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Definitions

Let E be an elliptic curve over a number field K .

Let L = K (E [`]) be the Galois extension of K obtained by
adjoining the coordinates of the `-torsion points of E(K̄ ) to K .

The Galois group Gal(L/K ) acts linearly on the `-torsion points

E [`] ' Z/`Z⊕ Z/`Z,

yielding a group representation

ρE ,` : Gal(L/K ) −→ Aut(E [`]) ' GL2(Z/`Z).

This is the mod-` Galois representation attached to E .
This works for any integer ` > 1, but we shall assume ` is prime.
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Surjectivity

For E without complex multiplication, ρE ,` is usually surjective.
Conversely, if E has CM then ρE ,` is never surjective for ` > 2.

Theorem (Serre)
Let K be a number field and assume E/K does not have CM.
Then im ρE ,` = GL2(Z/`Z) for all sufficiently large primes `.

Conjecture
For each number field K there is a uniform bound `max such that
im ρE ,` = GL2(Z/`Z) for all E/K and all primes ` > `max.

For K = Q, it is believed that `max = 37.
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Non-surjectivity

If E has a rational point of order `, then ρE ,` is not surjective.
For E/Q this occurs for ` ≤ 7 (Mazur).

If E admits a rational `-isogeny, then ρE ,` is not surjective.
For E/Q without CM, this occurs for ` ≤ 17 and ` = 37 (Mazur).

But ρE ,` may be non-surjective even when E does not admit a
rational `-isogeny. Even when E has a rational `-torsion point,
this does not determine the image of ρE ,`.

Classifying the possible images of ρE ,` that arise over Q
may be viewed as a refinement of Mazur’s theorems.

One can consider the same question for any number field K ,
but we will focus on K = Q.
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Computing the image of Galois the hard way

In principle, there is a very simple algorithm to compute the
image of ρE ,` in GL2(Z/`Z) (up to conjugacy):

1. Construct the field L = K (E [`]) as an (at most quadratic)
extension of the splitting field of E ’s `th division polynomial.

2. Pick a basis (P,Q) for E [`] and determine the action of
each element of Gal(L/K ) on P and Q.

In practice this is computationally feasible only for very small `
(say ` ≤ 7); the degree of L is typically on the order of `4.

Indeed, this is substantially more difficult than “just” computing
the Galois group, which is already a hard problem.

We need something faster, especially if we want to compute
lots of Galois images (which we do!).
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Main results

A very fast algorithm to compute im ρE ,` up to isomorphism,
(and usually up to conjugacy), for elliptic curves over number
fields of low degree and moderate values of ` (say ` < 200).

If ρE ,` is surjective, the algorithm proves this unconditionally.
If not, its output is heuristically correct with very high probability
(in principle, this can also be made unconditional).

The current implementation handles elliptic curves over Q and
quadratic number fields, and all primes ` < 80.

The algorithm can be extended to handle composite values of `
(this is work in progress).
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Main results

We have used the algorithm to compute the mod-` Galois
image of every elliptic curve in the Cremona and Stein-Watkins
databases for all primes ` < 80.

This includes some 139 million curves, including all curves of
conductor ≤ 300,000.

We also analyzed more than 1010 curves in various families.

The result is a conjecturally complete classification of 63
non-surjective mod-` Galois images that can arise for an
elliptic curve E/Q without CM.
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A probabilistic approach

Let Ep denote the reduction of E modulo a good prime p 6= `.

The action of the Frobenius endomorphism on Ep[`] is given by
(the conjugacy class of) an element Ap,` ∈ im ρE ,` with

tr Ap,` ≡ ap mod ` and det Ap,` ≡ p mod `,

where ap = p + 1−#Ep(Fp) is the trace of Frobenius.

By varying p, we can “randomly” sample im ρE ,`.
The Čebotarev density theorem implies equidistribution.
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Example: ` = 2

GL2(Z/2Z) ' S3 has 6 subgroups in 4 conjugacy classes.
For H ⊆ GL2(Z/2Z), let ta(H) = #{A ∈ H : tr A = a}.
Consider the trace frequencies t(H) = (t0(H), t1(H)):

1. For GL2(Z/2Z) we have t(H) = (4,2).
2. The subgroup of order 3 has t(H) = (1,2).
3. The 3 conjugate subgroups of order 2 have t(H) = (2,0)

4. The trivial subgroup has t(H) = (1,0).

1,2 are distinguished from 3,4 by a trace 1 element (easy).
We can distinguish 1 from 2 by comparing frequencies (harder).
We cannot distinguish 3 from 4 at all (impossible).

Sampling traces does not give enough information!
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Using the fixed space of Ap

The `-torsion points fixed by the Frobenius endomorphism
form the Fp-rational subgroup Ep[`](Fp) of Ep[`]. Thus

fix Ap = ker(Ap − I) = Ep[`](Fp) = Ep(Fp)[`]

It is easy to compute Ep(Fp)[`], and this gives us information
that cannot be derived from ap alone.

We can now easily distinguish the subgroups of GL2(Z/2Z) by
looking at pairs (ap, rp), where rp is the `-rank of fix Ap.

There are three possible pairs, (0,2), (0,1), and (1,0).
The subgroups of order 2 contain (0,2) and (0,1).
The subgroup of order 3 contains (0,2) and (1,0).
The trivial subgroup contains (0,2).
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Subgroup signatures

The signature of a subgroup H of GL2(Z/`Z) is defined by

sH = {
(
det A, tr A, rk fix A

)
: A ∈ H}.

Note that sH is invariant under conjugation.
Remarkably, sH determines the isomorphism class of H.

Theorem
Let ` be a prime and let G and H be subgroups of GL2(Z/`Z)
with surjective determinant maps. If sG = sH then G ' H.
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The subgroup lattice of GL2(Z/`Z)

Our strategy is to determine im ρE ,` by identifying its location in
the lattice of (conjugacy classes of) subgroups of GL2(Z/`Z).

For any subgroup H ⊆ GL2(Z/`Z), we say that a set of triples s
is minimally covered by sH if we have s ⊂ sH , and also
s ⊂ sG =⇒ sH ⊂ sG for all subgroups G ⊆ GL2(Z/`Z).

If s is minimally covered by both sG and sH , then G ' H.
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The algorithm

Given an elliptic curve E/Q, a prime `, and ε > 0,
set s ← ∅, k ← 0, and for each good prime p 6= `:

1. Compute ap = p + 1−#E(Fp) and rp = rk(E(Fp)[`]).

2. Set s ← s ∪ (p mod `,ap mod `, rp) and increment k .

3. If s is minimally covered by sH , for some H ⊆ GL2(Z/`Z),
and if δk

H < ε, then output H and terminate.

Here δH is the maximum over G ) H of the probability that the
triple of a random A ∈ G lies in sH (zero if H = GL2(Z/`Z)).

The values of sH and δH are precomputed all H.
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Efficient implementation

If ρE ,` is surjective, we expect the algorithm to terminate in
O(log `) iterations, typically less than 10 for ` < 80.

Otherwise, if ε = 2−n we expect to need O(log `+ n) iterations,
typically less than 2n (we use n = 256).

By precomputing the values ap and rp for every elliptic curve
E/Fp for all primes p up to, say, 216, the algorithm is essentially
just a sequence of table-lookups, which makes it very fast.

It takes just two minutes to analyze all 1,887,909 curves
in Cremona’s tables for all ` < 80 (on a single core).

Precomputing the sH and δH is non-trivial, but this only ever
needs to be done once for each prime `.
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Distinguishing conjugacy classes

Among the non-surjective Galois images that arise with ` < 80
for elliptic curves over Q without CM and conductor ≤ 300000,
there are 45 distinct signatures.

These correspond to 63 possible conjugacy classes.

How can we determine which of these actually occur?
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Example: ` = 3

In GL2(Z/3Z) both of the subgroups

H1 = 〈
(

1 1
0 1

)
,
(

1 0
0 2

)
〉 and H2 = 〈

(
1 1
0 1

)
,
(

2 0
0 1

)
〉

have signature {(1,2,1), (2,0,1), (1,2,2)}, isomorphic to S3.

Every element of H1 and H2 has 1 as an eigenvalue.
In H1 the 1-eigenspaces all coincide, but in H2 they do not.

H1 corresponds to an elliptic curve with a rational point of
order 3, whereas H2 corresponds to an elliptic curve that has a
rational point of order 3 locally everywhere, but not globally.
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Distinguishing conjugacy classes

Let dH denote the least index of a subgroup of H that fixes a
nonzero vector in (Z/`Z)2. Then dH1 = 1, but dH2 = 2.

For H = im ρE ,`, the quantity dH is the degree of the minimal
extension L/K over which E has an L-rational point of order `.
This can be determined using the `-division polynomial.

Using dH and sH we can determine the conjugacy class of
H = im ρE ,` in all but one case that arises among the 45
signatures we have found. In this one case, we compute im ρE ,`
the hard way (for just a few curves).

It turns out that all 63 of the identified conjugacy classes do
arise as the Galois image of an elliptic curve over Q.
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Non-surjective Galois images for E/Q w/o CM and conductor ≤ 300000.
` gap id index dH δH � ap � Np type −1 count
2 1.1 6 1 .50 no no Cs yes 67231

2.1 3 1 .50 no no B yes 772463
3.1 2 3 .33 yes yes Cns yes 3652

3 2.1 24 1 .25 no no ⊂ Cs no 1772
4.2 12 2 .17 yes no Cs yes 3468
6.1 8 1 .25 no no ⊂ B no 38202
6.1 8 2 .25 no no ⊂ B no 38202
8.3 6 4 .25 yes yes N(Cs) yes 1394
12.4 4 2 .38 yes no B yes 91594
16.8 3 8 .17 yes yes N(Cns) yes 3178

5 4.1 120 1 .20 no no ⊂ Cs no 7
4.1 120 2 .20 no no ⊂ Cs no 4
8.2 60 2 .10 yes no ⊂ Cs yes 174
16.2 30 4 .05 yes yes Cs yes 26
16.6 30 8 .25 yes yes ⊂ N(Cns) yes 40
20.3 24 4 .38 no no ⊂ B no 1158
20.3 24 4 .38 no no ⊂ B no 455
20.3 24 1 .38 no no ⊂ B no 1158
20.3 24 2 .38 no no ⊂ B no 455
32.11 15 8 .33 yes yes N(Cs) yes 288
40.12 12 4 .25 yes no ⊂ B yes 3657
40.12 12 2 .25 yes no ⊂ B yes 3657
48.5 10 24 .33 yes yes N(Cns) yes 266
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Non-surjective Galois images for E/Q w/o CM and conductor ≤ 300000.
` gap id index dH δH � ap � Np type −1 count
5 80.30 6 4 .42 yes yes B yes 2352

96.67 5 24 .22 yes yes � S4 yes 844
7 18.3 112 6 .25 yes no ⊂ N(Cs) no 2

36.12 56 12 .33 yes no ⊂ N(Cs) yes 26
42.4 48 3 .25 no no ⊂ B no 18
42.4 48 6 .25 no no ⊂ B no 18
42.1 48 1 .42 no no ⊂ B no 66
42.1 48 6 .42 no no ⊂ B no 66
42.1 48 2 .42 no no ⊂ B no 29
42.1 48 3 .42 no no ⊂ B no 29
72.30 28 12 .40 yes yes N(Cs) yes 32
84.12 24 6 .67 yes no ⊂ B yes 76
84.7 24 2 .44 yes no ⊂ B yes 495
84.7 24 6 .44 yes no ⊂ B yes 495
96.62 21 48 .36 yes yes N(Cns) yes 36
126.7 16 3 .25 yes yes ⊂ B no 143
126.7 16 6 .25 yes yes ⊂ B no 143
252.28 8 6 .44 yes yes B yes 495

11 110.1 120 10 .45 no no ⊂ B no 1
110.1 120 5 .45 no no ⊂ B no 1
110.1 120 10 .45 no no ⊂ B no 1
110.1 120 5 .45 no no ⊂ B no 1
220.7 60 10 .64 no no ⊂ B yes 54
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Non-surjective Galois images for E/Q w/o CM and conductor ≤ 300000.

` gap id index dH δH � ap � Np type −1 count
220.7 60 10 .64 no no ⊂ B yes 54
240.51 55 120 .41 yes yes N(Cns) yes 4

13 288.400 91 72 .25 yes yes � S4 yes 20
468.29 56 12 .38 yes yes ⊂ B no 4
468.29 56 3 .38 yes yes ⊂ B no 4
468.29 56 12 .38 yes yes ⊂ B no 1
468.29 56 6 .38 yes yes ⊂ B no 1
624.155 42 12 .67 yes no ⊂ B yes 12
624.119 42 4 .44 yes yes ⊂ B yes 20
624.119 42 12 .44 yes yes ⊂ B yes 20
936.171 28 12 .25 yes yes ⊂ B yes 85
936.171 28 6 .25 yes yes ⊂ B yes 85
1872.576 14 12 .46 yes yes B yes 192

17 1088.1674 8 72 .38 yes yes ⊂ B yes 12
1088.1674 16 72 .38 yes yes ⊂ B yes 12

37 15984 114 36 .44 yes yes ⊂ B yes 20
15984 114 12 .44 yes yes ⊂ B yes 20
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