
invariant inner product is the usual one. The compact

roots are 12e, (the roots of SU(2)) and +2e;, te.te.

J
for 1 <i, j<3,1i#3J (the roots of SP(3)). The

noncompact rocots are igoigi, 1 < i < 3, and igoigligzieé.

(This is the dual of the usual presentation of the roots

of F4: cf.. Humphreys ([11]) p. 43.)

0 1 0 -1 . 7
Let o = ), € K. Then
| -1 o/ -1 o
2

0% = (-I,-1) = [-1,-1,-1,-1]1 = (e'",e'",e'",e™), which
is central in K. We claim that 62 acts trivially onj) i
since @ is K-irreducible, and 02 is central in K, it

is enough to check this on one weight vector of P 1 say
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ieo i63
(1L,1,1,1). WNow [e rese€ ] acts on a weight
. izeixi X
'(XO’XI’XZ'XB) by the scalar e ; SO @ acts on
(1,1,1,11 by "™ =1,

As a strongly orthogonal system of noncompact roots,

one can choose (1, +1, +1, +1), with an odd number of

minus signs; clearly there are four such roots. Apply
3 1 i X

Lemma 5.6 with Ui =g for all 1. Since 57 = 0, we

get a maximal abelian subalgebra CJO < g%, with o.e M.

ieo ie-3
. We want to compute MANT, [e B ] 4is in MnNOT

iff it acts trivially on each of the strongly orthogonal

weights (and their negatives.) This amounts to

otB178,1T85, B4+0,1+0,-6 4, 1 3

being elements of 27%. Using this condition, one checks

8g=01+0,+05, O 8,, and 68,-8,-0,-8
easily that [+), #1, +1, #1] (even number of minus signs)
and [+i, +i, +i, +i] (0odd number of minus signs) are

in MNT, for 16 elements in all. Also o¢ e M; clearly o
and MANT generate a group of order 32. On the other

" hand, a computation like that given for G2 .shows that

G 1is a two-sheeted cover of its adjoint group, so that

4

M| < 2.27 = 32. So this exhausts M.

M has a direct product decomposition
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=
i

=P x Q x R (here < > denotes "group generated by".)
This is quite easy to check, using the fact that if

1 -1

te T, otag — = t P is the non-abelialn group of

order 8, which was studied as "M for Gz." Q and R are

of course isomorphic to 2 Thus the representations of

-
M come in?éets of four, each set correspon&iné to an
element of _g and parametrized by the action of @ and

R. We continue to denote representations of BSU(2) by
their dimensions; also write "1" and "6" for the trivial
and six dimensional representations of SP(3} respectively.
Then the small K-types are 1 ® 1, 26 1, 3 1, 18 6,

and 2 ® 6. 1 © 1 is obﬁiously the trivial M type.

2®1and 3 @ 1 are trivial on O x R, since this group
.projects to I in the first factor (i.e. if (Tl,Tz) £ Q0 x R,
then Tl = I g SU(2)). The projection of P onto the first
factor is "M for G2"' so 2 ® 1 is the 2-dimensional
representation of P, and 3 @ 1 is the 3 non-trivial one
dimensional representations of P. ([-1,-1,-1,-1] € P

acts by -1 on 1 & 6, so this must split into three copies
of the two-dimensional representation of P: if

xl,xz,x3,yl,y2,y3 is the usual basis of C6 as an

SP(3) module, the corresponding components are <xi,yi>,

<['_‘i,i,i,i}, {_lr_lr"'lr"l]r g> X ‘:lrlr"‘lr"l]>x<[lr"l.r"1rl]>
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as is easy to check. Q x R acts on‘each of these pieces
by a different character, the three non-trivial characters
of Q * R, Finally, the 2 dimensional representation of P
tensored with itseif is the sum of the 4 one dimensional
representations; from our description of 2 ® 1 and 1 ® 6,
this implies that 2 ® 6 consists of the 12 one dimensional
representations of M which are non-trivial on Q x R.

Thus all M types occur in the given list, each with
multiplicity one. ILeaving the verification that these
~are small to the reader, it remains to show ﬁ' irreducibi-

lity. This is of course obvious for 1 @ 1 and 2 @ 1.

To compute some elements of M', observe first that
it =57M. For it is easy to see that the only noncompact
roots on which MAT acts trivially are the given
strongly orthogonal set and their negatives; and O is
precisely the space of g-invariants in the span of those“
8 root vectors. If g e K, i? follows that g-§f=w?gmg-1,
so that M* is the rormalizer of M in K. Suppose t e T.

" Then tct-l = t(ct*loul)c = teteg = tzc, which is in M

iff t2 e M. Since T normalizes MNT, t e M' iff t2 e M.

Using this, it is easy to check that each of the weight
spaces in any one of the representations 3 € 1, 1 ® 6,

and 2 ® 6 transforms according to a differeht character



l42.

of M'AT. To prove irreducibility, it is therefore
enough to show that any of these weight spaces is cyeclic
under M'. For definiteness, we restrict attention to

2 ® 6. Let (xo,yo) be the usgual basis of Ez as an
SU(2) module. Considering the action of o, it is enough

to show that one of the subspaces Vi = <x0 ] X;1r ¥ ® Y32

Wi = <y0 ® X, 30 ® yi>, i=1, 2, 3 has components in
ail the others under the action of M'. ILet Vv be a-
3 x 3 permutation matrix such that wz = I; then ¥ = w“t=:p
. v 0
so Y¢ = (I, )) commutes with o, and it follows
0 ¥
easily that € M'. Clearl V. =V, .
‘Yw)'wi = Ww(i) . - So it is enough to show that

M'-(Zvi) .has a component in EWi. For this we use the

1 (i i) 1 ( I -iI )) '
element g = <{§ ; 1/ /3 —3iT I e K. It

can be checked that g commutes with Q and R,.

g Yog = [i,-i,-i,-i]1, and g Y[i,-i,-i,-i]g = ~o. So

' : 1 . . .
g e M'; and -g'(x0 8 xl) = §(x0+1y0) &8 (xl-lyl), which
has a component in zwi. S0 2 ® 6 is M' irreducible, which

completes Case 5.
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Case 6 G = simply connected split form of EG' Here
K = SP(4). We use the coordinates ei in the Lie
algebra of the torus

[- 10

e 1 _ ()

" e, i@ i8
S - 4_19 =[e T,...e %1}.
1

With respect to the usual basis €1---8y of iib = R*

T ~

I

the compact roots are +2e., ieigj (A4 # 3). i? is a
42 dimensional subrepresentation of A4C8, the fourth
exterior power of the standard CB representation of

SP(4); its weights are i¢1i92i?3i?4’ ieijej (i # 3),

and two zero weights. By the general results of section 2,
the imaginary noncompact rooté are those which are not
also compact, i.e. iglje2j¢3ig4. Notice in éarticular
tﬁatc? contains any element of A4¢8 of weight
te,te,tejte,, since these ozcur with multiplicity one

in A4€8. Also the center of XK, which has order 2, acts

trivially in(P ; so the center of G has order 2, and
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M| < 2-2° = 128.

-0 I
ILet o e SP(4) denote the element ( ).
: -I 0

Consider the group D = Zé X.Zz =" {1,r,s,rs} (r2=52=l).

Interpret C4 as L2(Dj, and take xl},..,x4,y1...y4
. 8 4 4
as a basis for € =C ® C . For g e D, let Pg

denote the 4 x 4 matrix defining the action of g in

0 1 ()
the regular representation: e.g. P? =/ 1 0 .
C) 0 1
1 0
Clearly Pginz = Pglgz: in particular Pg = l,.so
pC =2l =p . Define o e SP(4) by o = g °
g -g g g . g " "

then the Gg commute with o. Now consider

xl...x%, Yq---¥, @as the usual basis of the SP(4) module

8 : . .
€ ; notice that G*X; = ~Yo 0 Yy = X4 If ¥ is a
character of D, then x(g) =+ 1 or -~ 1 for g e D;
l:%iﬁl = 0 or 1 accordingly. Set
1y (1) ox(xs) .
b =g 2 WA w N °*X, € A CB. Since x.
% 1 : 4 i

has weight e and Yy has weight -e. bX has weight
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BX = (x(1),x(r).x(s),x(rs)); so bX ep. It is easy to

check that {B. } . 1is a strongly orthogonal set of real

x€D
noncompact roots, and of course U'BX = —BX. By Lemma 5.6,
since 02 = -I 1is central in G, we may take

3.
a = b -+ g*b_, together with 6?“, as a basis of a.
X X X

We claim that o and all o are in M. Obviously

g
o fixes the ax; and
R 0 15K ES) L
cgea% = og°([c ‘ "X A ho . 'x4] + ol 1)
1-x (1) 1-x (rs)
2 2

(ogrx)l+ol 1)

i}
—_
la

j(cg-xl)A...Ad

(since ¢ and Gg commute)

1-§(l) 1-%{rs)
= 2
= ([o -xg.lh...ﬂc -xg_4] +aol 1.
. 2 . g g
Since g~ = 1, 1t .35 easy to see that
l-y(g) T x{93) 1-x(gg;)
2 2 2 : 2
g U . - ig . Therefore (recalling g~ = 1)
l—g(g) 1-x(g-1) 1-x(g-rs)
_ 2 2
=g *([o xg_lf...ﬂc 'Xg_4]4'0[ 1)

But the permutation of (1, 2, 23, 4) defined by the regular
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action of g 1is necessarily even; so

1-x(g) ~ 1=y (1) 1-y(rs)
=g ° (lo 2 XqA.. A0 41 + ol 1)
1-x (9]
=¢ 2 .a_ =a
X "X

since aX is fixed by o. Thus ax is fixed by Ug'

That o and Ug fix 531: is just an explicit computation,

which we only sketch. Write Z; T RX3AY then ?iA z; = 0,
b ‘ . ;
ziA Zj = sz Zg and ¥ 1s spanned by those combinations
- 4 8

- of ziA zj which lie in {? € A'C’. We have seen that
xlh ..,.,/\x4 e? ; applying appropriate elements cf the
Lie algebra of SP(4) to this, one gets (zl—zz)/\(z3—z4)

and (zl—ZB)A (zzfzé) in @ ; by dimension, these spanipi?.

vz, = gex.N gey, = -y, L . T R
Now a-z; oex;Naey, yl/'\xl x. Ay Z.5 S0 @O

fixeS'dTﬁ. For reasons of symmetry, it is enough to

consider any non-identity cg, say o_.. One checks that

Ur(zi) = Z,, Gr(?z) =27, 0 (23) =.zé,-and or(z4) = Zg;
hgnce ci((zl—zz).h(z3—z4)) = (zz-zl)A (24—23) =
(Zl—ZZ)A (23-24), and Ur((zl—z3)A (22-24))

(22-24}A (21-23) = (21-23)A (z,-2z,). This completés

the proof that o and the cg are in M. .
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Let MW be the 16 element abélian group generated
by o and the Ug. Notice that MW normalizes T.
The 16 element (abelian) subgroup of T consisting of
[#1, . +1, +1, +1] (even number of minus signs) and
[+i, +i, +i, +i] (even number of minus signs) is also
contained in M; this is checﬁed exactly as for Fy- If
we call this subéﬁoup Mn, than M normalizes MT;
.16516 = 128 elements, and

is therefore all of M. (Recall that we saw |M| < 128.)

My 0 M, = {+I}; so MM, has

M <Mp,0>
Next, we claim that ¢ = P ; in fact 0 = }9 .

For one checks that the only weights of ® invariant

under M, are % BX and 0, and the two dimensional space

corresponding to the weights + BX has only one o invariant.
It follows as before that M' is precisely the normalizer

of M in K.

Since M/+1l is abelian, there are at least 64 one

dimensional representations in M; one may check that each

occurs with multiplicity one in the repres.atation

CB 8 CB of K. It follows by Schur's lemma that CB is

‘irreducible under M; since 128 = 82 + 64, this exhausts

M. Now C8 e ES decomposes as a K representaticn into

2

Sz(cg) 8 AZ(CB) =5 @_ﬂz ® 1; here 52 is the symmetric

product, 1 is the exterior form defining SP(4) (a-trivial
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K-type) and Ty is a 27 dimensional subrepresentation

of Az(CB); these are irreducible. We claim that

Ly CB, Tor and 52 are small; the proof is as usual left

to the reader. It remains to check that Ty and 52

are M' irreducible.

Let 24 denote the permutation group on the 4 element

-~

set D; recalling C4 = L2(D), an element of I, corresponds

4
to a 4 x 4 matrix P, which in turn gives an element
/P 0
{ € SP(4). D is a normal subgroup of '24, and

0 P :
the conditions defining M& are invariant under permuta-
tion of coordinates; so it is not hard to check that

Z4 C M'. Also the elements

(-1.,1,1;11, [1,-1,1;~1;se. [1,1,1,-11 of T are in M'.
Usiné these, together with My, one sees that every weight
space of T, or 52 transforms éccording to a distinct
character of M' N T; Hence every M'-irreducible

component of those representations is a sum of weight
2

spaces. For definiteness we restrict attertion to 8

Considering the action of 24 "and o, one sees that every

‘M'-irreducible component of 82 . 1s a sum of certain of the

- 2 2 .,y s "
four spaces Vl = <xi 'Y ) ] i# 3>,

>, V, = <x.x.,yiyj

2 i3

" P2 -
Vg XYy | i # 5>, Vy = <y,
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To prove irreducibility, we exhibit two more elements of

M' which mix these subspaces. Put g; = }£~ F & &
iz 1
1 1 1 i
1/x 0 .
and 9, 5 , where y = 1 =1 i =1 is
0 X
1 1 -1 -1

1 -1 -1 4
the matrix of éharacters of D. One may thing of 91’ and
g, as diagonalizing the commut;tive families {1,0} and
{cg} = D respectively. From this perspective, or by
explicit computation, one can check that g, and 9,
normalize M, and ﬁence belong to M', Clearly gl-Vl

meets V,, gl-Vz' meets V,, and g¢,'V, meets V

3* : 8 2°

Thus 52 is M' irreducible, which completes case 6.

Case 7 G = simply connected split forms of E, and EB.

These are entirely analogous to Eci since Eg involves
somé rather meésy computations in aClifford algebra, we
give details in that case. So K = Spin (1B). Using
the usual Cartan subgroup on the S0O(16) level to give
‘an identification of if; with RB, the highest weight
of @ is (%,... %); P is the positive half spin
representation. One knows that two of the four elements

in the center of K act trivially on - (this will be
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seen explicitly below) so the center of G has order 2.

Thus |mM| < 2-2% = s12,

Define D = 22 X 22 X 22' with generators r, s, t.

Writing D = {1,r,s,rs,t,rt,st,rst}, we identify

-
iio = RB with LZ(D). A strongly orthogonal set of

weights for ﬁj is

rl ~y c+,1 121211111 1 11 11
{§X|XE3D}=={(jaEIE:E;jrfrgrf): (7;“§:§r"§:§r"

r

), etc.}.

| 1

1
2

DN

r
For each y we choose uX €g of weight /2. There
is a representative a of the -1 element of WK so that

02 = 1 (as will be seen below.) By Lemma 5.6,
{ux - U‘UX} is a basis for 0l . M should now be

generated by M N T = M o, and a certain copy of D in

]
the normalizer of T in XK. Unfortunately I know of no
easy way to guarantee the existence of this copy of D
other than direct Eomputation. 504 |
Consider the crmplexified Clifford algebra C
gencrated by Rls with the usual basis
(cf.. Chevalley [5]); then of course e;” = —i,

eiej = —ejei for i # j. There is an exponential map

*
exp ¢+ C ~+ C , the regular elements of C. The real

subspace C, = {eiej | i # 3> is a Lie algebra, and
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K = exp c, is Spin (16). For j = 1,... 8, define

xj = e2j_l+1e2j Yo = €5, 718, 24 S

1, . 2
g = F(e55_1%04%24-171%25-1%23)
1, 2 . .2
Fl-e24-1%29+1834-1%23)
1

i = ;.i a

glegymieyyy) =~ 3le
I
= < iy

The other identities below are similar.

2 iX z L4

X, = - = . = 5Y 4

%3 2% g B3

* = - = =- Y, = - i ..

(%) g%y = =XgX;  K¥g T UVgE; o Yi¥y T V¥ o~ L 7 ]
Zl i = Z Zl lej = szl zlyj = yj i

We may take <z.> as the Lie algebra of the Cartan

subgroup T € K. Since zi2 = - % , one easily computes
exp (Az.) = cos A + 2z. sin A, in particular

P i 2 i 2 7 g ’
exp Tz = 2zi, and exp (2nzi) = 1.

One knows (as was pointed out to me by Kostant)

that Y = Yq---Yg generates a maximal left ideal in C;

so the unique irreducible C-module is CY¥. This has a
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basis indexed by subsets § of {1,...8}; Xo = (I x.)Y.
igg 1t
= 2 _ -1 _
Set. g = ele3e5 <e- €938 Then ¢~ = 1, and GZ,0 = -z,.
4 g
(It is easy to see that o = jzlexp Ife4j-3e4j—l) e K.)
By (*), XS has weight (fﬁu i%,... i%) with respect to & ;

here the minus signs correspond precisely to elements of S.

So we may take as a model for the %7 representation the

span of the vectors XS' where S has even order. 1If

X € D, let SX denote the set where y = -1; of couise

ISX[ =4 or 0. Then & has basis {Xg + 0:X, }. Exactly
X X

as for the other exceptional groups, one easily checks
that M N T contains

I 2z, T 2zg, [0 101422 )]0 T _1(1%2z,)]

1¢SX 1ssx lESX 3 1,9_‘8X /3

(one choice of sign throughout.) These four elements are

distinct for each y, giving 32 in all. For y = 1, the

element IT -22. = 28-2
. . i
1,@_’8X

1'22...28" = 81828394-..815816 1S

the promised central element of K which acts trivially
on ¥ . Clearly ¢ 1is also in M, and normalizes T. The

resulting 64 element group already picks out ¢f : in fact,

- _ L4 54 4
set MQ = <qg, Z 21222324, 2 21332527, 2 21222526> C M.
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This is a 16 element abelian group, which is in some sense
dual to the group generated by D and o (once we show D € M.)

M
We claim that O =-¥'0. Arguing as for EG’ it is enough

to show that the various + 4 are the only weights annihi-

2

lated by Mor\ T . Notice that, for example, 2421222324
€

£
acts on the weight (El,... fg) (ei =+ 1) by

(Ell)(ezl)(eel)(s4l) = E€4E,E3E,. Thus an even number of

E.
Eee By are + 1; if (ii) is a weight of D, it

follows also that an even number of 35...5 dare 1.

8

Proceeding along these lines, it is easy to see that

|
(el...sg) or - (el...sg) is a character of D;
details are left to the reader. It follows that any
element of K which conjugates the four generators of

MD into M, is necessarily in M'.

. We want to exhibit D inside M. The element of

WK transposing Zs and zj has a representative

o.,. = %(1 + e Every hon-identity

i3 l)(1 + e, .e

2i~1%25- 2124}

element of D, acting in the regular representation on

-~ t -~
L2(D) = ifo = RS, may be represented as a product of

four such transpositions, e.g. o We

r = 912934956978"
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A

claim that there is a certain choice of this represen-

tative Ug such that o4 ¢ M. Clearly each Oij commutes

g
with o, so it is enough to show that if g e D,

o -XS = XS or o-Xg acdording as ¥{(g) = 1 or -1.
X X X

For purely formal reasons, these equations hold up to

sign; verifying that they hold exactly is the only reason
~ ideri ] w =

for considering the Clifford algebra. Set i3 eZifle2j—l'

Suppose '{(il,jl),...(id,j4)} = {1,...8}; let & be the

sign of the permutation ((ig,jz)) + (1,...8). Then by (%)

g = (g) gé Wigjg. By direct computation,
E’ij' (fiyj)’ = ¥y¥ g e (xixjyiyj) = XYY
(*#) 05 (xiyiyj) = X4¥iYy Wi (xiyiyj) = X4Y;¥4
054 (xjyiyj ) P A & Wi (xjyiyj)'—"-xiyiyj
Uij, W;j commute with Xy ¥ for k # i,j;
Uij and wij commuFe with 91 e and Wi iE
1i5Y # 1k, e},
Fix g # 1, and a character y ¢ 5. Suppose first that
x{g) = 1. write {1,...8} = fGy,37)..-(1,,3)) with
g-ig = jg, and set Ug T 05 4 eed0s Lo (Later we will

1731 14734
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put some conditions on the choice of the (ig'jg)') Since
x{g) = 1, x(i) = x(Jp): set LX = {R]X(iz) = X(3,) = -11}.

Then for some fixed gy = + 1, we have

X =g, (I Xy X2 V. Y. )(Il y. v. ).
Sy Ligen g 3pTte I pgntel 3
X X
Thus o X, =e, [ I o, . {x, x. v, v. )I[ 0T o, . (y. v. )1
G 8y 4 LeL, el ta dg Yy Iy LEL, o 50 A Y ]

=g T odx: 2oy, ') 1 {v: ¥ )
Logern, *g 3p7 %3y 2EL, 173y

bj ('.‘:'!:) 5 =% o

So the desired equation holds for any representative if
x(g) = 1. If x(g) = -1, the? x(ipg) = =x(3, ). set
LX ='{£|x€i2) = =-1}. Since the order of the various
pairs (ig'jg) is at our disposal, we may assume that

(L,...8) +(1il,jl)...(i4,j4)). is an even permutation;

4

then o = 1 Woos . On the other hand, for some
g=1 *zlg

= +1, we have XS = ;2( i X, ¥, V. YOI x. v. v. )

€
“ X LeL, 2 Mt Jp" gpr gty g
Using the middle equations of (**) just as in the previous

case, one sees that ag-xs = G.XS . B5So Ug g M.
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It is fairly clear that the 32 elements of MT' o,
and the 8 elements of D generate a group of order
52-?»8 = 512; so they exhaust M. The subgroup MT is
normal; o acts on it by the inverse map, and the various
Ug‘by permutation. . With fhis structural information, and
the various explicit formulae given, it is not hard to
work out the representation theory of M: there are 256

one dimensional representations, each occurring with

16

multiplicity one in the (Rls ® R™") |, representation of X.

C

By Schur's lemma, (Rls)m is M-irreducible; since

162 + 256 = 512, this accounts for all of M. Now

®® 6 R'C) = 1% ¢ g2

c = A2 2] (ﬂz ® 1); components of

|

dimension 120, 135, and 1 (the invariant quadratic form
defining SO(16)). These components are irreducible under

K. To complete the proof, we must show that AZ and T,
are M'~irreducible:. Recall that g g M' iff gMOg_l c N,

where MO is generated by ¢ and 3 elements of MT' As

for F4, it follows immediately that x e T, x2 € M=>xeg M,

6

We now consider {xi,yi} as a basis for the (Rl &

representation of X, which we denote by <. One knows that

if g £ K, gex; =‘gxig“l. Then o-x; = y.

i it 9g°¥i T

g ti T Fgei

ggoyi = Yg-i’ etc. For the differentiated representation,
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e = =7 ° = ] . L . = ,.- g = ' i £ 5
Z, % ix. . Z. Yy iyyr 25 xj zl~yj 0 for i 7 j.
£ = : o i on B
Set uij exp (1Tzl 5 ﬂzj) Since ul:J e T, and
uij =1 ¢ M, it follows that uij g M'. Consider for

definiteness A%, Usin§ the uij,,tqgether with various

square roots of the elements I Fl(l iZzi} e M, it is
V2. .
easy to see that the M'N T-primary decomposition of A2

is just the weight space decomposition.

MNow every Gij commutes with o, so any product of

;4 normalizing Mo, is in M'. 1In parﬁicular, whenever
the permutation m of {1,...8} defines an automorphism
of D, then 7 expressed as a product of Gij is in M'.
D together with Aut D (D acting by the regular action)

is doubly transitive on {1,...8}. It follows that the

M'-irreducible components of 1% are sums of the following

subspaces:

i3

= <Y, I
Vy = S AXg YA Y,

J

Vy = gAYy, viAxg L LA S
V3 = <xlf\yl +F ee F XBA y8>

(The zero weight space vy ® V4 splits only as indicated
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because Aut D acts transitively on the non-trivial char-
acters of D; one proves the splitting on the "Fourier

transform side" of D.)
Consider P-¥ ;iki+e e )—l(1+n e )-}{i+e
273 “6 7

4815) -
V2 2 V2 TRE1S

i
e..)—(1l+e
10711 S5

We claim P € M4'; one checks that the inner automorphism

of C induced by P fixes all e except

ar ...e14-+e15, e15-+—e14. Then a

e, * @3, €3 * —e

direct computation shows that PMDP_l € M. It also

follows that

e g _ . | i T
Pex, =P {ei+le2)—e1+le3w§(xlkyl)+§(x2+y2) : similarly

for the other Xir ¥y Thus

& _ i i 1 _L
&) Pe(xgA X)) = FXqA Y =g A ¥y A ¥o-gxo Ay
S Y ® — .j.'.

Because. of a) P-Vl has non-zero components in V2 and V4;

by b}, and similar eguations for xiA Yi in general, V3

" is not. M*-invariant. Thus A2 is M'-irreducible; Ty is

similar. 0.E.D.
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TABLE 5.8

Small K~-types (non-spherical) for simple split groups

Principal series minimal

Associate

G K K-types Small K-types
SP (n,R) U(n) (€rv-uese=1,.0.e-1) (1...1.0...0)
(0 < e < 1) (#1's = #-1's)
SL(2n,R) Spin (2n) ATe?®) 1<r<n
(™ " (e ™ F e
*
spin
SL(2n+1,R) Spin (2n+1) ATy 1 <r e
5 spin
S0 (2n, 21) Spin (2n) x Spin (2n) 1 8 AY(€*®) 1<r<n|ATe®™ o1
o—y .“..,.m i + M
1o (A7 (P 18 (A7 (™,
n i3 2n _
(A7) (€¢7) @ 1
- i + ¥
gpin @ spin spin @ &spin
p .
1 @ spin
=

gpin @ 1

(e=0)
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series minimal Associate small
G K K-types K-types
S0(2n+1;2n+l) Spin (2n+1) x Spin (2041) 1 & AT (€27FY) 1 <t <n |25 g2
| spin @ dpin
Spin @ 1
1 ® spin
s0(2n,2n-1)  Spin (2n) x Spin (2n-1) 1 ® AT(c*®™) 1<r<n-1
spin  © gpin gpint ® spin
1 & spin
gpin~ ® 1 gpint @ 1
S0(2n+1,2n) ° Spin (2n+l) x Spin 33 1o A% (¢ 1 <r<n
1 e (A% (™) 1e (™M
spin @ spin” : spin © mwwb+
1@ m@wbﬁ
Spin @ 1
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K

SU(2) x SU(2)
SU(2) ‘x.SP(3)"

SP(4)

SU(8)

Spin (16)

non-spherical principal
series minimal

K—-types

m—em e - —— =

.H@ Mﬁ H. ® u \ rrfa\

& .ﬂ o,
e
W ./r?

N@Hq&@n—.ﬁH@@h

8 .2
c®, 5%,

ﬂwm>wﬁamu
£2c®) o
s? (%) ¢
adjoint & >
o8

"
Rt

m, e 52(e%0)

ﬂHm

.r/llnlh‘

8
—

‘Associate small

K-type

2% "

82"
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~

Remark Suppose [90,36] = sl(2,R). ILet o be the
noncompact imaginary root which is } 0 in the ordering

t
of -ita. Then | is principal series minimal iff

_2<ﬁ,a>§_ ) ' 2<U:aak
-1 € < 1; it is small iff -1 < ———o" < 1.
1>y Sak YN

(This is just the case SP(1,R) above; we mention it

separately only for convenience.)

It is worth noting another technical property of
small K-types. Recall the Iwasawa deccmposition G = KAN.
Corresponding to every root o € A@TO,GO), there is a map

sf{2,R) & ﬂO' Let Xa E;ﬂb denote the image of

¢ 1\ c 1
. The image of is Z_ =X + QX € & ;
0 0 -1 0 o o o 0

and {Za} is an orthogonal basis ofiko.

ael (7_70,010)

pPefinition 5.9 (Bernstein, Gelfand, and Gelfand [11])

The representation y of K is £ine if the eigenvalues of
Za.in y all lie in [-1,1]. (If G 1is linear, they are

necaessarily integers.)

Theorem 5.10 (Bernstein, Gelfand, and Gelfand [11).

et 7 be a finite dimensional irreducible representation

of G on a vector space V, and y a fine K-type. Let

8§ be the representation of M on the (one dimensional)

space v". Then the multiplicity of y in 1f[K is
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precisely the multiplicity of § in y|M.

Amazingly enough, we have

Proposition 5.11 + vy is fine <=> y is small

Proof. It is enough to assume : G is simple. We
then proceed on a case-by-case basis, using the following

criteria for fineness and Table 5.7. Let Bl"'sq

be a strongly Qrthogonal spanning set for ‘t;oot
consisting of noncompact imaginary-roots.. We may assume
that A is obtained from (?g' and a Cavley transform on
the Bi' Then it is easy £o see that the s (2,R) through
Bi is one of the "root s&(2,R)'s™ for A(?lO,OYO). The

corresponding Za is in the Bi direction 4in Jﬁo. There

are several possibilities.

i) All roots of Egc have the_same length (SL(n.R),

sO0(n,n), E6, E?’ ES') In this case all .Za are conjugate
under W, so it'is enough to verify the fineness condition
for one of them; se r in the Bi‘direction in_fo. Computing
for s%(2,R), one sees that the fineness condition is

2<u,B.>
-1 < i

somanmaatiten o > : . - i
_’<Bi’si> < 1 wheneve ¥ 1s a weight of v Since

all weights'lie in the convex hull of the extremal ones,

this is equivalent to
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=1 <.zé%i%; < 1 for each noncompact imaginary root B.
— : = ; ; :

1i) There are two root lengths, both occurring among the By

(SO(2n,2n—l),G2). Similar reasoning leads to precisely

the same condition.

iii) There are two root lengths, only one occurring among

the Bi (so{2n+1,2n), SP(n,R), F4-) The. Bi are
necessarily long roots (by inspection; or the reader can
provide the "general" proof.) One can find two Bif say

1 . :
?1 and 82, such that 5(81 + 82) is ? short compact

imaginary root. It is easy to see that the Lie algebra
corresponding to these roots and their negatives is
isomorphic to sp(2,R): and‘it also corresponds to certain
roots of CTO in ?TO. Iin this way one can get explicit
control on Z, when o is‘a short root. Computing for

sp(2,R), and reasoning as before, one gets the criteriocn

for fineness: -1 < E;%Lgé < 1 for every long noncompact

% 7
imaginary root; and -1 i_ingé < 1 for every short compact
. L

imaginary root..

We leave to the reader the straightforward verification
that the small K-types listed in Table 5.8 are the only
dominant integral weights satisfying the conditions given

above. Q.E.D.
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Corollary 5.12 A finite dimensional dirreducible repre-

sentation of a split group contains exactly one associate

class of small K-types, each with multiplicity one.

Proof Combine 5.4, 5.10, and 5.11.

It follows that the A(§) form a "strong system of
minimal types" for a split group, in the sense of
Lepowsky ([19]). The considerations of section 6 give
analogous results for arbitrary semisimple groups; this

will be considered in detail in a later paper.
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6. Existence of the Representations.

It will be convenient in this section to assume that
K is compact. This makes available the theory of the
discrete series in its most standard form. Essentially

_ the same results hold without this assumption, however.

Fix a K-type pu. We assume that Conjecture 4.2 holds
for u, thus we are given a 6-invariant parabolic b= Js 7{

with the following properties:

i) { is split; d.e..  Af | ,t+ = £ .0.(center of [ )+

and 07, is a maximal abelian subalgebra of

In Pe 1 then ,tf"-;n: g7 .. is a Cartan subalgebra

of ,Q (and 9] ).

J
Write u = (ul,uz-) according to the decompo-
sition £ = £+ 4" ;- recall that .t = tntl 1.

(6.1) ii) u,=2p (7NN P) l:é’ is a small [/ 010 ke type;

* [}
and if p,-2p(N ap )I{__ is an associate small

[u 10 Kk type, and (ul;u;) is dominant for R,

then (u;,u,). ﬁ (ul,u;) .

iii) A = u+'2pc-p is dominant with 'rle_splect to the

. L] ) 3 *
‘imaginary roots in - (i*') .
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(6.1) iv) If the irreducible Harish-Chandra module X has

minimal K-type u, then the action of U(cW)K
J

on - X% - factors through'EP.

Let P = MAN be a Langlands decomposition of a
cuspidal parabolic subgroup corresponding to
Ny = Wo{ﬁ) < (ny, . Then LAMA = :T+A is a Cartan
subgroup of G; rt € X, and the identity component Tg

ot . + + .
of T has Lie algebra ;tO' i is a compact Cartan.

subgroup of M.

Theorem 6.2. Suppose Conjecture 4.2 holds for the K-type ﬁ;

choose P = MAN as above. Then there is a certain tempered

unitary representation Gu € ﬁ,_in,the "limit of the discrete

" series," such that

i) If v e A, Ind § ® v = 7° has minimal K-type ¥:
: PAG u ST

and p occurs exactly once.

if) TE n; is the unique subquotient of ﬂﬁ

containing u, then .{EX} is precisely the set

of irreducible gquasisimple representations of G

with minimal X-type p, up to infinitesimal

eguivalence.

Proof. Suppose we can prove i). Then ii) follows for

formal reasons, which we only sketch. Recall the map
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fo Ptk

eH s v u)

/Ty-20 griny 4 -

The latter ring may be embedded in U(c¢r) in a natural

way (Corollary 5.5) so we get a map £q ¢ U&'+ u{o).
One can also construct a map £2 : Uk'+ U(dol), so that
the Uk' character of ﬂx on the k-type ﬂ is just

T 1 . I A
gzo(evaiuatlon at v); and gl and 52 agree on ;?\9 ).
We therefore have maps (Spec R means the set of ring

homomorphisms of R into €)

k
%;//$ Spec U \\ﬂ

Spec Zy(g)
g;\\\i Spec Uk //ﬁ

Spec U(q)

so that the diagraﬁ commutes. By 6.1 (iv), Im gz C Im El'
By simple properties of the map Spec U(61) + Spec }49)
(which is essentially a Harish-Chandra homohorphism) and

a little algebraic geometry, it follows that Im El = Im 52,

which is essentially statement. (ii) of the theorem.

denote the

So it is enough to prove i). Let M,
identity component of M. Let Gl be some linear form of
™

G, such that there is a covering map G + G (One Lnows

1
that G has a finite dimensional representation which is

faithful on g .) Set F = ﬂ_l(n(M)fW exp (iozo)), a
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finite group; then F €M NL N"K, and F centralizes MO.

put M7 = MOF' We will produce a representation - 63 in
the limit of the discrete series of MO, and a finite

1
dimensional representation Gu of F, so that 6ﬂ0 and

: 1
Gi act by the same scalars on My - ¥F. Thus 60 e §

b

will be a well-defined representation of M’ ; and we
' 1
will set 6= 1Ind 62 @ & .
. n o M u
M7tM

Choose a strongly orthogonal set . Bl...Bq of
" noncompact positive imaginary roots which span X . We
want to borrow some argumenis from [22]. {It is assumed
there that G is eqgual rank; but the results we need can
easily be generalized from that case.) Via some Cayley
transform, one can define a system Y of positive roots
- +
of T0

the positive imaginary roots supported on ;t+ (schmid [22],

*
in M, so that Y corresponds to A+ N (JE*) "

p. 68). Then ZDC(W)-D(W) = (2pd"9)|ﬁ* (1221, p. 128),
so that .Alij.— 2pc(W) + p(W)‘= ﬁLt* = Uy We claim that
'ul is dominant with respect to every compact root

a e ¥. If o 1is compact as an element of A(g,ﬂ), this
is immediate from the dominance of u. Suppose a 1is
noncompact in A(ghﬁ); Then ([22], p. 68) there is a

root B; € {Bl"'Bé} which is not strongly orthogonal
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to a. Since o 1 Bi’ a + Bi are roots in A(g,ﬂ); and

since o and Bi are noncompact, o + Bi are compact.

Since o € Af{7), and B; E A{Q),_ o+ B, o€ A(), so
a -+ Bi are positive roots. .Thus
< a> = <ﬁ ¢> = £(<u a+f.> + <y d-B > >0
Hyt PP SRR R SHARTR R ) L

since y§ is dominant with respect to %,

Schmid has defined cerfain invariant eigendistributions
e(¥,x) ([221, [8]) which for X strictly dominant with
respect to Y are discrete series characters. We will
apply the following lemma to MQ. (All of the statements
are more or less known by now, although it is difficult

to give a specific reference.)

Lemma 6.3 Suppose rk G = rk K, ¥ is a system of

1
positive roots in A(g,f), AE iib . is dominant with

respect to ¥, A+p lifts to character of T, and u = A*ch+p

is dominant with respect to ¥ N A(&). Then the invariant

eigendistribution ©(w,A) is the character of a tempered

unitary representation &()\). In the restriction of & ()

to X, u oceurs with multiplicity one; and every K-type

which occurs is of the form up+Q, where ©Q  is a sum of

positive roots.
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Proof. For the proof that ©(yp,A) 1is tempered,
see [8]. Langlands ([17]) has shown that a tempered
representation is unitarizable. (Apparently ©(y,A) is
is irreducible or zero whenever A 1is dominant, but I
have been unable to find a reference for this. For
linear groups it is asserted in [15]. If A 'is non-
singular, the irreducibility is of course part of
Harish-Chandra's description of the discrete series.)
The other assertions are known (see for example
Schmid [23]) if A is non-singular. We pass to the

general case using a technique of Zuckerman.

Let Te be the finite dimensional irreducible

representation of lowest weight -p, with character O_p.

Then the character of §(A+p) @ Y—p is
O(¥,A+p)-0__ = 3 nii e(w,;\+p+vi) ;
P v, a weight - ‘ '
of
Y-p

here m, is the multiplicity of v, in- Yoo (cf:. [81).
Each vy is —p+f&, where ﬁl is a sum of positive roots;

" Thus
Oy, M+p)10_ = I my O(h,A+7;).

Since A 1is Y-dominant, it is easy to see that the only
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term with the same central character as @(ﬁ,l) is
'G(w,K), which occurs exactly once. So d6(A) may be
ideﬁtified with the subspace of & (A+p) @ Y"p with a
certain central character. A+p is non-singular; so we
know that every K-type of & (A+p) . has highest weight
ut+p+Q'. Every weight of Y-p is - “p+Q"; . of course OQ°
and Q" are sums of positive foots; So every K-type of
§(X) € §(A+p) © Yﬂp has highest weight ﬁ+p+Q'—p+Q“ e ﬁ+Q;
and by being slightly more careful, one sees that. ﬁ ‘has
multiplicity at most one. It remains to show that pu in
fact occurs in the piece of '6A+pfé Y-p with the right
central character. We do thié by producing some cohomology.

(Easier and less interesting arguments exist, but it never

hurts to justify one's thesis title.)

Let X be the Harish-Chandra module of 61+p, and Y

the representation space of y_p. Let I~ 2 L be the
Borel subalgebra corresponding to Y¥. Now (u+p)+2pc = A+2p
is dominant with respect to ¥; since every other K-type

- which occurs is ﬁ+p+Q, with Q & sum of roots in Y,
it follows easily that ﬁ+p is the minimal K-type of X.
Also A(utp) = (ﬁ+p)+2pc-p = A+p 1is dominant and non-
singular with respect to ¥; so by Proposition 4.15,'ﬁ+p is

/(-minimal in X. By Theorem 3.12,
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+ R * +p=2p (71¢7
B w (nak, 0P e (R - mR gy MPTZR )
is injective.

On the other hand, f_ contains the X-type of lowest
weight -p. By a theorem of Rao ([211), X @ ¥ contains
the K-type of highest weight (ﬂ+p)—g =jﬂ; i.e.

HO(Tlnk, X ® Y}u is non-zero. Let Yl _be the
}-submodule of Y generated by all the weight vectors

except the lowest one; thus Y/Yl is a one dimensional

space of weight -p. By the long exact sequence,

. o
0 » 8 (ack,xov )" + BC (rtak, xen) " > 8O (riak, )M TP @ (u/vy) 4 .

1
Using a filtration of Y., it is easy to see that the first
group is zero, éo_that ¢ is an isomorphism. (Actually

it is noﬁ hard tc prove direct%y that Hi(fUIQ, X 8 Yl)u = 0;
'in this way one can eliminate the use of Rao's theorem.)

So there is a commutative diagram (for convenience we put

0 = AR(nap)”, and v = u-20(1ap )

B x e v)Y - BRonx e 1Y > BN oL Y0 e (v/v))

¥ + " n‘é""p o 1

0 » m0k,x e v* ® 0 28 10 (1ak, x)" P @ (v/¥)) @0

. . i +p . e
Now ¢ 1is an isomorphism and “E P is injective; SO
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necessarily “S is injective. Thus there is a cocyclao:

-w & Hom (A%q, X ® YY), with values in (X ® Y)u, which does
not vanish on the cohomology level; and has weight
U—2D(7Tﬂ@) = (u+29c-p) - p =2 —'p; It follows from
Theorem 3.5 that .}%?J acts on (X é Y1u~ according to

the central character of Bl A).: Q.E.D.

It should be pointed out +that if A is Q-dominant,
but _A—ch+p is not %&dominant, then 0(y,A) = 0. For
in this case there is a simple compact root o (simple

for Y N Afk)) such that

2<a,l—2pc+p>

< =1
<G o> e

2<arpc>

Now <a,A> > 0, =1 since o is simple for

<O 0>

2<a,p>

. S i < > =
% o o 1 50 necessarily a,A 0, and

w n Ack); and

RGP o, 1. Then o is simple for U; and Hecht and
<do,u>
-Schmid ([8J) have proved that if A is singular with
respect to a compac.. root which is simple for ¢, then
Actually,.one can get an existence theorem like 6.2
using only the existence of a representation with the

K-decomposition specified in the lemma. This can be

pProved very algebraically, without invoking the theory



175.

of the discrete series (see for example Wallach [24]).
But we will use the full strength of Lemma 6.3 to relate
our results to Langlands' (Corollary 6.7).

Consider now the representation of My with
character e(w,llt*). Lemma 6.3 applies; so we let 58'

be the irreducible component containing the Mofﬁ K-type W;-

: i ,
Producing the representation Su of F requires a
little more work. Recall that U nk = fnk + ¢T!191

is & parabolic in {2 . With obvious notation, therefore,

g o= (mnk) + (4ak) + (;mnf), and

(*) (k) = u(nak) 8 udnie ) & u(s1nk).

Let V denote the irreducible ﬁ—module of highest weight u;

v1%n5{_

put V; = By Kostant's theorem 3.8, V is the

1
irreducible JAR module of highest wéight u. Since the
roots of & in lnf« are supported on A , every weight
of Vl is of the form '(”1’*)“ Using (*), one sees that
every weight of V not in Vl is' of the form (pl,*) + 0,
where Q is a (non-empty) sum of roots in A(7(nfz_ ). On
the other hand, the proof of Lémma 2.7 provides an element
x a_t+, such that d(x) is positive, zero, Or negative

according as a e A7), A(f), or A(7r) . Hence a weight &

of Vv is in Vl iff E(x) = ﬁl(x); so V., consists
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precisely of the weights (ﬁl,*) oceurrding An . V. IE

o is a compact positive root of ¥, then a(x) > 0; so VJ

is ?recisely the MOIW K-highest weight space of*WeightLHqin\h

Recall that ﬁ—2p(a7n{9§ was a small L N K type.
Now 2D(fln&3) is the weight of a one dimensional L M K
module (namely AR(770@ )), so Theorem 5.4 applies to u:
the action of (L N K)A on VvV, decomposes into a Weyl
group (of A in L) orbit in ((L N K)Afs, eaqh representation
occurring with multiplicity one. Let 5& be one of the

(. N K)A types occurring. Now one knows that "
i T

A + + . 0
(LX) =7 F, and TO iz central in L = G . Hence

1
SMIF is still irreducible.

We must check that Gi and 63 act by the same

scalars on F N M,. Since this group is central in F

0
and MO’ it does act by scalars in Gi and 60. Since
F N MOS; K FlMD, necessarily F N MO g_T; (for Tg is
maximal abelian in K / My.) Dut now it is obvious from

the definitions that F N MO acts by u]foM in both

. 0
53 and Si. So 63 ® Bi is a well defined irreducible

representation of M7 .

We claim that & = Ind 53

®:6$ is irreducible.
M74M

Now F 1is central in M if G is linear; and it follows
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easily that M7 is normal in M in general. So we

must show that if 1 # o & M/Mh, then E-(GS @ ﬁi) is
not equivalent to GS'Q ai. In fact a little more is true:

3-63 ? 63. For we may of course choose a representative

0 € MN K of 0, which normalizes Tg,

positive Weyl chamber for MO(W K. . Then (cf. Schmid [22])

and preserves the

0 determines a non-identity element of the complex Weyl
. . )

group of TO in MO; since ¢ € M K, o preserves the

set of compact roots. So o-pc(w) = pc(w), and (since

M+ is dominant for ) U'IU\I;; +p(P)) # A+ py).

We have seen that 60 has minimal MO(1 K-type Wi so
E=53 has minimal M, N K-type

0
Gepy = G(lbﬁ' + p(P) = 2p, ()
= U(Alx* + () - 20, (V)

# l&# o (¥) - 2p, (W) = u-

— 0~ .0 Boe o g :
So 0~5u ¢ Su, and ﬁu is irreducible.

~

Fix a character v € A. It remains to show that

7% = Ind 6 ©® v has minimal K-type u. Set p? = M7AN.
P+G

Since G = KP , and KN Pq = K 0N Mb, we have
v ~ <0 1
“uIK = Ind [(Gu[KnMO) ® su]

KamM? +K
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Suppose Y € K. By Frobenius reciprocity, the multi-

plicity of vy in ﬂ:lK is the dimension of

Hom | (((SOIKMq ) @ Gl, Y). It follows easily from the
kam? MR € .
discussion preceding the definition of Gi that W occurs
s VRS -
exactly once in ﬂu]K- Suppose vy = (Yl,yzl occurs.

Then vy contains a weight (gl,gz) -which restricts to
the highest weight of some Man K-type occurring in

0 i ] _ ; '
Gu ] Gu. By Lemma 6.3, El = 1y + 0, wherg Q 1is a sum

of positive roots supported on t*¥. Consider the subspace

of y of weights (El,*).— This must contain elements
transforming according to 6% under F, and thus a2 weight
(gl,g;), with Eé the highest weight of some [/,/Infk type
containing Si. Recall that ﬁ2-2p(72ﬂ§9)]t- is a small
,01ak type. since 2p(renp )+2p (v afk) is the weight

of a oﬁe dimensional X module, u2+2p(770?{)|t_ is also

small. Definition 5.3 now implies (writing |v|2 = <v,v>)
. . |
(**)  ]g,+20 (MaR) |- +20 (A7 (20R)) 1% > |u,+20 (rrak) [t' r2p (8% dafy | %5

¢ :
eguality holds iff 52"2p0ﬂnp ) 1is a small (Q’Q]n %;—type
associated to U2“20(77QP }. Of course

ZD(TNWQ)It_+ Qﬂ(ﬂ+(ﬁﬂ9k) = 2pc[t— ; SO we have
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2 2 ' 2
l__[YII = |y+20,1% 2 18y+2e 0 17+ (85720, -

|v

.Iuli-Q—l-ZpC!t:\_lﬁ + |u2+2pcli.. |

v

- 2 . - 2
|ul+2pci | <+ ]u2+2pc|x_]

t‘r
= llull.

The first ineguality is obvious; the second is (**); and

the third is just the fact that <Q,ﬁ+2pc> > 0 (recall

the definition of A+.) Suppose equality holds. Then

) .

Y = (Ey/E5); Q= 0; and E,=2p(7tnp ) is a small

1,01 n k type associated to ﬁ2~2p(nnp ). By 6.1 (ii),

Y k i; so u is in fact the minimal K-type. This completes

the proof of Theorem 6.2.

We note for future reference a corollary to the proof.

"If X is an arbitrary Harish-Chandra module, the}k-type Y

of X is called small in X if ||y|| is minimal among the
Artypes of X. Then the proof shows that the small k-types

of -w: are the various (ul,yq), where (u,Y,) is

dominant, and Y2—2p(f?ﬂp)|i; is a small [[,{Ink -type
associated to uz—zp(yqu)li_; one need only check that
these actually occur (in fact with multiplicity one), which
is left to the reader. Modulo Conjecture 4.2, it follows

that the small &k-types of an arbitrary irreducible X
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occur with multiplicity one. When G. is linear, at
least, and ﬁz is tempeved, it seems to be passible to
show (using Corollary 6.7 below) that every constituent

of 7° contains a small K-type; in particular that every
constituent occurs with‘multiplicity one (which was proved
by Knapp [12].} I hope to pursue this matter in a later

paper.

Our next goal is to relate the classification of
Theorem 6.2 to that of Langlands ([17]), which we now
describe. Langlands assumes that G is linear, but this
is almost certainly unnecessary for the results we will

quote.

Let P = MAN be a Langlands decomposition of an

arbitrary parabolic subgroup of G. Let &6 € M be an

irreducible tempered representation, and let v ¢ A be
arbitrary. Put IP = Ind § ® v. By computing characters,
9% pyp

one finds that if P' is any other parabolic with

i 1 .
M'A' = MA, then Ig@v and I have equivalent com-

SOV
position series. '

~

Definition 6.4 Ve A isdominant if for every roota of A inN, .

Re <v,a> > 0; it is strictly dominant if ‘Re <v,a> > 0.

Theorem 6.5 (Langlands [17]). Suppose - G is linear,
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P is as above, and v € A is strictly dominant. Then

P
J5®U

I is a cyclic module. Let

5V denote the unigque

irreducible quotient. Then every irreducible gquasisimple

representation of G is infinitesimally eduivalent to

such a JG@v; the cénjugacy class of (MA, 8@v) is unique.

Langlands does not state explicitly that JS@v is
cyclic; the observation that this follows immediately
from the proof of Lemma 3.13 of [17] is due to Milicic.
Suppose v 1s dominant. The case Re v = 0 émounts
- to v a unitary character. In general, it is easy to
see +that therc is =z parabolic P'2 P, so that the
induction from P' to P _is unitary (say
I?d‘(é@v) = 6'@&') and v' is strictly dominant. Unitary
P+P

induction preserves temperedness, so §' is tempered. As

such it splits into finitely many irreducible constituents

-
61
one easily deduces the following corollary of Theorem 6.2.

1
...GI, which are tempered. Using this construction,

Corollary 6.6. Su,.pose Conjecture 4.2 holds.for G. TLet T

be an irreducible representation with minimal K-type p.

Then there is a parabolic P = MAN, a tempered irreducible

representation &6 & M, and a strictly dominant character

v £ A, so that I

50v has minimal K-type p, which occurs

P

58V denote the

with multiplicity one; and if we let J
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unique subquotient containing u, then ' 7w ‘is infinite-

: : TP
simally equivalent Lo_ JG@U .

Combining this with Theorem 6.5, we obtain

Corollary 6.7. Suppose G is linear,: and that

Conjecture 4.2 holds for G. Let P = MAN, ¢, and v be as

o . : E 7B
above, with v ,st;;ctly'domlnantz ?hen JG@v = J5®v :

i.e. the minimal XK-type of Ind § 8 v is cyclic.
TR PR EALELRLE TS U Tt COPAE T s et T

Proof. There are only finitely many (non—COHjugate)

p', 8", v* so that I has the same central

§'8v!
character as IG@v‘ We claim that for each of these,
P’ ~p* . 3 . '
JG'@v’ = JG'@v'” This is proved by downward induction

(with respect to the ordering of section 4) on the

="

Ssrteyt If p' 1is maximal, every

minimal K-type u' of

Pl
§'ev!
[

contain p'. By Corollary 6.6 again, u' occurs with

irreducible subquotient of I must'(by Corollary 6.6)

» multiplicity one, o I is irreducible; so

§'8v
qG'@u‘ = IS'@?' = Js1gy1- In general, suppose that
JG'@v' # Jﬁ’@v" Then the minimal K-type y' of JG'@v'
is greater than ﬁ'. Applying Corollary 6.6 to
T =J we see that ' J is infinitesimally

g'ev’ ! §'@v'
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-~

equivalent to J which is just Jgn by

5"@.\)"' 7 @U"-
inductive hypothesis. But this contradicts the uniqueness

statement of Theorem 6.5, and completes the induction. QED.

Corollary 6.7 is of course full of possibilities.
For example, using the fact that every discrete series
representation is a quotient of some principal series
(see [14]),.0ne-can get Casselman's theorem that any
representation is a quotient of some principal series
(f3]). Of course this proof uses Conjecture 4.2, is
confined to linear groups, and is much harder than
Cascelman's argument; but cne gets more specific infor-
matiqn about which principal series to choose, as well
as generalizations. All of this will be pursued in a

later paper.
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