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Algebraic curves

Solutions to a polynomial equation f(x,y) = 0:

y=2x+1 x2+y2=1

V=x4+3x—5x+4 At 4y  —xy 2y +1=0
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Algebraic curves

Solutions to a polynomial equation f(x,y) = 0:

y=2x+1 Py =1

V=x4+3x—5x+4 At 4y  —xy 2y +1=0

How many points are on these curves?
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Counting points modulo p

Let’s counts points on the curve x> + y? = 1 mod p.
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Counting points modulo p

Let’s counts points on the curve x> + y? = 1 mod p.

7 11 13 17 19 23 29

p 3 5
4 4 8 12 12 16 20 24 28 p+1
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Counting points modulo p

Let’s counts points on the curve x* +y? = 1 mod p.

7 11 13 17 19 23 29

p 3 5
4 4 8 12 12 16 20 24 28 p+1

Actually, we really should count the distinct (nonzero) projective
points (x,y,z) ~ (cx, cy, cz) on the curve x2 + y* = z2 mod p.
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Counting points modulo p

Let’s counts points on the curve x* +y? = 1 mod p.

7 11 13 17 19 23 29

p 3 5
4 4 8 12 12 16 20 24 28 p+1

Actually, we really should count the distinct (nonzero) projective
points (x,y,z) ~ (cx, cy, cz) on the curve x2 + y* = z2 mod p.

p 3 5 7 11 13 17 19 23 29
4 6 8 12 14 18 20 24 30 p+1
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The Hasse-Weil bound

The number of points on a genus g curve over F, is
p+1—t,
where the trace of Frobenius t, is an integer satisfying

It,| < 2g+/p.
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The Hasse-Weil bound

The number of points on a genus g curve over F, is
p+1—t,
where the trace of Frobenius t, is an integer satisfying

It,] < 2g+/P-

So x, =1t,/,/p is a real number in the interval [—2g, 2g].
P 14

What is the distribution of x, as p varies?
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The Hasse-Weil bound

The number of points on a genus g curve over F, is
p+1—t,
where the trace of Frobenius t, is an integer satisfying

It,| < 2g+/p.

So x, =1t,/,/p is a real number in the interval [—2g, 2g].
P 14

What is the distribution of x, as p varies?

Let’'s compute the distribution of x, over p < N, then look at
what happens as N — oo.
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Sato-Tate distributions in genus 1 (over Q)

1. Typical case (no CM)
All elliptic curves without CM have the semi-circular distribution.
[Clozel, Harris, Shepherd-Barron, Taylor, Barnet-Lamb, and Geraghty]

2. Exceptional case (CM)
All elliptic curves with CM have the same exceptional distribution.

[classical]
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Zeta functions and L-polynomials

For a smooth projective curve C/Q and a good prime p define

Z(C/F,;T) = exp (Z NkT"/k> ,

k=1
where Ny = #C/F . This is a rational function of the form

Ly(T)

AT = =gy =1y

where L,(T) is an integer polynomial of degree 2g. For g = 2:

L,(T) = p*T* + c1pT® + copT* + 1T + 1.
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Unitarized L-polynomials

The polynomial
2g
Ly(T) =L,(T/\p) =) _aT'
i=0

has coefficients that satisfy a; = a,—; and |a;| < (2.8).

1

Given a curve C, we may consider the distribution of ay, a, .
taken over primes p < N of good reduction, as N — oo.

.., g,

In this talk we will focus on genus g = 2.

http://math.mit.edu/~drew
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The random matrix model

L,(T) is a real symmetric polynomial whose roots lie on the unit circle.

Andrew V. Sutherland (MIT) Telescopes for Mathematicians September 2, 2011 8/28



The random matrix model

L,(T) is a real symmetric polynomial whose roots lie on the unit circle.

Every such polynomial arises as the characteristic polynomial x(7') of
a unitary symplectic matrix in C?8*2,
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The random matrix model
L,(T) is a real symmetric polynomial whose roots lie on the unit circle.

Every such polynomial arises as the characteristic polynomial x(7') of
a unitary symplectic matrix in C?8*2,

Conjecture (Katz-Sarnak)

For a typical curve of genus g, the distribution of L, converges to the
distribution of x in USp(2g).

This conjecture has been proven “on average” for universal families of
hyperelliptic curves, including all genus 2 curves, by Katz and Sarnak.
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The Haar measure on USp(2g)

Let e*91 ... %% denote the eigenvalues of a random conjugacy
class in USp(2g). The Weyl integration formula yields the measure

u= ;(H(Z cos 0 — 2 cos Sk)>2 H (i sin? ejde,) .

J<k J

In genus 1 we have USp(2) = SU(2) and p = 2 sin® 640, which is the
semi-circular distribution.

Note that —a; = }_ 2cos 6, is the trace.
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L,-distributions in genus 2

Our goal was to understand the L,-distributions that arise in genus 2,
including all the exceptional cases.

This presented three challenges:

@ Collecting data.
@ |dentifying and distinguishing distributions.

@ Classifying the exceptional cases.
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Collecting data

There are four ways to compute L, in genus 2:
@ point counting: O(p?).
@ group computation: O(p3/4).
© p-adic methods: O(p'/?).
@ (-adic methods: O(1).
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Collecting data

There are four ways to compute L, in genus 2:
@ point counting: O(p?).

@ group computation: O(p3/4).

© p-adic methods: O(p'/?).

@ (-adic methods: O(1).

For the feasible range of p < N, we found (2) to be the best.

We can accelerate the computation with partial use of (1) and (4).

Computing L-series of hyperelliptic curves, ANTS VIII, 2008, KS.
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Time to compute L, forall p < N

N 2 cores 16 cores
216 1 <1
217 4 2
218 12 3
219 40 7
220 2:32 24
221 10:46 1:38
2% 40:20 5:38
2% 2:23:56 19:04
2% 8:00:09 1:16:47
2% 26:51:27 3:24:40
226 11:07:28
277 36:48:52
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Characterizing distributions

The moment sequence of a random variable X is
M[X] = (EX"],EX'],EX?, ...).

Provided X is suitably bounded, M[X] exists and uniquely determines
the distribution of X.

Given sample values xi, ..., xy for X, the nth moment statistic is the
mean of x}. It converges to E[X"] as N — oo.

Andrew V. Sutherland (MIT) Telescopes for Mathematicians September 2, 2011 13/28



Characterizing distributions

The moment sequence of a random variable X is
M[x] = (EX°), EX'], E[X?], . ..).

Provided X is suitably bounded, M[X] exists and uniquely determines
the distribution of X.

Given sample values xi, ..., xy for X, the nth moment statistic is the
mean of x}. It converges to E[X"] as N — oo.

If X is a symmetric integer polynomial of the eigenvalues of a random
matrix in USp(2g), then M[X] is an integer sequence.

This applies to all the coefficients of x(T).
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Trace moment sequence in genus 1 (typical curve)

Using the measure pin genus 1, for t = —a; we have
s

2
Elf"] = —J (2 cos 0)" sin” 0d0.
7t Jo
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Trace moment sequence in genus 1 (typical curve)

Using the measure pin genus 1, for t = —a; we have
2 s
Elf"] = —J (2 cos 8)" sin 046.
T Jo

This is zero when n is odd, and for n = 2m we obtain

1 2m
E[*"] = :
7 2m+l(m>

Ml = (1,0,1,0,2,0,5,0,14,0,42,0,132,...).

and therefore

This is sequence A126120 in the OEIS.
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Trace moment sequence in genus g > 1 (typical curve)

A similar computation in genus 2 yields
M[1] =(1,0,1,0,3,0,14,0,84,0,594,...),
which is sequence A138349, and in genus 3 we have
Ml = (1,0,1,0,3,0,15,0,104,0,909,...),
which is sequence A138540.

In genus g, the nth moment of the trace is the number of returning
walks of length n on Z8 with x; > x; > - -+ > x, > 0 [Grabiner-Magyar].
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Exceptional trace moment sequence in genus 1

For an elliptic curve with CM we find that

El#™ = 1(2’") form >0
2\ m

yielding the moment sequence
Ml =(1,0,1,0,3,0,10,0,35,0,126,0,...),

whose even entries are A008828.
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An exceptional trace moment sequence in Genus 2

For a hyperelliptic curve whose Jacobian is isogenous to the
direct product of two elliptic curves, we compute M[t] = M|t + t,] via

Bl +6)]= Y <’;‘>E[4]E[tm.
For example, using

Mly] = (1,0,1,0,2,0,5,0,14,0,42,0,132,...),
M) = (1,0,1,0,3,0,10,0,35,0, 126, 0,462, .. .),

we obtain A138551,
Ml = (1,0,2,0,11,0,90,0,889,0,9723,...).

The second moment already differs from the standard sequence, and
the fourth moment differs greatly (11 versus 3).
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Searching for exceptional curves (take 1 [KS2009])

We surveyed the trace-distributions of genus 2 curves
y2 =X + C4x4 + 63x3 + c2x2 + c1x + co,
y2 = b6x6 + b5x5 + b4x4 + b3x® + box® + byx + by,

with integer coefficients |c;| < 64 and |b;| < 16, over 23¢ curves.

We initially set N ~ 2!, discarded about 99% of the curves (those
whose moment statistics were “unexceptional”), then repeated this
process with N = 2'° and N = 220,

We eventually found some 30,000 non-isogenous exceptional curves
and a total of 23 distinct trace distributions.

Representative examples were computed to high precision N = 2%.
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Searching for exceptional curves (take 1 [KS2009])

We surveyed the trace-distributions of genus 2 curves
y2 =X + C4x4 + 63x3 + c2x2 + c1x + co,

y2 = b6x6 + b5x5 + b4x4 + b3x® + box® + byx + by,
with integer coefficients |c;| < 64 and |b;| < 16, over 23¢ curves.

We initially set N ~ 2!, discarded about 99% of the curves (those
whose moment statistics were “unexceptional”), then repeated this
process with N = 2'° and N = 220,

We eventually found some 30,000 non-isogenous exceptional curves
and a total of 23 distinct trace distributions.

Representative examples were computed to high precision N = 2%.

These results suggested a candidate 24th trace distribution,
but we were unable to find any examples...
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Searching for exceptional curves (take 1 [KS2009])

We surveyed the trace-distributions of genus 2 curves
y2 =X + C4x4 + 63x3 + c2x2 + c1x + co,

y2 = b6x6 + b5x5 + b4x4 + b3x® + box® + byx + by,
with integer coefficients |c;| < 64 and |b;| < 16, over 23¢ curves.

We initially set N ~ 2!, discarded about 99% of the curves (those
whose moment statistics were “unexceptional”), then repeated this
process with N = 2'° and N = 220,

We eventually found some 30,000 non-isogenous exceptional curves
and a total of 23 distinct trace distributions.

Representative examples were computed to high precision N = 2%.

These results suggested a candidate 24th trace distribution,
but we were unable to find any examples...
...but in Dec 2010, Fité and Lario constructed just such a curve!
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Random matrix subgroup model

Conjecture (Generalized Sato-Tate — naive form)

For a genus g curve C, the distribution of L,(T) converges to the
distribution of x(T') in some infinite compact subgroup G C USp(2g).

The group G must satisfy several “Sato-Tate axioms”.
These imply that the number of possible Sato-Tate groups of a given
genus is bounded: at most 3 in genus 1 and 55 in genus 2.
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Sato-Tate groups in genus 1

The Sato-Tate group of an elliptic curve without CM is USp(2) = SU(2).
For CM curves (over Q), consider the following subgroup of SU(2):
cos® sinB icos® isin®
H= {(—sine cos(%)) ’ <isin9 —icos@) 0 € [0,271]} ’

the normalizer of SO(2) = U(1) in SU(2).

H is a (disconnected) compact group whose Haar measure yields the
correct trace moment sequence for a CM curve.

The third Sato-Tate group in genus 1 is simply U(1), which occurs for
CM curves E/k where the number field k contains the CM-field of E.
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Sato-Tate groups in genus 2 (predicted)

There are a total of 55 groups G C USp(4) (up to conjugacy) that
satisfy the Sato-Tate axioms, of which 3 can be ruled out [Serre].
Of the remaining 52, only 34 can occur over Q.

There are 6 possibile identity components G°.
The component group G/G? is a finite group whose order divides 48.

G° Number of groups  over Q
U(l) 32 18
U(1) x U(1) 5 2
SU(2) 10 10
U(1) x SU(2) 2 1
SU(2) x SU(2) 2 2
USp(4) 1 1

There are a total of 36 distinct trace distributions,
26 of which can occur over Q.
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Searching for exceptional curves (take 2 [FKRS11])

We surveyed the trace-distributions of genus 2 curves
y2 =X + C4x4 + C3x3 + czx2 + c1x + co,
y2 =x0 + C5x5 + 04x4 + C3x3 + czx2 + c1x + co,
with integer coefficients |c;| < 128, over 2% curves.

We specifically searched for curves with zero trace density > 1/2.

We found over 10 million non-isogenous exceptional curves, including
at least 3 examples matching each of the 34 Sato groups over Q.

Representative examples were computed to high precision N = 2%,
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Key optimizations

@ Very fast algorithm (100ns per curve) to quickly compute the
number of zero traces up to a small bound. This let us quickly
discard curves that did not have many zero traces at small primes.
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Key optimizations

@ Very fast algorithm (100ns per curve) to quickly compute the
number of zero traces up to a small bound. This let us quickly
discard curves that did not have many zero traces at small primes.

@ Additional group invariants z;; defined by
Prla; = jl = z;j/c,

where ¢ = #G/G°, used to more quickly classify distributions.
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Key optimizations

@ Very fast algorithm (100ns per curve) to quickly compute the
number of zero traces up to a small bound. This let us quickly
discard curves that did not have many zero traces at small primes.

@ Additional group invariants z;; defined by
Prla; = jl = z;j/c,

where ¢ = #G/G°, used to more quickly classify distributions.

© More efficient handling of curves in sextic form allowed us to
efficiently compute a, moments for every curve.
(This is crucial for distinguishing several distributions).
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Sato-Tate groups in genus 2 (exhibited)

For each of the 34 genus 2 Sato-Tate groups that can occur over Q,
we can exhibit a genus 2 curve with a closely matching L, distribution.
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Sato-Tate groups in genus 2 (exhibited)

For each of the 34 genus 2 Sato-Tate groups that can occur over Q,
we can exhibit a genus 2 curve with a closely matching L, distribution.

By considering a subset of these curves over suitable number fields,
we can obtain the remaining 18 Sato-Tate distributions in genus 2.
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Sato-Tate groups in genus 2 (exhibited)

For each of the 34 genus 2 Sato-Tate groups that can occur over Q,
we can exhibit a genus 2 curve with a closely matching L, distribution.

By considering a subset of these curves over suitable number fields,
we can obtain the remaining 18 Sato-Tate distributions in genus 2.

We now have curves matching all 52 Sato-Tate groups in genus 2.

Andrew V. Sutherland (MIT) Telescopes for Mathematicians September 2, 2011 25/28



Sato-Tate groups in genus 2 (exhibited)

For each of the 34 genus 2 Sato-Tate groups that can occur over Q,
we can exhibit a genus 2 curve with a closely matching L, distribution.

By considering a subset of these curves over suitable number fields,
we can obtain the remaining 18 Sato-Tate distributions in genus 2.

We now have curves matching all 52 Sato-Tate groups in genus 2.

In 51 of 52 cases (all but the generic case) we can prove that the
distributions match [FKRS11].
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ST Group GenusZcurvey2 =f(x) Field Type [KS]
c=u(l) O+ Q(v=3)  #27
[} X —x Q(V=2) #13
[eN 2044 QV3) #28
Cy WO st 52—y QVv=2) #29
Cg KO 42 Q(v=3) #30
Dy O 4 9x Q(v=2)  #21
Dy 0423 42 Q(v=6) #12
Dy X 43 Q(v=2) #17
Dg 204325 4103 —15:2 +15x —6 Q(v/=3)  #15
J(cy) P Qi) #13
J(Cy) O —x Q #21
J(C3) 0423 42 QV=3) #12
7(Cy) B L e Q #17
J(Cq) 20— 156 — 2083 6x +1 Q #15
J(Dy) ¥ 4ox Q #23
J(D3) 0423 42 Q #20
J(Dy) O +3x Q #22
J(Dg) 20430 41003 — 152 - 15x —6 Q #24
Dg1 WO 6 30 408 602 +24x—8  Q #20
G KO 41 Q #13
Cy B 42 Qi) #21
Ce,1 X0 +32% — 253 4302 —9x +1 Q #12
Dy ¥ 4x Q #21
2 © 42 Q #23
Dy~ X 44 Q #12
D, O x5 4103 4522 4x—2 Q #17
Dg- 042 Q #15
T 20 p6xd —200% 2003 — 2002 — 8y 48 Q(v—=2)  #31
o 20 5t 10 — 52 ox—1 Q(v—2)  #32
0, O 475 10t +1083 4152 +17x+4  Q #25
J(T) 20 65 — 206 42003 — 2002 —8x +8 Q #25
J(0) KO 5t 1083 —52 por—1 Q #26
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ST Group Genus 2 curve y2 = f(x) Field Type [KS]

F=U(1) xU(1) KO 433 42— Q(i,v2)  #33
Fa KO 33 a2 Q) #34
Fop WO 433 a2 —1 Q(Vv2) #35
Fac + Q #19
Fap O pnt a2 Q #3
Ep =SU(2) PR P | Q #5
Ey St rad 22 42 Q #11
Ej St -3 a2 Q #4
Ey St a2 —x Q #7
Eg O 4at -8 -2 —x Q #6
J(E}) O+ 4x Q #11
J(Ey) O 43 —x Q #18
J(E3) O3 44 Q #10
J(Eg) O 4 42 Q #16
J(Eg) O 432 Q #14
U(1) x SU(2) KO 4342 Qi) #36
N(U(1) X SU(2)) WOt 2 Q #3
SU(2) X SU(2) WO a2 Q #
N(SU(2) x SU(2)) O S px—1 Q #9
USp(4) S dx1 Q #1
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