Signatures of Hermitian forms and unitary representations

Jeffrey Adams Marc van Leeuwen Peter Trapa
David Vogan Wai Ling Yee

Canadian Mathematical Society
Windsor, Ontario
December 5, 2009

Outline

Introduction

Example: $S L(2, \mathbb{R})$
Character formulas
Hermitian forms
Character formulas for invariant forms
Computing easy Hermitian KL polynomials
Unitarity algorithm
Inspirational story

How does symmetry inform mathematics?

Example. $\int_{-\pi}^{\pi} \sin ^{5}(t) d t=$? Zero!
Generalize: $f=f_{\text {even }}+f_{\text {odd }}, \quad \int_{-a}^{a} f_{\text {odd }}(t) d t=0$.
Example. Evolution of initial temp distn of hot ring

$$
T(0, \theta)=A+B \cos (m \theta) ?
$$

$$
T(t, \theta)=A+B e^{-c \cdot m^{2} t} \cos (m \theta)
$$

Generalize: Fourier series expansion of initial temp...
Example. X compact (arithmetic) locally symmetric manifold of dim 128; $\operatorname{dim}\left(H^{28}(X, \mathbb{C})\right)=$?.
Eight: same as H^{28} for compact globally symmetric space.
Generalize: $X=\Gamma \backslash G / K, H^{p}(X, \mathbb{C})=H_{\text {cont }}^{p}\left(G, L^{2}(\Gamma \backslash G)\right)$. Decomp L^{2} :

$$
L^{2}(\Gamma \backslash G)=\sum_{\pi \text { irr rep of } G} m_{\pi}(\Gamma) \mathcal{H}_{\pi} \quad\left(m_{\pi}=\operatorname{dim} \text { of some aut forms }\right)
$$

Deduce $H^{p}(X, \mathbb{C})=\sum_{\pi} m_{\pi}(\Gamma) \cdot H_{\text {cont }}^{p}\left(G, \mathcal{H}_{\pi}\right)$.
General principal: group G acts on vector space V; decompose V; study pieces separately.

Gelfand's abstract harmonic analysis

Topological grp G acts on X, have questions about X.
Step 1. Attach to X Hilbert space \mathcal{H} (e.g. $L^{2}(X)$).
Questions about $X \rightsquigarrow$ questions about \mathcal{H}.
Step 2. Find finest G-eqvt decomp $\mathcal{H}=\oplus_{\alpha} \mathcal{H}_{\alpha}$.
Questions about $\mathcal{H} \rightsquigarrow$ questions about each \mathcal{H}_{α}.
Each \mathcal{H}_{α} is irreducible unitary representation of G : indecomposable action of G on a Hilbert space.
Step 3. Understand $\widehat{G}_{u}=$ all irreducible unitary representations of G : unitary dual problem.
Step 4. Answers about irr reps \rightsquigarrow answers about X.

Topic today: Step 3 for Lie group G.

Mackey theory (normal subgps) \rightsquigarrow case G reductive.

What's a unitary dual look like?

$G(\mathbb{R})=$ real points of complex connected reductive alg G
Problem: find $\widehat{G(\mathbb{R})_{u}}=$ irr unitary reps of $G(\mathbb{R})$.
Harish-Chandra: $\widehat{G(\mathbb{R})_{u}} \subset \widehat{G(\mathbb{R})}=$ "all" irr reps.
Unitary reps = "all" reps with pos def invt form.
Example: $G(\mathbb{R})$ compact $\Rightarrow \widehat{G(\mathbb{R})_{u}}=\widehat{G(\mathbb{R})}=$ discrete set.
Example: $G(\mathbb{R})=\mathbb{R}$;

$$
\begin{gathered}
\widehat{G(\mathbb{R})}=\left\{\chi_{z}(t)=e^{z t} \quad(z \in \mathbb{C})\right\} \simeq \mathbb{C} \\
\widehat{G(\mathbb{R})_{u}}=\left\{\chi_{i \xi} \quad(\xi \in \mathbb{R})\right\} \simeq i \mathbb{R}
\end{gathered}
$$

Example: $S L(2, \mathbb{R})$ spherical reps

$G(\mathbb{R})=S L(2, \mathbb{R})$ acts on upper half plane \mathbb{H}.
\rightsquigarrow repn $E(\nu)$ on $\nu^{2}-1$ eigenspace of Laplacian $\Delta_{\mathbb{H}}$
$\nu \in \mathbb{C}$ parametrizes line bdle on circle where bdry values live.
Most $E(\nu)$ irr; always unique irr subrep $J(\nu) \subset E(\nu)$.

Spectrum of $\Delta_{\mathbb{H}}$ on $L^{2}(\mathbb{H})$ is $(-\infty,-1]$. Gives unitary reps unitary principal series $\leadsto\{E(\nu) \mid \nu \in i \mathbb{R}\}$.
Trivial representations \leadsto [const fns on $\mathbb{H}]=J(\pm 1)$.
$J(\nu)$ is Herm. $\Leftrightarrow J(\nu) \simeq J(-\bar{\nu}) \Leftrightarrow \nu \in \mathbb{R} \cup \mathbb{R}$.
By continuity, signature stays positive from 0 to ± 1.
complementary series reps $\nrightarrow\{E(t) \mid t \in(-1,1)\}$.

The moral[s] of the picture

Spherical unitary dual for $S L(2, \mathbb{R}) \leftrightarrow \mathbb{C} / \pm 1$

$S L(2, \mathbb{R})$	$G(\mathbb{R})$	Will deform Herm forms
$E(\nu), \nu \in \mathbb{C}$	$I(\nu), \nu \in \mathfrak{a}_{\mathbb{C}}^{*}$	unitary axis ia $\mathfrak{a}_{\mathbb{R}}^{*} \rightsquigarrow$
$E(\nu), \nu \in i \mathbb{R}$	$I(\nu), \nu \in i \mathfrak{a}_{\mathbb{R}}^{*}$	real axis $\mathfrak{a}_{\mathbb{R}}^{*}$.
$J(\nu) \hookrightarrow E(\nu)$	$I(\nu) \rightarrow J(\nu)$	Deformed form pos \rightsquigarrow
$[-1,1]$	polytope in $\mathfrak{a}_{\mathbb{R}}^{*}$	unitary rep.

Reps appear in families, param by ν in cplx vec space \mathfrak{a}^{*}.
Pure imag params $\rightsquigarrow \rightarrow L^{2}$ harm analysis $\lfloor\rightarrow$ unitary.
Each rep in family has distinguished irr piece $J(\nu)$.
Difficult unitary reps \leftrightarrow deformation in real param

Signatures for $S L(2, \mathbb{R})$

Recall $E(\nu)=\left(\nu^{2}-1\right)$-eigenspace of $\Delta_{\mathbb{H}}$.
Need "signature" of Herm form on this inf-diml space.
Harish-Chandra (or Fourier) idea:
use $K=S O(2)$ break into fin-diml subspaces

$$
\begin{gathered}
E(\nu)_{2 m}=\left\{f \in E(\nu) \left\lvert\,\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right) \cdot f=e^{2 i m \theta} f\right.\right\} . \\
E(\nu) \supset \sum_{m} E(\nu)_{m}, \quad \text { (dense subspace) }
\end{gathered}
$$

Decomp is orthogonal for any invariant Herm form.
Signature is + or - for each m. For $3<|\nu|<5$

$$
\begin{array}{ccccccccc}
\cdots & -6 & -4 & -2 & 0 & +2 & +4 & +6 & \cdots \\
\cdots & + & + & - & + & - & + & + & \cdots
\end{array}
$$

Deforming signatures for $S L(2, \mathbb{R})$

Here's how signatures of the reps $E(\nu)$ change with ν.
$\nu=0, E(0)$ " \subset " $L^{2}(\mathbb{H})$: unitary, signature positive.
$0<\nu<1, E(\nu)$ irr: signature remains positive.
$\nu=1$, form finite pos on $J(1) \longleftrightarrow S O(2)$ rep 0.
$\nu=1$, form has pole, pos residue on $E(1) / J(1)$.
$1<\nu<3$, across pole at $\nu=1$, signature changes.
$\nu=3$, Herm form finite -+- on $J(3)$.
$\nu=3$, Herm form has pole, neg residue on $E(3) / J(3)$.
$3<\nu<5$, across pole at $\nu=3$, signature changes. ETC.
Conclude: $J(\nu)$ unitary, $\nu \in[0,1]$; nonunitary, $\nu \in[1, \infty)$.

\cdots	-6	-4	-2	0	+2	+4	+6	\cdots	SO(2) reps
\cdots	+	+	+	+	+	+	+	\cdots	$\nu=0$
\cdots	+	+	+	+	+	+	+	\cdots	$0<\nu<1$
\cdots	+	+	+	+	+	+	+	\cdots	$\nu=1$
\cdots	-	-	-	+	-	-	-	\cdots	$1<\nu<3$
\cdots	-	-	-	+	-	-	-	\cdots	$\nu=3$
\cdots	+	+	-	+	-	+	+	\cdots	$3<\nu<5$

From $S L(2, \mathbb{R})$ to reductive G

Calculated signatures of invt Herm forms on spherical reps of $S L(2, \mathbb{R})$.
Seek to do "same" for real reductive group. Need. . .
List of irr reps = ctble union (cplx vec space)/(fin grp).
reps for purely imag points " \subset " $L^{2}(G)$: unitary!
Natural (orth) decomp of any irr (Herm) rep into fin-diml subspaces \rightsquigarrow define signature subspace-by-subspace.
Signature at $\nu+i \tau$ by analytic cont $t \nu+i \tau, 0 \leq t \leq 1$.
Precisely: start w unitary (pos def) signature at $t=0$; add contribs of sign changes from zeros/poles of odd order in $0 \leq t \leq 1 \rightsquigarrow$ signature at $t=1$.

Categories of representations

G cplx reductive alg $\supset G(\mathbb{R})$ real form $\supset K(\mathbb{R})$ max cpt.
Rep theory of $G(\mathbb{R})$ modeled on Verma modules...

$$
\begin{aligned}
& H \subset B \subset G \quad \text { maximal torus in Borel subgp, } \\
& \mathfrak{h}^{*} \leftrightarrow \text { highest weight reps } \\
& V(\lambda) \text { Verma of hwt } \lambda \in \mathfrak{h}^{*}, \quad L(\lambda) \text { irr quot }
\end{aligned}
$$

Put cplxification of $K(\mathbb{R})=K \subset G$, reductive algebraic.
(\mathfrak{g}, K)-mod: cplx rep V of \mathfrak{g}, compatible alg rep of K. Harish-Chandra: irr (\mathfrak{g}, K)-mod m "arb rep of $G(\mathbb{R})$."
X parameter set for irr (\mathfrak{g}, K)-mods
$I(x)$ std (\mathfrak{g}, K)-mod $\leftrightarrow x \in X \quad J(x)$ irr quot
Set X described by Langlands, Knapp-Zuckerman: countable union (subspace of $\left.\mathfrak{h}^{*}\right) /($ subgroup of W).

Character formulas

Can decompose Verma module into irreducibles

$$
V(\lambda)=\sum_{\mu \leq \lambda} m_{\mu, \lambda} L(\mu) \quad\left(m_{\mu, \lambda} \in \mathbb{N}\right)
$$

or write a formal character for an irreducible

$$
L(\lambda)=\sum_{\mu \leq \lambda} M_{\mu, \lambda} V(\mu) \quad\left(M_{\mu, \lambda} \in \mathbb{Z}\right)
$$

Can decompose standard HC module into irreducibles

$$
I(x)=\sum_{y \leq x} m_{y, x} J(y) \quad\left(m_{y, x} \in \mathbb{N}\right)
$$

or write a formal character for an irreducible

$$
J(x)=\sum_{y \leq x} M_{y, x} I(y) \quad\left(M_{y, x} \in \mathbb{Z}\right)
$$

Matrices m and M upper triang, ones on diag, mutual inverses. Entries are KL polynomials eval at 1:

$$
m_{y, x}=Q_{y, x}(1), \quad M_{y, x}=P_{y, x}(1) \quad\left(Q_{y, x}, P_{y, x} \in \mathbb{N}[q]\right)
$$

Character formulas for $S L(2, \mathbb{R})$

Recall (eigenspace of Δ_{H}) $=E(\nu) \hookleftarrow J(\nu)$. Prefer

$$
\text { dual of } E(\nu)=l_{\mathrm{ev}}(\nu) \rightarrow J(\nu) \text {. }
$$

Need discrete series $I_{ \pm}(n)(n=1,2, \ldots)$ char by

$$
\begin{aligned}
& \left.I_{+}(n)\right|_{s o(2)}=n+1, n+3, n+5 \cdots \\
& \left.I_{-}(n)\right|_{s o(2)}=-n-1,-n-3,-n-5 \cdots
\end{aligned}
$$

Discrete series reps are irr: $I_{ \pm}(n)=J_{ \pm}(n)$
Decompose principal series

$$
l_{\mathrm{ev}}(2 m+1)=J_{\mathrm{ev}}(2 m+1)+J_{+}(2 m+1)+J_{-}(2 m+1) .
$$

Character formula

$$
\begin{gathered}
J_{\mathrm{ev}}(2 m+1)=I_{\mathrm{ev}}(2 m+1)-I_{+}(2 m+1)-I_{-}(2 m+1) . \\
P_{x, y} \\
I_{\mathrm{ev}}(2 m+1) \\
I_{+}(2 m+1)
\end{gathered} I_{-(2 m+1)}^{I_{\mathrm{ev}}(2 m+1)} \begin{aligned}
& 1 \\
& I_{+}(2 m+1) \\
& I_{-}(2 m+1)
\end{aligned}
$$

Defining Herm dual repn(s)

Suppose V is a (\mathfrak{g}, K)-module. Write π for repn map.
Recall Hermitian dual of V

$$
V^{h}=\{\xi: V \rightarrow \mathbb{C} \text { additive } \mid \xi(z v)=\bar{z} \xi(v)\}
$$

Want to construct functor cplx linear rep $(\pi, V) \rightsquigarrow$ cplx linear rep $\left(\pi^{h}, V^{h}\right)$
using Hermitian transpose map of operators.
REQUIRES twist by conjugate linear automorphism of \mathfrak{g}.
Assume $\sigma: G \rightarrow G$ antiholom aut, $\quad \sigma(K)=K$.
Define (\mathfrak{g}, K)-module $\pi^{h, \sigma}$ on V^{h},

$$
\begin{array}{ll}
\pi^{h, \sigma}(X) \cdot \xi=[\pi(-\sigma(X))]^{h} \cdot \xi & \left(X \in \mathfrak{g}, \xi \in V^{h}\right) . \\
\pi^{h, \sigma}(k) \cdot \xi=\left[\pi\left(\sigma(k)^{-1}\right)\right]^{h} \cdot \xi & \left(k \in K, \xi \in V^{h}\right) .
\end{array}
$$

Classically $\sigma_{0} \leftrightarrow \mathcal{G}(\mathbb{R})$. We use also σ_{c} m compact form of G

Invariant forms on standard reps

Recall multiplicity formula

$$
I(x)=\sum_{y \leq x} m_{y, x} J(y) \quad\left(m_{y, x} \in \mathbb{N}\right)
$$

for standard $(\mathfrak{g}, K)-\bmod I(x)$.
Want parallel formulas for σ-invt Hermitian forms.
Need forms on standard modules.
Form on irr $J(x) \xrightarrow{\text { deformation }}$ Jantzen filt $I^{k}(x)$ on std, nondeg forms \langle,\rangle^{k} on I^{k} / I^{k+1}.
Details (proved by Beilinson-Bernstein):

$$
\begin{gathered}
I(x)=I^{0} \supset I^{1} \supset I^{2} \supset \cdots, \quad I^{0} / I^{1}=J(x) \\
I^{k} / I^{k+1} \text { completely reducible } \\
{\left[J(y): I^{k} / I^{k+1}\right]=\text { coeff of } q^{(\ell(x)-\ell(y)-k) / 2} \text { in KL poly } Q_{y, x}}
\end{gathered}
$$

$$
=\frac{\text { ef }}{=} \sum_{k}\langle,\rangle^{k} \text {, nondeg form on } \operatorname{gr} I(x) .
$$

Hence $\langle,\rangle_{l(x)} \stackrel{\text { def }}{=} \sum_{k}\langle,\rangle^{k}$, nondeg form on $\operatorname{gr} I(x)$.
Restricts to original form on irr $J(x)$.

Char formulas for invt forms

Virtual Hermitian forms

$$
\mathbb{Z}=\text { Groth group of vec spaces. }
$$

These are mults of irr reps in virtual reps.

$$
\mathbb{Z}[X]=\text { Groth grp of finite length reps. }
$$

For invariant forms. . .
$\mathbb{W}=\mathbb{Z} \oplus \mathbb{Z}=$ Groth grp of fin diml forms.
Ring structure

$$
(p, q)\left(p^{\prime}, q^{\prime}\right)=\left(p p^{\prime}+q q^{\prime}, p q^{\prime}+q^{\prime} p\right)
$$

Mult of irr-with-forms in virtual-with-forms is in \mathbb{W} :
$\mathbb{W}[X] \approx$ Groth grp of fin Igth reps with invt forms.
Two problems: invt form \langle,\rangle_{J} may not exist for irr J; and \langle,\rangle_{J} may not be preferable to $-\langle,\rangle_{J}$.

What's a Jantzen filtration?

$V \mathrm{cplx},\langle,\rangle_{t}$ Herm forms analytic in t, generically nondeg.

$$
\begin{gathered}
V=V^{0}(t) \supset V^{1}(t)=\operatorname{Rad}\left(\langle,\rangle_{t}\right), \quad J(t)=V^{0}(t) / V^{1}(t) \\
\left(p^{0}(t), q^{0}(t)\right)=\text { signature of }\langle,\rangle_{t} \text { on } J(t) .
\end{gathered}
$$

Question: how does $\left(p^{0}(t), q^{0}(t)\right)$ change with t ?
First answer: locally constant on open set $V^{1}(t)=0$.
Refine answer. . . define form on $V^{1}(t)$

$$
\begin{gathered}
\langle v, w\rangle^{1}(t)=\lim _{s \rightarrow t} \frac{1}{t-s}<v, w>_{s}, \quad V_{2}(t)=\operatorname{Rad}\left(\langle,\rangle^{1}(t)\right) \\
\left(p^{1}(t), q^{1}(t)\right)=\text { signature of }\langle,\rangle^{1}(t) .
\end{gathered}
$$

Continuing gives Jantzen filtration

$$
V=V^{0}(t) \supset V^{1}(t) \supset V^{2}(t) \cdots \supset V^{m+1}(t)=0
$$

From $t-\epsilon$ to $t+\epsilon$, signature changes on odd levels:

$$
p(t+\epsilon)=p(t-\epsilon)+\sum\left[-p^{2 k+1}(t)+q^{2 k+1}(t)\right] .
$$

Hermitian KL polynomials: multiplicities

Fix σ-invt Hermitian form $\langle,\rangle_{J(x)}$ on each irr having one; recall Jantzen form \langle,\rangle^{n} on $I(x)^{n} / I(x)^{n+1}$. MODULO problem of irrs with no invt form, write

$$
\left(I^{n} / I^{n+1},\langle,\rangle^{n}\right)=\sum_{y \leq x} w_{y, x}(n)\left(J(y),\langle,\rangle_{J(y)}\right),
$$

coeffs $w(n)=(p(n), q(n)) \in \mathbb{W}$; summand means

$$
p(n)\left(J(y),\langle,\rangle_{J(y)}\right) \oplus q(n)\left(J(y),-\langle,\rangle_{J(y)}\right)
$$

Define Hermitian KL polynomials

$$
Q_{y, x}^{\sigma}=\sum_{n} w_{y, x}(n) q^{(l(x)-l(y)-n) / 2} \in \mathbb{W}[q]
$$

Eval in \mathbb{W} at $q=1 \leftrightarrow$ form $\langle,\rangle_{l_{(x)}}$ on std.
Reduction to $\mathbb{Z}[q]$ by $\mathbb{W} \rightarrow \mathbb{Z} \leftrightarrow \mathrm{KL}$ poly $Q_{y, x}$.

Hermitian KL polynomials: characters

Matrix $Q_{y, x}^{\sigma}$ is upper tri, 1s on diag: INVERTIBLE.

$$
P_{x, y}^{\sigma} \stackrel{\text { def }}{=}(-1)^{l(x)-I(y)}((x, y) \text { entry of inverse }) \in \mathbb{W}[q]
$$

Definition of $Q_{x, y}^{\sigma}$ says

$$
\left(\operatorname{gr} I(x),\langle,\rangle_{I(x)}\right)=\sum_{y \leq x} Q_{x, y}^{\sigma}(1)\left(J(y),\langle,\rangle_{J(y)}\right) ;
$$

Char formulas for invt forms
inverting this gives

$$
\left(J(x),\langle,\rangle_{J(x)}\right)=\sum_{y \leq x}(-1)^{I(x)-I(y)} P_{x, y}^{\sigma}(1)\left(\operatorname{gr} I(y),\langle,\rangle_{I(y)}\right)
$$

Next question: how do you compute $P_{x, y}^{\sigma}$?

Herm KL polys for σ_{c}

$\sigma_{c}=\mathrm{cplx}$ conj for cpt form of $G, \sigma_{c}(K)=K$.
Plan: study σ_{C}-invt forms, relate to σ_{0}-invt forms.

Proposition

Suppose $J(x)$ irr (\mathfrak{g}, K)-module, real infl char. Then $J(x)$ has σ_{c}-invt Herm form $\langle,\rangle_{J_{(x)}}^{c}$, characterized by
$\langle,\rangle_{J(x)}^{c}$ is pos def on the lowest K-types of $J(x)$.
Proposition \Longrightarrow Herm KL polys $Q_{x, y}^{\sigma_{c}}, P_{x, y}^{\sigma_{c}}$ well-def.
Coeffs in $\mathbb{W}=\mathbb{Z} \oplus s \mathbb{Z}$; $s=(0,1) \rightarrow m$ one-diml neg def form.
Conj: $Q_{x, y}^{\sigma_{c}}(q)=s^{\frac{\ell_{0}(x)-\ell_{0}(y)}{2}} Q_{x, y}(q s), \quad P_{x, y}^{\sigma_{c}}(q)=s^{\frac{\ell_{0}(x)-\ell_{0}(y)}{2}} P_{x, y}(q s)$.
Equiv: if $J(y)$ occurs at level k of Jantzen filt of $I(x)$, then Jantzen form is $(-1)^{(l(x)-l(y)-k) / 2}$ times $\langle,\rangle_{J(y)}$.
Conjecture is false...but not seriously so. Need an extra power of s on the right side.

Deforming to $\nu=0$

Have computable conjectural formula (omitting ℓ_{0})

$$
\left(J(x),\langle,\rangle_{J(x)}^{c}\right)=\sum_{y \leq x}(-1)^{\prime(x)-I(y)} P_{x, y}(s)\left(\operatorname{gr} I(y),\langle,\rangle_{I(y)}^{c}\right)
$$

for σ^{c}-invt forms in terms of forms on stds, same inf char.
Polys $P_{x, y}$ are KL polys, computed by at las software.
Std rep $I=I(\nu)$ deps on cont param ν. Put $I(t)=I(t \nu), t \geq 0$.
Apply Jantzen formalism to deform t to $0 \ldots$

$$
\langle,\rangle_{J}^{c}=\sum_{l^{\prime}(0) \text { std at } \nu^{\prime}=0} v_{J, \mu^{\prime}}\langle,\rangle_{r^{\prime}(0)}^{c} \quad\left(v_{J, r^{\prime}} \in \mathbb{W}\right) .
$$

More rep theory gives formula for $G(\mathbb{R})$-invt forms:

$$
\langle,\rangle_{J}^{c}=\sum_{l^{\prime}(0) \text { std at } \nu^{\prime}=0} s^{\epsilon\left(l^{\prime}\right)} v_{J, r^{\prime}}\langle,\rangle_{\nu^{\prime}(0)}^{0} .
$$

$I^{\prime}(0)$ unitary, so J unitary \Leftrightarrow all coeffs are $(p, 0) \in \mathbb{W}$.

Example of $G_{2}(\mathbb{R})$

Real parameters for spherical unitary reps of $G_{2}(\mathbb{R})$

- Unitary rep from $L^{2}(G)$
- Arthur rep from 6-dim nilp
- Arthur rep from 8-dim nilp
- Arthur rep from 10-dim nilp
- Trivial rep

Possible unitarity algorithm

Hope to get from these ideas a computer program; enter

- real reductive Lie group $G(\mathbb{R})$
- general representation π
and ask whether π is unitary.
Program would say either
- π has no invariant Hermitian form, or
- π has invt Herm form, indef on reps μ_{1}, μ_{2} of K, or
- π is unitary, or
- I'm sorry Dave, I'm afraid I can't do that.

Answers to finitely many such questions complete description of unitary dual of $G(\mathbb{R})$.
This would be a good thing.

An inspirational story

I was an undergrad at University of Chicago, learning interesting math from interesting mathematicians.

I left Chicago to work on a Ph.D. with Bert Kostant.
After finishing, I came back to Chicago to visit.
I climbed up to Paul Sally's office. Perhaps not all of you know what an interesting mathematician he is. I told him what l'd done in my thesis; since it was representation theory, I hoped he'd find it interesting.

He responded kindly and gently, with a question:
"What's it tell you about UNITARY representations?"
The answer, regrettably, was, "not much."
So I tried again.

