Weyl group representations and Harish-Chandra cells

David Vogan

Massachusetts Institute of Technology

Weizmann Institute of Science Algebraic Geometry and Representation Theory March 10, 2021

David Vogan

ntroduction oseph cells

HC cells

Springer cor

Lusztig's results

More on HC cell

Outline

David Vogan

Introduction

Joseph cells

Harish-Chandra cells

Springer correspondence

Lusztig's results

Consequences of Lusztig's results for HC modules

Slides at http://www-math.mit.edu/~dav/paper.html

ntroduction

Joseph cell

IC cells

springer corr

4 110 11

Language for today

David Vogan

Introduction

Joseph cell

IC cells

opinigo: con

More on HC cells

```
G(\mathbb{R}) real reductive \supset K(\mathbb{R}) = G(\mathbb{R})^{\theta}

G \supset K = G^{\theta} complexifications, \mathfrak{g} = \mathrm{Lie}(G)

Cartan and Borel \mathfrak{h} \subset \mathfrak{b} \subset \mathfrak{g}, W = W(\mathfrak{g}, \mathfrak{h})

\lambda \in \mathfrak{h}^* dominant regular \leadsto infinitesimal character.

M(\mathfrak{g}, K)_{\lambda} = \mathrm{category} of (\mathfrak{g}, K)-modules of infl char \lambda

\mathrm{Irr}(\mathfrak{g}, K)_{\lambda} = \mathrm{(finite)} set of irreducible representations

KM(\mathfrak{g}, K)_{\lambda} = \mathrm{Grothendieck} group.

KM(\mathfrak{g}, K)_{\lambda} = \mathrm{fin-rk} free \mathbb{Z}-module, basis \mathrm{Irr}(\mathfrak{g}, K)_{\lambda}.
```

 $W(\lambda) = \text{integral Weyl group} \subset W.$

What's a Harish-Chandra cell?

Have preorder $\leq \text{ on Irr}(\mathfrak{g}, K)_{\lambda}$: following Joseph,

$$Y \leq X \iff \exists F, \quad Y \text{ comp factor of } F \otimes X.$$

Here F is fin-diml rep of G^{ad} .

Equivalence relation $Y \underset{LR}{\sim} X$ means $Y \underset{LR}{\leq} X \underset{LR}{\leq} Y$.

Strict order $Y \leq X$ means $Y \leq X$ but $X \not \subset X$.

A Harish-Chandra cell is an $\underset{LR}{\sim}$ equiv class in $Irr(g, K)_{\lambda}$.

Harish-Chandra cells partition $Irr(\mathfrak{g}, K)_{\lambda}$.

David Vogan

Introduction

Joseph cell

HC cells

Springer corr

Lusztig's results

More on HC cells

How is that a Weyl group representation?

Integral Weyl group $W(\lambda)$ acts on $KM(\mathfrak{g}, K)_{\lambda} = \mathbb{Z}\operatorname{Irr}(\mathfrak{g}, K)_{\lambda}$. Action defined using tensor products with fin-diml G^{ad} reps. Can therefore use $W(\lambda)$ rep to describe ≤ 1 :

$$Y \leq X \iff \exists w \in W(\lambda), [Y] \text{ appears in } w \cdot X.$$

$$C(X) = \underset{LR}{\sim} \text{ equiv class of } X = \mathsf{HC} \text{ cell} \subset \mathsf{Irr}(\mathfrak{g}, K)_{\lambda}.$$

$$\overline{C}(X) = \underset{LR}{\leq} \text{ interval below } X = \mathsf{HC} \text{ cone } \subset \mathsf{Irr}(\mathfrak{g}, K)_{\lambda}.$$

$$\partial C(X) = \overline{C}(X) - C(X).$$

Theorem.

1.
$$W(\lambda)$$
 acts on $\mathbb{Z}\overline{C}(X) = \left[\sum_{\substack{Y \leq X \\ i, B}} \mathbb{Z}Y\right] \supset \mathbb{Z}\partial C(X)$.

2. $W(\lambda)$ acts on $\mathbb{Z}C(X) \simeq \mathbb{Z}\overline{C}(X)/\mathbb{Z}\partial C(X)$.

 $\mathbb{Z}C(X)$ is called a HC cell repn of $W(\lambda)$.

David Vogan

Introduction

Joseph cell

1C cells

pringer cor

Lusztig's results

viore on HC cells

What's the plan?

David Vogan

Introduction

oseph cells

HC cells

Springer cor

Lusztig's results

More on HC cell

Cells → connect Weyl group reps and inf diml g reps.
What Joseph did for highest weight modules.
What Joseph's results give for HC modules.
Lusztig's calculation of Joseph's cell representations.

conjectural extension of Lusztig's results to HC cells.

 $\verb|https://ldrv.ms/u/s!AuIZlbpNWacjgVxg4fFkfQkHZfLn|\\$

link to examples of Joseph and HC cells.

 $w \in W_{\lambda} \rightsquigarrow \operatorname{irr} L(w)$, highest weight $w\lambda - \rho$.

Theorem (Joseph)

- 1. Relations $_{L}^{\sim}$ and $_{LR}^{\sim}$ partition $W(\lambda)$ into left cells and two-sided cells $C_{L}(w) \subset C_{LR}(w) \subset W(\lambda)$ $(w \in W(\lambda))$.
- 2. Free \mathbb{Z} -module $\mathbb{Z}C_L(w) = \text{left cell rep of } W(\lambda)$.
- 3. $\mathbb{Z}C_{LR}(w(\lambda)) = 2$ -sided cell rep of $W(\lambda) \times W(\lambda)$.
- 4. $\sum_{C_{LR}} \mathbb{Z}C_{LR} \simeq_{W(\lambda) \times W(\lambda)} \mathbb{Z}W(\lambda)$, regular rep of $W(\lambda)$.
- 5. Two-sided cells C_{LR} partition $\widehat{W}(\lambda)$ into subsets $\Sigma(C_{LR})$ called families: $\mathbb{Z}C_{LR} \simeq \sum_{\sigma \in \Sigma(C_{LR})} \sigma \otimes \sigma^*$.
- 6. As rep of the first $W(\lambda)$, $\mathbb{Z}C_{LR} \simeq \sum_{C_L \subset C_{LR}} \mathbb{Z}C_L$.

 $w \in W_{\lambda} \rightsquigarrow \operatorname{irr} L(w)$, highest weight $w\lambda - \rho$.

Theorem (Joseph)

- 1. $Ann(L(w)) = Ann(L(w')) \iff w, w' \text{ in same left cell } C_L.$
- 2. $\mathcal{AV}(L(w)) = \mathcal{AV}(L(w'))$ if w, w' in same right cell C_R .
- 3. Left cell rep $\mathbb{Z}C_L$ has "lowest degree" irr $\sigma_0(C_L)$, mult one.
- 4. $\sigma_0(C_L) = \sigma_0(C'_L) \iff C_L, C'_L \text{ in same } C_{LR}.$
- 5. Two-sided cells C_{LR} in bijection with $W(\lambda)$ reps $\sigma_0(C_{LR})$.
- 6. #(left cells in C_{LR}) = dim($\sigma_0(C_{LR})$).
- 7. $\#\operatorname{Prim}_{\lambda} U(\mathfrak{g}) = \operatorname{sum} \text{ of dims of reps } \sigma_0.$

The reps $\sigma_0(C_{LR})$ are Joseph's Goldie rank representations.

Turn out also to be Lusztig's special $W(\lambda)$ representations.

The moral of this story:

- 1. Cell reps of $W(\lambda)$ are critical to Prim $U(\mathfrak{g})$.
- 2. Cell reps are helpful to \mathcal{AV} (highest wt modules).

More about (2) on the next slide...

David Vogan

Introduction

Joseph cells

IC cells

Springer coi

...

More on HC ce

Opriligor corr

More on HC cell

 $w \in W_{\lambda} \rightsquigarrow \operatorname{irr} L(w)$, highest weight $w\lambda - \rho$.

 C_{LR} two-sided cell $\leadsto \Sigma(C_{LR}) \subset \widehat{W}(\lambda)$.

Say σ_0 is the $\binom{\text{Goldie rank}}{\text{special}}$ $W(\lambda)$ rep in $\Sigma(C_{LR})$.

Write $b(\sigma_0)$ = smallest integer b so $\sigma_0 \subset S^b(\mathfrak{h})$.

Theorem (Joseph)

- 1. $b(\sigma_0) < b(\sigma')$ for any other $\sigma' \in \Sigma(C_{LR})$.
- 2. $W \cdot [\sigma_0 \subset S^{b(\sigma_0)}]$ is an irr rep $\sigma_1 \in \widehat{W}$, $b(\sigma_0) = b(\sigma_1)$.
- 3. σ_1 is a Springer rep \leftrightarrow nilpotent orbit $O(\sigma_1) \subset \mathfrak{g}^*$.
- 4. For $w \in C_{LR}$, $\mathcal{AV}(L(w)) \subset \overline{O}(\sigma_1)$.
- 5. $\mathcal{AV}(L(w)) = \text{some irr comps of } \overline{O}(\sigma_1) \cap (\mathfrak{g/b})^*.$

Applying Joseph's clever definitions, find easily...

Theorem.

- 1. $Y \leq X \implies \mathcal{RV}(Y) \subset \mathcal{RV}(X)$. 2. $Y \leq X \implies \mathcal{RV}(Y) \subseteq \mathcal{RV}(X)$.
- 3. $Y \sim X \implies \mathcal{RV}(Y) = \mathcal{RV}(X)$.

Since $C(X) = \underset{i,p}{\sim}$ equiv class of $X = HC \text{ cell} \subset Irr(\mathfrak{g}, K)_{\lambda}$,

Deduce associated varieties are constant on HC cells.

Applying Joseph's deep thms about Goldie rk polys, find

Theorem. Suppose X is an irr (g, K)-module belonging to Harish-Chandra cell C = C(X).

- 1. All $W(\lambda)$ reps on $\mathbb{Z}C(X) \subset \text{one}$ family $\Sigma(C_{LR}) \subset W(\lambda)$.
- 2. $\mathbb{Z}C(X)$ contains $\binom{\text{Goldie rank}}{\text{special}}$ $W(\lambda)$ rep $\sigma_0 \in \Sigma(C_{LR})$.

Associated varieties for HC cells

```
Irr(\mathfrak{g}, K)_{\lambda} is partitioned into Harish-Chandra cells C;
\mathbb{Z}C carries a HC cell representation of W(\lambda);
\mathbb{Z}C is built from one two-sided cell \Sigma \subset \widehat{W}(\lambda);
\mathbb{Z}C \supset \text{ unique } \binom{\text{Goldie rank}}{\text{special}} \text{ rep } \sigma_0(C);
\sigma_0(C) \rightsquigarrow \text{Springer } W \text{ rep } \sigma_1(C) \rightsquigarrow \text{ nilp orbit } O(C) \subset \mathfrak{g}^*.
Kostant-Rallis: O(C) \cap (g/f)^* = finite union of K orbits.
Analogous to Joseph's irr comps of \overline{O} \cap (\mathfrak{g}/\mathfrak{b})^*.
Analog of Joseph's result for right cells in W(\lambda) is
Theorem. For any irr HC module X \in C,
 \mathcal{AV}(X) = union of closures of K-orbits in O(C) \cap (\mathfrak{g}/\mathfrak{t})^*.
```

Assoc var (which union of closures) depends only on C.

David Vogan

ntroduction

HC cells

Springer cor

Lusztig's results

More on HC cell

What next?

David Vogan

Introduction

HC cells

springer con

Mara an IIC aall

More on HC cells

Jeffrey Adams + DV \rightsquigarrow algorithm for $\mathcal{AV}(X)$.

Nothing parallel known for highest weight modules.

Get complex nilp orbit from $\binom{\text{Goldie rank}}{\text{special}} W(\lambda)$ rep.

Other $W(\lambda)$ reps in $\mathbb{Z}C(X)$ carry more info about X.

Seek to understand these other reps!

 $\mathbb{Z}C(X)$ made of $W(\lambda)$ reps in one family $\Sigma(C_{LR})$.

First topic is Lusztig's description of families.

Springer's description of \widehat{W}

Already used: Springer identified each nilpotent coadjoint orbit $O \subset \mathfrak{g}^*$ with a Weyl group rep $\sigma(O)$.

Now need to extend that: fix $\eta \in O$, so $O \simeq G/G^{\eta}$.

Eqvt fundamental group is $\pi_1^G(O) = A(O) =_{\text{def }} G^{\eta}/G_0^{\eta}$.

(Subgps of A(O)) \longleftrightarrow (covers of O with G action)

Theorem (Springer)

- 1. Each irreducible $\xi \in \widehat{A}(O) \leadsto \sigma(O, \xi)$, rep of W.
- 2. $\sigma(O, \xi)$ is irreducible or zero; $\sigma(O, 1) \neq 0$.
- 3. "The" Springer rep for O is $\sigma(O) = \sigma(O, 1)$.
- 4. Nonzero $\sigma(O, \xi)$ are all distinct (O and ξ vary).
- 5. Every irr rep of W is $\sigma(O,\xi)$ for unique (O,ξ)

 \widehat{W} partitioned by nilp orbits into Springer sets

$$S(O) = \{ \text{nonzero } \sigma(O, \xi) \mid \xi \in \widehat{A}(O) \}.$$

David Vogan

Introduction

HC cells

Springer corr

Lusztig's results

More on HC cells

$$\mathcal{M}(F) = \{ (x, \xi) \mid x \in F, \ \xi \in \widehat{F^x} \} / (\text{conjugation by } F)$$

Fix $(\Sigma \subset \widehat{W})$ family \iff $(C_{LR} \subset W)$ two-sided cell.

Recall Joseph: $\Sigma \ni \binom{\text{Goldie rank}}{\text{special}}$ $\sigma_0 \longleftrightarrow O = O(\Sigma)$ nilpotent.

$$S(O) = {\sigma(O, \xi) | \xi \in \widehat{A}(O)}$$
 Springer set.

Theorem (Lusztig 1984)

1. List W-reps in Σ attached by Springer to O:

$$\Sigma \cap S(O) = \{\sigma(O, \xi_1), \sigma(O, \xi_2) \dots, \sigma(O, \xi_r)\}.$$

- 2. Define $\overline{A}(O) = A(O)/[\cap_j \ker \xi_j]$.
- 3. Have inclusion $\Sigma \hookrightarrow \mathcal{M}(\overline{A}), \quad \sigma \mapsto (x(\sigma), \xi(\sigma))$ so $\sigma_0 \mapsto (1, 1), \quad \sigma(O, \xi_j) \mapsto (1, \xi_j).$

Source: bijection $\operatorname{Unip}(G(\mathbb{F}_q)) \leftrightarrow \operatorname{all pairs}(O, m) \quad (m \in \mathcal{M}(\overline{A}(O)))...$... and natural inclusion of $\widehat{W} \subset \operatorname{Unip}(G(\mathbb{F}_q))).$

David Vogan

Introduction

, 000 p. 1 00 ..

Lusztig's results

More on HC cel

More on HC cell

Recall that finite group F gives

$$\mathcal{M}(F) = \{ (x, \xi) \mid x \in F, \ \xi \in \widehat{F}^x \} / (\text{conj by } F)$$

 \simeq irr conj-eqvt coherent sheaves $\mathcal{E}(x,\xi)$ on F.

Sheaf $\mathcal{E}(x,\xi)$ supported on F-conjugacy class of x.

Subgp $S \subset F \longrightarrow \text{const sheaf } S \text{ on } S \text{ is } S\text{-eqvt for conjugation.}$

Push forward to *F*-eqvt sheaf supp on *F*-conjugates of *S*:

$$i_*(S) = \sum_{\mathbf{s}, \xi} m_S(\mathbf{s}, \xi) \mathcal{E}(\mathbf{s}, \xi), \qquad m_S(\mathbf{s}, \xi) = \dim \xi^{S^s}.$$

Sum runs over S conj classes $s \in S$. Can write this as

$$i_*(S) = \sum_{s} \mathcal{E}(s, \operatorname{Ind}_{S^s}^{F^s}(\operatorname{triv})).$$

This construct nonnegative integer combination of elements of $\mathcal{M}(F)$ from any subgroup $S \subset F$.

$$m_S(x,1) = \#(S\text{-conj classes in } F\text{-conj class of } x).$$

Fin grps question: do numbers $m_S(x, 1)$ determine S up to conj in F?

Some examples

Fix $O = O(C_{LR})$ (special) nilpotent orbit.

If G has only classical simple factors, then $\overline{A}(O)$ is an elementary abelian 2-group.

That is, $\overline{A}(O) = V$, d-diml vector space over \mathbb{F}_2 .

Hence Lusztig's finite set is

$$\mathcal{M}(\overline{A}(O)) = V \times V^* = T^*(V),$$

2d-diml symplectic vector space over \mathbb{F}_2 .

If $S \subset V$ is any subspace, then

$$m_{\mathcal{S}}(x,\xi) = \begin{cases} 1 & \xi|_{\mathcal{S}} = 0 \\ 0 & \xi|_{\mathcal{S}} \neq 0 \end{cases}$$

This is the characteristic function of

$$S \times (V/S)^* = T_S^*(V) \subset T^*(V)$$

a *d*-dimensional Lagrangian subspace:

$$|\mathcal{M}(\overline{A}(O))| = 2^{2d}, \qquad |T_S^*(V)| = 2^d.$$

David Vogan

Introductio

nosehii ce

Springer co

Lusztig's results

More on HC cells

Fix $(\Sigma \subset \widehat{W})$ family \iff $(C_{LR} \subset W)$ two-sided cell.

 $O = O(C_{LR})$ corresponding (special) nilpotent orbit.

Goal: describe Weyl rep $\mathbb{Z}C_L$, each left cell $C_L \subset C_{LR}$.

Know: $\mathbb{Z}C_L$ is nonnegative integer comb of elements of Σ .

Describe the combination using Lusztig's $\Sigma \hookrightarrow \mathcal{M}(\overline{A})$.

Theorem (Lusztig)

- 1. \exists subgp $\Gamma = \Gamma(C_L) \subset \overline{A}$ so $\mathbb{Z}C_L \simeq \sum_{(x,\xi)} m_{\Gamma}(x,\xi)\sigma(x,\xi)$
- 2. $m_{\Gamma}(1,1) = 1$, so special rep σ appears once in $\mathbb{Z}C_L$.
- 3. \exists Lusztig cells with $\Gamma = \overline{A}$, so $\mathbb{Z}C_L \simeq \sum_x \sigma(x, 1)$.
- 4. \exists Springer cells with $\Gamma = \{e\}$, so $\mathbb{Z}C_L \simeq \sum_{\xi \in \overline{A}^{\sim}} \dim(\xi)\sigma(1,\xi)$, all Springer reps for O in Σ .

Write $O = O(C_{LR})$, $\overline{A}(O) = V$ (order 2^d).

Lusztig: cardinality of the family in \widehat{W} is

$$\#\Sigma = \begin{pmatrix} 2d+1 \\ d \end{pmatrix} = \begin{pmatrix} 2d \\ d \end{pmatrix} + \begin{pmatrix} 2d \\ d-1 \end{pmatrix}.$$

That is the size of $\operatorname{im}(\Sigma) \subset T^*V$, $\#T^*V = 2^{2d}$.

Each $C_L \leftrightarrow T^*_{\Gamma(C_L)}V$, subspace $\Gamma(C_L) \subset V$.

 $T^*_{\Gamma(C_L)} \subset \operatorname{im}(\Sigma)$, so $\mathbb{Z}C_L = \operatorname{sum of } 2^d \operatorname{distinct irrs in family } \Sigma$.

Springer cell has $\Gamma = \{0\} \subset V$, $2^d \ W \text{ reps } \sigma(O, \xi) \leftrightarrow V^* = (0, \xi)$.

Lusztig cell has $\Gamma = \overline{A}(O) = V$, W reps attached to (x, 0).

$$2^d \le {2d+1 \choose d} \le 2^{2d}$$
, equality $\iff d = 0$.

Introduction Joseph cell

HC cells

Lusztig's results

More on HC cell

More on HC cells

HC world (g, K): $Irr(g, K)_{\lambda} \supset C = HC \text{ cell} \rightsquigarrow W(\lambda) \text{ rep } \mathbb{Z}C$.

By Joseph etc: $\mathbb{Z}C \supset \text{unique } \sigma(C) \text{ special in } \widehat{W(\lambda)}$.

$$\sigma(C) \rightsquigarrow O(C) \rightsquigarrow \Sigma \subset \widehat{W}(\lambda)$$
 family, $\overline{A}(O)$, $\Sigma \hookrightarrow \mathcal{M}(\overline{A}(O))$.

Theorem (McGovern, Binegar) C a HC cell in $Irr(\mathfrak{g}, K)_{\lambda}$.

- 1. $\mathbb{Z}C = \sum_{\tau \in \Sigma} m_C(\tau)\tau$, $m_C(\tau) \in \mathbb{N}$, $m_C(\sigma(C)) = 1$.
- 2. Assume $G(\mathbb{R})$ is a real form of SO(n), Sp(2n), type A, any complex group, or any exceptional group. Then $\exists \Gamma(C) \subset \overline{A}$ so $m_C(\sigma(x,\xi)) = m_\Gamma(x,\xi)$.
- 3. Assume $G(\mathbb{R})$ cplx, so $O = O_1 \times O_1$, $\overline{A}(O) = \overline{A_1} \times \overline{A_1}$. Then we must take $\Gamma(C) = (\overline{A_1})_{\Delta}$. (Not one of Lusztig's Γ unless $A_1 = 1$.)
- 4. If G simple in (2) (excludes complex case), then $\Gamma(C)$ appears in Lusztig's description of left cells. That is, $\mathbb{Z}C$ is isomorphic to a left cell representation of $W(\lambda)$.

McGovern showed (4) fails for some forms of Spin(n), PSp(2n).

Conjecture. Part (2) is true for any HC cell C.

Next goal: try to understand geometric origin of $\Gamma(C)$.

This page is incomplete at best! Don't trust it.

Pinning $\mathcal{P} = (G, B, H, \{X_{\alpha} \mid \alpha \in \Pi(B, H) \subset X^*(H)\}).$

Distinguished inv $\delta \in \operatorname{Aut}(\mathcal{P})$, extended group $G^{\Gamma} = G \rtimes \{1, \delta\}$.

Strong real form of G = G-conj class of $x \in G\delta$, $x^2 \in Z(G)$.

Strong form $x \rightsquigarrow \text{inv aut } \theta_x = \text{Ad}(x)$ Cartan for real form.

Summary: (conj classes of invs in G) \longleftrightarrow (\mathbb{R} -forms of G).

Ex:
$$G = GL(n)$$
, involution $x_{pq} = \begin{pmatrix} I_p & 0 \\ 0 & -I_q \end{pmatrix} \longleftrightarrow U(p,q)$.

Coming up: (involution respecting ??) ↔ (real form of ??).

More on HC cells

Pinning $\mathcal{P} = (G, B, H, \{X_{\alpha}\}).$

$$\theta$$
 Cartan inv \leadsto $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{s}$ $\mathcal{N} = \text{nilp cone} \supset \mathcal{N}_{\theta} = \mathcal{N} \cap \mathfrak{s}.$

Theorem (Jacobson-Morozov, Kostant, Kostant-Rallis) $O \subset \mathfrak{g}$ nilpotent orbit.

1. \exists Lie triple (T, E, F), [T, E] = 2E, [T, F] = -2F, [E, F] = T,

$$E \in O$$
; $T \in \mathfrak{h}$ dom; T is unique $\rightsquigarrow \phi \colon SL(2) \to G$

Define $g[j] = \{X \in g \mid [T, X] = jX\}$. JM parabolic is

$$\mathfrak{l}=\mathfrak{g}[0],\quad \mathfrak{u}=\sum_{j>0}\mathfrak{g}[j],\quad \mathfrak{q}=\mathfrak{l}+\mathfrak{u}.$$

- 2. $G^E = (L^E)(U^E) = G^{\phi}U^E$ Levi decomp.
- 3. BIJECTION (\mathbb{R} -forms of O) \leadsto (G^{ϕ} -conj classes $\{\ell \in G^{\phi} \mid \ell^2 \in \phi(-I)Z(G)\}, \ \ell \mapsto \mathbb{R}$ -form $x = \ell \cdot \phi \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}\}$).
- 4. Summary: (conj classes of invs in G^{ϕ}) \longleftrightarrow (\mathbb{R} -forms of O).