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Creating a shared secret
Shared secrets enable fast secure communication. Classical methods:

RSA Alice picks a random a ∈ [1, n] and sends ae mod n to Bob.
Bob computes (ae)d = a, where d ≡ e−1 mod lcm(p − 1, q − 1).
• n and e are public, while d (and pq = n) is secret.
• security: hard to compute d (or p and q).
• 128-bit security: take n ≥ 23072.

DH Alice pick a random a ∈ [1, p] and sends ra mod p to Bob.
Bob picks a random b ∈ [1, p] and sends rb mod p to Alice.
Alice computes (rb)a = rab and Bob computes (ra)b = rab.

• r and p are public (no fixed secrets).
• security: hard to compute r ab given r a, rb (or a given r a).
• 128-bit security: take p ≥ 23072.

Advantage of DH over RSA: forward secrecy.
Advantage of RSA over DH: no man-in-the-middle attack.
Disadvantage of both: large key size (due to subexponential-time attacks).



Security assumptions

All cryptographic protocols depend on the assumption that some easily
computable function is hard to invert.

RSA: For x ∈ (Z/nZ)× the function x 7→ x e is easy to compute but hard
to invert if you do not know #(Z/nZ)× = (p − 1)(q − 1).
Here the base x is secret; the exponent e and modulus n are public.

DH: For x ∈ (Z/pZ)× the function x 7→ r x is easy to compute but hard to
invert. (more precisely, the function (ra, rb) 7→ rab is hard to compute).
Here the exponent x is secret; the base r and modulus p are public.

The inverse of the function x 7→ r x is the discrete logarithm y 7→ logr y .

Both RSA and DH can be broken in exp(O( 3
√
log n(log log n)2)) time

using randomized algorithms based on the number field sieve.
This explains the 3072-bit key size needed for 128-bit security.
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Elliptic curves
Definition
An elliptic curve over a field k is a smooth projective curve of genus 1 with
a distinguished k-rational point.

Provided char(k) 6= 2, 3, every elliptic curve can be written in the form

E : y2 = x3 + ax + b

with a, b ∈ k. In projective coordinates this equation becomes

E : y2z = x3 + axz2 + bz3,

and the point (0 : 1 : 0) “at infinity” is our distinguished rational point.

Theorem
Let E/k be an elliptic curve with distinguished point O. The set E (k) of
k-rational points has a natural abelian group structure with identity O.



The elliptic curve group law

Key fact: For P,Q ∈ E (k) the line PQ intersects E in a rational point.

Group law: Three points on a line sum to zero.



Elliptic curve Diffie-Hellman (ECDHE)

Alice picks a random a ∈ [1, p] and sends aP :=
a︷ ︸︸ ︷

P + · · ·+ P to Bob.
Bob pick a random b ∈ [1, p] and sends bP to Alice.
Alice authenticates bP and computes abP, Bob computes baP = abP.

E/Fp with n = #E (Fp) and point P ∈ E (Fp) are public.
security: hard to compute abP given aP, bP (or a given aP).
128-bit security: take p ≥ 2256.

All the advantages of DH with much smaller key size.
To avoid man in the middle attack Bob uses private RSA key to sign bP
(which Alice authenticates using Bob’s certified public RSA key).

ECDHE is a standard part of the transport security layer (TLS)
underlying the secure hyper text transfer protocol (https).
As of 2018, more than 70% of all internet traffic uses this protocol.

Disadvantage: poly-time quantum attack (6 log p qbits =⇒ Õ(log3p))
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The discrete logarithm problem
In a classical computing model the difficulty of the discrete logarithm
problem depends critically on the representation of the underlying group G :

G = Z/pZ: Computing logb a = 1
ba takes quasi-linear time using the

fast Euclidean algorithm to compute b−1 mod p.
G = (Z/pZ)×: Best known algorithms take subexponential time.
G = E (Fp): Best known algorithms take exponential time O(√p).
G a black box group of order p: All algorithms take Ω(√p) time
(Shoup 1997).

In a quantum computing model this is no longer true. Shor’s algorithm
factors an integer n by using a QFT to compute #(Z/nZ)× in O(log3n)
quantum bit-operations. This algorithm can be generalized to compute
discrete logarithms in any cyclic group whose group operation can be
computed using modular arithmetic in O((log n)3) time.

See arXiv:quant-ph/0301141 and ePrint:2017/598 for ECDLP details.

https://arxiv.org/abs/quant-ph/0301141
https://eprint.iacr.org/2017/598
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Post-quantum cryptography

The potential threat of future quantum-based attacks on public-key
cryptosystems led NIST to issue a formal Request for Proposal soliciting
“post-quantum cryptographic algorithms” in December 2016.

By the December 2017 deadline for round one submissions they had
received 69 proposals. Most of these are based on lattice or coding theory
problems that are not believed to be susceptible to quantum attacks.

One proposal (SIKE) uses elliptic curves. Rather than working in the
group of rational points on a single elliptic curve, it works with isogeny
graphs of supersingular elliptic curves a single finite field.

Since then other isogeny-based protocols have been proposed, notably
including CSIDH. The main advantage of isogeny-based protocols is that
they are well understood, offer an easy to implement drop-in replacement
for ECDHE, and have smaller key sizes than lattice-based approaches.

https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions


Morphisms and isogenies

Let E1 and E2 be elliptic curves over a field k.

A morphism ϕ : E1 → E2 is a map defined by rational functions that sends
the distinguished point of E1 to the distinguished point of E2.

Morphisms that are not the zero map are called isogenies.
Isogenies induce group homomorphisms E1(k)→ E2(k) with finite kernel.
Conversely, every finite subgroup of E1(k) is the kernel of an isogeny.

Example: For every nonzero integer n the map [n] : E → E defined by
P 7→ nP is an isogeny whose kernel in E (k) is denoted E [n].

Example: For k = Fp the map defined by (x : y : z) 7→ (xp : yp : zp) is
an isogeny with trivial kernel known as the Frobenius endomorphism.



Endomorphism rings
The set of endomorphisms of an elliptic curve E form a ring End(E ):

(ϕ+ ψ)(P) := ϕ(P) + ψ(P)
(ϕψ)(P) := ϕ(ψ(P)).

This ring includes a subring isomorphic to Z generated by the maps [n],
but it may be larger than this (over a finite field it always is).

Theorem
The additive group of End(E ) is isomorphic to Zr with r = 1, 2, 4.
For r = 1, 2 the ring End(E ) is commutative, but for r = 4 it is not.

An elliptic curve E over a finite field Fq of characteristic p is supersingular
if any of the following equivalent conditions holds

(a) E [p] = {0}, (b) rk(End(EFq)) = 4, (c) #E (Fq) ≡ 1 mod p.

Otherwise, E is ordinary.



The j-invariant of an elliptic curve

The j-invariant of and elliptic curve E/k defined by y2 = x3 + ax + b is

j(E ) = 1728 4a3
4a3 + 27b2 ∈ k.

Elliptic curves with the same j-invariant are isomorphic over a finite
extension of k, and have isomorphic endomorphism rings End(E ). It thus
makes sense to refer to j-invariants as ordinary or supersingular.

Given j0 ∈ k it is easy to write down an equation for E/k with j(E ) = j0.

We can thus identify k with the set of k-isomorphism classes of elliptic
curves E/k and partition k into ordinary and supersingular subsets.



Modular polynomials

Let N be a positive integer. An N-isogeny is an isogeny of elliptic curves
whose kernel is a cyclic group of order N.

Elliptic curves related by an N-isogeny are said to be N-isogenous, as are
their j-invariants.

For each integer N there is a modular polynomial

ΦN(X ,Y ) ∈ Z[X ,Y ]

with the property that j1, j2 ∈ k are N-isogenous iff ΦN(j1, j2) = 0.

The polynomial ΦN(X ,Y ) is symmetric in X and Y .

For any prime ` the polynomial Φ` has degree `+ 1 in both variables.



Isogeny graphs
Let ` be a prime and let Fq be a finite field of characteristic p 6= `.

Definition
The `-isogeny graph G`(Fq) is the graph with vertex set Fq and edges
(j1, j2) present with multiplicity m`(j1, j2) := ordt=j2 Φ`(j1, t).

We have m(j1, j2) = m(j2, j1) whenever j1, j2 6∈ {0, 1728}.
Components not containing 0, 1728 can be viewed as undirected graphs.

If E1 and E2 are isogenous then End(E1)⊗Z Q ' End(E2)⊗Z Q.

This implies that the connected components of G`(Fq) can be
classified as ordinary or supersingular.
Each component contains only ordinary or supersingular j-invariants.

Note that each j ∈ Fq lies in infinitely many G`(Fq), one for each prime `.



Supersingular `-isogeny graphs
For each prime ` 6= p the graph G`(Fp2) has a single supersingular
component, which is an (`+ 1)-regular graph with Np ≈ p

12 vertices.

Definition
A d-regular graph is a Ramanujan graph if λ2 ≤

√
d − 1, where λ2 is the

second largest eigenvalue of its adjacency matrix.

Theorem (Pizer)
The supersingular component of G`(Fp2) is a Ramanujan graph.

Corollary (GPS17)
Fix a supersingular j1 ∈ Fp2 , and let j2 be the endpoint of an e-step
random walk in G`(Fp2) originating at j1. For all j ∈ Fp2 :

∣∣∣Pr[j = j2]− N−1
p

∣∣∣ ≤ ( 2
√
`

`+ 1

)e

.



Vélu’s formulas

Given an elliptic curve E/k and a point P ∈ E (k) of order n there is a
separable isogeny ϕP : E → E/〈P〉 of degree n, unique up to isomorphism.
The isogeny ϕP can be explicitly computed using Vélu’s formulas.

If E : y2 = x3 + ax + b and P := (x0, 0) ∈ E (k) is a point of order 2, then

ϕP(x , y) :=
(
x2 − x0x + t

x − x0
,

(x − x0)2 − t
(x − x0)2 y

)

and E/〈P〉 : y2 = x3 + (a − 5t)x + b − 7x0t, where t = 3x20 + a.

For P := (x0, y0) ∈ E (k) of odd order n there are similar explicit formulas
for ϕP(x , y) and E/〈P〉 as rational expressions in x0, y0, a, b over k.

The complexity of computing ϕP depends heavily on the field over
which P is defined; ideally one would like P ∈ E (k).



Supersingular isogeny Diffie-Hellman (SIDH)

Following [DJ11], fix supersingular E0/Fp2 with E0(Fp2) = E [`eAA `
eB
B ]

(for p = `eAA `
eB
B ± 1 prime, E0 exists and can be constructed via [Br08]).

Fix public bases {PA,QA} for E [`eAA ] and {PB,QB} for E [`eBB ].

1 Alice: mA, nA ∈ Z/`eAA Z, let ϕA : E → EA := E0/〈mAPA + nAQA〉,
send ϕA(PB), ϕA(QB),EA to Bob.

2 Bob: mB, nB ∈ Z/`eBB Z, let ϕB : E → EB := E0/〈mBPB + nBQB〉,
send ϕB(PA), ϕB(QA),EB to Alice.

3 Alice computes EAB := EB/〈mAϕB(PA) + nAϕB(QA)〉.
4 Bob computes EBA := EA/〈mBϕA(PB) + nBϕA(QB)〉.

Then kerϕAB = 〈mAPA + nAQA,mBPB + nBQB〉 = kerϕBA,
so EAB ' EBA, and j(EAB) = j(EBA) is a shared secret.1

1We have omitted verification details important to security. Random integers
mA, nA, mB , nB should always be used (static keys are not secure, see [GPST16]).



Isogeny volcanoes

An `-volcano is a connected graph with vertices partitioned into levels
V0, . . . ,Vd such that

• The subgraph on V0 is d-regular with 0 ≤ d ≤ 2.
• There are no edges contained in level Vi for i > 0.
• Vertices on levels Vi with i < d have degree `+ 1.
• Vertices on levels Vi with i > 0 have one neighbor in level Vi−1

Level V0 is the surface and Vd is the floor (possibly V0 = Vd).

Theorem (Kohel)
Ordinary components of G`(Fq) not containing 0, 1728 are `-volcanoes.





A 3-volcano of depth 2



Finding a shortest path to the floor
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Finding a shortest path to the floor



Identifying supersingular curves using isogeny graphs

Given an elliptic curve E over a field of characteristic p, the following
algorithm determines whether E is ordinary or supersingular:

1 If j(E ) 6∈ Fp2 then return ordinary.
2 If p ≤ 3 return supersingular if j(E ) = 0 and ordinary otherwise.
3 Attempt to find 3 roots of Φ2(j(E ),Y ) in Fp2 .

If this is not possible, return ordinary.
4 Walk 3 paths in parallel for up to dlog2 pe+ 1 steps.

If any of these paths hits the floor, return ordinary.
5 Return supersingular.

Φ2(X ,Y ) = X 3 + Y 3 − X 2Y 2 + 1488(X 2Y + Y 2X )− 162000(X 2 + Y 2)
+ 40773375XY + 8748000000(X + Y )− 157464000000000.



Complexity analysis
In step 4, we remove the known linear factor so that only a quadratic
equation remains, obtaining ji+1 as a root of Φ2(ji ,Y )/(Y − ji−1).
We need to be able to compute square roots (and solve a cubic) in Fp2 .

Proposition (S12)
We can identify ordinary/supersingular elliptic curves over Fp2 via

A Las Vegas algorithm that runs in Õ(log3p) expected time.

Under GRH, a deterministic algorithm that runs in Õ(log3p) time

Given quadratic and cubic non-residues in Fp2 , a deterministic
algorithm that run in Õ(log3p) time.

For a random elliptic curve over Fp2 , average running time is Õ(log2p).

An alternative algorithm based on polynomial identity testing [D18]
achieves a similar complexity (under GRH).



Performance results (CPU milliseconds)

ordinary supersingular

Magma New Magma New

b Fp Fp2 Fp Fp2 Fp Fp2 Fp Fp2

64 1 25 0.1 0.1 226 770 2 8
128 2 60 0.1 0.1 2010 9950 5 13
192 4 99 0.2 0.1 8060 41800 8 33
256 7 140 0.3 0.2 21700 148000 20 63
320 10 186 0.4 0.3 41500 313000 39 113
384 14 255 0.6 0.4 95300 531000 66 198
448 19 316 0.8 0.5 152000 789000 105 310
512 24 402 1.0 0.7 316000 2280000 164 488
576 30 484 1.3 0.9 447000 3350000 229 688
640 37 595 1.6 1.0 644000 4790000 316 945
704 46 706 2.0 1.2 847000 6330000 444 1330
768 55 790 2.4 1.5 1370000 8340000 591 1770
832 66 924 3.1 1.9 1850000 10300000 793 2410
896 78 1010 3.2 2.1 2420000 12600000 1010 3040
960 87 1180 4.0 2.5 3010000 16000000 1280 3820
1024 101 1400 4.8 3.1 5110000 35600000 1610 4880



Supersingular isogeny graphs over Fp
Most supersingular curves have j-invariants in Fp

2, but an O(√p) subset
of them actually have j-invariants in Fp.

We know that G`(Fp2) has a single supersingular component, and it is a
Ramanujan graph. What about G`(Fp)?

Theorem (Kohel, Delfs-Galbraith)
The supersingular components of G`(Fp) not containing 0, 1728 are
isogeny volcanoes.

For both ordinary and supersingular elliptic curves E/Fp, if we restrict our
attention to endomorphisms defined over Fp, we have rk(End(E )) = 2 and
the endomrophism ring can be embedded in the ring of integers of the
imaginary quadratic field Q(

√
t2 − 4p), where the integer

t := p + 1−#E (Fp)

is the trace of Frobenius; it satisfies |t| < 2√p.
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CSIDH
For suitable p every supersingular curve over Fp has End(E ) ' Z[√p].

For primes `|(p + 1), the `-isogeny volcano is a cycle and we can compute
`-power isogenies very quickly using Velu’s formulas working only over Fp
(here we need E to be supersingular).

The ideal class group of Z[√p] acts on the set Sp of supersingular
j-invariants in Fp, whose cardinality is the class number h(p) ≈ √p.

This makes the set Sp a homogeneous space or torsor for the class group.
By exploiting the relationship between ideals that are products of powers
of prime ideals of small norms `1, . . . , `n we can implement an SIDH
algorithm without tracking or transmitting generators of isogeny kernels.

This increases security, simplifies implementation, and reduces key sizes.
There is an exp(O(

√
log p)) quantum attack but it can be protected

against with a modest increase in the key size. See ePrint:2018/383.

https://eprint.iacr.org/2018/383
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