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Distributions of Frobenius traces

Let E/Q be an elliptic curve (non-singular).
Lett, = #E(F,) — p + 1 denote the trace of Frobenius.

Consider the distribution of
x, =1,/\/p € [-2,2]

as p < N varies over primes of good reduction.

What happens as N — c0?

http://math.mit.edu/~drew
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Trace distributions in genus 1

1. Typical case (no CM)

For any elliptic curve without CM, the limiting distribution is the
semicircular distribution [Sato-Tate conjecture].?

2Proven (for almost all curves) by Clozel, Harris, Shepherd-Baron, and Taylor.

2. Exceptional cases (CM)
All elliptic curves with CM have the same limiting distribution [cIassicaI].J
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Zeta functions and L-polynomials

For a smooth projective curve C/Q and a good prime p define

Z(C/F,;T) = exp (Z NkT"/k> ,

k=1
where Ny = #C/F . This is a rational function of the form

Ly(T)

AT = =gy =y

where L,(T) is an integer polynomial of degree 2g. For g = 2:

L,(T) = p*T* + c1pT® + copT* + 1T + 1.
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Unitarized L-polynomials

The polynomial
2g
Ly(T) = L,(T/yp) = ) _aT'
i=0

has coefficients that satisfy a; = as,—; and |a;| < (2.8).

1

Given a curve C, we may consider the distribution of a;,a, ..., a,,
taken over primes p < N of good reduction, as N — oo.

This talk focuses on the distribution of a; and a, in genus 2.

http://math.mit.edu/~drew
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The Katz-Sarnak random matrix model

L,(T) is a real reciprocal polynomial whose roots lie on the unit circle.

Every such polynomial arises as the characteristic polynomial x(7') of
a unitary symplectic matrix in C?*,

Conjecture 1

For a typical curve of genus g, the distribution of L, converges to the
distribution of x in USp(2g).

For g =2, a curve is “typical” if and only if End(J(C)) = Z (no CM).

This conjecture has been proven “on average” for universal families of
hyperelliptic curves, including all genus 2 curves, by Katz and Sarnak.
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The Haar measure on USp(2g)

Let e*91 ... %% denote the eigenvalues of a random conjugacy
class in USp(2g). The Weyl integration formula yields the measure

u= ;(H(Z cos B — 2 cos ek))2 H (72[ sin? ejde,) .

J<k J

In genus 1 we have USp(2) = SU(2) and p = 2 sin® 646, which is the
Sato-Tate distribution.

Note that —a; = }_ 2cos 6, is the trace.
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Research Program

We wish to understand L,-distributions in genus 2,
both the typical situation, and all the exceptional cases.

This presents three challenges:

@ Data collection Fast L, computations
@ Distinguishing distributions Moment sequences
@ Theoretical model Subgroups of USp(4)
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Collecting data

There are four ways to compute L, in genus 2:
@ point counting: O(p?).

@ group computation: O(p*/4).

© p-adic methods: O(p'/?).

@ (-adic methods: O(1).

For most of the feasible range of p < N, we found (2) to be the fastest.

For smaller p we can assist by point counting over F,, (but not ).
For larger p we can assist with {-adic information for { = 2, 3.

Computing L-series of hyperelliptic curves, ANTS VIII, 2008, KS.
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Performance comparison

p =2k points+group group p-adic
214 0.22 0.55 4
213 0.34 0388 6
216 0.56 1.33 8
217 0.98 2.21 11
218 1.82 3.42 17
219 3.44 5.87 27
2% 7.98 10.1 40
22! 18.9 17.9 66
22 52 35 104
2% 54 176
2% 104 288
2% 173 494
226 306 871
2% 505 1532

Time to compute L, (T) in CPU milliseconds on a 2.5 GHz AMD Athlon
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Time to compute L, forp < N

N 2 cores 16 cores
216 1 <1
217 4 2
218 12 3
219 40 7
220 2:32 24
221 10:46 1:38
2% 40:20 5:38
2% 2:23:56 19:04
2% 8:00:09 1:16:47
2% 26:51:27 3:24:40
226 11:07:28
277 36:48:52
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Characterizing distributions

The moment sequence of a random variable X is
M[X] = (EX°], EX'], EIX?, ...

For suitably bounded X, the moment sequence M[X] is well defined
and uniquely determines the distribution of X.

Given sample values xi, ..., xy for X, the nth moment statistic is the
mean of x}. It converges to E[X"] as N — oo.

Theorem

If X is a coefficient of the characteristic polynomial of a random matrix
in a compact subgroup of GL,(C), then M[X] is an integer sequence.
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The typical trace moment sequence in genus 1

Using the measure p in genus 1, for t = —a; we have
2 7T
E[f"] = —J (2cos B)" sin” 8d6.
T Jo

This is zero when n is odd, and for n = 2m we obtain

1 2m
E[*"] = :
7 2m—|—1(m>

Ml = (1,0,1,0,2,0,5,0,14,0,42,0,132,...).

and therefore

This is sequence A126120 in the OEIS.
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The typical trace moment sequence in genus g > 1

A similar computation in genus 2 yields
Ml =(1,0,1,0,3,0,14,0,84,0,59,...),
which is sequence A138349, and in genus 3 we have
Mt = (1,0,1,0,3,0,15,0,104,0,909,...),
which is sequence A138540.

In genus g, the nth moment of the trace is the number of returning
walks of length n on Z8 with x; > x; > - -+ > x, > 0 [Grabiner-Magyar].
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The exceptional trace moment sequence in genus 1

For an elliptic curve with CM we find that

E[*"] = %(2’:) form >0

yielding the moment sequence

Ml = (1,0,1,0,3,0,10,0,35,0,126,0,...),

whose even entries are A008828.
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An exceptional trace moment sequence in Genus 2

For a hyperelliptic curve whose Jacobian is isogenous to the direct
product of two elliptic curves, we compute M[:] = M|t; + t,] via

Bl +6)) =Y <’;‘>E[41E[tm.

For example, using

M) =(1,0,1,0,2,0,5,0,14,0,42,0,132,...),
Mi] = (1,0,1,0,3,0,10,0,35,0, 126, 0,462, .. .),

we obtain A138551,

Ml = (1,0,2,0,11,0,90,0,889,0,9723,...).

The second moment already differs from the standard sequence, and
the fourth moment differs greatly (11 versus 3).
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Sieving for exceptional curves

We surveyed the L,-distributions of genus 2 curves
y2 =X + C4x4 + C3x3 + c2x2 + c1x + ¢y,

y2 = b0 + b5x5 + b4x4 + b3x3 + b2x2 + byx + by,

with integer coefficients |¢;| < 64 and |b;| < 16, over 10'° curves.
We initially computed L, for p < N ~ 2!2.

We then filtered out “unexceptional” curves (over 99% of them),
extended the computation using N = 2'¢, and filtered again.

We were left with about 30,000 non-isomorphic “exceptional” curves,
with what appeared to be about 20 different distributions.

Representative examples were then extended to N = 2.
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Survey highlights

Some provisional observations:

@ The moment statistics always appear to converge to integers.

@ At least 20 apparently distinct L,-distributions were found.
This exceeds the possibilities for End(J(C)) and Aut(C).

@ The same L,-distribution can arise for split and simple Jacobians.

@ There appear to be at least 9 distinct possibilities for the density
z(C) of zero traces. Several exceptional cases have z(C) = 0.

@ The a, distribution appears to determine the a, distribution.
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#  zC) My My Mg Mg f(x)
1 0 1 3 14 84 X Fx+1
2 0 2 10 70 588* P-4+ +2x—4
3 0 2 11 90 888* X 4200 — 26x3 +20x% + x
4 0 2 12 110 1203* X 44t 3% — a2 —x
5 0 4 32 320  3581* X+ 763 4 3262 + 45x + 50
6 1/6 2 12 100 979* X =553 —5x% —x
7 1/4 2 12 100  1008* X4t 2% —x
8 1/4 2 12 110 1257* X —dxt — 2 — 4 x
9 1/2 1 5 35 293* X — 24 4+ 1105 + 442 + 4x
10 1/2 1 6 55 601* X — 2% — 33 + 242 4+ 8x
11 1/2 2 16 160  1789* X485 +x
12 1/2 2 18 220  3005* X = 3% 1963 4 4x? + 56x — 12
13 1/2 4 48 640  8949* O+
14 7/12 1 6 50 489* X =t =33 -T2 —2x—3
15 7112 2 18 200  2446* o 4+2
16 5/8 1 6 50 502* 43+ 2x
17 5/8 2 18 200  2515* X — 10x* + 5052 — 25x
18 3/4 1 8 80 894* X =23 —x
19 3/4 1 9 100  1222* X —1
20 3/4 1 9 110 1501* 11x0 + 113 — 4
21 3/4 2 24 320  4474* X +x
22 13/16 1 9 100 1254* x4 3x
23 7/8 1 12 160  2237* x4 2x
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Random matrix subgroup model

Conjecture 1

For a typical curve of genus g, the distribution of L, converges to the
distribution of x in USp(2g).

Conjecture 2

For a genus g curve C, the distribution of L, converges to the
distribution of x in some infinite compact subgroup H C USp(2g).

Equality holds if and only if C has large Galois image.

Andrew V. Sutherland (MIT) L-polynomial distributions of genus 2 curves May 25, 2010 20/27



Subgroups representing genus 1 L,-distributions

In the typical case H is the group G, = USp(2g) = SU(2).

For CM curves, we let H be the subgroup G, C USp(2) defined by

cos® sin0 icos® isin®
GZ:{(—sine cos@)’(isine —icose)'ee[o’zﬂ}'

This is a compact group (the normalizer of SO(2) in SU(2)).
The Haar measure on G, yields the desired moment sequence

Ml = (1,0,1,0,3,0,10,0,35,0, 126,0, .. .),

and the correct zero trace density z(H) = 1/2.
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Candidate subgroups H in genus 2

We can immediately identify four candidates for H:
USp(4), G] X G], G1 X Gz, G2 X Gz.

Additionally, we define subgroups H* fori = 1,2 and k = 1,2,3,4,6, in
which G; is diagonally embedded with a copy of itself that has been
“twisted” by a kth root of unity (the restriction on k is necessary).

Finally, for any of the groups H above, we may consider the group J(H)
obtained by including the matrix

(00,

Not all of these groups yields distinct distributions, but 24 of them do.
There is also an index 2 subgroup K of J(G, x G3).

Andrew V. Sutherland (MIT) L-polynomial distributions of genus 2 curves May 25, 2010 22/27



Candidate subgroups H of USp(4)

# H d  c(H) AH) My My Mg Mg My
1 USp(4) 10 1 0 1 3 14 84 594
2 Gy x Gy 6 1 0 2 10 70 588 5544
3 Gy x Gy 4 2 0 2 11 90 889 9723
4 H} 3 3 0 2 12 110 1204 14364
5 H 3 1 0 4 32 320 3584 43008
6 HS 3 6 1/6 2 12 100 980 10584
7 HJI‘ 3 4 1/4 2 12 100 1008 11424
8 Gy X G, 2 4 1/4 2 12 110 1260 16002
9 J(G xG) 6 2 1/2 1 5 35 294 2772
10 J(H}) 3 6 1/2 1 6 55 602 7182
11 H 3 2 1/2 2 16 160 1792 21504
12 H3 1 6 1/2 2 18 220 3010 43092
13 H> 1 2 1/2 4 48 640 8960 129024
14 J(HS) 3 12 712 1 6 50 490 5292
15 H§ 1 12 712 2 18 200 2450 31752
16 J(HY) 3 8 5/8 1 6 50 504 5712
17 Hgl 1 8 5/8 2 18 200 2520 34272
18 J(H) 3 4 3/4 1 8 8 89 10752
19 K 2 4 3/4 1 9 100 1225 15876
20 J(H3) 1 12 3/4 1 9 110 1505 21546
21 Hy 1 4 3/4 2 24 320 4480 64512
22 J(H) 1 16 13/16 1 9 100 1260 17136
23 J(Hy ) 1 8 7/8 1 12 160 2240 32256
*J(GyxGy) 2 8 5/8 1 6 55 630 8001
* J(HS) 1 24 19/24 1 9 100 1225 15876
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A conjecturally complete classification in genus 2

Every distribution found in our survey (and in the literature) has a
distribution matching one of these candidates.

Initially we found only 19 exceptional distributions, but careful
examination of the survey data yielded 3 missing cases.

This left only J(G, x G,) and J(Hg) unaccounted for.

J(G> x G;) has now been ruled out by Serre.
A similar (but more difficult) argument may apply to J(HS).
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Further supporting evidence

For each candidate subgroup H C USp(4) we may consider the
component group of H and the dimension d(H).

In many cases, we can partition the L, data via constraints on p.
In every such case this yields the predicted component distributions.

The mod { Galois image of C should have size ~ {4, where d = d(H).
The £-Sylow subgroup of J(C/F,) then has full rank for a set of primes
of density £—“. This has been confirmed for small 4 and <.

Andrew V. Sutherland (MIT) L-polynomial distributions of genus 2 curves May 25, 2010 25/27



Open questions

@ Can one prove that the list
0,1/6,1/4,1/2,7/12,5/8,3/4,13/16,7/8

of values for z(C) is complete in genus 27

@ Is their a lattice path interpretation for each of the identified
subgroups in USp(4)?

@ What happens in genus 3?
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