On the evaluation of modular polynomials

Andrew V. Sutherland

Massachusetts Institute of Technology

ANTS X — July 10, 2012

http://math.mit.edu:/~drew

http://math.mit.edu:/~drew

Introduction

Let ¢ be a prime and let F, be a finite field (assume g is prime).

Problem: Given an elliptic curve E/F,, identify any and all curves
E'/F, that are (-isogenous to E.

This problem arises in many applications, and it is often the
computationally dominant step.

16

Introduction

Let ¢ be a prime and let F, be a finite field (assume g is prime).

Problem: Given an elliptic curve E/F,, identify any and all curves
E'/F, that are (-isogenous to E.

This problem arises in many applications, and it is often the
computationally dominant step.

Solution: Compute the polynomial
be(Y) = @4((E), Y),

and find its roots in F,. Here ®, € Z[X, Y] is the classical modular
polynomial that parameterizes pairs of ¢-isogenous elliptic curves.

If ¢is at all large, say ¢ = Q(log ¢), the hard part is computing ¢;.
Finding its roots is easy by comparison.

The Modular Polynomial ¢,(X,Y)

o, € Z[X, Y] is symmetric, with degree ¢ + 1 in both X and Y.
Its total size is O(¢* log ¢) bits.

L coefficients largest average total
127 8258 7.5kb 5.3kb 5.5MB
251 31880 16kb 12kb 48MB
503 127262 36kb 27kb 431MB
1009 510557 78kb 60kb 3.9GB
2003 2009012 166kb 132kb 33GB
3001 4507505 259kb 208kb 117GB
4001 8010005 356kb 287kb 287GB

5003 12522512 454kb 369kb 577GB
10009 50085038 968kb 774kb 4.8TB

Size of ®,(X,Y)

The Modular Polynomial ¢,(X,Y)

o, € Z[X, Y] is symmetric, with degree ¢ + 1 in both X and Y.
Its total size is O(¢* log ¢) bits.

L coefficients largest average total
127 8258 7.5kb 5.3kb 5.5MB
251 31880 16kb 12kb 48MB
503 127262 36kb 27kb 431MB
1009 510557 78kb 60kb 3.9GB
2003 2009012 166kb 132kb 33GB
3001 4507505 259kb 208kb 117GB
4001 8010005 356kb 287kb 287GB

5003 12522512 454kb 369kb 577GB
10009 50085038 968kb 774kb 4.8TB

Size of ®,(X,Y)

But for ¢ = 10009 and ¢ ~ 2%, the size of ¢, is just 320KB!
Even with log g ~ ¢ = 10009 it is under 20MB.

Point-counting at 2500 digits

“... Despite this progress, computing modular polynomials remains
the stumbling block for new point counting records. Clearly, to
circumvent the memory problems, one would need an algorithm that
directly obtains the polynomial specialised in one variable.”

INRIA Project-Team TANC Report

This record was set in December 2006.

Computing ¢, with the CRT

Strategy: compute &, mod p for sufficiently many primes p and
use the CRT to compute @, (or &, mod g).

» For suitable primes p we can compute &, mod p in time
O(£*1og® pllog p) using isogeny volcanoes [BLS 2011].

» Assuming the GRH, we can efficiently find sufficiently
many such primes with logp = O(log ¢).
» “Sufficiently many” is O(¥¢).

Henceforth we assume the GRH.

Computing ¢, with the CRT

Strategy: compute &, mod p for sufficiently many primes p and
use the CRT to compute @, (or &, mod g).

» For suitable primes p we can compute &, mod p in time
O(£*1og® pllog p) using isogeny volcanoes [BLS 2011].

» Assuming the GRH, we can efficiently find sufficiently
many such primes with logp = O(log ¢).
» “Sufficiently many” is O(¥¢).

Uses O(£3 log® ¢ llog ¢) expected time and O(¢3 log ¢) space.

Using the explicit CRT, we can directly compute &, mod ¢ using
O(¢*(n +log¢)) space, where n = logg.

But the size of ¢, is O(¢n).

Henceforth we assume the GRH.

Computing ¢,(Y) with the CRT (naive approach)

Strategy: lift j(E) from F, to Z, compute ®,(X,Y) mod p and evaluate
$e(Y) = @4 (j(E),Y) mod p
for sufficiently many primes p. Obtain ¢, mod ¢ via the explicit CRT.

Uses O(¢2log®™* p) expected time for each p, and O(¢* log p) space.

Computing ¢,(Y) with the CRT (naive approach)

Strategy: lift j(E) from F, to Z, compute ®,(X,Y) mod p and evaluate
de(Y) = (j(E),Y) mod p

for sufficiently many primes p. Obtain ¢, mod ¢ via the explicit CRT.

Uses O(¢2log®™* p) expected time for each p, and O(¢* log p) space.

However, “sufficiently many” is now O(¢n), where n = logg.
Total expected time is O(*nlog® ™ ¢), using O(¢n + £*1log ¢) space.

This approach is not very useful:
» If nis large (e.g. n = ¢), it takes way too long (quartic in ¢).
» It nis small (e.g. n = log¥), it doesn’t save any space.

Computing ¢,(Y) with the CRT (Algorithm 1)

Strategy: lift j, 2,7, ..., j*T! from F, to Z and then compute
d)g(Y) = Z Cikj[Yk modp

for sufficiently many primes p, where ®, = > ¢y X Y.
Obtain ¢, mod ¢ via the explicit CRT.

/16

Computing ¢,(Y) with the CRT (Algorithm 1)

Strategy: lift j, 2,7, ..., j*T! from F, to Z and then compute
d)g(Y) = Z Ciktik modp

for sufficiently many primes p, where ®, = > ¢y X Y.
Obtain ¢, mod ¢ via the explicit CRT.

Now “sufficiently many” is O(¢ + n).

For n = O({log¥), uses O(£*log*") expected time and O(¢* log ¢)
space (under GRH).

Forn = Q(¢log?), the space bound is optimal.

This algorithm can also evaluate the partial derivatives of ®, needed
to construct normalized equations for E (important for SEA).

Computing ¢,(Y) with the CRT (Algorithm 2)

Strategy: lift j(E) from F, to Z and for sufficiently many primes p
compute ¢, mod p as follows:

1. For each of ¢ + 2 j-invariants y;, compute z; = [[, (G(E) — ji),
where the j; range over ¢ + 1 neighbors of y; in G¢(F,).
2. Interpolate ¢,(Y) € F, as the unique polynomial of degree ¢ + 1
for which ¢,(y;) = z.
Obtain ¢, mod ¢ via the explicit CRT.

Computing ¢,(Y) with the CRT (Algorithm 2)

Strategy: lift j(E) from F, to Z and for sufficiently many primes p
compute ¢, mod p as follows:

1. For each of £ + 2 j-invariants y;, compute z; = [[,(/(E) — jk),
where the j; range over ¢ + 1 neighbors of y; in G¢(F,).

2. Interpolate ¢,(Y) € F, as the unique polynomial of degree ¢ + 1
for which ¢,(y;) = z.

Obtain ¢, mod ¢ via the explicit CRT.

For n = O(£°), uses O(£*(n + log £) log' T ¢) expected time and
O(¢n + (log ¢) space (under GRH).

For n = O(log”~ € q) the algorithm is faster than computing @,.
For n = Q(log ¢) the space bound is optimal.

Genus 1 point counting in large characteristic

Algorithms to compute #E(F,) =g+ 1 —1.

Algorithm Time Space
Totally naive O(e’t) O(n)
Slightly less naive O(e"te) O(n)
Baby-step giant-step O(e"/**¢) O(e"4+e)
Pollard kangaroo O(e"/4+e) o(n?)
Schoof O(n 5llogn) o(n?)
SEA* O(n*log’ nllogn) O(n*logn)
SEA (&, precomputed) O(n*1logn) o(n*)

*Complexity estimates for SEA-based algorithms are heuristic expected times.

Genus 1 point counting in large characteristic

Algorithms to compute #E(F,) =g+ 1 —1.

Algorithm Time Space
Totally naive O(e’t) O(n)
Slightly less naive O(e"te) O(n)
Baby-step giant-step O(e"/**¢) O(e"4+e)
Pollard kangaroo O(e"/4+e) o(n?)
Schoof O(n 5llogn) o(n?)
SEA* O(n*log’ nllogn) O(n*logn)
SEA (&, precomputed) O(n*1logn) o(n*)

SEA with Algorithm 1 O(n*log® nllogn) O(n*logn)
Amortized O(n* llog n) O(n*logn)

*Complexity estimates for SEA-based algorithms are heuristic expected times.

Alternative modular polynomials

In practice, the modular polynomials ®, are not used in SEA. There
are alternatives (due to Atkin, Miiller, and others) that are smaller by
a large constant factor (100x to 1000x is typical).

The isogeny-volcano approach of [BLS 2010] can compute many
types of (symmetric) modular polynomials derived from modular
functions other than j(z), but these do not include the modular
polynomials commonly used with SEA.

10/16

Alternative modular polynomials

In practice, the modular polynomials ®, are not used in SEA. There
are alternatives (due to Atkin, Miiller, and others) that are smaller by
a large constant factor (100x to 1000x is typical).

The isogeny-volcano approach of [BLS 2010] can compute many
types of (symmetric) modular polynomials derived from modular
functions other than j(z), but these do not include the modular
polynomials commonly used with SEA.

They do include modular polynomials <I>Z derived from the Weber
function f(z), but these have never (?) been used with SEA before.

Provided End(E) has discriminant D = 1 mod 8 with 3 { D, the
polynomial qbi(Y) = <I>§(f(E), Y) parameterizes (-isogenies from E.

This condition is easily checked (without knowing D).
If it fails, powers of f, or other modular functions may be used.

10/16

The Weber function

The Weber f-function is defined by
77((7' + 1)/2)
Gasn(T)

and satisfies j(7) = (f(r)** — 16)3 /f()*.

f(r) =

The coefficients of @}; are roughly 72 times smaller.
This means we need 72 times fewer primes.

The polynomial @2 is roughly 24 times sparser.
This means we need 24 times fewer interpolation points.

Overall, we get nearly a 1728-fold speedup using <I>E.

11/16

Modular polynomials for / = 11

Classical:
X2 412 - xMyt o gigax!y!0 — 28278756x!'¥® + s3686822816x ! ¥®

— 61058988656490X Y7 + 42570393135641712x " ¥ — 17899526272883039048x ' ¥

+ 4297837238774928467520X ' v* — 529134841844639613861795x ' v —+ 2720981 1658056645815522600% ' v

— 374642006356701393515817612x ' ¥ + 296470902355240575283200000X !

.. .8 pages omitted . . .
—+ 3924233450945276549086964624087200490995247233706746270899364206426701740619416867392454656000 . . . 000

Atkin:

x12 — x'y 4 744x" 4+ 1966800 + 187X Y + 21354080x° + 506x%Y + 830467440x°
— 11440X7Y + 16875327744X7 — 57442X°Y + 208564958976X° + 184184X°Y + 1678582287360%°
+ 1675784x* Y + 9031525113600X* + 1867712X> Y + 32349979904000X° — 8252640X>Y + 74246810880000X>
— 19849600XY + 98997734400000X + ¥> — 8720000 + 58411072000000

Weber:

X2 4y xMy' 4 1x%y? — 44x7y7 4 88X7Y° — 88X3Y3 + 32XV

12/16

Elliptic curve point counting record

The number of points on the elliptic curve E defined by
y2 = x3 +2718281828x + 3141592653,

modulo the 5011 digit prime ¢ = 16219299585 - 21912 _ | js

8323769891444946600619018491391378260069836370604500159309667928183741136740938227669912830997846627009617004020582940190774831705166648378125548174433501
§22236054400053883949202245191149598673381916000055085021 6525385267 652842524240075706544500427958734245859109650693623260005854955676908342760404211102908
66232135885662070661039670759580341918109430064 63019037103169978894180556726367014400296781983798513562269371401276427209286702254047174078
7008 1793590AA1|9920 75037021507111234401965 721 72482090210001 0089807 15854004044380942098 79544 11 1546120708201 1601020403137 7457614084816
13398307630269299941 48552140105778012525989072405641889! 13570967700290860169473820597303300518069505065832587533308670748048008463
190042713464578653; u71 78652022622101990654950268109200758 19162973482 550248173093287043318053279349574487888250634
72437467694874112726738073095037665888; 10551480066332118269833639587932989704356
S0b45003065606457 37093575009979 919223024134537160958876614320 Sa0557600550007 1 232328156220481118882835004832158925287
96! 489111718650037380917938646571605607395885788665998491783840002043757298666639706781737384345665795929791423993337711367782
016636015241050779745447935639933066437226703067 7 11612870475074728874060256 5300461420412860767016010446708726762340275078366434867328902748
46203327761442798102604298830732855895993246333047147 456570427212647114749626 3922825839150351274
2950736034773585892234313092778077346572608561779267925193 30390180619315277308 25700377636113052880114 20255@0407537787327013748289451197304
794287 T08EE 34270 306203020090 3074071 784056 10945 509365074409060841197308143009014820264985203136 £9530802000020229604237272408483110
4327002260478397 1162521206 171333600227255606057031 6884991097 867376849796331576452708469250023115974 1512227676 6228567590575220560359352 58211682369185130
59172724626618829733555769988656469584293610818091626921818662 19981312 1452743670 7586&A 407055463402
301250008 100721443004 133658 1112000630498 700G0 3477 4408635004521 104411 2000470954590000304805 99005 1 719300 453001 119504437904 506041869, 780810413767 13
10536218879088318372730054658812006162717448016824877474558981852517722802 47795355549876845352299986818351761176510147685763441401085581041504
532073709350521509138632615043242120075498047323584645534885609879194689611448558254656 126144564 114585216077 389949585595126074305085 13461723630995676
$6218607271508564820461501 120120151130071222800692995902742821076909398903008105256038567 004839959672 806359527 1520569999431 1641026894824
26373626850534370585102219836 177805656 16703586 1860036286063374250257588182644200835242804 1311901 4 o875y 5706408 49911956443052
8793982788521 u 6549881257512212397410752449734278198437: 17133740349759685046 80 956 aaa017145
927096949852599391475120676078224479062512262684875301273349528920064 1795967 1 0 0031649974: 494393 259437826466293
3791621320048260890002129029330256714749154770003140032750641 1025863688896 74204 458134154747384432584¢ 58420093653389
52535884111160271960868999014: 0029227796125549029381598957 8966997024 135778517148930637 6609619
166475080397995662167957197¢ 9535522117245525322307 6933106744204014039160245658 474014367 5555079522458369190254711040
6012000: 15: 097330589798793851739761556415874133: 95063520341789370: 783545292573171574061 16
410570554 o070367457951 406384 51841758049202732 o3 650843001 131591890082864513124 149610470580974330:
8895745441684195336715770412686321350796787: 2473861201691 1 43318314688276: 1 92370638492569933497005
Ooa7010480557348070076728432056433801007 8651 70840 1677075320059006 7107235 8757564 54571 zc 1207394577 91634588349492676
877931947471390500044002216214944585095 140448607381 0632855720800233207 135201634056 1674971 1262606 4258433417897706
236406353 1410341976502953492117706562557777468840¢ TaEab04s5 171 1896%010487044007 38080 3640951538 7707508801 15364357
Ti5ea18007as857848302241231421028544594 1323023661942100414991 78396 968 7A55996341125827795369279A7A77 827993735568297936&99A29512 69120288710932706
A

13/16

Elliptic curve point counting record

Task

Total CPU Time

Compute ¢}

Find a root 7
Compute g,
Compute 7 mod g4, E
Find A,

oh(Y) = ®}(j(E), Y) was computed for £ from 5 to 11681.
Exactly 700 of 1400 were found to be Elkies primes.

Atkin primes were not used.

The largest ¢} was under 20MB in size and took about

two hours to compute using 1 core.

14/16

Modular polynomial evaluation record

For ¢ = 100019 and ¢ = 25 — 1 we computed ¢}(Y) = ®}(i(E), Y).

This is much larger than one would need to set a 25,000 digit
point-counting record.

The size of ¢} is about 1 GB.

15/16

Modular polynomial evaluation record

For ¢ = 100019 and ¢ = 25 — 1 we computed ¢}(Y) = ®}(i(E), Y).

This is much larger than one would need to set a 25,000 digit
point-counting record.

The size of ¢} is about 1 GB.

For comparison:

» The size of ®} mod ¢ is about 2 TB.

15/16

Modular polynomial evaluation record

For ¢ = 100019 and ¢ = 25 — 1 we computed ¢}(Y) = ®}(i(E), Y).

This is much larger than one would need to set a 25,000 digit
point-counting record.

The size of ¢} is about 1 GB.

For comparison:

» The size of ®} mod ¢ is about 2 TB.
» The size of ®;, mod g is about 50 TB.

15/16

Modular polynomial evaluation record

For ¢ = 100019 and ¢ = 25 — 1 we computed ¢}(Y) = ®}(i(E), Y).

This is much larger than one would need to set a 25,000 digit
point-counting record.

The size of ¢} is about 1 GB.

For comparison:

» The size of ®} mod ¢ is about 2 TB.
» The size of ®;, mod g is about 50 TB.

» The size of ®, is more than 10 PB.

15/16

Improved space complexity of computing
horizontal isogenies

The algorithm of [Bisson-S 2011] for computing the endomorphism
ring of an elliptic curve E/F, runs in L[1/2,+/3/2] expected time and
uses L[1/2,1/+/3] space (under GRH).

The space complexity can now be improved to L[1/2,1/+/12].

A similar improvement applies to algorithms for computing horizontal
isogenies of large degree [Jao-Soukharev ANTS IX].

16/16

