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The Riemann zeta function

The Riemann zeta function is defined by a Dirichlet series with an Euler product

ζ(s) :=
∑
n≥1

n−s =
∏
p

(1 + p−s + p−2s + · · · ) =
∏
p

(1− p−s)−1

that converges for s ∈ C with real part greater than 1. Adding the “missing” Euler
factor ΓR(s) := π−s/2Γ( s

2) for the “infinite prime” yields the completed zeta function

ξ(s) := ΓR(s)ζ(s) = ξ(1− s)

which satisfies a functional equation and is defined for s 6= 0, 1.

The Riemann zeta function has “trivial zeros” coming from zeros of ΓR(s), as well as
infinitely many at complex values of s that are all believed to have real part 1/2.



Counting prime numbers

As meticulously observed by Gauss, for large x the density of primes near x is 1
log x .

This suggests that if π(x) counts the number of primes p ≤ x then we should have

π(x) ≈ 1
log 2 + 1

log 3 + 1
log 4 + · · ·+ 1

log x ≈
∫ x

2

dt
log t =: Li(x)

The Prime Number Theorem (proved in 1896) states that π(x)
Li(x) → 1 as x →∞,

but π(x)− Li(x) does not converge, it oscillates infinitely and without bound.

Remarkably, 40 years early Riemann suggested that one could get a better estimate via

Li(x) ≈
∑
n≥1

π(x 1/n)
n

µ-inversion=⇒ π(x) ≈
∑
n≥1

µ(n)
n Li(x1/n) =: R(x),

where µ(n) = (−1)k for squarefree n with k prime factors and µ(n) = 0 otherwise.



Counting prime numbers

We can use Riemann’s explicit formula to count primes using nontrivial zeros ρ of ζ(s):

π(x) = R(x)−
∑
ρ

R(xρ)



Counting prime numbers

We can use Riemann’s explicit formula to count primes using nontrivial zeros ρ of ζ(s):

π(x) = R(x)−
∑
ρ

R(xρ)



Random matrix models

The Hilbert-Pólya conjecture suggests that the zeros of ζ(s) should correspond to the
eigenvalues of a self-adjoint operator. This was first explored by Montgomery and then
numerically investigated by Odlyzko, who collected evidence for it by comparing the
spacing of zeroes and eigenvalues of random n × n Hermitian matrices as n→∞.

Normalized spacing of 70 million consecutive zeros
versus normalized eigenvalue spacing for Hermitian
matrices in the Gaussian Unitary Ensemble (GUE).

zeros of ζ(s)
in the LMFDB

Pair correlations for 80 million consecutive zeros
near the 1020th versus conjectured density for GUE.

https://www.lmfdb.org/zeros/zeta/
https://www.lmfdb.org/zeros/zeta/


Number fields

An algebraic integer is a complex number α that is the root of a monic irreducible
polynomial f ∈ Z[x ]. The set of all algebraic integers forms a ring Z that contains Z.

Number fields K := Q(α) ' Q[x ]/(f (x)) are defined by adjoining some α ∈ Z[x ] to Q.
They are Q-vector spaces of degree d := deg f with Q-basis 1, α, . . . αd−1.

The ring of integers OK := K ∩ Z is a lattice isomorphic to Zd , but 1, α, . . . , αd−1 is
not necessarily a Z-basis for OK (when this holds we say that K is monogenic).

The fundamental theorem of arithmetic typically fails in rings of integers OK because
prime factorizations need not be unique, e.g. 6 = 2 · 3 = (1 +

√
−5) · (1−

√
−5).

If we instead work with ideals (finitely generated sub-modules of OK ), the fundamental
theorem of arithmetic is restored: (6) = (2, 1 +

√
−5)2 · (3, 1 +

√
−5) · (3, 1−

√
−5).

It then makes sense to talk about (and to count) “primes” in number fields.



The Cohen-Lenstra heuristics

Every number field has an ideal class group cl(OK ), the finite abelian group of
equivalence classes of nonzero OK -ideals where a ∼ b if αa = b for some α ∈ K .
For example, (2, 1 +

√
−5) ∼ (3, 1 +

√
−5), since we can take α = 1+

√
−5

2 .

The ideal class group is trivial if and only if unique factorization holds in OK .

The Cohen-Lenstra heuristics for imaginary quadratic fields K = Q(
√

D) predict that
the odd part of cl(D) := cl(OK ) has the distribution of a random finite abelian group
of odd order. More precisely, for every odd prime ` and finite group H of `-power order:

lim
x→∞

#{Q(
√

D) : cl(D)[`∞] ' H and 0 < −D ≤ x}
#{Q(

√
D) : 0 < −D ≤ x}

= 1
# Aut(G)

∏
n≥1

(1− `−n).

Example: we should expect # cl(D) to be divisible by 3 with probability 0.439873 . . .,
and expect to see cl(D) ' Z/9Z eight times as often as cl(D) ' Z/3Z× Z/3Z.



Counting roots modulo p

Fix a monic irreducible f ∈ Z[x ] of degree d and for each prime p let us define

Nf (p) := #{a ∈ [0, p − 1] : f (a) ≡ 0 mod p} ∈ [0, d ].

We would like to understand how Nf (p) varies with p. For f (x) = x3 − x + 1 we have

p : 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Nf (p) 0 0 1 1 1 0 1 1 2 0 0 1 0 1 0 1 3

Let ci (B) count the primes p ≤ B with Nf (p) = i . We have the following statistics:

B c0(B) c1(B) c2(B) c3(B)

103 0.323353 0.520958 0.005988 0.155689
104 0.331433 0.510586 0.000814 0.157980
105 0.333646 0.502867 0.000104 0.163487
106 0.333185 0.500783 0.000013 0.166032
109 0.333328 0.500016 0.000000 0.166656
1012 0.333333 0.500000 0.000000 0.166666



The Chebotarev density theorem

These statistics are explained by the Chebotarev density theorem. The group Gal(Q/Q)
acts on the roots of f (x) by permuting them. The Galois group G of f , and of the
number field Q[x ]/(f (x)), is the corresponding permutation group, a subgroup of Sd .

One can define, for primes p - disc(f ) a Frobenius element Frobp ∈ Gal(Q/Q) which
acts on the roots of f (x) via an element of G . The number of roots of f (x) mod p is
the number of fixed points of this permutation.

The Chebotarev density theorem states that the Frobp are equidistributed over G .

In our example with f = x3 − x + 1 the group G = S3 has 2/6 elements that fix 0
roots, 3/6 = 1/2 elements that fix 1 root, and 1/6 elements that fix 3 roots.

If we had instead chosen f = x3 − x2 − 2x + 1 we would have G = C3, which has 2/3
elements that fix 0 roots and 1/3 elements that fix 3 roots.



The Dedekind zeta function of a number field
Each number field K has a zeta function defined by a Dirichlet series and Euler product

ζK (s) :=
∑

06=a⊆OK

N(a)−s =
∏
p

(1− N(p)−s)−1

where N(a) := [OK : a]. For K = Q we have N(nZ) = [Z : nZ] = n and ζQ(s) = ζ(s).

ζK (s) has a pole at s = 1 whose residue is given by the analytic class number formula:

lim
s→1+

(s − 1)ζK (s) = 2r1(2π)r2hK RK
wK |DK |1/2

,

where r1 and 2r2 count real and complex embeddings of K , hK := # cl(OK ) is the class
number, RK is the regulator, wK := #µK counts roots of unity, and DK := discOK .

Number fields in the LMFDB

https://www.lmfdb.org/NumberField/


Elliptic curves

Let E be an elliptic curve, which can be defined by an equation

E : y2 = x3 + Ax + B,

where A and B are integers; it is a curve of genus 1.

Elliptic curves over finite fields (where arithmetic is performed modulo p) are a key
component of our communications security infrastructure — you use them every day.

The number of solutions to E modulo p can be written as

p + 1− ap,

where ap is an integer bounded by |ap| ≤ 2√p. Hasse

Let us now consider the sequence xp := −ap/
√p ∈ [−2, 2] indexed by primes p.











The Sato-Tate conjecture

The Sato-Tate conjecture states that, except for certain families of well understood
exceptions we will always see the same semicircular limiting distribution.

Mikio Sato John Tate

Theorem (Taylor et al. 2008)
For every unexceptional elliptic curve E/Q,
the sequence xp converges to the semicircular distribution. Richard Taylor

Richard Taylor received the 2014 Breakthrough Prize in Mathematics for this work.



Sato-Tate groups and their distributions
There are two Sato-Tate distributions that arise for elliptic curves E/Q, depending on
whether E is exceptional or not, but over general number fields there are three:

Each corresponds to the distributions of traces in a compact subgroup of SU(2),
the Sato–Tate group of E . Katz–Sarnak and Serre extended this random matrix model
to curves of genus g and abelian varieties of dimension g using subgroups of USp(2g).

The Sato-Tate conjecture is open for genus g > 1, but Sato-Tate groups have been
completely classified for for g ≤ 3. There are 52 in genus 2 and 410 in genus 3
[Fité-Kedlaya-Rotger-S 2012, Fité-Kedlaya-S 2019].

These classifications involved more than a thousand CPU-years of computation.



Sato-Tate trace distributions of genus 2 curves:



Sato-Tate ap2-distributions of genus 2 curves:





Elliptic curves and their L-functions
The L-function of an elliptic curve E/Q is defined by the Euler product

L(E , s) =
∏
p

Lp(p−s)−1 =
∏
p

(
1− app−s + χ(p)p1−2s

)−1
where χ(p) is 0 at bad primes and 1 otherwise and ap ∈ {0,±1} when χ(p) = 0.

As shown by Mordell, the set of rational points E (Q) on an elliptic curve is a finitely
generated abelian group, hence isomorphic to Zr × T with T ' E (Q)tor finite.

The Birch and Swinnerton-Dyer (BSD) conjecture states that

1
r !L(r)(E , 1) =

#X(E/Q) · ΩE · Reg(E/Q) ·
∏

p Cp

#E (Q)2tor
.

In particular, r is the order of vanishing of L(E , s) at s = 1 (the analytic rank).



Detecting the rank

The BSD conjecture implies

lim
x→∞

1
log x

∑
p≤x
p-∆E

ap log p
p = −r + 1

2 .

This agrees well with the data when the
conductor NE is small, but for large r the
conductor cannot be small and it becomes
infeasible to make x �

√
NE , which one

expects to need to get convergence.

Elliptic curves in the LMFDB
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https://www.lmfdb.org/EllipticCurve/Q/


Elliptic curves and their L-functions
Taylor’s proof of the Sato-Tate conjecture extends the Modularity Theorem
that connects elliptic curves and modular forms through their L-functions.

Theorem (Eichler, Taniyama, Shimura, Weil, Langlands-Tunnel, Serre, Ribet,
Wiles, Taylor-Wiles, Breuil-Conrad-Diamond-Taylor)
For each N ≥ 1, the set of L-functions L(E , s) :=

∏
(1− app−s + p1−2s)−1 of elliptic

curves E/Q of conductor N is equal to the set of L-functions L(f , s) =
∑

ann−s of
newforms f ∈ Snew

2 (Γ0(N)) of level N with rational q-expansions:
∑

anqn.



The L-functions and Modular Forms Database (LMFDB)

The relationship between elliptic curves and modular forms established by the
Modularity Theorem is just a small part of the Langlands Program, a vast web of
conjectures that connects arithmetic and automorphic objects via their L-functions.

The L-functions and Modular Forms Database is devoted to making these connections
explicit. It provides compelling evidence for many aspects of the Langlands Program,
including generalizations of BSD and RH, as well as datasets that can be used to
formulate and test new conjectures, and to prove theorems.

Modular forms in the LMFDB

https://www.lmfdb.org
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/


Automorphic forms associated to genus 2 curves

Type Conductor Curve Equation Motive Modular form

A[C1 ](s) 277 = 2771 y2 +(x3 +x2 +x +1)y =−x2−x typical abelian surface paramodular form
B[C1 ]s 529 = 232 y2 +(x3 +x +1)y =−x5 surface with RM by Q(

√
5) over Q CMF 23.2.1.a

B[C1 ]ns 294 = 213172 y2 +(x3 +1) = x4 +x2 product of ECs 14a4 and 21a4 over Q CMFs 14.2.1.a and 21.2.1.a
B[C2 ]s 10368 = 2734 y2 +x2y = 3x5−4x4 +6x3−3x2 +1 surface with RM by Q(

√
2) over Q(

√
2) HMF 162.1-a over Q(

√
2)

B[C2 ]ngs 1088 = 26171 y2 +(x3 +x2 +x +1)y = x4 +x3 +2x2 +x +1 Weil restriction of 17.1-a1 over Q(
√

2) HMF 17.1-a over Q(
√

2)
C[C2 ](ns) 448 = 2671 y2 +(x3 +x)y = x4−7 product of PCM EC 32a3 and EC 14a6 over Q CMFs 32.2.1.a and 14.2.1.a
D[C4 ](s) 3125 = 55 y2 +y = x5 surface with CM by Q(ζ5) over Q(ζ5) CM HMF 125.1-a over Q(

√
5)

D[D2 ](ns) 8192 = 213 y2 = x6−9x4 +16x2−8 product of PCM ECs 32a3 and 256d1 over Q CMFs 32.2.1.a and 256.2.1.d
E[C1 ](ns) 196 = 2272 y2 +(x2 +x)y = x6 +3x5 +6x4 +7x3 +6x2 +3x +1 square of EC 14a1 over Q CMF 14.2.1.a
E[C2, C](ngs) 576 = 2632 y2 +(x3 +x2 +x +1)y =−x3−x square of EC 9.1-a3 over Q(

√
2) CMF 24.2.13.a

E[C3 ](ngs) 324 = 2234 y2 +(x3 +x +1)y = x5 +2x4 +2x3 +x2 square of EC 8.1-a1 over 3.3.81.1 CMF 18.2.13.a
E[C4 ](ngs) 256 = 28 y2 +y = 2x5−3x4 +x3 +x2−x square of EC 1.1-a5 over 4.4.2048.1 CMF 16.2.5.a
E[C6 ](ngs) 169 = 132 y2 +(x3 +x +1)y = x5 +x4 square of EC 1.1-a3 over 6.6.371293.1 CMF 13.2.4.a
E[C2, R × R]s 455625 = 3654 y2 +(x3 +x2 +x +1)y = x5 − 3x4−2x−1 surface with QM (D =6) over 2.0.3.1 BMF over 2.0.3.1 of level 50625
E[C2, R × R]ngs 3969 = 3472 y2 +(x2 +x +1)y = −3x5 +5x4−4x3 +x Weil restriction of 441.2-a over 2.0.3.1 BMF 2.0.3.1-441.2-a
E[C2, R × R]ns 675 = 3352 y2 =−x6−14x5−44x4 +28x3−44x2−14x−1 product of ECs 15a2 and 45a2 over Q CMFs 15.2.1.a and 45.2.1.a
E[D2 ]s 20736 = 2834 y2 =−27x6−54x5−27x4 +18x3 +18x2−2 surface with QM (D =6) over 4.0.576.2 HMF 324.1-b over Q(

√
2)

E[D3 ]s 34992 = 2437 y2 =−2x6−6x5 +10x3 +9x2−18x +6 surface with QM (D =6) over 6.0.2834352.2 BMF over 2.0.3.1 of level 3888
E[D4 ]s 20736 = 2834 y2 +y = 6x5 +9x4−x3−3x2 surface with QM (D =6) over 8.0.339738624.10 BMF over 2.0.3.1 of level 2304
E[D6 ]s 8100 = 223452 y2 +x3y = x6 +3x5−42x4 +43x3 +21x2−60x−28 surface with QM (D =6) over degree 12 field BMF over 2.0.3.1 of level 900
E[D2 ]ngs 6400 = 2852 y2 = 2x5 +5x4 +8x3 +7x2 +6x +2 square of EC 256.1-a1 over Q(

√
5) HMF 2.2.5.1-256.1-a

E[D3 ]ngs 2187 = 37 y2 +(x3 +1)y = −1 square of EC over 6.0.177147.2 BMF over 2..0.3.1 of level 243
E[D4 ]ngs 3600 = 243252 y2 +x2y = x5−3x4 +11x2−16x square of EC over 4.0.13500.2 BMF over Q(i) of level 225
E[D6 ]ngs 3600 = 243252 y2 +x3y = 14x3− 20 square of EC over 6.0.7200000.1 BMF over 2.0.3.1 of level 400
F[D2,C2,H]ngs 576 = 2632 y2 +x3y = 5x3−2 square of PCM EC 1.1-a2 over Q(

√
6) CM HMF 1.1-a over Q(

√
6)

F[C2,C1,M2(R)]ns 729 = 36 y2 +y =−48x6 +15x3−1 square of PCM EC 27.a4 over Q CM CMF 27.2.1.a

One page of the “giant table” [Booker-Sijsling-S-Voight-Yasaki 2022?]

http://lmfdb.org/Genus2Curve/Q/277.a.277.1
http://lmfdb.org/Genus2Curve/Q/529.a.529.1
http://www.lmfdb.org/NumberField/2.2.5.1
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/23/2/1/a/
http://lmfdb.org/Genus2Curve/Q/294.a.294.1
http://lmfdb.org/EllipticCurve/Q/14a4
http://lmfdb.org/EllipticCurve/Q/21a4
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/14/2/1/a/
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/21/2/1/a/
http://www.lmfdb.org/NumberField/2.2.8.1
http://www.lmfdb.org/NumberField/2.2.8.1
http://www.lmfdb.org/ModularForm/GL2/TotallyReal/2.2.8.1/holomorphic/2.2.8.1-162.1-a
http://lmfdb.org/Genus2Curve/Q/1088.a.1088.1
http://www.lmfdb.org/EllipticCurve/2.2.8.1/17.1/a/1
http://www.lmfdb.org/NumberField/2.2.8.1
http://www.lmfdb.org/ModularForm/GL2/TotallyReal/2.2.8.1/holomorphic/2.2.8.1-17.1-a
http://lmfdb.org/Genus2Curve/Q/448.a.448.1
http://lmfdb.org/EllipticCurve/Q/32a3
http://lmfdb.org/EllipticCurve/Q/14a6
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/32/2/1/a/
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/14/2/1/a/
http://lmfdb.org/Genus2Curve/Q/3125.a.3125.1
http://www.lmfdb.org/NumberField/4.0.125.1
http://www.lmfdb.org/NumberField/4.0.125.1
http://www.lmfdb.org/ModularForm/GL2/TotallyReal/2.2.5.1/holomorphic/2.2.5.1-125.1-a
http://lmfdb.org/EllipticCurve/Q/32a3
http://lmfdb.org/EllipticCurve/Q/256d1
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/32/2/1/a/
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/256/2/1/d/
http://lmfdb.org/Genus2Curve/Q/196.a.21952.1
http://lmfdb.org/EllipticCurve/Q/14a1
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/14/2/1/a/
http://lmfdb.org/Genus2Curve/Q/576.a.576.1
http://lmfdb.org/EllipticCurve/2.2.8.1/9.1/a/3
http://www.lmfdb.org/NumberField/2.2.8.1
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/24/2/13/a/
http://lmfdb.org/Genus2Curve/Q/324.a.648.1
http://lmfdb.org/EllipticCurve/3.3.81.1/8.1/a/1
http://www.lmfdb.org/NumberField/3.3.81.1
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/18/2/13/a/
http://lmfdb.org/Genus2Curve/Q/256.a.512.1
http://www.lmfdb.org/EllipticCurve/4.4.2048.1/1.1/a/5
http://www.lmfdb.org/NumberField/4.4.2048.1
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/16/2/5/a/
http://lmfdb.org/Genus2Curve/Q/169.a.169.1
http://www.lmfdb.org/EllipticCurve/6.6.371293.1/1.1/a/3
http://www.lmfdb.org/NumberField/4.4.2048.1
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/13/2/4/a/
http://www.lmfdb.org/NumberField/2.0.3.1
http://www.lmfdb.org/NumberField/2.0.3.1
http://lmfdb.org/Genus2Curve/Q/3969.d.250047.1
http://www.lmfdb.org/EllipticCurve/2.0.3.1/[441,0,21]/a/3
http://www.lmfdb.org/NumberField/2.0.3.1
http://www.lmfdb.org/EllipticCurve/Q/15a2
http://www.lmfdb.org/EllipticCurve/Q/45a2
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/15/2/1/a/
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/45/2/1/a/
http://www.lmfdb.org/NumberField/4.0.576.2
http://www.lmfdb.org/ModularForm/GL2/TotallyReal/2.2.8.1/holomorphic/2.2.8.1-324.1-b
http://www.lmfdb.org/NumberField/6.0.2834352.2
http://www.lmfdb.org/NumberField/2.0.3.1
http://www.lmfdb.org/Genus2Curve/Q/20736.l.373248.1
http://www.lmfdb.org/NumberField/8.0.339738624.10
http://www.lmfdb.org/NumberField/2.0.3.1
http://www.lmfdb.org/NumberField/2.0.3.1
http://www.lmfdb.org/EllipticCurve/2.2.5.1/256.1/a/1
http://www.lmfdb.org/NumberField/2.2.5.1
http://www.lmfdb.org/ModularForm/GL2/TotallyReal/2.2.5.1/holomorphic/2.2.5.1-256.1-a
http://www.lmfdb.org/Genus2Curve/Q/2187.a.6561.1
http://www.lmfdb.org/NumberField/6.0.177147.2
http://www.lmfdb.org/NumberField/2.0.3.1
http://www.lmfdb.org/NumberField/4.0.13500.2
http://www.lmfdb.org/NumberField/2.0.4.1
http://www.lmfdb.org/NumberField/6.0.7200000.1
http://www.lmfdb.org/NumberField/2.0.3.1
http://www.lmfdb.org/EllipticCurve/2.2.24.1/1.1/a/2
http://www.lmfdb.org/NumberField/2.2.24.1
http://www.lmfdb.org/ModularForm/GL2/TotallyReal/2.2.24.1/holomorphic/2.2.24.1-1.1-a
http://www.lmfdb.org/EllipticCurve/Q/27/a/4
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/27/2/1/a/


Exploring the Langlands landscape in genus 2
On January 9, 2022 we launched the last in a series of three computations exploring
the Langlands correspondence in genus 2. We enumerated more than 1019 genus 2
curves looking for those with small conductor with the goal of expanding the LMFDB
and matching their L-functions to those of known automorphic forms of small level.

We used a total of 4,034,560 Intel/AMD cores in 73 data centers across the globe.



Exploring the Langlands landscape in genus 2
We found millions of genus 2 curves of small conductor, including the curve

C903 : y2 + (x2 + 1)y = x5 + 3x4 − 13x3 − 25x2 + 61x − 28

of conductor 903 and whose L-function coefficients match those of the paramodular
form of level 903 computed by Poor–Yuen. This was the last explicitly known
paramodular form that had not been matched to a genus 2 curve or abelian surface.
We also found curves of conductor 657, 760, 775, 924 not previously known to occur,
and many new genus 2 L-functions of small conductor:

conductor bound 1000 10000 100000 1000000
curves in LMFDB 159 3069 20265 66158
curves found 807 25438 447507 5151208

L-functions in LMFDB 109 2807 19775 65534
L-functions found 200 9409 212890 2426708



The L-function of a curve
Let X be a nice (smooth, projective, geometrically integral) curve of genus g over Q.
The L-function of X is defined by

L(X , s) = L(Jac(X ), s) :=
∑
n≥1

ann−s :=
∏
p

Lp(p−s)−1.

For primes p of good reduction for X we have the zeta function of Xp := X mod p:

Z (Xp; s) := exp

∑
r≥1

#X (Fpr )T r

r

 = Lp(T )
(1− T )(1− pT ) .

The L-polynomial Lp ∈ Z[T ] in the numerator satisfies

Lp(T ) = T 2gχp(1/T ) = 1− apT + · · ·+ pgT 2g

where χp(T ) is the charpoly of the Frobenius endomorphism of Jac(Xp).



The Selberg class with polynomial Euler factors
The Selberg class Spoly consists of Dirichlet series L(s) =

∑
n≥1 ann−s for which

1. L(s) has an analytic continuation that is holomorphic at s 6= 1;

2. For some γ(s) = Qs ∏r
i=1 Γ(λis + µi ) and ε, the completed L-function

Λ(s) := γ(s)L(s) satisfies the functional equation

Λ(s) = εΛ(1− s̄),

where Q > 0, λi > 0, Re(µi ) ≥ 0, |ε| = 1. Define deg L := 2
∑r

i λi .

3. a1 = 1 and an = O(nε) for all ε > 0 (Ramanujan conjecture).

4. L(s) =
∏

p Lp(p−s)−1 for some Lp ∈ Z[T ] with deg Lp ≤ deg L
(has an Euler product).

The Dirichlet series Lan(s,X ) := L(X , s + 1
2) satisfies (3) and (4),

and conjecturally lies in Spoly; for g = 1 this is known (via modularity).



The approximate functional equation
Let ΓC(s) = 2(2π)sΓ(s) and define Λ(X , s) := ΓC(s)gL(X , s). Then

Λ(X , s) = εN1−sΛ(X , 2− s).

for some root number ε = ±1 and analytic conductor N ∈ Z≥1 determined by the ap.
Let G(x) be the inverse Mellin transform of ΓC(s)g =

∫∞
0 G(x)x s−1dx , and define

S(x) := 1
x
∑
n≥1

anG(n/x),

so that Λ(X , s) =
∫∞
0 S(x)x−sdx , and for all x > 0 we have S(x) = εS(N/x).

The function G(x) decays rapidly, and for sufficiently large c0 we have

S(x) ≈ S0(x) := 1
x
∑

n≤c0x
anG(n/x),

with an explicit bound on the tail |S(x)− S0(x)|.



L-functions from nothing
As proposed by Booker and Farmer-Koutsoliotas-Lemurell, we can use the approximate
functional equation to test for the existence of (and even enumerate) L-functions in
Spoly with a given conductor N and root number ε.

Proof that there are no degree 2 rational L-functions of motivic weight 1 in Spoly for
N = 13 and ε = 1:


