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How does symmetry inform mathematics?
Example.

∫ π
−π sin5(t)dt =? Zero!

Generalize: f = feven + fodd,
R a
−a fodd(t)dt = 0.

Example. Evolution of initial temp distn of hot ring
T (0, θ) = A + B cos(mθ)?
T (t , θ) = A + Be−c·m2t cos(mθ).

Generalize: Fourier series expansion of initial temp. . .

Example. X compact (arithmetic) locally symmetric
manifold of dim 128; dim

(
H28(X ,C)

)
=?.

Eight: same as H28 for compact globally symmetric space.

Generalize: X = Γ\G/K , Hp(X ,C) = Hp
cont(G, L2(Γ\G)). Decomp L2:

L2(Γ\G) =
X

π irr rep of G

mπ(Γ)Hπ (mπ = dim of some aut forms)

Deduce Hp(X ,C) =
P
π mπ(Γ) · Hp

cont(G,Hπ).

General principal: group G acts on vector space V ;
decompose V ; study pieces separately.
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Gelfand’s abstract harmonic analysis
Topological grp G acts on X , have questions about X .

Step 1. Attach to X Hilbert space H (e.g. L2(X )).
Questions about X  questions about H.
Step 2. Find finest G-eqvt decomp H = ⊕αHα.
Questions about H questions about each Hα.
Each Hα is irreducible unitary representation of G:
indecomposable action of G on a Hilbert space.
Step 3. Understand Ĝu = all irreducible unitary
representations of G: unitary dual problem.
Step 4. Answers about irr reps answers about X .

Topic today: Step 3 for Lie group G.
Mackey theory (normal subgps) case G reductive.
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What’s a unitary dual look like?

G(R) = real points of complex connected reductive alg G
Problem: find Ĝ(R)u = irr unitary reps of G(R).
Harish-Chandra: Ĝ(R)u ⊂ Ĝ(R) = “all” irr reps.

Unitary reps = “all” reps with pos def invt form.
Example: G(R) compact⇒ Ĝ(R)u = Ĝ(R) = discrete set.

Example: G(R) = R;

Ĝ(R) =
{
χz(t) = ezt (z ∈ C)

}
' C

Ĝ(R)u = {χiξ (ξ ∈ R)} ' iR

Suggests: Ĝ(R)u = real pts of cplx var Ĝ(R). Almost. . .

Ĝ(R)h = reps with invt form: Ĝ(R)u ⊂ Ĝ(R)h ⊂ Ĝ(R).

Approximately (Knapp): Ĝ(R) = cplx alg var, real pts
Ĝ(R)h; subset Ĝ(R)u cut out by real algebraic ineqs.

Today: conjecture making inequalities computable.
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Example: SL(2,R) spherical reps

G(R) = SL(2,R) acts on upper half plane H.

 repn E(ν) on ν2 − 1 eigenspace of Laplacian ∆H

ν ∈ C parametrizes line bdle on circle where bdry values live.

Most E(ν) irr; always unique irr subrep J(ν) ⊂ E(ν).
Spherical reps for SL(2,R)! C/±1

i∞−i∞

r 1

r−1

Spectrum of ∆H on L2(H) is (−∞,−1]. Gives unitary reps
unitary principal series! {E(ν) | ν ∈ iR}.
Trivial representations! [const fns on H] = J(±1).
J(ν) is Herm. ⇔ J(ν) ' J(−ν)⇔ ν ∈ iR ∪ R.
By continuity, signature stays positive from 0 to ±1.

complementary series reps! {E(t) | t ∈ (−1,1)}.
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The moral[s] of the picture

Spherical unitary dual for SL(2,R)! C/±1

i∞−i∞

r 1

r−1

SL(2,R) G(R)

E(ν), ν ∈ C I(ν), ν ∈ a∗C
E(ν), ν ∈ iR I(ν), ν ∈ ia∗R
J(ν) ↪→ E(ν) I(ν)� J(ν)
[−1,1] polytope in a∗R

Will deform Herm forms
unitary axis ia∗R  

real axis a∗R.

Deformed form pos 
unitary rep.

Reps appear in families, param by ν in cplx vec space a∗.

Pure imag params! L2 harm analysis! unitary.

Each rep in family has distinguished irr piece J(ν).

Difficult unitary reps↔ deformation in real param
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Signatures for SL(2,R)

Recall E(ν) = (ν2 − 1)-eigenspace of ∆H.

Need “signature” of Herm form on this inf-diml space.

Harish-Chandra (or Fourier) idea:
use K = SO(2) break into fin-diml subspaces

E(ν)2m = {f ∈ E(ν) |
„

cos θ sin θ
− sin θ cos θ

«
· f = e2imθf}.

E(ν) ⊃
X

m

E(ν)m, (dense subspace)

Decomp is orthogonal for any invariant Herm form.

Signature is + or − for each m. For 3 < |ν| < 5

· · · −6 −4 −2 0 +2 +4 +6 · · ·
· · · + + − + − + + · · ·
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Deforming signatures for SL(2,R)
Here’s how signatures of the reps E(ν) change with ν.

ν = 0, E(0) “⊂” L2(H): unitary, signature positive.

0 < ν < 1, E(ν) irr: signature remains positive.

ν = 1, form finite pos on J(1)! SO(2) rep 0.

ν = 1, form has pole, pos residue on E(1)/J(1).

1 < ν < 3, across pole at ν = 1, signature changes.

ν = 3, Herm form finite −+− on J(3).

ν = 3, Herm form has pole, neg residue on E(3)/J(3).

3 < ν < 5, across pole at ν = 3, signature changes. ETC.

Conclude: J(ν) unitary, ν ∈ [0, 1]; nonunitary, ν ∈ [1,∞).

· · · −6 −4 −2 0 +2 +4 +6 · · · SO(2) reps

· · · + + + + + + + · · · ν = 0
· · · + + + + + + + · · · 0 < ν < 1
· · · + + + + + + + · · · ν = 1
· · · − − − + − − − · · · 1 < ν < 3
· · · − − − + − − − · · · ν = 3
· · · + + − + − + + · · · 3 < ν < 5
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From SL(2,R) to reductive G

Calculated signatures of invt Herm forms on
spherical reps of SL(2,R).
Seek to do “same” for real reductive group. Need. . .
List of irr reps = ctble union (cplx vec space)/(fin grp).

reps for purely imag points “⊂” L2(G): unitary!

Natural (orth) decomp of any irr (Herm) rep into fin-diml
subspaces define signature subspace-by-subspace.

Signature at ν + iτ by analytic cont tν + iτ , 0 ≤ t ≤ 1.

Precisely: start w unitary (pos def) signature at t = 0; add
contribs of sign changes from zeros/poles of odd order in
0 ≤ t ≤ 1 signature at t = 1.
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Categories of representations

G cplx reductive alg ⊃ G(R) real form ⊃ K (R) max cpt.

Rep theory of G(R) modeled on Verma modules. . .

H ⊂ B ⊂ G maximal torus in Borel subgp,

h∗ ↔ highest weight reps

V (λ) Verma of hwt λ ∈ h∗, L(λ) irr quot

Put cplxification of K (R) = K ⊂ G, reductive algebraic.

(g,K )-mod: cplx rep V of g, compatible alg rep of K .

Harish-Chandra: irr (g,K )-mod! “arb rep of G(R).”

X parameter set for irr (g,K )-mods

I(x) std (g,K )-mod↔ x ∈ X J(x) irr quot
Set X described by Langlands, Knapp-Zuckerman:
countable union (subspace of h∗)/(subgroup of W ).
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Character formulas
Can decompose Verma module into irreducibles

V (λ) =
∑
µ≤λ

mµ,λL(µ) (mµ,λ ∈ N)

or write a formal character for an irreducible
L(λ) =

∑
µ≤λ

Mµ,λV (µ) (Mµ,λ ∈ Z)

Can decompose standard HC module into irreducibles
I(x) =

∑
y≤x

my,xJ(y) (my,x ∈ N)

or write a formal character for an irreducible
J(x) =

∑
y≤x

My,x I(y) (My,x ∈ Z)

Matrices m and M upper triang, ones on diag, mutual
inverses. Entries are KL polynomials eval at 1:

my,x = Qy,x (1), My,x = Py,x (1) (Qy,x ,Py,x ∈ N[q]).
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Character formulas for SL(2,R)
Recall (eigenspace of ∆H) = E(ν)←↩ J(ν). Prefer

dual of E(ν) = Iev(ν)� J(ν).

Need discrete series I±(n) (n = 1, 2,. . . ) char by

I+(n)|SO(2) = n + 1, n + 3, n + 5 · · ·
I−(n)|SO(2) = −n − 1, −n − 3, −n − 5 · · ·

Discrete series reps are irr: I±(n) = J±(n)

Decompose principal series

Iev(2m + 1) = Jev(2m + 1) + J+(2m + 1) + J−(2m + 1).

Character formula

Jev(2m + 1) = Iev(2m + 1)− I+(2m + 1)− I−(2m + 1).

Px,y Iev(2m + 1) I+(2m + 1) I−(2m + 1)
Iev(2m + 1) 1 −1 −1
I+(2m + 1) 0 1 0
I−(2m + 1) 0 0 1
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Defining Herm dual repn(s)

Suppose V is a (g,K )-module. Write π for repn map.
Recall Hermitian dual of V

V h = {ξ : V → C additive | ξ(zv) = zξ(v)}

Want to construct functor

cplx linear rep (π,V ) cplx linear rep (πh,V h)

using Hermitian transpose map of operators.

REQUIRES twist by conjugate linear automorphism of g.

Assume σ : G→ G antiholom aut, σ(K ) = K .

Define (g,K )-module πh,σ on V h,

πh,σ(X ) · ξ = [π(−σ(X ))]h · ξ (X ∈ g, ξ ∈ V h).

πh,σ(k) · ξ = [π(σ(k)−1)]h · ξ (k ∈ K , ξ ∈ V h).

Classically σ0 ! G(R). We use also σc ! compact form of G
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Invariant forms on standard reps

Recall multiplicity formula

I(x) =
∑
y≤x

my ,xJ(y) (my ,x ∈ N)

for standard (g,K )-mod I(x).
Want parallel formulas for σ-invt Hermitian forms.
Need forms on standard modules.
Form on irr J(x)

deformation−−−−−−−→ Jantzen filt Ik (x) on std,
nondeg forms 〈, 〉k on Ik/Ik+1.
Details (proved by Beilinson-Bernstein):

I(x) = I0 ⊃ I1 ⊃ I2 ⊃ · · · , I0/I1 = J(x)

Ik/Ik+1 completely reducible

[J(y) : Ik/Ik+1] = coeff of q(`(x)−`(y)−k)/2 in KL poly Qy,x

Hence 〈, 〉I(x)
def
=
∑

k 〈, 〉k , nondeg form on gr I(x).
Restricts to original form on irr J(x).
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Virtual Hermitian forms

Z = Groth group of vec spaces.

These are mults of irr reps in virtual reps.
Z[X ] = Groth grp of finite length reps.

For invariant forms. . .
W = Z⊕ Z = Groth grp of fin diml forms.

Ring structure
(p,q)(p′,q′) = (pp′ + qq′,pq′ + q′p).

Mult of irr-with-forms in virtual-with-forms is in W:

W[X ] ≈ Groth grp of fin lgth reps with invt forms.

Two problems: invt form 〈, 〉J may not exist for irr J;
and 〈, 〉J may not be preferable to −〈, 〉J .
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What’s a Jantzen filtration?
V cplx, 〈, 〉t Herm forms analytic in t , generically nondeg.

V = V 0(t) ⊃ V 1(t) = Rad(〈, 〉t), J(t) = V 0(t)/V 1(t)

(p0(t), q0(t)) = signature of 〈, 〉t on J(t).

Question: how does (p0(t),q0(t)) change with t?

First answer: locally constant on open set V 1(t) = 0.

Refine answer. . . define form on V 1(t)

〈v ,w〉1(t) = lim
s→t

1
t − s

< v ,w >s, V2(t) = Rad(〈, 〉1(t))

(p1(t), q1(t)) = signature of 〈, 〉1(t).
Continuing gives Jantzen filtration

V = V 0(t) ⊃ V 1(t) ⊃ V 2(t) · · · ⊃ V m+1(t) = 0

From t − ε to t + ε, signature changes on odd levels:

p(t + ε) = p(t − ε) +
X

[−p2k+1(t) + q2k+1(t)].
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Hermitian KL polynomials: multiplicities

Fix σ-invt Hermitian form 〈, 〉J(x) on each irr having
one; recall Jantzen form 〈, 〉n on I(x)n/I(x)n+1.
MODULO problem of irrs with no invt form, write

(In/In+1, 〈, 〉n) =
∑
y≤x

wy ,x (n)(J(y), 〈, 〉J(y)),

coeffs w(n) = (p(n),q(n)) ∈W; summand means

p(n)(J(y), 〈, 〉J(y))⊕ q(n)(J(y),−〈, 〉J(y))

Define Hermitian KL polynomials

Qσ
y ,x =

∑
n

wy ,x (n)q(l(x)−l(y)−n)/2 ∈W[q]

Eval in W at q = 1↔ form 〈, 〉I(x) on std.
Reduction to Z[q] by W→ Z↔ KL poly Qy ,x .
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Hermitian KL polynomials: characters

Matrix Qσ
y ,x is upper tri, 1s on diag: INVERTIBLE.

Pσ
x ,y

def
= (−1)l(x)−l(y)((x , y) entry of inverse) ∈W[q].

Definition of Qσ
x ,y says

(gr I(x), 〈, 〉I(x)) =
∑
y≤x

Qσ
x ,y (1)(J(y), 〈, 〉J(y));

inverting this gives

(J(x), 〈, 〉J(x)) =
∑
y≤x

(−1)l(x)−l(y)Pσ
x ,y (1)(gr I(y), 〈, 〉I(y))

Next question: how do you compute Pσ
x ,y?
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Herm KL polys for σc

σc = cplx conj for cpt form of G, σc(K ) = K .
Plan: study σc-invt forms, relate to σ0-invt forms.

Proposition
Suppose J(x) irr (g,K )-module, real infl char. Then J(x) has
σc-invt Herm form 〈, 〉cJ(x), characterized by

〈, 〉cJ(x) is pos def on the lowest K-types of J(x).

Proposition =⇒ Herm KL polys Qσc
x ,y , Pσc

x ,y well-def.
Coeffs in W = Z⊕ sZ; s = (0, 1)! one-diml neg def form.

Conj: Qσc
x,y (q) = s

`o (x)−`o (y)
2 Qx,y (qs), Pσc

x,y (q) = s
`o (x)−`o (y)

2 Px,y (qs).

Equiv: if J(y) occurs at level k of Jantzen filt of I(x), then
Jantzen form is (−1)(l(x)−l(y)−k)/2 times 〈, 〉J(y).

Conjecture is false. . . but not seriously so. Need an extra power
of s on the right side.
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Deforming to ν = 0

Have computable conjectural formula (omitting `o)

(J(x), 〈, 〉cJ(x)) =
∑
y≤x

(−1)l(x)−l(y)Px,y (s)(gr I(y), 〈, 〉cI(y))

for σc-invt forms in terms of forms on stds, same inf char.

Polys Px,y are KL polys, computed by atlas software.

Std rep I = I(ν) deps on cont param ν. Put I(t) = I(tν), t ≥ 0.

Apply Jantzen formalism to deform t to 0. . .

〈, 〉cJ =
X

I′(0) std at ν′ = 0

vJ,I′〈, 〉cI′(0) (vJ,I′ ∈W).

More rep theory gives formula for G(R)-invt forms:

〈, 〉cJ =
∑

I′(0) std at ν′ = 0

sε(I′)vJ,I′〈, 〉0I′(0).

I′(0) unitary, so J unitary⇔ all coeffs are (p,0) ∈W.
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Example of G2(R)

Real parameters for spherical unitary reps of G2(R)

r Unitary rep from L2(G)r Arthur rep from 6-dim nilpr Arthur rep from 8-dim nilpr Arthur rep from 10-dim nilpr Trivial rep

r
r

r

r

r

rr
r

r

rrr

r

rr
rr
r

rrr

r

r

rr
r

r

r

r

r
r
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Possible unitarity algorithm

Hope to get from these ideas a computer program; enter
I real reductive Lie group G(R)
I general representation π

and ask whether π is unitary.
Program would say either

I π has no invariant Hermitian form, or
I π has invt Herm form, indef on reps µ1, µ2 of K , or
I π is unitary, or
I I’m sorry Dave, I’m afraid I can’t do that.

Answers to finitely many such questions 
complete description of unitary dual of G(R).
This would be a good thing.



Calculating
signatures

Adams et al.

Introduction

SL(2,R)

Character formulas

Hermitian forms

Char formulas for
invt forms

Herm KL polys

Unitarity algorithm

Inspirational story

An inspirational story

I was an undergrad at University of Chicago, learning
interesting math from interesting mathematicians.

I left Chicago to work on a Ph.D. with Bert Kostant.

After finishing, I came back to Chicago to visit.

I climbed up to Paul Sally’s office. Perhaps not all of
you know what an interesting mathematician he is.

I told him what I’d done in my thesis; since it was
representation theory, I hoped he’d find it interesting.

He responded kindly and gently, with a question:
“What’s it tell you about UNITARY representations?”

The answer, regrettably, was, “not much.”

So I tried again.
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