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Distributions of Frobenius traces

Let E/Q be an elliptic curve (non-singular).
Let tp = #E(Fp) − p + 1 denote the trace of Frobenius.

Consider the distribution of

xp = tp/
√

p ∈ [−2, 2]

as p 6 N varies over primes of good reduction.

What happens as N →∞?

http://math.mit.edu/˜drew
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Trace distributions in genus 1

1. Typical case (no CM)
For any elliptic curve without CM, the limiting distribution is the
semicircular distribution [Sato-Tate conjecture].a

aProven (for almost all curves) by Clozel, Harris, Shepherd-Baron, and Taylor.

2. Exceptional cases (CM)
All elliptic curves with CM have the same limiting distribution [classical].
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Zeta functions and L-polynomials

For a smooth projective curve C/Q and a good prime p define

Z(C/Fp; T) = exp

( ∞∑
k=1

NkTk/k

)
,

where Nk = #C/Fpk . This is a rational function of the form

Z(C/Fp; T) =
Lp(T)

(1 − T)(1 − pT)
,

where Lp(T) is an integer polynomial of degree 2g. For g = 2:

Lp(T) = p2T4 + c1pT3 + c2pT2 + c1T + 1.
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Unitarized L-polynomials

The polynomial

L̄p(T) = Lp(T/
√

p) =

2g∑
i=0

aiT i

has coefficients that satisfy ai = a2g−i and |ai| 6
(2g

i

)
.

Given a curve C, we may consider the distribution of a1, a2, . . . , ag,
taken over primes p 6 N of good reduction, as N →∞.

This talk focuses on the distribution of a1 and a2 in genus 2.

http://math.mit.edu/˜drew
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The Katz-Sarnak random matrix model

L̄p(T) is a real reciprocal polynomial whose roots lie on the unit circle.

Every such polynomial arises as the characteristic polynomial χ(T) of
a unitary symplectic matrix in C2g×2g.

Conjecture 1
For a typical curve of genus g, the distribution of L̄p converges to the
distribution of χ in USp(2g).

For g = 2, a curve is “typical” if and only if End(J(C)) ∼= Z (no CM).

This conjecture has been proven “on average” for universal families of
hyperelliptic curves, including all genus 2 curves, by Katz and Sarnak.
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The Haar measure on USp(2g)

Let e±iθ1 , . . . , e±iθg denote the eigenvalues of a random conjugacy
class in USp(2g). The Weyl integration formula yields the measure

µ =
1
g!

(∏
j<k

(2 cos θj − 2 cos θk)
)2∏

j

(
2
π

sin2 θjdθj

)
.

In genus 1 we have USp(2) = SU(2) and µ = 2
π sin2 θdθ, which is the

Sato-Tate distribution.

Note that −a1 =
∑

2 cos θj is the trace.
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Research Program

We wish to understand L̄p-distributions in genus 2,
both the typical situation, and all the exceptional cases.

This presents three challenges:

Data collection Fast L̄p computations

Distinguishing distributions Moment sequences

Theoretical model Subgroups of USp(4)
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Collecting data

There are four ways to compute L̄p in genus 2:

1 point counting: Õ(p2).

2 group computation: Õ(p3/4).

3 p-adic methods: Õ(p1/2).

4 `-adic methods: Õ(1).

For most of the feasible range of p 6 N, we found (2) to be the fastest.

For smaller p we can assist by point counting over Fp (but not Fp2).
For larger p we can assist with `-adic information for ` = 2, 3.

Computing L-series of hyperelliptic curves, ANTS VIII, 2008, KS.
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Performance comparison

p ≈ 2k points+group group p-adic

214 0.22 0.55 4
215 0.34 0.88 6
216 0.56 1.33 8
217 0.98 2.21 11
218 1.82 3.42 17
219 3.44 5.87 27
220 7.98 10.1 40
221 18.9 17.9 66
222 52 35 104
223 54 176
224 104 288
225 173 494
226 306 871
227 505 1532

Time to compute Lp(T) in CPU milliseconds on a 2.5 GHz AMD Athlon
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Time to compute L̄p for p 6 N

N 2 cores 16 cores

216 1 < 1
217 4 2
218 12 3
219 40 7
220 2:32 24
221 10:46 1:38
222 40:20 5:38
223 2:23:56 19:04
224 8:00:09 1:16:47
225 26:51:27 3:24:40
226 11:07:28
227 36:48:52
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Characterizing distributions

The moment sequence of a random variable X is

M[X] = ( E[X0], E[X1], E[X2], . . .).

For suitably bounded X, the moment sequence M[X] is well defined
and uniquely determines the distribution of X.

Given sample values x1, . . . , xN for X, the nth moment statistic is the
mean of xn

i . It converges to E[Xn] as N →∞.

Theorem
If X is a coefficient of the characteristic polynomial of a random matrix
in a compact subgroup of GLn(C), then M[X] is an integer sequence.
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The typical trace moment sequence in genus 1

Using the measure µ in genus 1, for t = −a1 we have

E[tn] =
2
π

∫π
0

(2 cos θ)n sin2 θdθ.

This is zero when n is odd, and for n = 2m we obtain

E[t2m] =
1

2m + 1

(
2m
m

)
.

and therefore

M[t] = (1, 0, 1, 0, 2, 0, 5, 0, 14, 0, 42, 0, 132, . . .).

This is sequence A126120 in the OEIS.
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The typical trace moment sequence in genus g > 1

A similar computation in genus 2 yields

M[t] = (1, 0, 1, 0, 3, 0, 14, 0, 84, 0, 594, . . .),

which is sequence A138349, and in genus 3 we have

M[t] = (1, 0, 1, 0, 3, 0, 15, 0, 104, 0, 909, . . .),

which is sequence A138540.

In genus g, the nth moment of the trace is the number of returning
walks of length n on Zg with x1 > x2 > · · · > xg > 0 [Grabiner-Magyar].
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The exceptional trace moment sequence in genus 1

For an elliptic curve with CM we find that

E[t2m] =
1
2

(
2m
m

)
, for m > 0

yielding the moment sequence

M[t] = (1, 0, 1, 0, 3, 0, 10, 0, 35, 0, 126, 0, . . .),

whose even entries are A008828.
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An exceptional trace moment sequence in Genus 2
For a hyperelliptic curve whose Jacobian is isogenous to the direct
product of two elliptic curves, we compute M[t] = M[t1 + t2] via

E[(t1 + t2)n] =
∑(

n
i

)
E[ti

1]E[tn−i
2 ].

For example, using

M[t1] = (1, 0, 1, 0, 2, 0, 5, 0, 14, 0, 42, 0, 132, . . .),
M[t2] = (1, 0, 1, 0, 3, 0, 10, 0, 35, 0, 126, 0, 462, . . .),

we obtain A138551,

M[t] = (1, 0, 2, 0, 11, 0, 90, 0, 889, 0, 9723, . . .).

The second moment already differs from the standard sequence, and
the fourth moment differs greatly (11 versus 3).
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Sieving for exceptional curves

We surveyed the L̄p-distributions of genus 2 curves

y2 = x5 + c4x4 + c3x3 + c2x2 + c1x + c0,

y2 = b6x6 + b5x5 + b4x4 + b3x3 + b2x2 + b1x + b0,

with integer coefficients |ci| 6 64 and |bi| 6 16, over 1010 curves.

We initially computed L̄p for p 6 N ≈ 212.

We then filtered out “unexceptional” curves (over 99% of them),
extended the computation using N = 216, and filtered again.

We were left with about 30,000 non-isomorphic “exceptional” curves,
with what appeared to be about 20 different distributions.

Representative examples were then extended to N = 226.
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Survey highlights

Some provisional observations:

The moment statistics always appear to converge to integers.

At least 20 apparently distinct L̄p-distributions were found.
This exceeds the possibilities for End(J(C)) and Aut(C).

The same L̄p-distribution can arise for split and simple Jacobians.

There appear to be at least 9 distinct possibilities for the density
z(C) of zero traces. Several exceptional cases have z(C) = 0.

The a1 distribution appears to determine the a2 distribution.
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# z(C) M2 M4 M6 M8 f (x)

1 0 1 3 14 84 x5 + x + 1
2 0 2 10 70 588∗ x5 − 2x4 + x3 + 2x − 4
3 0 2 11 90 888∗ x5 + 20x4 − 26x3 + 20x2 + x
4 0 2 12 110 1203∗ x5 + 4x4 + 3x3 − x2 − x
5 0 4 32 320 3581∗ x5 + 7x3 + 32x2 + 45x + 50
6 1/6 2 12 100 979∗ x5 − 5x3 − 5x2 − x
7 1/4 2 12 100 1008∗ x5 + 2x4 + 2x2 − x
8 1/4 2 12 110 1257∗ x5 − 4x4 − 2x3 − 4x2 + x
9 1/2 1 5 35 293∗ x5 − 2x4 + 11x3 + 4x2 + 4x

10 1/2 1 6 55 601∗ x5 − 2x4 − 3x3 + 2x2 + 8x
11 1/2 2 16 160 1789∗ x5 + x3 + x
12 1/2 2 18 220 3005∗ x5 − 3x4 + 19x3 + 4x2 + 56x − 12
13 1/2 4 48 640 8949∗ x6 + 1
14 7/12 1 6 50 489∗ x5 − 4x4 − 3x3 − 7x2 − 2x − 3
15 7/12 2 18 200 2446∗ x6 + 2
16 5/8 1 6 50 502∗ x5 + x3 + 2x
17 5/8 2 18 200 2515∗ x5 − 10x4 + 50x2 − 25x
18 3/4 1 8 80 894∗ x5 − 2x3 − x
19 3/4 1 9 100 1222∗ x5 − 1
20 3/4 1 9 110 1501∗ 11x6 + 11x3 − 4
21 3/4 2 24 320 4474∗ x5 + x
22 13/16 1 9 100 1254∗ x5 + 3x
23 7/8 1 12 160 2237∗ x5 + 2x
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Random matrix subgroup model

Conjecture 1
For a typical curve of genus g, the distribution of L̄p converges to the
distribution of χ in USp(2g).

Conjecture 2
For a genus g curve C, the distribution of L̄p converges to the
distribution of χ in some infinite compact subgroup H ⊆ USp(2g).

Equality holds if and only if C has large Galois image.
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Subgroups representing genus 1 L̄p-distributions

In the typical case H is the group G1 = USp(2g) = SU(2).

For CM curves, we let H be the subgroup G2 ⊂ USp(2) defined by

G2 =

{(
cos θ sin θ

− sin θ cos θ

)
,
(

i cos θ i sin θ
i sin θ −i cos θ

)
: θ ∈ [0, 2π]

}
.

This is a compact group (the normalizer of SO(2) in SU(2)).

The Haar measure on G2 yields the desired moment sequence

M[t] = (1, 0, 1, 0, 3, 0, 10, 0, 35, 0, 126, 0, . . .),

and the correct zero trace density z(H) = 1/2.
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Candidate subgroups H in genus 2

We can immediately identify four candidates for H:

USp(4), G1 × G1, G1 × G2, G2 × G2.

Additionally, we define subgroups Hk
i for i = 1, 2 and k = 1, 2, 3, 4, 6, in

which Gi is diagonally embedded with a copy of itself that has been
“twisted” by a kth root of unity (the restriction on k is necessary).

Finally, for any of the groups H above, we may consider the group J(H)

obtained by including the matrix

J =

(
0 I
−I 0

)
.

Not all of these groups yields distinct distributions, but 24 of them do.
There is also an index 2 subgroup K of J(G2 × G2).
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Candidate subgroups H of USp(4)

# H d c(H) z(H) M2 M4 M6 M8 M10

1 USp(4) 10 1 0 1 3 14 84 594
2 G1 × G1 6 1 0 2 10 70 588 5544
3 G1 × G2 4 2 0 2 11 90 889 9723
4 H3

1 3 3 0 2 12 110 1204 14364
5 H1 3 1 0 4 32 320 3584 43008
6 H6

1 3 6 1/6 2 12 100 980 10584
7 H4

1 3 4 1/4 2 12 100 1008 11424
8 G2 × G2 2 4 1/4 2 12 110 1260 16002
9 J(G1 × G1) 6 2 1/2 1 5 35 294 2772

10 J(H3
1) 3 6 1/2 1 6 55 602 7182

11 H−
1 3 2 1/2 2 16 160 1792 21504

12 H3
2 1 6 1/2 2 18 220 3010 43092

13 H2 1 2 1/2 4 48 640 8960 129024
14 J(H6

1) 3 12 7/12 1 6 50 490 5292
15 H6

2 1 12 7/12 2 18 200 2450 31752
16 J(H4

1) 3 8 5/8 1 6 50 504 5712
17 H4

2 1 8 5/8 2 18 200 2520 34272
18 J(H−

1 ) 3 4 3/4 1 8 80 896 10752
19 K 2 4 3/4 1 9 100 1225 15876
20 J(H3

2) 1 12 3/4 1 9 110 1505 21546
21 H−

2 1 4 3/4 2 24 320 4480 64512
22 J(H4

2) 1 16 13/16 1 9 100 1260 17136
23 J(H−

2 ) 1 8 7/8 1 12 160 2240 32256

* J(G2 × G2) 2 8 5/8 1 6 55 630 8001
* J(H6

2) 1 24 19/24 1 9 100 1225 15876
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A conjecturally complete classification in genus 2

Every distribution found in our survey (and in the literature) has a
distribution matching one of these candidates.

Initially we found only 19 exceptional distributions, but careful
examination of the survey data yielded 3 missing cases.

This left only J(G2 × G2) and J(H6
2) unaccounted for.

J(G2 × G2) has now been ruled out by Serre.
A similar (but more difficult) argument may apply to J(H6

2).
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Further supporting evidence

For each candidate subgroup H ⊆ USp(4) we may consider the
component group of H and the dimension d(H).

In many cases, we can partition the L̄p data via constraints on p.
In every such case this yields the predicted component distributions.

The mod ` Galois image of C should have size ≈ `d, where d = d(H).
The `-Sylow subgroup of J(C/Fp) then has full rank for a set of primes
of density `−d. This has been confirmed for small d and `.
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Open questions

Can one prove that the list

0, 1/6, 1/4, 1/2, 7/12, 5/8, 3/4, 13/16, 7/8

of values for z(C) is complete in genus 2?

Is their a lattice path interpretation for each of the identified
subgroups in USp(4)?

What happens in genus 3?

Andrew V. Sutherland (MIT) L-polynomial distributions of genus 2 curves May 25, 2010 26 / 27



L-polynomial distributions of genus 2 curves

Andrew V. Sutherland

Massachusetts Institute of Technology

May 25, 2010

joint work with Kiran Kedlaya

http://arxiv.org/abs/0803.4462

Andrew V. Sutherland (MIT) L-polynomial distributions of genus 2 curves May 25, 2010 27 / 27

http://arxiv.org/abs/0803.4462

