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Sato-Tate distributions

Andrew V. Sutherland

Abstract. In this expository article we explore the relationship between Ga-
lois representations, motivic L-functions, Mumford-Tate groups, and Sato-
Tate groups, and we give an explicit formulation of the Sato-Tate conjecture
for abelian varieties as an equidistribution statement relative to the Sato-Tate
group. We then discuss the classification of Sato-Tate groups of abelian va-

rieties of dimension g ≤ 3 and compute some of the corresponding trace dis-
tributions. This article is based on a series of lectures presented at the 2016
Arizona Winter School held at the Southwest Center for Arithmetic Geometry.

1. An introduction to Sato-Tate distributions

Before discussing the Sato-Tate conjecture and Sato-Tate distributions in the
context of abelian varieties, let us first consider the more familiar setting of Artin
motives (varieties of dimension zero).

1.1. A first example. Let f ∈ Z[x] be a squarefree polynomial of degree d.
For each prime p, let fp ∈ (Z/pZ)[x] � Fp[x] denote the reduction of f modulo p,
and define

Nf (p) := #{x ∈ Fp : fp(x) = 0},
which we note is an integer between 0 and d. We would like to understand how
Nf (p) varies with p. The table below shows the values of Nf (p) for the polynomial
f(x) = x3 − x+ 1 for primes p ≤ 60:

p : 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Nf (p) 0 0 1 1 1 0 1 1 2 0 0 1 0 1 0 1 3

There does not appear to be any obvious pattern (and we should know not
to expect one, because the Galois group of f is nonabelian). The prime p = 23 is
exceptional because it divides disc(f) = −23, which means that f23(x) has a double
root. As we are interested in the distribution of Nf (p) as p tends to infinity, we are
happy to ignore such primes, which are necessarily finite in number.

This tiny dataset does not tell us much. Let us now consider primes p ≤ B
for increasing bounds B, and compute the proportions ci(B) of primes p ≤ B with
Nf (p) = i. We obtain the following statistics:
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B c0(B) c1(B) c2(B) c3(B)

103 0.323353 0.520958 0.005988 0.155689
104 0.331433 0.510586 0.000814 0.157980
105 0.333646 0.502867 0.000104 0.163487
106 0.333185 0.500783 0.000013 0.166032
107 0.333360 0.500266 0.000002 0.166373
108 0.333337 0.500058 0.000000 0.166605
109 0.333328 0.500016 0.000000 0.166656
1012 0.333333 0.500000 0.000000 0.166666

This leads us to conjecture that the limiting values ci of ci(B) as B → ∞ are

c0 = 1/3, c1 = 1/2, c2 = 0, c3 = 1/6.

There is a natural motivation for this conjecture (which is, in fact, a theorem),
one that would allow us to correctly predict the asymptotic ratios ci without needing
to compute any statistics. Let us fix an algebraic closure Q of Q. The absolute
Galois group Gal(Q/Q) acts on the roots of f(x) by permuting them. This allows
us to define the Galois representation (a continuous homomorphism)

ρf : Gal(Q/Q) → GLd(C),

whose image is a subgroup of the permutation matrices in Od(C) ⊆ GLd(C); here
Od denotes the orthogonal group (we could replaceC with any field of characteristic
zero). Note that Gal(Q/Q) and GLd(C) are topological groups (the former has the
Krull topology), and homomorphisms of topological groups are understood to be
continuous. In order to associate a permutation of the roots of f(x) to a matrix in
GLd(C) we need to fix an ordering of the roots; this amounts to choosing a basis
for the vector space Cd, which means that our representation ρf is really defined
only up to conjugacy.

The value ρf takes on σ ∈ Gal(Q/Q) depends only on the restriction of σ to the
splitting field L of f , so we could restrict our attention to Gal(L/Q). This makes ρf
an Artin representation: a continuous representation Gal(Q/Q) → GLd(C) that
factors through a finite quotient (by an open subgroup). But in the more general
settings we wish to consider this may not always be true, and even when it is, we
typically will not be given L; it is thus more convenient to work with Gal(Q/Q).

To facilitate this approach, we associate to each prime p an absolute Frobenius
element

Frobp ∈ Gal(Q/Q)

that may be defined as follows. Fix an embedding Q in Qp and use the valuation

ideal P of Qp (the maximal ideal of its ring of integers) to define a compatible
system of primes qL := P ∩ L, where L ranges over all finite extensions of Q. For
each prime qL, let DqL

⊆ Gal(L/Q), denote its decomposition group, IqL
⊆ DqL

its inertia group, and FqL
:= ZL/qL its residue field, where ZL denotes the ring of

integers of L. Taking the inverse limit of the exact sequences

1 → IqL
→ DqL

→ Gal(FqL
/Fp) → 1

over finite extensions L/Q ordered by inclusion gives an exact sequence of profinite
groups

1 → Ip → Dp → Gal(Fp/Fp) → 1.
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We now define Frobp ∈ Dp ⊆ Gal(Q/Q) by arbitrarily choosing a preimage of

the Frobenius automorphism x → xp in Gal(Fp/Fp) under the map in the ex-
act sequence above. We actually made two arbitrary choices in our definition of
Frobp, since we also chose an embedding of Q into Qp. Our absolute Frobenius
element Frobp is thus far from canonical, but it exists. Its key property is that if
L/Q is a finite Galois extension in which p is unramified, then the conjugacy class
conjL(Frobp) in Gal(L/Q) of the restriction of Frobp : Q → Q to L is uniquely
determined, independent of our choices; note that when p is unramified, Ip is triv-

ial and Dp � Gal(Fp/Fp). Everything we have said applies mutatis mutandi if we

replace Q by a number field K: put K := Q, replace p by a prime p of K (a nonzero
prime ideal of ZK), and replace Fp by the residue field Fp := ZK/p.

We now make the following observation: for any prime p that does not divide
disc(f) we have

(1.1) Nf (p) = tr ρf (Frobp).

This follows from the fact that the trace of a permutation matrix counts its fixed
points. Since p is unramified in the splitting field of f , the inertia group Ip ⊆
Gal(Q/Q) acts trivially on the roots of f(x), and the action of Frobp on the roots of
f(x) coincides (up to conjugation) with the action of the Frobenius automorphism
x → xp on the roots of fp(x), both of which are described by the permutation
matrix ρf (Frobp). The Chebotarev density theorem implies that we can compute

ci via (1.1) by counting matrices in ρf (Gal(Q/Q)) with trace i, and it is enough to
determine the trace and cardinality of each conjugacy class.

Theorem 1.1. Chebotarev Density Theorem Let L/K be a finite Galois
extension of number fields with Galois group G := Gal(L/K). For every subset C
of G stable under conjugation we have

lim
B→∞

#{N(p) ≤ B : conjL(Frobp) ⊆ C}
#{N(p) ≤ B} =

#C

#G
,

where p ranges over primes of K and N(p) := #Fp is the cardinality of the residue
field Fp := ZK/p.

Proof. See Corollary 2.13 in Section 2. �
Remark 1.2. In Theorem 1.1 the asymptotic ratio on the left depends only on

primes of inertia degree 1 (those with prime residue field), since these make up all
but a negligible proportion of the primes p for which N(p) ≤ B. Taking C = {1G}
shows that a constant proportion of the primes of K split completely in L and
in particular have prime residue fields; this special case is already implied by the
Frobenius density theorem, which was proved much earlier (in terms of Dirichlet
density). In our statement of Theorem 1.1 we do not bother to exclude primes of K
that are ramified in L because no matter what value conjL(Frobp) takes on these
primes it will not change the limiting ratio.

In our example with f(x) = x3 − x + 1, one finds that Gf := ρf (Q/Q) is
isomorphic to S3, the Galois group of the splitting field of f(x). Its three conjugacy
classes are represented by the matrices⎡

⎣0 1 0
0 0 1
1 0 0

⎤
⎦ ,

⎡
⎣1 0 0
0 0 1
0 1 0

⎤
⎦ ,

⎡
⎣1 0 0
0 1 0
0 0 1

⎤
⎦ ,
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with traces 0, 1, 3. The corresponding conjugacy classes have cardinalities 2, 3, 1,
respectively, thus

c0 = 1/3, c1 = 1/2, c2 = 0, c3 = 1/6,

as we conjectured.
If we endow the group Gf with the discrete topology it becomes a compact

group, and therefore has a Haar measure μ that is uniquely determined if we nor-
malize it so that μ(Gf ) = 1 (which we always do). Recall that the Haar measure
of a compact group G is a translation-invariant Radon measure (in particular,
μ(gS) = μ(Sg) = μ(S) for any measurable set S and g ∈ G), and is unique up
to scaling.1 For finite groups the Haar measure μ is just the normalized counting
measure. We can compute the expected value of trace (and many other statistical
quantities of interest) by integrating against the Haar measure, which in this case
amounts to summing over the finite group Gf :

E[tr] =

∫
Gf

tr μ =
1

#Gf

∑
g∈Gf

tr(g) =
d∑

i=0

cii.

The Chebotarev density theorem implies that this is also the average value of Nf (p),
that is,

lim
B→∞

∑
p≤B Nf (p)∑

p≤B 1
= E[tr].

This average is 1 in our example, because f(x) is irreducible; see Exercise 1.1.
The quantities ci define a probability distribution on the set {tr(g) : g ∈ Gf}

that we can also view as a probability distribution on the set {Nf (p) : p prime}.
Picking a random prime p in some large interval [1, B] and computing Nf (p) is
the same thing as picking a random matrix g in Gf and computing tr(g). More
precisely, the sequence (Nf (p))p indexed by primes p is equidistributed with respect
to the pushforward of the Haar measure μ under the trace map. We discuss the
notion of equidistribution more generally in Section 2.

1.2. Moment sequences. There is another way to characterize the proba-
bility distribution on tr(g) given by the ci; we can compute its moment sequence:

M[tr] := (E[trn])n≥0,

where

E[trn] =

∫
Gf

trn μ.

It might seem silly to include the zeroth moment E[tr0] = E[1] = 1, but in Section 4
we will see why this convention is useful. In our example we have the moment
sequence

M[tr] = (1, 1, 2, 5, 14, 41, . . . , 1
2 (3

n−1 + 1), . . .).

The sequence M[tr] uniquely determines2 the distributions of traces and thus cap-
tures all the information encoded in the ci. It may not seem very useful to replace a
finite set of rational numbers with an infinite sequence of integers, but when dealing

1For locally compact groups G one distinguishes left and right Haar measures, but the two
coincide when G is compact; see [22] for more background on Haar measures.

2Not all moment sequences uniquely determine an underlying probability distribution, but
all the moment sequence we shall consider do (because they satisfy Carleman’s condition, see
[52, p. 126], for example).
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with continuous probability distributions, as we are forced to do as soon as we leave
our weight zero setting, moment sequences are a powerful tool.

If we pick another cubic polynomial f ∈ Z[x], we will typically obtain the
same result as we did in our example; when ordered by height almost all cubic
polynomials f have Galois group Gf � S3. But there are exceptions: if f is not
irreducible over Q then Gf will be isomorphic to a proper subgroup of S3, and this
also occurs when the splitting field of f is a cyclic cubic extension (this happens
precisely when disc(f) is a square in Q×; the polynomial f(x) = x3 − 3x− 1 is an
example). Up to conjugacy there are four subgroups of S3, each corresponding to
a different distribution of Nf (p):

f(x) Gf c0 c1 c2 c3 M[tr]

x3 − x 1 0 0 0 1 (1, 3, 9, 27, 81, . . .)
x3 + x C2 0 1/2 0 1/2 (1, 2, 5, 14, 41, . . .)
x3 − 3x− 1 C3 2/3 0 0 1/3 (1, 1, 3, 19, 27, . . .)
x3 − x+ 1 S3 1/3 1/2 0 1/6 (1, 1, 2, 5, 14, . . .)

One can do the same thing with polynomials of degree d > 3. For d ≤ 19
the results are exhaustive: for every transitive subgroup G of Sd the database of
Klüners and Malle [51] contains at least one polynomial f ∈ Z[x] with Gf � G
(including all 1954 transitive subgroups of S16). The non-transitive cases can be
constructed as products (of groups and of polynomials) of transitive cases of lower
degree. It is an open question whether this can be done for all d (even in principle).
This amounts to a strong form of the inverse Galois problem over Q; we are asking
not only whether every finite group can be realized as a Galois group over Q, but
whether every transitive permutation group of degree d can be realized as the Galois
group of the splitting field of an irreducible polynomial of degree d.

1.3. Zeta functions. For polynomials f of degree d = 3 there is a one-to-one
correspondence between subgroups of Sd and distributions ofNf (p). This is not true
for d ≥ 4. For example, the polynomials f(x) = x4 −x3 + x2 − x+1 with Gf � C4

and g(x) = x4 − x2 + 1 with Gg � C2 × C2 both have c0 = 3/4, c1 = c2 = c3 = 0,
and c4 = 1/4, corresponding to the moment sequence M[tr] = (1, 1, 4, 16, 64, . . .).

We can distinguish these cases if, in addition to considering the distribution of
Nf (p), we also consider the distribution of

Nf (p
r) := #{x ∈ Fpr : fp(x) = 0}

for integers r ≥ 1. In our quartic example we have Ng(p
2) = 4 for almost all p,

whereas Nf (p
2) is 4 or 2 depending on whether p is a square modulo 5 or not. In

terms of the matrix group Gf we have

(1.2) Nf (p
r) = tr

(
ρf (Frobp)

r
)

for all primes p that do not divide disc(f). To see this, note that the permutation
matrix ρf (Frobp)

r corresponds to the permutation of the roots of fp(x) given by
the rth power of the Frobenius automorphism x 
→ xp. Its fixed points are precisely
the roots of fp(x) that lie in Fpr ; taking the trace counts these roots, and this yields
Nf (p

r).
This naturally leads to the definition of the local zeta function of f at p:

(1.3) Zfp(T ) := exp

( ∞∑
r=1

Nf (p
r)
T r

r

)
,

http://galoisdb.math.upb.de/home
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which can be viewed as a generating function for the sequence of positive integers
(Nf (p), Nf (p

2), Nf (p
3), . . .). This particular form of generating function may seem

strange when first encountered, but it has some very nice properties. For example,
if f, g ∈ Z[x] are squarefree polynomials with no common factor, then their product
fg is also square free, and for all p � disc(fg) we have

Z(fg)p = Zfpgp = ZfpZgp .

Remark 1.3. The identity (1.2) is a special case of the Grothendieck-Lefschetz
trace formula. It allows us to express the zeta function Zfp(T ) as a sum over powers
of the traces of the image of Frobp under the Galois representation ρf . In general
one considers the trace of the Frobenius endomorphism acting on étale cohomology,
but in dimension zero the only relevant cohomology is H0.

While defined as a power series, in fact Zfp(T ) is a rational function of the
form

Zfp(T ) =
1

Lp(T )
,

where Lp(T ) is an integer polynomial whose roots lie on the unit circle. This can
be viewed as a consequence of the Weil conjectures in dimension zero,3 but in fact
it follows directly from (1.2). Indeed, for any matrix A ∈ GLd(C) we have the
identity

(1.4) exp

( ∞∑
r=1

tr(Ar)
T r

r

)
= det(1−AT )−1,

which can be proved by expressing the coefficients on both sides as symmetric
functions in the eigenvalues of A; see Exercise 1.2. Applying (1.2) and (1.4) to the
definition of Zfp(T ) in (1.3) yields

Zfp(T ) =
1

det(1− ρf (Frobp)T )
,

thus

Lp(T ) = det(1− ρf (Frobp)T ).

The polynomial Lp(T ) is precisely the polynomial that appears in the Euler
factor at p of the (partial) Artin L-function L(ρf , s) for the representation ρf :

L(ρf , s) :=
∏
p

Lp(p
−s)−1,

at least for primes p that do not divide disc(f); for the definition of the Euler
factors at ramified primes (and the Gamma factors at archimedean places), see
[60, Ch. 2].4 The Euler product for L(ρf , s) defines a function that is holomorphic
and nonvanishing on Re(s) > 1. We shall not be concerned with the Euler factors
at ramified primes, other than to note that they are holomorphic and nonvanishing
on Re(s) > 1.

3Provided one accounts for the fact that f(x) = 0 does not define an irreducible variety

unless deg(f) = 1; in this case Nf (p
r) = 1 and Lp(T ) = 1− T , which is consistent with the usual

formulation of the Weil conjectures (see Theorem 1.8).
4The alert reader will note that primes dividing the discriminant of f need not ramify in its

splitting field; we are happy to ignore these primes as well, just as we may ignore primes of bad
reduction for a curve that are good primes for its Jacobian.
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Remark 1.4. Every representation ρ : Gal(Q/Q) → GLd(C) with finite image
gives rise to an Artin L-function L(ρ, s), and Artin proved that every decomposition
of ρ into sub-representations gives rise to a corresponding factorization of L(ρ, s)
into Artin L-functions of lower degree. The representation ρf we have defined is

determined by the permutation action of Gal(Q/Q) on the formal C-vector space
with basis elements corresponding to roots of f . The linear subspace spanned by the
sum of the basis vectors is fixed by Gal(Q/Q), so for d > 1 we can always decompose
ρf as the sum of the trivial representation and a representation of dimension d− 1,
in which case L(ρf , s) is the product of the Riemann zeta function (the Artin L-
function of the trivial representation), and an Artin L-function of degree d−1. The
Artin L-functions L(ρf , s) we have defined are thus imprimitive for deg f > 1.

Returning to the question of equidistribution, the Haar measure μ of the group
Gf = ρf (Gal(Q/Q)) allows us to determine the distribution of L-polynomials
Lp(T ) that we see as p varies. Each polynomial Lp(T ) is the reciprocal polyno-
mial (obtained by reversing the coefficients) of the characteristic polynomial of
ρf (Frobp). If we fix a polynomial P (T ) of degree d = deg f , and pick a prime p
at random from some large interval, the probability that Lp(T ) = P (T ) is equal
to the probability that the reciprocal polynomial T dP (1/T ) is the characteristic
polynomial of a random element of Gf (this probability will be zero unless P (T )
has a particular form; see Exercise 1.3).

Remark 1.5. For d ≤ 5 the distribution of characteristic polynomials uniquely
determines each subgroup of Sd (up to conjugacy). This is not true for d ≥ 6, and
for d ≥ 8 one can find non-isomorphic subgroups of Sd with the same distribution of
characteristic polynomials; the transitive permutation groups 8T10 and 8T11 which
arise for x8 − 13x6 +44x4 − 17x2 +1 and x8 −x5 − 2x4 +4x2 +x+1 (respectively)
are an example.

1.4. Computing zeta functions in dimension zero. Let us now briefly
address the practical question of efficiently computing the zeta function Zfp(T ),
which amounts to computing the polynomial Lp(T ). It suffices to compute the
integers Nf (p

r) for r ≤ d, which is equivalent to determining the degrees of the
irreducible polynomials appearing in the factorization of fp(x) in Fp[x]. These
determine the cycle type, and therefore the conjugacy class, of the permutation of
the roots of fp(x) induced by the action of the Frobenius automorphism x 
→ xp,
which in turn determines the characteristic polynomial of ρf (Frobp) and the L-
polynomial Lp(T ) = det(1 − ρf (Frobp)T ); see Exercise 1.3. To determine the
factorization pattern of fp(x), one can apply the following algorithm.

Algorithm 1.6. Given a squarefree polynomial f ∈ Fp[x] of degree d > 1,
compute the number ni of irreducible factors of f in Fp[x] of degree i, for 1 ≤ i ≤ d
as follows:

1. Let g1(x) be f(x) made monic and put r0(x) := x.
2. For i from 1 to d:

a. If i > deg(gi)/2 then for i ≤ j ≤ d put nj := 1 if j = deg(gi) and
nj := 0 otherwise, and then proceed to step 3.

b. Using binary exponentiation in the quotient ring Fp[x]/(gi), compute
ri := rpi−1 mod gi.

c. Compute hi(x) := gcd(gi, ri(x) − x) = gcd(gi(x), x
pi − x) using the

Euclidean algorithm.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

204 ANDREW V. SUTHERLAND

d. Compute ni := deg(hi)/i and gi+1 := gi/hi using exact division.
e. If deg(gi+1) = 0 then put nj := 0 for i < j ≤ d and proceed to step 3.

3. Output n1, . . . , nd.

Algorithm 1.6 makes repeated use of the fact that the polynomial

xpi − x =
∏

a∈Fpi

(x− a)

is equal to the product of all irreducible monic polynomials of degree dividing i in
Fp[x]. By starting with i = 1 and removing all factors of degree i as we go, we ensure
that each hi is a product of irreducible polynomials of degree i. Using fast algo-
rithms for integer and polynomial arithmetic and the fast Euclidean algorithm (see
[29, §8-11], for example), one can show that this algorithm uses O((d log p)2+o(1))
bit operations, a running time that is quasi-quadratic in the O(d log p) bit-size of
its input f ∈ Fp[x].

5 In practical terms, it is extremely efficient. For example, the
table of ci(B) values for our example polynomial f(x) = x3 − x+ 1 with B = 1012

took less than two minutes to create using the smalljac software library [48,85],
which includes an efficient implementation of basic finite field arithmetic. The NTL
[80] and FLINT [33,34] libraries also incorporate variants of this algorithm, as do
the computer algebra systems Sage [67] and Magma [11].

Remark 1.7. Note that Algorithm 1.6 does not output the factorization of
f(x), just the degrees of its irreducible factors. It can be extended to a probabilistic
algorithm that outputs the complete factorization of f(x) (see [29, Alg. 14.8], for
example), with an expected running time that is also quasi-quadratic. But no
deterministic polynomial-time algorithm for factoring polynomials over finite fields
is known, not even for d = 2. This is a famous open problem. One approach to
solving it is to first prove the generalized Riemann hypothesis (GRH), which would
address the case d = 2 and many others, but it is not even known whether the GRH
is sufficient to address all cases.6

1.5. Arithmetic schemes. We now want to generalize our first example. Let
us replace the equation f(x) = 0 with an arithmetic scheme X, a scheme of finite
type over Z; the case we have been considering is X = SpecA, where A = Z[x]/(f).
For each prime p the fiber Xp of X → SpecZ is a scheme of finite type over Fp,
and we let NX(p) := Xp(Fp) count its Fp-points; equivalently, we may define
NX(p) as the number of closed points (maximal ideals) of X whose residue field
has cardinality p, and similarly define NX(q) for prime powers q = pr. The local
zeta function of X at p is then defined as

ZXp
(T ) := exp

( ∞∑
r=1

NX(pr)
T r

r

)
.

These local zeta functions can then be packaged into a single arithmetic zeta-
function

ζX(s) :=
∏
p

ZXp
(p−s).

5One can improve this to O
(
d1.5+o(1)(log p)1+o(1) + d1+o(1)(log p)2+o(1)

)
via [50]. In our

setting d is fixed and log p is tending to infinity, so this is not an asymptotic improvement, but it
does provide a constant factor improvement for large d.

6If you succeed with even a special case of this first step, the Clay institute will help fund
the remaining work.

http://www.claymath.org/millennium-problems/rules-millennium-prizes
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In our example with X = SpecZ[x]/(f), the zeta function ζX(s) coincides with the
Artin L-function L(ρf , s) =

∏
Lp(s)

−1 up to a finite set of factors at primes p that
divide disc(f).

The definitions above generalize to any number field K: replace Q by K,
replace Z by ZK , replace p by a prime p of K (nonzero prime ideal of ZK), replace
Fp � Z/pZ by the residue field Fp := ZK/p. When considering questions of
equidistribution we order primes p by their norm N(p) := Fp (we may break ties
arbitrarily), so that rather that summing over p ≤ B we sum over p for which
N(p) ≤ B.

1.6. A second example. We now leave the world of Artin motives, which
are motives of weight 0, and consider the simplest example in weight 1, an elliptic
curve E/Q. This is the setting in which the Sato–Tate conjecture was originally
formulated. Every elliptic curve E/Q can be written in the form

E : y2 = x3 +Ax+B,

with A,B ∈ Z. This equation is understood to define a smooth projective curve in
P2 (homogenize the equation by introducing a third variable z), which has a single
projective point P∞ := (0 : 1 : 0) at infinity that we take as the identity element of
the group law on E. Recall that an elliptic curve is not just a curve, it is an abelian
variety, and comes equipped with a distinguished rational point corresponding ot
the identity; by applying a suitable automorphism of P2 we can always take this
to be the point P∞.

The group operation on E can be defined via the usual chord-and-tangent law
(three points on a line sum to zero), which can be used to derive explicit formulas
with coefficients in Q, or in terms of the divisor class group Pic0(E) (divisors of
degree zero modulo principal divisors), in which every divisor class can be uniquely
represented by a divisor of the form P −P∞, where P is a point on the curve. This
latter view is more useful in that it easily generalizes to curves of genus g > 1,
whereas the chord-and-tangent law does not. The Abel–Jacobi map P 
→ P − P∞
gives a bijection between points on E and points on Jac(E) that commutes with
the group operation, so the two approaches are equivalent.

For each prime p that does not divide the discriminant Δ := −16(4A3 +27B2)
we can reduce our equation for E modulo p to obtain an elliptic curve Ep/Fp; in
this case we say that p is a prime of good reduction for E (or simply a good prime).
We should note that the discriminant Δ is not necessarily minimal; the curve E
may have another model with good reduction at primes that divide Δ (possibly
including 2), but we are happy to ignore any finite set of primes, including those
that divide Δ.7

For every prime p of good reduction for E we have

NE(p) := #Ep(Fp) = p+ 1− tp,

where the integer tp satisfies the Hasse-bound |tp| ≤ 2
√
p. In contrast to our

weight zero examples, the integers NE(p) now tend to infinity with p: we have

7All elliptic curves over Q have a global minimal model for which the primes of bad reduction
are precisely those that divide the discriminant, but this model is not necessarily of the form
y2 = x3+Ax+B. Over general number fields K global minimal models do not always exist (they
do when K has class number one).



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

206 ANDREW V. SUTHERLAND

NE(p) = p + 1 + O(
√
p). In order to study how the error term varies with p we

want to consider the normalized traces

xp := tp/
√
p ∈ [−2, 2].

We now want to conduct the following experiment: given an elliptic curve E/Fp,
compute xp for all good primes p ≤ B and see how the xp are distributed over the
real interval [−2, 2].

One can see an example for the elliptic curve E : y2 = x3 + x+ 1 in Figure 1,
which shows a histogram whose x-axis spans the interval [−2, 2]. This interval is

subdivided into approximately
√
π(B) subintervals, each of which contains a bar

representing the number of xp (for p ≤ B) that lie in the subinterval. The gray line
shows the height of the uniform distribution for scale (note that the vertical and
horizontal scales are not the same). For 0 ≤ n ≤ 10, the moment statistics

Mn :=

∑
p≤B xn

p∑
p≤B 1

,

are shown below the histogram. They appear to converge to the sequence of integers

1, 0, 1, 0, 2, 0, 5, 0, 14, 0, 42, . . .

with label A126120 in the Online Encyclopedia of Integer Sequences (OEIS) [64]).

Figure 1. Sato-Tate distribution of an elliptic curve overQ (with-
out CM). Visit http://math.mit.edu/~drew/g1_D1_a1f.gif to
see an animated version.

The Sato–Tate conjecture for elliptic curves over Q (now a theorem) implies
that for almost all E/Q, whenever we run this experiment we will see the asymptotic
distribution of Frobenius traces visible in Figure 1, with moment statistics that
converge to the same integer sequence. In order to make this conjecture precise, let

http://oeis.org/A126120
http://math.mit.edu/~drew/g1_D1_a1f.gif
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us first explain where the conjectured distribution comes from. In our first example
we had a compact matrix group Gf associated to the scheme X = SpecZ[x]/(f)
whose Haar measure governed the distribution of Nf (p). In fact we showed that
more is true: there is a direct relationship between characteristic polynomials of
elements of Gf and the L-polynomials Lp(T ) that appear in the local zeta functions
Zfp(T ).

The same is true with our elliptic curve example. In order to identify a candi-
date group GE whose Haar measure controls the distribution of normalized Frobe-
nius traces xp we need to look at the local zeta functions ZEp

(T ). Let us recall what
the Weil conjectures [96] (proved by Deligne [18,19]) tell us about the zeta func-
tion of a variety over a finite field. The case of one-dimensional varieties (curves)
was proved by Weil [94], who also proved an analogous result for abelian varieties
[95]. This covers all the cases we shall consider, but let us state the general result.
Recall that for a compact manifold X over C, the Betti number bi is the rank of the
singular homology group Hi(X,Z), and the Euler characteristic χ of X is defined
by χ :=

∑
(−1)ibi.

Theorem 1.8 (Weil Conjectures). Let X be a geometrically irreducible
non-singular projective variety of dimension n defined over a finite field Fq and
define the zeta function

ZX(T ) := exp

( ∞∑
r=1

NX(qr)
T r

r

)
,

where NX(qr) := #X(Fqr). The following hold:

(i) Rationality: ZX(T ) is a rational function of the form

ZX(T ) =
P1(T ) · · ·P2n−1(T )

P0(T ) · · ·P2n(T )
,

with Pi ∈ 1 + TZ[T ].
(i) Functional Equation: the roots of Pi(T ) are the same as the roots of

T degP2n−iP2n−i(1/(q
nT )).8

(i) Riemann Hypothesis: the roots of Pi(T ) are complex number of abso-
lute value q−i/2.

(i) Betti Numbers: if X is the reduction of a non-singular variety Y defined
over a number field K ⊆ C, then the degree of Pi is equal to the Betti
number bi of Y (C).

The curve Ep is a curve of genus g = 1, so we may apply the Weil conjectures
in dimension n = 1, with Betti numbers b0 = b2 = 1 and b1 = 2g = 2. This implies
that its zeta function can be written as

(1.5) ZEp
(T ) =

Lp(T )

(1− T )(1− pT )
,

where Lp ∈ Z[T ] is a polynomial of the form

Lp(T ) = pT 2 + c1T + 1,

8Moreover, one has ZX(T ) = ±q−nχ/2T−χZX(1/(qnT )), where χ is the Euler characteristic
of X, which is defined as the intersection number of the diagonal with itself in X ×X.
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with |c1| ≤ 2
√
p (by the Riemann Hypothesis). If we expand both sides of (1.5) as

power series in Z[[T ]] we obtain

1 +NE(p)T + · · · = 1 + (p+ 1 + c1)T + · · · ,
so we must have NE(p) = p+ 1 + c1, and therefore

c1 = NE(p)− p− 1 = −tp.

It follows that the single integer NE(p) completely determines the zeta function
ZEp

(T ).
Corresponding to our normalization xp = tp/

√
p, we define the normalized

L-polynomial
L̄p(T ) := Lp(T/

√
p) = T 2 + a1T + 1,

where a1 = c1/
√
p = −xp is a real number in the interval [−2, 2] and the roots of

L̄p(T ) lie on the unit circle. In our first example we obtained the group Gf as a
subgroup of permutation matrices in GLd(C). Here we want a subgroup of GL2(C)
whose elements have eigenvalues that

(a) are inverses (by the functional equation);
(b) lie on the unit circle (by the Riemann hypothesis).

Constraint (a) makes it clear that every element of GE should have determinant 1,
so GE ⊆ SL2(C). Constraints (a) and (b) together imply that in fact GE ⊆ SU(2).
As in the weight zero case, we expect that GE should in general be as large as
possible, that is, GE = SU(2).

We now consider what it means for an elliptic curve to be generic.9 Recall
that the endomorphism ring of an elliptic curve E necessarily contains a subring
isomorphic to Z, corresponding to the multiplication-by-n maps P 
→ nP . Here

nP = P + · · ·+ P

denotes repeated addition under the group law, and we take the additive inverse
if n is negative. For elliptic curves over fields of characteristic zero, this typically
accounts for all the endomorphisms, but in special cases the endomorphism ring
may be larger, in which case it contains elements that are not multiplication-by-n
maps but can be viewed as “multiplication-by-α” maps for some α ∈ C. One can
show that the minimal polynomials of these extra endomorphisms are necessarily
quadratic, with negative discriminants, so such an α necessarily lies in an imaginary
quadratic field K, and in fact End(E)⊗Z Q � K. When this happens we say that
E has complex multiplication (CM) by K (or more precisely, by the order in ZK

isomorphic to End(E)).
We can now state the Sato-Tate conjecture, as independently formulated in

the mid 1960’s by Mikio Sato (based on numerical data) and John Tate (as an
application of what is now known as the Tate conjecture [88]), and finally proved
in the late 2000’s by Richard Taylor et al. [6,7,32].

Theorem 1.9 (Sato–Tate conjecture). Let E/Q be an elliptic curve with-
out CM . The sequence of normalized Frobenius traces xp associated to E is equidis-
tributed with respect to the pushforward of the Haar measure on SU(2) under the

9The criterion given here in terms of endomorphism rings suffices for elliptic curves (and
curves of genus g ≤ 3 or abelian varieties of dimension g ≤ 3), but in general one wants the Galois
image to be as large as possible, which is a strictly stronger condition for g > 3. This issue is
discussed further in Section 3.
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trace map. In particular, for every subinterval [a, b] of [−2, 2] we have

lim
B→∞

#{p ≤ B : xp ∈ [a, b]}
#{p ≤ B} =

1

2π

∫ b

a

√
4− t2 dt.

We have not defined xp for primes of bad reduction, but there is no need to do
so; this theorem is purely an asymptotic statement. To see where the expression
in the integral comes from, we need to understand the Haar measure on SU(2)
and its pushforward onto the set of conjugacy classes conj(SU(2)) (in fact we only
care about the latter). Each conjugacy class in SU(2) can be described by an
eigenangle θ ∈ [0, π]; its eigenvalues are then e±iθ (a conjugate pair on the unit
circle, as required). In terms of eigenangles, the pushforward of the Haar measure
to conj(SU(2)) is given by

μ =
2

π
sin2 θ dθ

(see Exercise 2.4), and the trace is t = 2 cos θ; from this one can deduce the trace

measure 1
2π

√
4− t2dt on [−2, 2] that appears in Theorem 1.9. We can also use the

Haar measure to compute the nth moment of the trace

(1.6) E[tn] =
2

π

∫ π

0

(2 cos θ)n sin2 θdθ =

{
0 if n is odd,

1
m+1

(
2m
m

)
if n = 2m is even,

and find that the 2mth moment is the mth Catalan number.10

1.7. Exercises.

Exercise 1.1. Let f ∈ Z[x] be a nonconstant squarefree polynomial. Prove
that the average value of Nf (p) over p ≤ B converges to the number of irreducible
factors of f in Z[x] as B → ∞.

Exercise 1.2. Prove that the identity in (1.4) holds for all A ∈ GLd(C).

Exercise 1.3. Let fp ∈ Fp[x] denote a squarefree polynomial of degree d > 0
and let Lp(T ) denote the denominator of the zeta function Zfp(T ). We know that
the roots of Lp(T ) lie on the unit circle in the complex plane; show that in fact
each is an nth root of unity for some n ≤ d. Then give a one-to-one correspondence
between (i) cycle-types of degree-d permutations, (ii) possible factorization patterns
of fp in Fp[x], and (iii) the possible polynomials Lp(T ).

Exercise 1.4. Construct a monic squarefree quintic polynomial f ∈ Z[x] with
no roots in Q such that fp(x) has a root in Fp for every prime p. Compute c0, . . . , c5
and Gf .

Exercise 1.5. Let X be the arithmetic scheme SpecZ[x, y]/(f, g), where

f(x, y) := y2 − 2x3 + 2x2 − 2x− 2, g(x, y) := 4x2 − 2xy + y2 − 2.

By computing ZXp
(T ) = Lp(T )

−1 for sufficiently many small primes p, construct
a list of the polynomials Lp ∈ Z[T ] that you believe occur infinitely often, and
estimate their relative frequencies. Use this data to derive a candidate for the
matrix group GX := ρX(Gal(Q/Q), where ρX is the Galois representation defined
by the action of Gal(Q/Q) on X(Q). You may wish to use of computer algebra
system such as Sage [67] or Magma or [11] to facilitate these calculations.

10This gives yet another way to define the Catalan numbers, one that does not appear to be
among the 214 listed in [84].

https://cloud.sagemath.com/
http://magma.maths.usyd.edu.au/calc/
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2. Equidistribution, L-functions, and the Sato-Tate conjecture
for elliptic curves

In this section we introduce the notion of equidistribution in compact groups G
and relate it to analytic properties of L-functions of representations of G. We then
explain (following Tate) why the Sato-Tate conjecture for elliptic curves follows
from the holomorphicity and non-vanishing of a certain sequence of L-functions
that one can associate to an elliptic curve over Q (or any number field).

2.1. Equidistribution. We now formally define the notion of equidistribu-
tion, following [71, §1A]. For a compact Hausdorff space X, we use C(X) to denote
the Banach space of complex-valued continuous functions f : X → C equipped
with the sup-norm ‖f‖ := supx∈X |f(x)|. The space C(X) is closed under point-
wise addition and multiplication and contains all constant functions; it is thus a
commutative C-algebra with unit �X (the function x 
→ 1).11 For any C-valued
functions f and g (continuous or not), we write f ≤ g whenever f and g are both
R-valued and f(x) ≤ g(x) for all x ∈ X; in particular, f ≥ 0 means im(f) ⊆ R≥0.
The subset of R-valued functions in C(X) form a distributive lattice under this
order relation.

Definition 2.1. A (positive normalized Radon) measure on a compact Haus-
dorff space X is a continuous C-linear map μ : C(X) → C that satisfies μ(f) ≥ 0
for all f ≥ 0 and μ(�X) = 1.

Example 2.2. For each point x ∈ X the map f 
→ f(x) defines the Dirac
measure δx.

The value of μ on f ∈ C(X) is often denoted using integral notation∫
X

fμ := μ(f),

and we shall use the two interchangeably.12

Having defined the measure μ as a function on C(X), we would like to use it to
assign values to (at least some) subsets of X. It is tempting to define the measure of
a set S ⊆ X as the measure of its indicator function �S , but in general the function
�S will not lie in C(X); this occurs if and only if S is both open and closed (which
we note applies to S = X). Instead, for each open set S ⊆ X we define

μ(S) = sup
{
μ(f) : 0 ≤ f ≤ �S , f ∈ C(X)

}
∈ [0, 1],

and for each closed set S ⊆ X we define

μ(S) = 1− μ(X − S) ∈ [0, 1].

If S ⊆ X has the property that for every ε > 0 there exists an open set U ⊇ S of
measure μ(U) ≤ ε, then we define μ(S) = 0 and say that S has measure zero. If
the boundary ∂S := S − S0 of a set S has measure zero, then we necessarily have
μ(S0) = μ(S) and define μ(S) to be this common value; such sets are said to be
μ-quarrable.

11In fact, it is a commutative C∗-algebra with complex conjugation as its involution, but we
will not make use of this.

12Note that this is a definition; with a measure-theoretic approach one avoids the need to
develop an integration theory.
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For the purpose of studying equidistribution, we shall restrict our attention
to μ-quarrable sets S. This typically does not include all measurable sets in the
usual sense, by which we mean elements of the Borel σ-algebra Σ of X generated
by the open sets under complements and countable unions and intersections (see
Exercise 2.1). However, if we are given a regular Borel measure μ on X of total
mass 1, by which we mean a countably additive function μ : Σ → R≥0 for which
μ(S) = inf {μ(U) : S ⊆ U, U open} and μ(X) = 1, it is easy to check that defining
μ(f) :=

∫
X
fμ for f ∈ C(X) yields a measure under Definition 2.1; see [41, §1] for

details. This measure is determined by the values μ takes on μ-quarrable sets [99].
In particular, if X is a compact group then its Haar measure induces a measure on
X in the sense of Definition 2.1.

Definition 2.3. A sequence (x1, x2, x3, . . .) in X is said to be equidistributed
with respect to μ, or simply μ-equidistributed, if for every f ∈ C(X) we have

μ(f) = lim
n→∞

1

n

n∑
i=1

f(xi).

Remark 2.4. When we speak of equidistribution, note that we are talking
about a sequence (xi) of elements of X in a particular order; it does not make sense
to say that a set is equidistributed. For example, suppose we took the set of odd
primes and arranged them in the sequence (5, 13, 3, 17, 29, 7, . . .) where we list two
primes congruent to 1 modulo 4 followed by one prime congruent to 3 modulo 4.
The sequence obtained by reducing this sequence modulo 4 is not equidistributed
with respect to the uniform measure on (Z/4Z)×, even though the sequence of
odd primes in their usual order is (by Dirichlet’s theorem on primes in arithmetic
progressions). However, local rearrangements that change the index of an element
by no more than a bounded amount do not change its equidistribution properties.
This applies, in particular, to sequences indexed by primes of a number field ordered
by norm; the equidistribution properties of such a sequence do not depend on how
we order primes of the same norm.

If (xi) is a sequence in X, for each real-valued function f ∈ C(X) we define
the kth-moment of the sequence (f(xi)) by

Mk[(f(xi)] := lim
n→∞

1

n

n∑
i=1

f(xi)
k.

If these limits exist for all k ≥ 0, we then define the moment sequence

M[f(xi)] := (M0[(f(xi)],M1[(f(xi)],M2[(f(xi)], . . .).

If (xi) is μ-equidistributed, then Mk[f(xi)] = μ(fk) and the moment sequence

(2.1) M[f(xi)] = (μ(f0), μ(f1), μ(f2), . . .)

is independent of the sequence (xi); it depends only on the function f and the
measure μ.

Remark 2.5. There is a partial converse that is relevant to some of our applica-
tions. To simplify matters, let us momentarily restrict our attention to real-valued
functions; for the purposes of this remark, let C(X) denote the Banach algebra of
real-valued functions on X and replace C with R in Definition 2.1. Let (xi) be a
sequence in X and let f ∈ C(X). Then f(X) is a compact subset of R, and we
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may view (f(xi)) as a sequence in f(X). If the moments Mk[f(xi)] exist for all
k ≥ 0, then there is a unique measure on f(X) with respect to which the sequence
(f(xi)) is equidistributed; this follows from the Stone-Weierstrass theorem. If μ
is a measure on C(X), we define the pushforward measure μf (g) := μ(g ◦ f) on
C(f(X) and see that the sequence (f(xi)) is μf -equidistributed if and only if (2.1)
holds. This gives a necessary (but in general not sufficient) condition for (xi) to
be μ-equidistributed that can be checked by comparing moment sequences. If we
have a collection of functions fj ∈ C(X) such that the pushforward measures μfj

uniquely determine μ, we obtain a necessary and sufficient condition involving the
moment sequences of the fj with respect to μ. One can generalize this remark to
complex-valued functions using the theory of C∗-algebras.

More generally, we have the following lemma.

Lemma 2.6. Let (fj) be a family of functions whose linear combinations are
dense in C(X). If (xi) is a sequence in X for which the limit limn→∞

1
n

∑n
i=1 fj(xi)

converges for every fj, then there is a unique measure μ on X for which (xi) is
μ-equidistributed.

Proof. See [71, Lemma A.1, p. I-19]. �

Proposition 2.7. If (xi) is a μ-equidistributed sequence in X and S is a μ-
quarrable set in X then

μ(S) = lim
n→∞

#{xi ∈ S : i ≤ n}
n

.

Proof. See Exercise 2.2. �

Example 2.8. If X = [0, 1] and μ is the Lebesgue measure then a sequence
(xi) is μ-equidistributed if and only if for every 0 ≤ a < b ≤ 1 we have

lim
n→∞

#{xi ∈ [a, b] : i ≤ n}
n

= b− a.

More generally, if X is a compact subset of Rn and μ is the normalized Lebesgue
measure, then (xi) is μ-equidistributed if and only if for every μ-quarrable S ⊆ X
we have limn→∞

1
n#{xi ∈ S : i ≤ n} = μ(S).

2.2. Equidistribution in compact groups. We now specialize to the case
whereX := conj(G) is the space of conjugacy classes of a compact groupG, obtained
by taking the quotient of G as a topological space under the equivalence relation
defined by conjugacy; let π : G → X denote the quotient map. We then equip X
with the pushforward of the Haar measure μ on G (normalized so that μ(G) = 1),
which we also denote μ. Explicitly, π induces a map of Banach spaces

C(X) → C(G)

f 
→ f ◦ π,
and the value of μ on C(X) is defined by

μ(f) := μ(f ◦ π).
We say that a sequence (xi) in X or a sequence (gi) in G is equidistributed if it is
μ-equidistributed (when we speak of equidistribution in a compact group without
explicitly mentioning a measure, we always mean the Haar measure).
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Proposition 2.9. Let G be a compact group with Haar measure μ, and let
X := conj(G). A sequence (xi) in X is μ-equidistributed if and only if for every
irreducible character χ of G we have

lim
n→∞

1

n

n∑
i=1

χ(xi) = μ(χ).

Proof. As explained in [71, Prop. A.2], this follows from Lemma 2.6 and the
Peter-Weyl theorem, since the irreducible characters χ of G generate a dense subset
of C(X). �

Corollary 2.10. Let G be a compact group with Haar measure μ, and let
X := conj(G). A sequence (xi) in X is μ-equidistributed if and only if for every
nontrivial irreducible character χ of G we have

lim
n→∞

1

n

n∑
i=1

χ(xi) = 0.

Proof. For the trivial character we have μ(1) = μ(G) = 1, and for any non-
trivial irreducible character χ we must have μ(χ) =

∫
G
χμ =

∫
G
1 ·χμ = 0, by Schur

orthogonality; the corollary follows. �

To illustrate these results, we now use Corollary 2.10 to prove an equidistri-
bution result for elliptic curves over finite fields that will be useful later. We first
recall some basic facts. Let E be an elliptic curve over a finite field Fq; without loss
of generality, assume E/Fq is given by a projective plane model. The Frobenius
endomorphism πE : E → E is defined by the rational map

(x : y : z) 
→ (xq : yq : zq).

Like all endomorphisms of elliptic curves, πE has a characteristic polynomial of the
form

T 2 − (trπE)T + deg πE

satisfied by both πE and its dual π̂E , where trπE = πE+π̂E and q = deg πE = πEπ̂E

are both integers.13 The set E(Fq) is, by definition, the subset of E(Fq) fixed by
πE, equivalently, the kernel of the endomorphism πE−1. One can show that πE−1
is a separable, and therefore

#E(Fq) = #ker(πE − 1) = deg(πE − 1) = (π̂E − 1)(πE − 1)

= π̂EπE + 1− (π̂E + πE)

= q + 1− trπE .

It follows that tq := q + 1−#E(Fq) is the trace of Frobenius trπE . As we showed
in Section 1.6 for the case q = p, the zeta function of E can be written as

ZE(T ) =
qT 2 − tqT + 1

(1− T )(1− qT )
,

where the complex roots of qT 2 − tqT + 1 have absolute value q−1/2. This implies

that we can write tq = α + ᾱ for some α ∈ C with |α| = q1/2, and we have
#E(Fq) = q + 1− (α+ ᾱ).

13By the dual of an endomorphism of a polarized abelian variety we mean the Rosati dual
(see [54, §13]), which for elliptic curves we may identify with the dual isogeny.
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We now observe that for any integer r ≥ 1, the set E(Fqr) is the subset of

E(Fq) fixed by πr
E, which corresponds to the qr-power Frobenius automorphism; it

follows that

#E(Fqr) = qr + 1− (αr + ᾱr),

and therefore αr + ᾱr is the trace tqr of the Frobenius endomorphism of the base
change of E to Fqr .

As an application of Corollary 2.10, we now prove the following result, taken
from [24, Prop 2.2]. Recall that E/Fq is said to be ordinary if tq is not zero modulo
the characteristic of Fq.

Proposition 2.11. Let E/Fq be an ordinary elliptic curve and for integers
r ≥ 1, let tqr := qr + 1−#E(Fqr) and define

xr := tqr/q
r/2.

The sequence (xr) is equidistributed in [−2, 2] with respect to the measure

μ :=
1

π

dz√
4− z2

,

where dz is the Lebesgue measure on [−2, 2].

Proof. Let α be as above, with |α| = q1/2 and trπE = α + ᾱ. We then have
xr = (αr + ᾱr)/qr/2 for all r ≥ 1. Let U(1) := {u ∈ C× : uū = 1} be the unitary
group. For u = eiθ, the Haar measure on U(1) corresponds to the uniform measure
on θ ∈ [−π, π], this follows immediately from the translation invariance of the Haar
measure. Let us compute the pushforward of the Haar measure of U(1) to [−2, 2]
via the map u 
→ z := u + ū = 2 cos θ. We have dz = 2 sin θdθ, and see that the
pushforward is precisely μ.

The nontrivial irreducible characters U(1) → C× all have the form φa(u) = ua

for some nonzero a ∈ Z. For each such φa we have

lim
n→∞

1

n

n∑
r=1

φa(α
r/qr/2) = lim

n→∞

1

n

n∑
r=1

(α/q1/2)ra

= lim
n→∞

1

n

(α/q1/2)a(n+1) − (α/q1/2)a

(α/q1/2)a − 1
= 0.

The hypothesis that E is ordinary guarantees that α/q1/2 is not a root of unity
(see Exercise 2.3), thus (α/q1/2)a − 1 is nonzero for all nonzero a ∈ Z. Corol-
lary 2.10 implies that (αr/qr/2) is equidistributed in U(1), and therefore (xr) is
μ-equidistributed. �

See [2] for a generalization to smooth projective curves C/Fq of genus g ≥ 1.

2.3. Equidistribution for L-functions. As above, let G be a compact group
and let X := conj(G). Let K be a number field, and let P := (p1, p2, p3, . . .) be a
sequence consisting of all but finitely many primes p of K ordered by norm; this
means that N(pi) ≤ N(pj) for all i ≤ j. Let (xp) be a sequence in X indexed by
P , and for each irreducible representation ρ : G → GLd(C), define the L-function

L(ρ, s) :=
∏
p∈P

det(1− ρ(xp)N(p)−s)−1,

for s ∈ C with Re(s) > 1.
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Theorem 2.12. Let G and (xp) be as above, and suppose L(ρ, s) is mero-
morphic on Re(s) ≥ 1 with no zeros or poles except possibly at s = 1, for every
irreducible representation ρ of G. The sequence (xp) is equidistributed if and only
if for each ρ �= 1, the L-function L(ρ, s) extends analytically to a function that is
holomorphic and nonvanishing on Re(s) ≥ 1.

Proof. See the corollary to [71, Thm. A.2], or see [24, Thm. 2.3]. �
A notable case in which the hypothesis of Theorem 2.12 is known to hold is

when L(ρ, s) corresponds to an Artin L-function. As in Section 1.1, to each prime p
in K we associate an absolute Frobenius element Frobp ∈ Gal(K/K), and for each
finite Galois extension L/K we use conjL(Frobp) to denote the conjugacy class in
Gal(L/K) of the restriction of Frobp to L.

Corollary 2.13. Let L/K be a finite Galois extension with G := Gal(L/K)
and let P be the sequence of unramified primes of K ordered by norm (break ties
arbitrarily). The sequence (conjL(Frobp))p∈P is equidistributed in conj(G); in par-
ticular, the Chebotarev density theorem (Theorem 1.1) holds.

Proof. For the trivial representation, the L-function L(1, s) agrees with the
Dedekind zeta function ζK(s) up to a finite number of holomorphic nonvanishing
factors, and, as originally proved by Hecke, ζK(s) is holomorphic and nonvanishing
on Re(s) ≥ 1 except for a simple pole at s = 1; see [62, Cor. VII.5.11], for example.
For every nontrivial irreducible representation ρ : G → GLd(C), the L-function
L(ρ, s) agrees with the corresponding Artin L-function for ρ, up to a finite number
of holomorphic nonvanishing factors, and, as originally proved by Artin, L(ρ, s) is
holomorphic and nonvanishing on Re(s) ≥ 1; see [14, p.225], for example. The
corollary then follows from Theorem 2.12. �

2.4. Sato–Tate for CM elliptic curves. As a second application of Theo-
rem 2.12, let us prove an equidistribution result for CM elliptic curves. To do so
we need to introduce Hecke characters, which we will view as (quasi-)characters of
the idèle class group of a number field.

Definition 2.14. Let K be a number field and let IK denote its idèle group.
A Hecke character is a continuous homomorphism

ψ : IK → C×

whose kernel contains K×. The conductor of ψ is the ZK-ideal f :=
∏

p
pep in which

each ep is the minimal nonnegative integer for which 1 + p̂ep ⊆ Z×
Kp

↪→ IK lies in

the kernel of ψ (all but finitely many ep are zero because ψ is continuous); here p̂

denotes the maximal ideal of the valuation ring ZKp
of Kp, the completion of K

with respect to its p-adic absolute value.

Each Hecke character ψ has an associated Hecke L-function

L(ψ, s) :=
∏
p � f

(1− ψ(p)N(p)−s)−1,

where ψ(p) := ψ(πp̂) for any uniformizer πp̂ of p̂ (we have omitted the gamma factors
at archimedean places). We now want to consider the sequence of unitarized values

xp :=
ψ(p)

|ψ(p)| ∈ U(1)
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indexed by primes p � f ordered by norm.

Lemma 2.15. The sequence (xp) is equidistributed in U(1).

Proof. As in the proof of Proposition 2.11, the nontrivial irreducible charac-
ters of U(1) are those of the form φa(z) = za with a ∈ Z nonzero, and in each case
the corresponding L-function is a Hecke L-function (if ψ is a Hecke character, so is
ψa and its unitarized version). If ψ is trivial then, as in the proof of Corollary 2.13,
L(1, s) is holomorphic and nonvanishing on Re(s) ≥ 1 except for a simple pole at
s = 1, since the same is true of ζK(s). Hecke proved [40] that when ψ is nontrivial
L(ψ, s) is holomorphic and nonvanishing on Re(s) ≥ 1, and the lemma then follows
from Theorem 2.12. �

As an application of Lemma 2.15, we can now prove the Sato-Tate conjecture
for CM elliptic curves. Les us first consider the case where K is an imaginary
quadratic field and E/K is an elliptic curve with CM by K (so K � End(E)⊗ZQ).
As explained below, the general case (including K = Q) follows easily.

Let f be the conductor of E; this is a ZK-ideal divisible only by the primes of
bad reduction for E; see [81, §IV.10] for a definition. A classical result of Deuring
[81, Thm. II.10.5] implies the existence of a Hecke character ψE of K of conductor
f such that for each prime p � f we have |ψE(p)| = N(p)1/2 and

ψE(p) + ψE(p) = tp,

where tp := trπE = N(p) + 1 − #Ep(Fp) ∈ Z is the trace of Frobenius of the
reduction of E modulo p.

Proposition 2.16. Let K be an imaginary quadratic field and let E/K be an
elliptic curve of conductor f with CM by K. Let P be the sequence of primes of
K that do not divide f ordered by norm (break ties arbitrarily), and for p ∈ P let
xp := tp/N(p)1/2 ∈ [−2, 2] be the normalized Frobenius trace of Ep. The sequence
(xp) is equidistributed on [−2, 2] with respect to the measure

μcm :=
1

π

dz√
4− z2

.

Proof. By the previous lemma, the sequence (ψE(p)/N(p)1/2)p∈P is equidis-
tributed in U(1). As shown in the proof of Proposition 2.11, the measure μcm is
the pushforward of the Haar measure on U(1) to [−2, 2] under the map u 
→ u+ ū.
For each p ∈ P the image of ψE(p)/N(p)1/2 under this map is

ψE(p)

N(p)1/2
+

ψE(p)

N(p)1/2
=

tp
N(p)1/2

= xp. �

Figure 2 shows a trace histogram for the CM elliptic curve y2 = x3 +1 over its
CM field Q(

√
−3).

Let us now consider the case of an elliptic curve E/Q with CM by F . For
primes p of good reduction that are inert in F , the endomorphism algebra

End(Ep)Q := End(Ep)⊗Z Q

of the reduced curve Ep contains two distinct imaginary quadratic fields, one corre-
sponding to the CM field F � End(E)Q and the other generated by the Frobenius
endomorphism (the two cannot coincide because p is inert in F but the Frobenius
endomorphism has norm p in End(Ep)Q). It follows that End(Ep)Q must be a
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quaternion algebra, Ep is supersingular, and for p > 3 we must have tp = 0, since
tp ≡ 0 mod p and |tp| ≤ 2

√
p; see [82, III,9,V.3] for these and other facts about

endomorphism rings of elliptic curves.
At split primes p = pp̄ the reduced curve Ep will be isomorphic to the reduction

modulo p of its base change to F (both of which are elliptic curves over Fp = Fp),
and will have the same trace of Frobenius tp = tp. By the Chebotarev density
theorem, the split and inert primes both have density 1/2, and it follows that the
sequence of normalized Frobenius traces xp := tp/

√
p ∈ [−2, 2] is equidistributed

with respect to the measure 1
2δ0+

1
2μcm, where we use the Dirac measure δ0 to put

half the mass at 0 to account for the inert primes. This can be seen in Figure 3,
which shows a trace histogram for the CM elliptic curve y2 = x3 + 1 over Q; the
thin spike in the middle of the histogram at zero has area 1/2 (one can also see
that the nontrivial moments are half what they were in Figure 2).

A similar argument applies when E is defined over a number field K that does
not contain the CM field F . For the sake of proving an equidistribution result we
can restrict our attention to the degree-1 primes p of K, those for which N(p) = p is
prime. Half of these primes p will split in the compositum KF , and the subsequence
of normalized traces xp at these primes will be equidistributed with respect to the
measure μcm, and half will be inert in KF , in which case xp = tp = 0.

2.5. Sato–Tate for non-CM elliptic curves. We can now state the Sato-
Tate conjecture in the form originally given by Tate, following [71, §1A]. Tate’s
seminal paper [88] describes what is now known as the Tate conjecture, which
comes in two conjecturally equivalent forms T1 and T2, the latter of which is

Figure 2. Sato–Tate distribution of a CM elliptic over its CM
field (visit http://math.mit.edu/~drew/g1_D2_a1f.gif to see
an animated version).

http://math.mit.edu/~drew/g1_D2_a1f.gif
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Figure 3. Sato–Tate distribution of a CM elliptic curve over Q
(or visit http://math.mit.edu/~drew/g1_D2_a1f.gif to see an
animated version).

stated in terms of L-functions. The Sato-Tate conjecture is obtained by applying
T2 to all powers of a fixed elliptic curve E/Q (as products of abelian varieties);
see [66] for an introduction to the Tate conjecture and an explanation of how the
Sato-Tate conjecture fits within it.

Let G be the compact group SU(2) of 2× 2 unitary matrices with determinant
1. The irreducible representations of G are the mth symmetric powers ρm of the
natural representation ρ1 of degree 2 given by the inclusion SU(2) ⊆ GL2(C). Each
element of X := conj(G) can be uniquely represented by a matrix of the form(

eiθ 0
0 e−iθ

)
,

where θ ∈ [0, π] is the eigenangle of the conjugacy class. It follows that each
f ∈ C(X) can be viewed as a continuous function f(θ) on the compact set [0, π].

The pushforward of the Haar measure of G to X is given by

(2.2) μ =
2

π
sin2 θ dθ

(see Exercise 2.4), which means that for each f ∈ C(X) we have

μ(f) =
2

π

∫ π

0

f(θ) sin2 θ dθ.

Let E/Q be an elliptic curve without CM, let P := (p) be the sequence of
primes that do not divide the conductor N of E, in order, and for each p ∈ P let
xp ∈ X to be the element of X corresponding to the unique θp ∈ [0, π] for which

http://math.mit.edu/~drew/g1_D2_a1f.gif
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2 cos θp
√
p = tp := p+ 1−#Ep(Fp) is the trace of Frobenius of the reduced curve

Ep.
We are now in the setting of §2.3. We have a compact group G := SU(2),

its space of conjugacy classes X := conj(G), a number field K = Q, a sequence
P containing all but finitely many primes of K ordered by norm, a sequence (xp)
in X indexed by P , and for each integer m ≥ 1, an irreducible representation
ρm : G → GLm+1(C). The L-function corresponding to ρm is given by

L(ρm, s) :=
∏
p �N

det(1− ρm(xp)p
−s)−1 =

∏
p �N

m∏
k=0

(1− ei(m−2k)θpp−s)−1.

For each p � N , let αp and ᾱp be the roots of T 2 − tpT + p, so that αp = eiθpp1/2.
If we now define

L1
m(s) :=

∏
p � N

m∏
r=0

(1− αm−r
p ᾱr

pp
−s)−1,

then for m ≥ 1 we have

L(ρm, s) = L1
m(s−m/2).

Tate conjectured in [88] that L1
m(s) is holomorphic and nonvanishing on the right

half plane Re(s) ≥ 1 +m/2, which implies that each L(ρm, s) is holomorphic and
nonvanishing on Re(s) ≥ 1. Assuming this is true, Theorem 2.12 implies that the
sequence (xp) is μ-equidistributed, which is equivalent to the Sato-Tate conjecture.

We now recall the modularity theorem for elliptic curves over Q, which states
that there is a one-to-one correspondence between isogeny classes of elliptic curves
E/Q of conductor N and modular forms

f(z) =
∑
n≥1

ane
2πinz ∈ S2(Γ0(N))new (an ∈ Z with a1 = 1)

that are eigenforms for the action of the Hecke algebra on the space S2(Γ0(N)) of
cuspforms of weight 2 and level N and new at level N , meaning not contained in
S2(Γ0(M)) for any positive integer M properly dividing N . Such modular forms f
are called (normalized) newforms, of weight 2 and levelN , with rational coefficients.
The modularity theorem was proved for squarefree N by Taylor and Wiles [91,98],
and extended to all conductors N by Breuil, Conrad, Diamond, and Taylor [12].

The modular form f is a simultaneous eigenform for all the Hecke operators
Tn, and the normalization a1 = 1 ensures that for each prime p � N , the coefficient
ap is the eigenvalue of f for Tp. Under the correspondence given by the modularity
theorem, the eigenvalue ap is equal to the trace of Frobenius tp of the reduced curve
Ep, where E is any representative of the corresponding isogeny class. Here we are
using the fact that if E and E′ are isogenous elliptic curves over Q they necessarily
have the same conductor N and the same trace of Frobenius tp at ever p � N .

There is an L-function L(f, s) associated to the modular form f , and the mod-
ularity theorem guarantees that it coincides with the L-function L(E, s) of E. So
not only does ap = tp for all p � N , the Euler factors at the bad primes p|N also
agree. We need not concern ourselves with Euler factors at these primes, other
than to note that they are holomorphic and nonvanishing on Re(s) ≥ 3/2. After
removing the Euler factors at bad primes, the L-functions L(E, s) and L(f, s) both
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have the form

∏
p �N

(1− app
−s + p1−2s)−1 =

∏
p �N

1∏
r=0

(1− α1−r
p ᾱr

pp
−s)−1 = L1

1(s),

where αp and ᾱp are the roots of T 2 − apT + p = T 2 − tpT + p.
The L-function L(f, s) is holomorphic and nonvanishing on Re(s) ≥ 3/2; see

[21, Prop. 5.9.1]. The modularity theorem tells us that the same is true of L(E, s),
and therefore of L1

1(s). Thus the modularity theorem proves that Tate’s conjecture
regarding L1

m(s) holds when m = 1. To prove the Sato-Tate conjecture one needs
to show that this holds for all m ≥ 1.

Theorem 2.17. Let f(z) :=
∑

n≥1 ane
2πizn ∈ S2(Γ0(N)new be a normalized

newform without CM. For each prime p � N let αp, ᾱp be the roots of T 2 − apT + p.
Then ∏

p � N

m∏
r=0

(1− αm−r
p ᾱr

pp
−s)−1 = L1

m(s)

is holomorphic and nonvanishing on Re(s) ≥ 1 +m/2.

Proof. Apply [7, Theorem B.2] with weight k = 2, trivial nebentypus ψ = 1,
and trivial character χ = 1 (as noted in [7], this special case was already addressed
in [32]). �

Corollary 2.18. The Sato-Tate conjecture (Theorem 1.9) holds.

Remark 2.19. The Sato-Tate conjecture is also known to hold for elliptic
curves over totally real fields, and over CM fields (imaginary quadratic extensions
of totally real fields). The totally real case was initially proved for elliptic curves
with potentially multiplicative reduction at some prime in [32, 90]; it was later
shown this technical assumption can be removed (see the introduction of [6]). The
generalization to CM fields was obtained at a recent IAS workshop [3] and still
in the process of being written up in detail. As a consequence of this result the
Sato-Tate conjecture for elliptic curves is now known for all number fields of degree
1 or 2 (but not for any higher degrees).

2.6. Exercises.

Exercise 2.1. Let X be a compact Hausdorff space. Show that a set S ⊆ X
is μ-quarrable for every measure μ on X if and only if the set S is both open and
closed.

Exercise 2.2. Prove Proposition 2.7.

Exercise 2.3. Let E an elliptic curve over Fq and let α be a root of the
characteristic polynomial of the Frobenius endomorphism πE . Prove that α/

√
q is

a root of unity if and only if E is supersingular.

Exercise 2.4. Show that the set of conjugacy classes of SU(2) is in bijection
with the set of eigenangles θ ∈ [0, π]. Then prove that the pushforward of the
Haar measure of SU(2) onto [0, π] is given by μ := 2

π sin2 θ dθ (hint: show that

SU(2) is isomorphic to the 3-sphere S3 and use this isomorphism together with the
translation invariance of the Haar measure to determine μ)
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Exercise 2.5. Compute the trace moment sequence for SU(2) (that is, prove
(1.6)). Embed U(1) in SU(2) via the map u 
→ ( u 0

0 ū ) and compute its trace moment
sequence (compare to Figure 2). Now determine the normalizer N(U(1)) of U(1)
in SU(2) and compute its trace moment sequence (compare to Figure 3).

3. Sato-Tate groups

In the previous section we showed that there are three distinct Sato-Tate dis-
tributions that arise for elliptic curves E over number fields K (only two of which
occur when K = Q). All three distributions can be associated to the Haar measure
of a compact subgroup G ⊆ SU(2), in which we embed U(1) via the map u 
→ ( u 0

0 ū ).
We are interested in the pushforward μ of the Haar measure onto conj(G), which
can be expressed in terms of the eigenangle θ ∈ [0, π]. The three possibilities for G
are listed below.

• U(1): we have μ(θ) = 1
πdθ and trace moments:

(1, 0, 2, 0, 6, 0, 20, 0, 70, 0, 252, . . .).

This case arises for CM elliptic curves over fields that contain the CM field.
• N(U(1)): we have μ(θ) = 1

2πdθ +
1
2δπ/2 and trace moments:

(1, 0, 1, 0, 3, 0, 10, 0, 35, 0, 126, . . .).

This case arises for CM elliptic curves over fields that do not contain the
CM field.

• SU(2): we have μ(θ) = 2
π sin2 θ dθ and trace moments:

(1, 0, 1, 0, 2, 0, 5, 0, 14, 0, 42, . . .).

This case arises for all non-CM elliptic curves (conjecturally so when K
is not totally real or a CM field).

We have written μ in terms of θ, but we may view it as a linear function on
the Banach space C(X), where we identify X := conj(G) with [0, π], by defining
μ(f) :=

∫ π

0
f(θ)μ(θ), as in §2.1. In particular, μ assigns a value to the trace function

tr : X → [−2, 2], where tr(θ) = 2 cos θ, and to its powers trn, which allows us to
compute the trace moment sequence (μ(trn))n≥0.

Our goal in this section is to define the compact group G as an invariant of the
elliptic curve E, the Sato-Tate group of E, and to then generalize this definition to
abelian varieties of arbitrary dimension. This will allow us to state the Sato-Tate
conjecture for abelian varieties as an equidistribution statement with respect to the
Haar measure of the Sato-Tate group.

3.1. The Sato-Tate group of an elliptic curve. Thus far the link between
the elliptic curve E and the compact groupG whose Haar measure is claimed (and in
many cases proved) to govern the distribution of Frobenius traces has been made
via the measure μ. That is, we have an equidistribution claim for the sequence
(xp) of normalized Frobenius traces associated to E that is phrased in terms of a
measure μ that happens to be induced by the Haar measure of a compact group G.
We now want to establish a direct relationship between E and G that defines G as
an arithmetic invariant of E, without assuming the Sato-Tate conjecture.

In Section 1.1 we considered Galois representations ρf : Gal(Q/Q) → GLd(C)

defined by the action of Gal(Q/Q) on the roots of a squarefree polynomial f ∈ Z[x].
We thereby obtained a compact group Gf and a map that sends each prime p of
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good reduction for f to an element of conj(Gf ) (namely, the map p 
→ ρf (Frobp)).
We were then able to relate the image of p under this map to the quantity Nf (p)
of interest, via (1.1). This construction did not involve any discussion of equidis-
tribution, but we could then prove, via the Chebotarev density theorem, that the
conjugacy classes ρf (p) are equidistributed with respect to the pushforward of the
Haar measure to conj(Gf ).

We take a similar approach here. To each elliptic curve E over a number field K
we will associate a compact group G that is constructed via a Galois representation
attached to E, equipped with a map that sends each prime p of good reduction
for E to an element xp of conj(G) that we can directly relate to the quantity
NE(p) := p+ 1− tp whose distribution we wish to study. We may then conjecture
(and prove, when E has CM or K is a totally real or CM field), that the sequence
(xp) is equidistributed in X := conj(G) (with respect to the pushforward of the
Haar measure of G).

The group G is the Sato–Tate group of E, and will be denoted ST(E). It
is a compact subgroup of SU(2), and our construction will make it easy to show
that ST(E) is always one of the three groups U(1), N(U(1)), SU(2) listed above,
depending on whether E has CM or not, and if so, whether the CM field is contained
in the ground field or not. None of this depends on any equidistribution results.
This construction will be our prototype for the definition of the Sato-Tate group of
an abelian variety of arbitrary dimension g, so we will work out the g = 1 case in
some detail.

In order to associate a Galois representation to E/K, we need a set on which
Gal(K/K) can act. For each integer n ≥ 1, let E[n] := E(K)[n] denote the n-
torsion subgroup of E(K), a free Z/nZ-module of rank 2 (see [82, Cor. III.6.4]).
The group Gal(K/K) acts on points in E(K) coordinate-wise, and E[n] is invariant
under this action because it is the kernel of the multiplication-by-n map [n], an
endomorphism of E that is defined over K; one can concretely define E[n] as the
zero locus of the n-division polynomials, which have coefficients in K. The action
of Gal(K/K) on E[n] induces the mod-n Galois representation

Gal(K/K) → Aut(E[n]) � GL2(Z/nZ).

This Galois representation is insufficient for our purposes, because the image Mp

of Frobp in GL2(Z/nZ) does not determine tp, we only have tp ≡ trMp mod n; we

need to let Gal(K/K) act on a bigger set.
So let us fix a prime � (any prime will do), and consider the inverse system

· · · [�]−→ E[�3]
[�]−→ E[�2]

[�]−→ E[�].

The inverse limit

T� := lim←−
n

E[�n]

is the �-adic Tate-module of E; it is a free Z�-module of rank 2. The group
Gal(K/K) acts on T� via its action on the groups E[�n], and this action is compat-
ible with the multiplication-by-� map [�] because this map is defined over K (it can
be written as a rational map with coefficients in K). This yields the �-adic Galois
representation

ρE,� : Gal(K/K) → Aut(T�) � GL2(Z�).
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The representation ρE,� enjoys the following property: for every prime p � � of
good reduction for E the image of Frobp is a matrix Mp ∈ GL2(Z�) that has
the same characteristic polynomial as the Frobenius endomorphism of Ep, namely,
T 2 − tpT +N(p), where tp := trπEp

. Note that the matrix Mp is determined only
up to conjugacy; there is ambiguity both in our choice of Frobp (see §1.1) and in
our choice of a basis for T�, which fixes the isomorphism Aut(T�) � GL2(Z�). We
should thus think of ρE,�(Frobp) as representing a conjugacy class in GL2(Z�).

We prefer to work over the field Q�, rather than its ring of integers Z�, so let
us define the rational Tate module

V� := T� ⊗Z Q,

which is a 2-dimensional Q�-vector space equipped with an action of Gal(K/K).
We may then view the Galois representation ρE,� as having image G� ⊆ GL2(Q�).
We also prefer to work with an algebraic group, so let us define Gzar

� to be the
Q�-algebraic group obtained by taking the Zariski closure of G� in GL2(Q�). This
means that Gzar

� is the affine variety defined by the ideal of Q�-polynomials that
vanish on the set G�; it is a subvariety of GL2 /Q� that is closed under the group
operation and thus an algebraic group over Q�. The algebraic group Gzar

� is the

�-adic monodromy group of E (it is also denoted Galg
� ).

Background 3.1 (Algebraic groups). An affine (or linear) algebraic group
over a field k is a group object in the category of (not necessarily irreducible)
affine varieties over k. The only projective algebraic groups we shall consider are
smooth and connected, hence abelian varieties, so when we use the term algebraic
group without qualification, we mean an affine algebraic group.14 The canonical

example is GLn, which can be defined as an affine variety in An2+1 (over any field)
by the equation t detM = 1 (here detM denotes the determinant polynomial in
n2 variables Mij), with morphisms m : GLn ×GLn → GLn and i : GLn → GLn

defined by polynomial maps corresponding to matrix multiplication and inversion
(one uses t as the inverse of detA when defining i). The classical groups SLn,
Sp2n,Un, SUn, On, SOn are all affine algebraic groups (assume char(k) �= 2 for On

and SOn), as are the groups USp2n := Sp2n ∩U2n and GSp2n that are of particular
interest to us; the R and C points of these groups are Lie groups (differentiable
manifolds with a group structure). If G is an affine algebraic group over k and L/k
is a field extension, the Zariski closure of any subgroup H ⊆ G(L) of the L-points
of G is equal to the set of rational points of an affine variety defined over L that is
also an algebraic group via the morphisms m and i defining G. Thus every subgroup
H ⊆ G(L) uniquely determines an algebraic group over L whose rational points
coincide with the Zariski closure of H; as an abuse of terminology we may refer to
this algebraic group as the Zariski closure of H in G(L) (or in GL, the base change
of G to L). The connected and irreducible components of an algebraic group G
coincide, and are necessarily finite in number. The connected component G0 of the
identity is itself an algebraic group, a normal subgroup of G compatible with base
change. For more on algebraic groups see any of the classic texts [10,42,83], or
see [55] for a more modern treatment.

14There are interesting algebraic groups (group schemes of finite type over a field) that
are neither affine nor projective (even if we restrict our attention to those that are smooth and
connected), but we shall not consider them here.
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Having defined the Q�-algebraic group Gzar
� , we now restrict our attention to

the subgroup G1,zar
� obtained by imposing the symplectic constraint

M tΩM = Ω, Ω :=
(
0 −1
1 0

)
,

which corresponds to putting a symplectic form (a nondegenerate bilinear alternat-
ing pairing) on the vector space V� (we could of course choose any Ω that defines
such a form). This condition can clearly be expressed by a polynomial (a quadratic

form in fact), thus G1,zar
� is an algebraic group over Q� contained in Sp2. We re-

mark that Sp2 = SL2, so we could have just required detM = 1, but this is an
accident of low dimension: the inclusion Sp2n ⊆ SL2n is strict for all n > 1.

Finally, let us choose an embedding ι : Q� → C, and let G1,zar
�,ι be the C-

algebraic group obtained from G1,zar
� by base change to C (via ι). The group

G1,zar
�,ι (C) is a subgroup of Sp2(C) that we may view as a Lie group with finitely

many connected components. It therefore contains a maximal compact subgroup
that is unique up to conjugacy [63, Thm. IV.3.5], and we take this as the Sato–Tate
group ST(E) of E (which is thus defined only up to conjugacy). It is a compact
subgroup of USp(2) = SU(2) (this equality is another accident of low dimension).

For each prime p � � of good reduction for E, let Mp denote the image of Frobp
under the maps

Gal(K/K)
ρE,�−→ G� ↪→ Gzar

� (Q�) ↪→ Gzar
�,ι (C),

where the middle map is inclusion and we use the embedding ι : Q� → C to obtain
the last injection. We now consider the normalized Frobenius image

M̄p := N(p)−1/2Mp;

it is a matrix with trace tp/N(p)−1/2 ∈ [−2, 2] and determinant 1, and its eigenval-
ues e±iθp lie on the unit circle.15 The eigenangle θp determines a unique conjugacy
class in ST(E), which we take as xp. The characteristic polynomial of xp is the

normalized L-polynomial L̄p(T ) := Lp(N(p)−1/2T ), where Lp(T ) is the numerator
of the zeta function of Ep, and Lp(N(p)−s) is the Euler factor at p in the L-series
L(E, s).

The Sato–Tate conjecture then amounts to the statement that the sequence
(xp) in X := conj(ST(E)) is equidistributed. Notice that the statement is the same
in both the CM and non-CM cases, but the measure on X is different, because
ST(E) is different. Indeed, there are three possibilities for ST(E), corresponding
to the three distributions that we noted at the beginning of this section.

Theorem 3.2. Let E be an elliptic curve over a number field K. Up to conju-
gacy in SU(2) we have

ST(E) =

⎧⎪⎨
⎪⎩
U(1) if E has CM defined over K,

N(U(1)) if E has CM not defined over K,

SU(2) if E does not have CM,

where U(1) is embedded in SU(2) via u 
→ ( u 0
0 ū ).

15Note that we embed Gzar
� (Q�) in Gzar

�,ι (C) before normalizing by N(p)−1/2; as pointed out

by Serre [77, p. 131], we want to take the square root in C where it is unambiguously defined.
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Proof. If E has CM defined over K then G� is abelian, because the action
of Gal(K/K) on V� factors through the abelian group Gal(L/K), where the field
L := K(E[�∞]) is obtained by adjoining the coordinates of the �-power torsion
points of E; this follows from [81, Thm. II.2.3]. Therefore G� lies in a Cartan
subgroup of GL2(Q�) (a maximal abelian subgroup), which necessarily splits when
we pass to Gzar

�,ι (C), where it is conjugate to the group of diagonal matrices. This

implies that ST(E) is conjugate to U(1), the subgroup of diagonal matrices in
SU(2).

If E has CM not defined over K, then G� lies in the normalizer of a Cartan
subgroup of GL2(Q�), but not in the Cartan itself, and ST(E) is conjugate to the
normalizer N(U(1)) of U(1) in SU(2); the argument is as above, but now the action
of Gal(K/K) factors through Gal(FL/K), where F is the CM field and Gal(FL/K)
contains the abelian subgroup Gal(FL/FK) with index 2.

If E does not have CM then Serre’s open image theorem (see [71, §IV.3] and
[72]) implies that G� is a finite index subgroup of GL2(Z�); we therefore have

G1,zar
� = SL2, which implies ST(E) = SU(2). �

It follows from Theorem 3.2 that (up to conjugacy), the Sato–Tate group ST(E)
does not depend on our choice of the prime � or the embedding ι : Q� → C that we
used. We should also note that ST(E) depends only on the isogeny class of E; this
follows from the fact that we used the rational Tate module V� to define it (indeed,
two abelian varieties over a number field are isogenous if and only if their rational
Tate modules are isomorphic as Galois modules, by Faltings’ isogeny theorem [23],
but we are only using the easy direction of this equivalence here).

3.2. The Sato–Tate group of an abelian variety. We now wish to gener-
alize our definition of the Sato–Tate group of an elliptic curve to abelian varieties.
Recall that an abelian variety is a smooth connected projective variety that is also
an algebraic group, where the group operations are now given by morphisms of
projective varieties; on any affine patch they can be defined by a polynomial map.
Remarkably, the fact that abelian varieties are commutative algebraic groups is not
part of the definition, it is a consequence; see [54, Cor. 1.4]. We also recall that an
isogeny of abelian varieties is simply an isogeny of algebraic groups, a surjective
morphism with finite kernel.

Abelian varieties of dimension g may arise as the Jacobian Jac(C) of a smooth
projective curve C/k of genus g. If C has a k-rational point (as when C is an
elliptic curve), one can functorially identify Jac(C) with the divisor class group
Pic0(C), the group of degree-zero divisors modulo principal divisors, but one can
unambiguously define the abelian variety Jac(C) in any case; see [54, Ch. III] for
details.

If C is a smooth projective curve over a number field K and A := Jac(C) is
its Jacobian, then for every prime p of good reduction for C, the abelian variety
A also has good reduction at p,16 and the L-polynomial Lp(T ) appearing in the
numerator of the zeta function ZCp

(T ) is reciprocal to the characteristic polynomial
χp(T ) of the Frobenius endomorphism πAp

of Ap, which acts on points of A via the
N(p)-power Frobenius automorphism (coordinate-wise). In particular, we have the

16For g > 1 the converse does not hold (in general); this impacts only finitely many primes
p and will not concern us.
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identity

(3.1) Lp(T ) = T 2gχp(T
−1),

in which both sides are integer polynomials of degree 2g whose complex roots have
absolute value N(p)−1/2. As with elliptic curves, one can consider the L-function
L(A, s) attached to A, which is defined as an Euler product with factors Lp(N(p)−s)
at each prime p where A has good reduction.17 Studying the distribution of the
normalized L-polynomials L̄p(T ) associated to C is thus equivalent to studying the
distribution of the normalized characteristic polynomials of πAp

, and also equivalent
to studying the distribution of the normalized Euler factors of L(A, s).

Remark 3.3. Each of these three perspectives is successively more general than
the previous, the last vastly so. There are abelian varieties over K that are not
the Jacobian of any curve defined over K, and L-functions that can be written as
Euler products over primes of K that are not the L-function of any abelian variety.
One can more generally consider the distribution of normalized Euler factors of
motivic L-functions, which we also expect to be governed by the Haar measure of
a Sato-Tate group associated to the underlying motive, as defined in [76,77]; see
[26] for some concrete examples in weight 3.

The recipe for defining the Sato-Tate group ST(A) of an abelian variety A/K
of genus g is a direct generalization of the g = 1 case. We proceed as follows:

1. Pick a prime �, define the Tate module T� := lim←−n
A[�n], a free Z�-module

of rank 2g, and the rational Tate module V� := T�⊗ZQ, a Q�-vector space
of dimension 2g.

2. Use the Galois representation ρA,� : Gal(K/K) → Aut(V�) � GL2g(Q�)
to define G� := im ρA,�.

3. Let Gzar
� be the Zariski closure of G� in GL2g(Q�) (as an algebraic group),

and define G1,zar
� by adding the symplectic constraint M tΩM = Ω, so

that G1,zar
� is a Q�-algebraic subgroup of Sp2g.

4. Pick an embedding ι : Q� → C and use it to define G1,zar
�,ι as the base-

change of G1,zar
� to C.

5. Define ST(A) ⊆ USp(2g) as a maximal compact subgroup of G1,zar
�,ι (C),

unique up to conjugacy.
6. For each good prime p � �, let Mp be the image of Frobp in Gzar

�,ι (C) and

define xp ∈ conj(ST(A)) to be the conjugacy class of Mp := N(p)−1/2Mp,
in ST(A).

Step 6 requires some justification; it is not obvious why Mp should necessarily be
conjugate to an element of ST(A). Here we are relying on two key facts.

First, the image G� of ρA,� in GL2g(Q�) actually lies in GSp2g(Q�), the group
of symplectic similitudes. The algebraic group GSp2g is defined by imposing the
constraint

M tΩM = λΩ, Ω :=
(

0 −Ig
Ig 0

)
,

where λ is necessarily an element of the multiplicative group Gm := GL1, since M
is invertible. The morphism GSp2g → Gm defined by λ is the similitude character,

17Explicitly determining the Euler factors at bad primes is difficult when dimA > 1. Practical
methods are known only in special cases, such as when A is the Jacobian of a hyperelliptic curve
(even in this case there is still room for improvement).
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and we have an exact sequence of algebraic groups

1 → Sp2g ↪→ GSp2g
λ−→ Gm → 1.

The action of Gal(K/K) on the Tate module is compatible with the Weil pairing,
and this forces the image G� of ρE,� to lie in GSp2g(Q�); see Exercise 3.1. By fixing
a symplectic basis for V� in step 1 we can view ρA,� as a continuous homomorphism

ρA,� : Gal(K/K) → GSp2g(Q�) ⊆ GL2g(Q�)

For g = 1 we have GL2 = GSp2, but for g > 1 the algebraic group GSp2g is properly
contained in GL2g.

Second, we are relying on the fact that Mp, and therefore Mp, is semisimple
(diagonalizable, since we are working over C). This follows from Tate’s proof of the
Tate conjecture for abelian varieties over finite fields (combine the main theorem
and part (a) of Theorem 2 in [89]). The matrix Mp is thus diagonalizable and has

eigenvalues of absolute value 1; it therefore lies in a compact subgroup of G1,zar
�,ι (C)

(take the closure of the group it generates). This compact group is necessarily
conjugate to a subgroup of the maximal compact subgroup ST(A), which must
contain an element conjugate to Mp.

Remark 3.4. When defining the Sato-Tate group in more general settings one
instead uses the semisimple component of the (multiplicative) Jordan decomposi-
tion (see [10, Thm. I.4.4]) of Mp to define xp, as in [77, §8.3.3]. This avoids the
need to assume the conjectured semisimplicity of Frobenius, which is known for
abelian varieties but not in general.

Background 3.5 (Weil pairing). If A is an abelian variety over a field k and
A∨ is its dual abelian variety (see [54, §I.8]), then for each n ≥ 1 prime to the
characteristic of k, the Weil pairing is a nondegenerate bilinear map

A[n]×A∨[n] → μn(k)

that commutes with the action of Gal(k/k); here μn denotes the group of nth roots
of unity (the algebraic group defined by xn = 1). Letting n vary over powers
of a prime � �= char(k) and taking inverse limits yields a bilinear map on the
corresponding Tate modules:

e� : T� × T∨
� → μ�∞(k) := lim←−

n

μ�n(k).

Given a polarization, an isogeny φ : A → A∨, we can use it to define a bilinear
pairing

eφ� : T� × T� → μ�∞(k)

(x, y) 
→ e�(x, φ(y))

that is also compatible with the action of Gal(k/k). One can always choose a

polarization φ so that the pairing eφ� is nondegenerate and skew symmetric, meaning

that eφ� (a, b) = eφ� (b, a)
−1 for all a, b ∈ T�; see [54, Prop. I.13.2]. When A is the

Jacobian of a curve it is naturally equipped with a principal polarization φ, an
isomorphism A

∼→ A∨, for which this automatically holds; in this situation it is

common to simply identify e� with eφ� without mentioning φ explicitly.
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We should note that our definition of the Sato-Tate group ST(A) required us
to choose a prime � and an embedding ι : Q� → C. Up to conjugacy in USp(2g)
one expects the Sato-Tate group to be independent of these choices; this is known
for g ≤ 3 (see [4]), but open in general. We shall nevertheless refer to ST(A) as
“the” Sato-Tate group of A, with the understanding that we are fixing once and for
all a prime � and an embedding ι : Q� → C (note that these choices do not depend
on A or even its dimension g).

3.3. The Sato-Tate conjecture for abelian varieties. Having defined the
Sato-Tate group of an abelian variety over a number field we can now state the
Sato-Tate conjecture for abelian varieties.

Conjecture 3.6. Let A be an abelian variety over a number field K, let ST(A)
denote its Sato-Tate group, and let (xp) be the sequence of conjugacy classes of
normalized images of Frobenius elements in ST(A) at primes p of good reduction for
A, ordered by norm (break ties arbitrarily). Then the sequence (xp) is equidistributed
(with respect to the pushforward of the Haar measure of ST(A) to its space of
conjugacy classes).

3.4. The identity component of the Sato-Tate group. There are two
algebraic groups that one can associate to an abelian variety A over a number field
K that are closely related to its Sato–Tate group, the Mumford–Tate group and the
Hodge group, both of which conjecturally determine the identity component of the
Sato–Tate group (provably so whenever the Mumford–Tate conjecture is known,
which includes all abelian varieties of dimension g ≤ 3, as shown in [4]). In order
to define these groups we need to recall some facts about complex abelian varieties
and their associated Hodge structures.

Background 3.7 (complex abelian varieties). Let A be an abelian variety of
dimension g over C. Then A(C) is a connected compact Lie group and therefore
isomorphic to a torus V/Λ, where V � Cg is a complex vector space of dimension
g and Λ � Z2g is a full lattice in V that we view as a free Z-module; one can
obtain Λ as the kernel of the exponential map exp: T0(A(C)) → A(C), where
T0(A(C)) denotes the tangent space at the identity. While every complex abelian
variety corresponds to a complex torus, the converse is true only when g = 1. The
complex tori X := V/Λ that correspond to abelian varieties are those that admit a
polarization (or Riemann form), a positive definite Hermitian form H : V ×V → C
with ImH(Λ,Λ) = Z (here Im means imaginary part). Given a polarization H on
X, the map v 
→ H(v, ·) defines an isogeny to the dual torus X∨ := V ∗/Λ∗, where

V ∗ := {f : V → C : f(αv) = ᾱf(v) and f(v1 + v2) = f(v1) + f(v2)},
and Λ∗ := {f ∈ V ∗ : Im f(Λ) ⊆ Z}. This isogeny is a polarization of X as an
abelian variety; conversely, any polarization on A (one always exists) can be used
to define a polarization on the complex torus A(C). One can then show that
the map A 
→ A(C) defines an equivalence of categories between complex abelian
varieties and polarizable complex tori. For more background on complex abelian
varieties, see the overviews in [54, §1] or [59, §1], or see [8] for a comprehensive
treatment.

Now let A be an abelian variety over a number field K, fix an embedding
K ↪→ C, and let Cg/Λ be the complex torus corresponding to A(C). We may
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identify Λ with the singular homology group H1(A(C),Z), and we similarly have
ΛR := Λ⊗Z R � H1(A(C), R) for any ring R.

The isomorphisms A(C) � Cg/Λ and A(C) � R2g/Λ of complex and real Lie
groups allow us to view

ΛR � H1(A(C),R)

as a real vector space of dimension 2g equipped with a complex structure, by which
we mean an R-algebra homomorphism h : C → End(ΛR). In the language of Hodge
theory, this amounts to the statement that (Λ, h) is an integral Hodge structure
(pure of weight −1).

We can also view h as morphism of R-algebraic groups h : S → GLΛR
. Here

S denotes the Deligne torus (also known as the Serre torus), obtained by viewing
C× as an R-algebraic group (this amounts to taking the restriction of scalars of
Gm := GL1 from C to R; see Exercise 3.2). The morphism h can be defined over
R because Cg/Λ is a polarizable torus, since it comes from an abelian variety (in
general this need not hold). The real Lie group S(R) � C× is generated by R×

and U(1) = {z ∈ C× : zz̄ = 1}, which intersect in {±1}; taking Zariski closures
yields R-algebraic subgroups Gm and U1 of S that intersect in μ2. Restricting h
to U1 ⊆ S yields a morphism U1 → GLΛR

with the following property: the image
of each u ∈ U1(R) = U(1) has eigenvalues u, u−1 with multiplicity g; see [8, Prop.
17.1.1]. The image of such a map is known as a Hodge circle.

The rational Hodge structure (ΛQ, h) is obtained by replacing the lattice Λ with
ΛQ := Λ⊗Z Q and can be used to define the Mumford-Tate group.

Definition 3.8. The Mumford–Tate group MT(A) is the smallest Q-algebraic
group G in GLΛQ

for which h(S) ⊆ G(R); equivalently, it is the Q-Zariski closure
of h(S(R)) in GLΛR

. The Hodge group Hg(A) is similarly defined as the Q-Zariski
closure of h(U(1)) in GLΛR

.

As defined above, the Mumford–Tate group MT(A) is a Q-algebraic subgroup
of GL2g. But the complex torus Cg/Λ is polarizable, which means that we can put
a symplectic form on ΛR that is compatible with h, and this implies that in fact
MT(A) is a Q-algebraic subgroup of GSp2g. Similarly, the Hodge group Hg(A) is a
Q-algebraic subgroup of Sp2g, and in fact Hg(A) = MT(A)∩Sp2g; this is sometimes
used as an alternative definition of Hg(A). Much of the interest in the Hodge group
arises from the fact that it gives us an isomorphism of Q-algebras

End(AC)Q � End(ΛQ)Hg(A),

where End(AC)Q := End(AC)⊗Z Q and Hg(A) acts on End(ΛQ) by conjugation;
see [8, Prop. 17.3.4]. To see why this isomorphism is useful, let us note one appli-
cation.

Theorem 3.9. For an abelian variety A of dimension g over a number field
K, the Hodge group Hg(A) is commutative if and only if the endomorphism algebra
End(AK)Q contains a commutative semisimple Q-algebra of dimension 2g.

Proof. See [8, Prop. 17.3.5]. �

For g = 1 the abelian varieties A that satisfy the two equivalent properties
of Theorem 3.9 are CM elliptic curves. More generally, such abelian varieties are
said to be of CM-type. For abelian varieties of general type one has the opposite
extreme: End(AK)Q = Q and Hg(A) = Sp2g; see [8, Prop. 17.4.2].
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In the previous section we defined two Q�-algebraic groups Gzar
� ⊆ GSp2g and

G1,zar
� ⊆ Sp2g associated to A. It is reasonable to ask how they are related to

the Q-algebraic groups MT(A) and Hg(A). Unlike the groups Gzar
� and G1,zar

� ,
the algebraic groups MT(A) and Hg(A) are necessarily connected (by construc-
tion).18 Deligne proved that the identity component of Gzar

� is always a subgroup

of MT(A) ⊗Q Q�, equivalently, that the identity component of G1,zar
� is a sub-

group of Hg(A)⊗Q Q�); see [20]. It is conjectured that these inclusions are in fact
equalities.

Conjecture 3.10 (Mumford–Tate Conjecture). The identity component

of Gzar
� is equal to MT(A)⊗Q Q�; equivalently, the identity component of G1,zar

� is
equal to Hg(A)⊗Q Q�.

This conjecture is known to hold for abelian varieties of dimension g ≤ 3;
see [4, Th. 6.11] where it is shown that this follows from [57]. When it holds,
the Mumford–Tate group (and the Hodge group) uniquely determines the identity
component of the Sato–Tate group, up to conjugation in USp(2g); see [25, Lemma
2.8]. Neither the Mumford–Tate group nor the Hodge group tell us anything about

the component groups of Gzar
� , G1,zar

� , ST(A) (the three are isomorphic; see [77,
§8.3.4]), but there is a closely related Q-algebraic group that conjecturally does.

Conjecture 3.11 (Algebraic Sato–Tate Conjecture). There exists a

Q-algebraic subgroup AST(A) of Sp2g such that G1,zar
� = AST(A)⊗Q Q�.

Banaszak and Kedlaya [4] have shown that this conjecture holds for g ≤ 3 via
an explicit description of AST(A) using twisted Lefschetz groups.

3.5. The component group of the Sato-Tate group. We have seen that
the Mumford–Tate group conjecturally determines the identity component ST(A)0

of the Sato–Tate group ST(A) of an abelian variety A over a number field K
(provably so in dimension g ≤ 3). The identity component ST(A)0 is a normal
finite index subgroup of ST(A), and we now want to consider the component group
ST(A)/ ST(A)0. As above, for any field extension L/K, we use AL to denote the
base change of A to L.

Theorem 3.12. Let A be an abelian variety over a number field K. There is
a unique finite Galois extension L/K with the property that ST(AL) is connected
and Gal(L/K) � ST(A)/ ST(A)0. The extension L/K is unramified outside the
primes of bad reduction for A, and for every subextension F/K of L/K we have
Gal(L/F ) � ST(AF )/ ST(AF )

0.

Proof. As explained in [77, §8.3.4], the component groups of Gzar
� and ST(A)

are isomorphic. Let Γ be the Galois group of the maximal subextension KS�
of

Gal(K/K) that is unramified away from the set S� consisting of the primes of bad
reduction for A and the primes of K lying above �. The �-adic Galois representation
ρA,� : Gal(K/K) → Aut(V�) induces a continuous surjective homomorphism

Γ → Gzar
� /(Gzar

� )0,

18This is true more generally for all motives of odd weight. For motives of even weight
the situation is more delicate; complications arise from the fact that we are then working with
orthogonal groups rather than symplectic groups; see [4,5].
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whose kernel is a normal open subgroup Γ0 of Γ. The corresponding fixed field L is
a finite Galois extension of K, and it is the minimal Galois extension of K for which
ST(AL) is connected. It is clearly uniquely determined and unramified outside S�,
and we have isomorphisms

Gal(L/K) � Γ/Γ0 � Gzar
� /(Gzar

� )0 � ST(A)/ ST(A)0.

As shown by Serre [75], the component group of Gzar
� , and therefore of ST(A), is

independent of �, and the above argument applies to any choice of �. Thus L/K
can be ramified only at primes of bad reduction for A. For any subextension F/K
of L/K, replacing A by AF in the argument above yields the same field L, with
Gal(L/F ) � ST(AF )/ ST(AF )

0. �

3.6. Exercises.

Exercise 3.1. Let A be an abelian variety of dimension g over a number field
K. Show that one can choose a basis for V� = T� ⊗Z Q so that the matrix M
describing the action of any σ ∈ Gal(K/K) on V� satisfies M tΩM = λΩ for some
λ ∈ Q×

� , where Ω :=
(
0 −I
I 0

)
. Conclude that the image of the corresponding Galois

representation lies in GSp2g(Q�) and describe the map Gal(K/K) → Q×
� induced

by the similitude character λ.

Exercise 3.2. Define the Deligne torus S as an R-algebraic group in A4 (give
equations that define it as an affine variety and polynomial maps for the group
operations), and then express the R-algebraic groups Gm and U1 as subgroups of
S that intersect in μ2. Prove that S(R) and C× are isomorphic as real Lie groups
(give explicit maps in both directions).

Exercise 3.3. Let L/K be a finite separable extension of degree d, written as
L = K(α). Given an affine L-variety Y defined by polynomials Pk ∈ L[y1, . . . , yn],

we can construct an affineK-variety ResL/K(Y ) by writing each yi =
∑d−1

j=0 xijα
j in

terms of the K-basis {1, α, . . . , αd−1} for L and using the minimal polynomial of α
to replace each Pk(y1, . . . , yn) by a polynomial in K[x11, . . . , x1d, . . . , xn1 . . . , xnd].
The K-variety ResL/K(Y ) is the Weil restriction (or restriction of scalars) of Y .
Prove that the R-algebraic group S (the Deligne torus) is the Weil restriction of
the C-algebraic group Gm, that is, S = ResC/R(Gm).

4. Sato–Tate axioms and Galois endomorphism types

In this section we present the Sato-Tate axioms and consider the problem of
classifying Sato-Tate groups of abelian varieties of a given dimension g. We then
compute trace moment sequences of all connected Sato-Tate groups of abelian va-
rieties of dimension g ≤ 3 and present formulas for the trace moment sequence of
USp(2g) (the generic case) that apply to all g,

4.1. Sato–Tate axioms. In [77, §8.2] Serre gives a set of axioms that any
Sato–Tate group is expected to satisfy. Serre considers Sato–Tate groups in a more
general context than we do here, so we will state the axioms as they apply to Sato–
Tate groups of abelian varieties. As in §3.4, for a Lie group G we define a Hodge
circle to be a subgroup H of G that is the image of a continuous homomorphism
θ : U(1) → G0 whose elements θ(u) have eigenvalues u and u−1 with multiplicity g
(note that H necessarily lies in the identity component G0 of G).
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Definition 4.1. A groupG satisfies the Sato–Tate axioms (for abelian varieties
of dimension g ≥ 1) if and only if the following hold:

(ST1) (Lie condition) G is a closed subgroup of USp(2g).
(ST2) (Hodge condition) The Hodge circles in G generate a dense non-trivial

subgroup of G0.19

(ST3) (rationality condition) For each component H of G and irreducible char-
acter χ of GL2g(C), we have

∫
H
χμ ∈ Z, where μ is the Haar measure on

G normalized so that μ(�H) = 1.

Remark 4.2. Definition 4.1 generalizes easily to self-dual motives with rational
coefficients. Given an integer weight w ≥ 0 and Hodge numbers hp,q ∈ Z≥0 indexed
by p, q ∈ Z≥0 with p+ q = w such that hp,q = hq,p when w is odd, let d :=

∑
hp,q.

For abelian varieties we have w = 1 and h1,0 = h0,1 = g. In axiom (ST1) we require
G to be a closed subgroup of USp(d) (resp. O(d)) when w is odd (resp. even), and
in axiom (ST2) we require elements θ(u) of a Hodge circle to have eigenvalues up−q

with multiplicity hp,q; axiom (ST3) is unchanged.

Axiom (ST1) implies that G is a compact Lie group, and (ST2) rules out finite
groups, since G must contain at least one Hodge circle and therefore contains a sub-
group isomorphic to U(1). When G is connected, (ST3) holds automatically and
only (ST1) and (ST2) need to be checked; this is an easy application of representa-
tion theory, see [49, Prop. 2]. Axiom (ST3) plays no role when g = 1 (see the proof
of Proposition 4.4 below), but for g > 1 it is crucial. When g = 2, for example,
for every integer n ≥ 1 we can diagonally embed U(1) × U(1)[n] in USp(4) to get
infinitely many non-conjugate closed groups G ⊆ USp(4) whose identity component
is a Hodge circle. All of these groups satisfy (ST1) and (ST2), but only finitely
many satisfy (ST3). Indeed, if we take χ and let C be a component on which the
projection to U(1)[n] has order n, we have∫

C

χμ = ζn + ζ̄n ∈ Z

only for n ∈ {2, 3, 4, 6}. More generally, we have the following theorem.

Theorem 4.3. Up to conjugacy, for any fixed dimension g ≥ 1 the number of
subgroups of USp(2g) that satisfy the Sato–Tate axioms is finite.

Proof. See [25, Rem. 3.3] �

Theorem 4.3 motivates the following classification problem : given an integer
g ≥ 1, determine the subgroups of USp(2g) that satisfy the Sato–Tate axioms. The
case g = 1 is easy.

Proposition 4.4. For g = 1 the three groups U(1), N(U(1) and SU(2) listed
in Theorem 3.2 are the only groups that satisfy the Sato–Tate axioms (up to con-
jugacy).

Proof. Suppose G satisfies the Sato–Tate axioms. Then G0 contains a con-
jugate of U(1) embedded in USp(2) via u 
→ ( u 0

0 ū ), as in Theorem 3.2, and it must
be a compact connected Lie group. The only nontrivial compact connected Lie

19The statement of (ST2) in [25] inadvertently omits the requirement that the Hodge circles
generate a dense subgroup.
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groups in USp(2) = SU(2) are U(1) and SU(2) itself (this follows from the classi-
fication of compact connected Lie groups but is easy to see directly). Thus either
G0 = SU(2), in which case G = SU(2), or G0 is conjugate to U(1) and must be a
normal subgroup of G (the identity component of a compact Lie group is always a
normal subgroup of finite index). The group U(1) has index 2 in its normalizer, so
U(1) and N(U(1)) are the only possibilities for G when G0 = U(1). �

Corollary 4.5. For g = 1 a group G satisfies the Sato–Tate axioms if and
only if it is the Sato–Tate group of an elliptic curve over a number field.

The classification problem for g = 2 is more difficult, but it has been solved.

Theorem 4.6. Up to conjugacy in USp(4) there are 55 groups that satisfy the
Sato–Tate axioms for g = 2. Of these 55, the following 6 are connected:

U(1)2, SU(2)2, U(1)×U(1), U(1)× SU(2), SU(2)× SU(2), USp(4),

were U(1)2 denotes U(1) =
{
( u 0
0 ū ) : u ∈ C×}

diagonally embedded in USp(4), and
similarly for SU(2)2.

Proof. See [25, Thm. 3.4], which gives an explicit description of the 55 groups.
�

Remark 4.7. Those familiar with the classification of connected compact Lie
groups may notice that the group U(2), which can be embedded in USp(4), is
missing from Theorem 4.6. This is because it fails to satisfy the Hodge condition
(ST2); it contains subgroups isomorphic to U(1), but there is no way to embed
U(1) ↪→ U(2) ↪→ USp(4) and get eigenvalues u and u−1 with multiplicity 2; see
[26, Rem. 2.3]. However, for motives of weight 3 and Hodge numbers h3,0 = h2,1 =
h1,2 = h0,3 = 1 the modified Hodge condition noted in Remark 4.2 is satisfied by a
subgroup of USp(4) isomorphic to U(2); see [26] for details, including two examples
of weight 3 motives with Sato-Tate group U(2).

Corollary 4.5 does not hold for g = 2.

Theorem 4.8. Of the 55 groups appearing in Theorem 4.6, only 52 arise as
the Sato–Tate group of an abelian surface over a number field. Of these, 34 arise
for abelian surfaces defined over Q.

Proof. See [25, Thm. 1.5]. �

The three subgroups of USp(4) that satisfy the Sato–Tate axioms but are not
the Sato–Tate group of any abelian surface over a number field are the normalizer
of U(1) × U(1) in USp(4), whose component group is the dihedral group of order
8, and two of its subgroups, one of index 2 and one of index 4. The proof that
these three groups do not occur is obtained by first establishing a bijection between
Galois endomorphism types (see Definition 4.10 below) and Sato–Tate groups, and
then showing that there are only 52 Galois endomorphism types of abelian surfaces.
Explicit examples of genus 2 curves whose Jacobians realize these 52 possibilities can
be found in [25, Table 11], and animated histograms of their Sato–Tate distributions
are available at

http://math.mit.edu/~drew/g2SatoTateDistributions.html.

http://math.mit.edu/~drew/g2SatoTateDistributions.html
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The classification problem for g = 3 remains open, but the connected cases have
been determined (see Table 2 in the next section). Before leaving our discussion of
the Sato–Tate axioms, it is reasonable to ask whether Sato–Tate groups necessarily
satisfy them. Of course we expect this to be the case, but it is difficult to prove in
general. However, it can be proved to hold in all cases where the Mumford–Tate
conjecture is known, including all cases with g ≤ 3.

Proposition 4.9. Let A be an abelian variety of dimension g over a number
field K for which the Mumford–Tate conjecture holds. Then ST(A) satisfies the
Sato–Tate axioms.

Proof. See [25, Prop. 3.2]. �
4.2. Galois endomorphism types. We will work in the abstract category

C whose objects are pairs (G,E) of a finite group G and an R-algebra E equipped
with an R-linear action of G, and whose morphisms Φ: (G,E) → (G′, E′) are pairs
(φG, φE), where φG : G → G′ is a morphism of groups, and φE : E → E′ is an
equivariant morphism of R-algebras, meaning that

(4.1) φE(e
g) = φE(e)

φG(g) for all g ∈ G and e ∈ E.

To each abelian variety A/K we now associate an isomorphism class [G,E] in
C as follows. The minimal extension L/K for which End(AL) = End(AK) is
a finite Galois extension of K; we shall take G to be Gal(L/K) and E to be
the real endomorphism algebra End(AL)R := End(AL) ⊗Z R. The Galois group
Gal(L/K) acts on End(AL) via its action on the coefficients of the rational maps
defining each element of End(AK); this induces an R-linear action of Gal(L/K)
on End(AL)R via composition with the natural map End(AL) → End(AL)R. The
pair (Gal(L/K),End(AL)R) is thus an object of C.

Definition 4.10. The Galois endomorphism type GT(A) of an abelian variety
A/K is the isomorphism class of the pair (Gal(L/K), End(AL)R) in the category
C, where L is the minimal extension of K for which End(AL) = End(AK).

Example 4.11. Let E be an elliptic curve over a number field K. If E does not
have CM, or if it has CM defined over K, then its endomorphisms are all defined
over L = K; otherwise, its endomorphisms are all defined over its CM field L, an
imaginary quadratic extension of K. The real endomorphism algebra End(EL)R
is isomorphic to R when E does not have CM, and isomorphic to C when E does
have CM. We therefore have

GT(E) =

⎧⎪⎨
⎪⎩
[C1,C] if E has CM defined over K

[C2,C] if E has CM not defined over K

[C1,R] if E does not have CM

Here Cn denotes the cyclic group of order n; in the case [C2,C] the action of C2

on C corresponds to complex conjugation.

The three Galois endomorphism types listed in Example 4.11 correspond to the
three Sato-Tate groups listed in Theorem 3.2. Under this correspondence, the real
endomorphism algebra End(EL)R determines the identity component ST(E)0 (up
to conjugacy), and the Galois group Gal(L/K) is isomorphic to the component
group ST(E)/ ST(E)0. Moreover, the field L is precisely the field L given by
Theorem 3.12.
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Theorem 4.12. Let A be an abelian variety A of dimension g ≤ 3 defined over
a number field K and let L be the minimal field for which End(AL) = End(AK).
The conjugacy class of the Sato-Tate group ST(A) determines the Galois endomor-
phism type GT(A); moreover, the conjugacy class of the identity component ST(A)0

determines the isomorphism class of End(AL)R and ST(A)/ ST(A)0 � Gal(L/K).
For g ≤ 2 the converse holds: the Galois endomorphism type GT(A) determines
the Sato–Tate group ST(A) up to conjugacy.

Proof. See Proposition 2.19 and Theorem 1.4 in [25]. �
It is expected that in fact the Sato–Tate group always determines the Galois

endomorphism type, and that the converse holds for g ≤ 3. For g = 3 we at
least know that the real endomorphism algebra End(AL)R determines the identity
component ST(A)0 and that Gal(L/K) � ST(A)/ ST(A)0. At first glance it might
seem that this should determine ST(A), but it does not, even when g = 2. One
needs to also understand how Gal(L/K) acts on End(AL)R and relate this to the
Sato-Tate group ST(A). In [25] this is accomplished for g = 2 by looking at the
lattice of R-subalgebras of End(AL)R fixed by subgroups of Gal(L/K) and showing
that this is enough to uniquely determine ST(A); see [25, Thm. 4.3]. To apply the
same approach when g = 3 we need a more detailed classification of the Galois
endomorphism types and Sato–Tate groups for g = 3 than is currently available.

For g = 4 the Galois endomorphism type does not always determine the Sato–
Tate group. This is due to an exceptional counterexample constructed by Mum-
ford in [58], in which he proves the existence of an abelian four-fold A for which
End(AK) = Z but MT(A) �= GSp8. The fact that MT(A) is properly contained in
GSp8 implies that ST(A) must be properly contained in USp(8) (this does not de-
pend on the Mumford–Tate conjecture, here we are only using the inclusion proved
by Deligne). On the other hand, for an abelian variety of general type one has
End(AK) = Z and ST(A) = USp(2g); see [31, 100] for an explicit criterion that
applies to almost all Jacobians of hyperelliptic curves.

For g > 4 one can construct exceptional examples as a product of an abelian
variety with one of Mumford’s exceptional four-folds, so in general the Galois en-
domorphism type cannot determine the Sato–Tate group for any g ≥ 4. However,
such examples will not be simple and will have End(A) �= Z. In [74] Serre proves
an analog of his open image theorem for elliptic curves that applies to abelian vari-
eties of dimension g = 2, 6 and g odd. For these values of g, if End(AK) = Z then
ST(A) = USp(2g) and no direct analog of Mumford’s construction exists.

Remark 4.13. For g ≤ 3, the field L in Theorem 3.12 (the minimal L for which
ST(AL) is connected) is the same as the field L in Theorem 4.12 (the minimal L for
which End(AL) = End(AK)). In any case, the former always contains the latter:
if ST(AL) is connected then we necessarily have End(AK) = End(AL). This can
be seen as a consequence of Bogomolov’s theorem [9], which states that G� is open
in Gzar

� (Q�), and Faltings‘ theorem [23] that End(A)Q�
� End(V�(A))G� . If ST(A)

(and therefore Gzar
� ) is connected, then End(A) is invariant under base change (now

apply this to A = AL).

Tables 1 and 2 list the real endomorphism algebras and corresponding identity
components of Sato-Tate groups that arise in dimensions g = 2, 3. A complete list
of the 52 Galois endomorphism types and corresponding Sato-Tate groups for g = 2
can be found in [25, Thm. 4.3] and [25, Table 9].
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Table 1. Real endomorphism algebras and Sato–Tate identity
components for abelian surfaces.

geometric type of abelian surface End(AK)R ST(A)0

square of CM elliptic curve M2(C) U(1)2

QM abelian surface M2(R) SU(2)2
square of non-CM elliptic curve

CM abelian surface C×C U(1)×U(1)

product of CM elliptic curves

product of CM and non-CM elliptic curves C×R U(1)× SU(2)

RM abelian surface R×R SU(2)× SU(2)

product of non-CM elliptic curves

abelian surface of general type R USp(4)

Table 2. Real endomorphism algebras and Sato–Tate iden-
tity components for abelian threefolds (EC=Elliptic curve,
AS=Abelian surface).

geometric type of abelian three-fold End(AK)R ST(A)0

cube of a CM EC M3(C) U(1)3

cube of a non-CM EC M3(R) SU(2)3

product of CM EC and CM EC2 C×M2(C) U(1)×U(1)2

product of CM EC and QM abelian surface C×M2(R) U(1)× SU(2)2
product of CM EC and non-CM EC2

product of non-CM EC and CM EC2 R×M2(C) SU(2)×U(1)2

product of non-CM EC and QM AS R×M2(R) SU(2)× SU(2)2
product of non-CM EC and non-CM EC2

sextic CM abelian threefold C3 U(1)3

product of CM EC and CM abelian surface

product of three CM ECs

product of non-CM EC and CM AS C2 ×R U(1)2 × SU(2)

product of non-CM EC and two CM ECs

product of CM EC and RM AS C×R2 U(1)× SU(2)2

product of CM EC and two non-CM ECs

RM abelian threefold R3 SU(2)3

product of non-CM EC and RM AS

product of 3 non-CM ECs

product of CM EC and generic AS C×R U(1)×USp(4)

product of non-CM EC and generic AS R×R SU(2)×USp(4)

quadratic CM abelian threefold C U(3)

generic abelian threefold R USp(6)
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As can be seen in Tables 1 and 2, the Sato–Tate group is in some respects a
rather coarse invariant; for example, it cannot distinguish a product of non-CM
elliptic curves from a geometrically simple abelian surface with real multiplication
(RM). On the other hand, the Haar measures of the 52 Sato–Tate groups of abelian
surfaces over number fields all give rise to distinct distributions of characteristic
polynomials, which, under the Sato–Tate conjecture, match the distribution of
normalized L-polynomials, and there are some rather fine distinctions among these
distributions that the Sato–Tate group detects. For example, there are only 37
distinct trace distributions among the 52 groups, one needs to look at both the linear
and quadratic coefficients of the characteristic polynomials in order to distinguish
them.

It is possible for two non-conjugate Sato–Tate groups to be isomorphic as ab-
stract groups yet give rise to distinct trace distributions. For example, the con-
nected Sato-Tate groups SU(2)×U(1)2 and U(1)× SU(2)2 that appear in Table 2
are both abstractly isomorphic to the real Lie group U(1) × SU(2), but these two
embeddings of U(1)× SU(2) in USp(6) have different trace distributions.

As shown by the example below, this phenomenon can also occur for discon-
nected Sato-Tate groups with the same identity component.

Example 4.14. Consider the hyperelliptic curves

C1 : y
2 = x6 + 3x5 + 15x4 − 20x3 + 60x2 − 60x+ 28,

C2 : y
2 = x6 + 6x5 − 15x4 + 20x3 − 15x2 + 6x− 1,

and let A1 := Jac(C1) and A2 := Jac(C2) denote their Jacobians. Over Q both
A1 and A2 are isogenous to the square of the elliptic curve y2 = x3 + 1, which
has CM by Q(

√
−3). We necessarily have ST(A1)

0 = ST(A2)
0 = U(1)2, and the

component groups are both isomorphic to the dihedral group of order 12. However,
their Sato–Tate groups are different: in terms of the labels used in [25], we have
ST(A1) = D6,1, while ST(A2) = D6,2 (see [25, §3.4] for explicit descriptions of
these groups in terms of generators), and their normalized trace distributions are
quite different. For C1 the density of zero traces is 3/4, whereas for C2 it is 7/12
(these ratios represent the proportion of Sato–Tate group components on which the
trace is identically zero), and their normalized trace moment sequences are

(1, 0, 1, 0, 9, 0, 110, 0, 1505, 0, 21546, . . .),

(1, 0, 2, 0, 18, 0, 200, 0, 2450, 0, 31752, . . .),

respectively. The Sato-Tate conjecture for these two curves was proved in [27], so
this difference in Sato-Tate groups provably impacts the normalized trace distribu-
tions of A1 and A2.

4.3. Sato–Tate measures. Once we know the Sato–Tate group ST(A) of
an abelian variety A, we are in a position to compute various statistic related
to the distribution of its conjugacy classes, such as the moments of characteristic
polynomial coefficients (or any other conjugacy class invariant). We can then test
the Sato–Tate conjecture by comparing these to corresponding statistics obtained
by computing normalized L-polynomials L̄p(T ) for all primes p of good reduction
for A up to some norm bound B.

The first step is to determine the Haar measure on ST(A)0. For g = 1 there
are only two possibilities: either ST(A)0 = U(1) or ST(A)0 = SU(2), where, as
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usual we embed U(1) in SU(2) via u 
→ ( u 0
0 ū ). In terms of the eigenangle θ, the

pushforward measure on conj(ST(A)0) is one of

μU(1) :=
1
πdθ,

μSU(2) :=
2
π sin2 θ dθ,

with 0 ≤ θ ≤ π. This also addresses two of the possibilities for ST(A)0 that
arise when g = 2, the groups U(1)2 and SU(1)2 listed in the first two rows of
Table 1; these denote two identical copies of U(1) and SU(2) diagonally embedded
in USp(4). When expressed in terms of the eigenangle θ, the measure μU(1)2 is
exactly the same as μU(1) (and similarly for μSU(2)2), but note that we will get
a different distribution on characteristic polynomials (which now have degree 4
rather than degree 2), because each eigenvalue now occurs with multiplicity 2; in
particular, the trace becomes 4 cos θ rather than 2 cos θ.

For the groups ST(A)0 that appear in the next three rows of Table 1, the
measure on conj(ST(A)0) is a product of measures that we already know:

μU(1)×U(1) :=
1
π2 dθ1 dθ2,

μU(1)×SU(2) :=
2
π2 sin

2 θ2 dθ1 dθ2,

μSU(2)×SU(2) :=
4
π2 sin

2 θ1 sin
2 θ2 dθ1 dθ2.

To obtain the measure for the generic case ST(A) = ST(A)0 = USp(4), we use the
Weyl integration formula for USp(2g) (which includes the case USp(2) = SU(2)
that we already know):

(4.2) μUSp(2g) :=
1

g!

⎛
⎝ ∏

1≤j<k≤g

(2 cos θj − 2 cos θk)
2

⎞
⎠ ∏

1≤j≤g

(
2
π sin2 θj dθj

)
,

with 0 ≤ θj ≤ π, see [97, Thm. 7.8B] or [45, §5.0.4].
This covers all the Sato-Tate groups listed in Table 1 for g = 2. By taking

appropriate products of measures we know and applying the Weyl integration for-
mula with g = 3, we obtain all the g = 3 cases listed in Table 2 except for U(3),
where we need the Weyl integration formula for U(g):

(4.3) μU(g) :=
1

g!

⎛
⎝ ∏

1≤j<k≤g

∣∣eiθj − eiθk
∣∣
⎞
⎠ ∏

1≤j≤g

1
2πdθj ,

with 0 ≤ θj ≤ 2π (note the 2π); see [97, Thm. 7.4B] or [45, §5.0.3].
With the measure μST(A)0 in hand, for any continuous class function f on

ST(A), we can compute

μST(A)(f) :=

∫
ST(A)

f(x)μST(A)(x) =
∑
x

∫
ST(A)0

f(xy)μST(A)0(y),

as a finite sum over left coset representatives x ST(A)0 of ST(A)/ ST(A)0; we refer
the reader to [25, §5.1.1] for further details and explicit results in the case g = 2.

4.4. Trace moment sequences. Having determined Haar measures for var-
ious Sato–Tate groups ST(A), we now consider the problem of computing the trace
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moment sequence of a connected Sato–Tate group; so assume ST(A) = ST(A)0.
For each integer n ≥ 0 we wish to compute the nth moment

EST(A)[tr
n] =

∫ π

0

· · ·
∫ π

0

⎛
⎝ g∑

j=1

2 cos θj

⎞
⎠

n

μST(A)(θ1, . . . , θg).

We have already done this computation for the groups U(1) and SU(2) that
arise in dimension g = 1. For U(1) we have

EU(1)[tr
n] =

1

π

∫ π

0

(2 cos θ)n dθ = bn :=

(
n
n/2

)
,

where we adopt the convention that
(

n
n/2

)
= 0 when n is odd, and for SU(2) we

have

ESU(2)[tr
n] =

2

π

∫ π

0

(2 cos θ)n sin2 θ dθ = cn :=
2

n+ 2

(
n
n/2

)
.

We thus obtain the moment sequences

MU(1)[tr] = (1, 0, 2, 0, 6, 0, 20, 0, 70, 0, 252, . . .),

MSU(2)[tr] = (1, 0, 1, 0, 2, 0, 5, 0, 14, 0, 42, . . .).

For g = 2, observe that for 5 of the 6 connected Sato–Tate groups listed in
Table 1 we can compute their trace moment sequences directly from the trace
moment sequences for U(1) and SU(2); no integration is required. For U(1)2 and
SU(2)2 we simply have

EU(1)2 [tr
n] = EU(1)[2

n trn] = 2nbn,

ESU(2)2 [tr
n] = ESU(2)[2

n trn] = 2ncn,

and for U(1) × U(1), U(1) × SU(2), SU(2)× SU(2) we take binomial convolutions
to obtain20

EU(1)×U(1)[tr
n] =

n∑
r=0

(
n

r

)
EU(1)[tr

r]EU(1)[tr
n−r] =

n∑
r=0

(
n

r

)
brbn−r = b2n,

(4.4)

EU(1)×SU(2)[tr
n] =

n∑
r=0

(
n

r

)
EU(1)[tr

r]ESU(2)[tr
n−r] =

n∑
r=0

(
n

r

)
brcn−r = 1

2cnbn+2,

(4.5)

ESU(2)×SU(2)[tr
n] =

n∑
r=0

(
n

r

)
ESU(2)[tr

r]ESU(2)[tr
n−r] =

n∑
r=0

(
n

r

)
crcn−r = cncn+2.

(4.6)

For the generic case USp(4) we apply (4.2) with g = 2 to obtain

EUSp(4)[tr
n] = 2n+3

π2

∫ π

0

∫ π

0

(cos θ1 + cos θ2)
n(cos θ1 − cos θ2)

2 sin2 θ1 sin
2 θ2 dθ1dθ2

= cncn+4 − c2n+2.

20It is at this point we see the utility of starting our moment sequences at M0.
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Here we have applied the general determinantal formula from [49, Thm. 1] that
allows one to compute the moment generating function of the kth eigenvalue power-
sum in USp(2g). Recall that the moment generating function of a moment sequence
(m0,m1,m2, . . .) is the exponential generating function

M(z) :=

∞∑
n=0

mn
zn

n!
.

One uses exponential generating functions so that products of moment generating
functions correspond to binomial convolutions of moment sequences; this means
that if M1(z) and M2(z) are the moment generating functions of two independent
random variable X1 and X2, then the moment generating function of X1 +X2 is
simply M1(z)M2(z).

The determinantal formula for the first eigenvalue power-sum (the trace) is

MUSp(2g)[tr] = det
g×g

(
Ci+j−2

)
ij
,

where Cm is the moment generating function defined by

Cm(z) :=
m∑
r=0

(
n

r

)
(B2r−n − B2r−n+2) , Bs(z) :=

∞∑
n=0

z2n+s

s!(n+ s)!
.

The function Bs(z) is related to a hyperbolic Bessel function of the first kind; see
[49, p. 13] for details.
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For the connected Sato–Tate groups that arise in dimension g = 2 we obtain

MU(1)2 [tr] = (1, 0, 8, 0, 96, 0, 1280, 0, 17920, 0, 258048, . . .),

MSU(2)2 [tr] = (1, 0, 4, 0, 32, 0, 320, 0, 3584, 0, 43008, . . .),

MU(1)×U(1)[tr] = (1, 0, 4, 0, 36, 0, 400, 0, 4900, 0, 63504, . . .),

MU(1)×SU(2)[tr] = (1, 0, 3, 0, 20, 0, 175, 0, 1764, 0, 19404, . . .),

MSU(2)×SU(2)[tr] = (1, 0, 2, 0, 10, 0, 70, 0, 588, 0, 5544, . . .),

MUSp(4)[tr] = (1, 0, 1, 0, 3, 0, 14, 0, 84, 0, 594, . . .),

and for g = 3 we have

MU(1)3 [tr] = (1, 0, 18, 0, 486, 0, 14580, 0, 459270, 0, 14880348, . . .),

MSU(2)3 [tr] = (1, 0, 9, 0, 162, 0, 3645, 0, 91854, 0, 2480058, . . .),

MU(1)×U(1)2 [tr] = (1, 0, 10, 0, 198, 0, 4900, 0, 134470, 0, 3912300, . . .),

MU(1)×SU(2)2 [tr] = (1, 0, 6, 0, 86, 0, 1660, 0, 37254, 0, 916020, . . .),

MSU(2)×U(1)2 [tr] = (1, 0, 9, 0, 146, 0, 2965, 0, 68334, 0, 1707930, . . .),

MSU(2)×SU(2)2 [tr] = (1, 0, 5, 0, 58, 0, 925, 0, 17598, 0, 374850, . . .),

MU(1)×U(1)×U(1)[tr] = (1, 0, 6, 0, 90, 0, 1860, 0, 44730, 0, 1172556, . . .),

MU(1)×U(1)×SU(2)[tr] = (1, 0, 5, 0, 62, 0, 1065, 0, 21714, 0, 492366, . . .),

MU(1)×SU(2)×SU(2)[tr] = (1, 0, 4, 0, 40, 0, 570, 0, 9898, 0, 19521, . . .),

MSU(2)×SU(2)×SU(2)[tr] = (1, 0, 3, 0, 24, 0, 285, 0, 4242, 0, 73206, . . .),

MU(1)×USp(4)[tr] = (1, 0, 3, 0, 21, 0, 214, 0, 2758, 0, 41796, . . .),

MSU(2)×USp(4)[tr] = (1, 0, 2, 0, 11, 0, 94, 0, 1050, 0, 14076, . . .),

MU(3)[tr] = (1, 0, 2, 0, 12, 0, 120, 0, 1610, 0, 25956, . . .),

MUSp(6)[tr] = (1, 0, 1, 0, 3, 0, 15, 0, 104, 0, 909, . . .),

Recall that for g = 1 the trace moment sequence (1, 0, 1, 0, 2, 0, 5, 0, 14, 0, 42, . . .)
of the generic Sato–Tate group SU(2) corresponds to the sequence of Catalan num-
bers with 0’s inserted at the odd moments. There is a standard combinatorial
interpretation of this sequence: the nth moment counts the number of returning
walks of length n on a 1-dimensional integer lattice that stay to the right of the
origin (there are no such walks when n is odd, hence the odd moments are zero).

This combinatorial interpretation generalizes to higher genus. For g = 2 the
trace moment sequence for the generic Sato–Tate group USp(4) counts returning
walks on a 2-dimensional integer lattice that satisfy x1 ≥ x2 ≥ 0 (so now there are 3
walks of length 4, not just 2). In general, for any g ≥ 1 the trace moment sequence
for the generic Sato–Tate group USp(2g) counts returning walks on a g-dimensional
integer lattice that satisfy x1 ≥ . . . ≥ xg ≥ 0; this follows from a general result of
Grabiner and Magyar [30] that relates the decomposition of tensor powers of certain
representations of classical Lie groups to lattice paths that are constrained to lie
in the closure of the fundamental Weyl chamber of the corresponding Lie algebra
(which can be defined as an intersection of hyperplanes orthogonal to elements of
a basis for the root system).

This combinatorial feature has an interesting asymptotic consequence. For any
integers g′ ≥ g > 0, the moment sequences MUSp(2g′)[tr] and MUSp(2g)[tr] must
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agree up to the 2gth moment; see Exercise 4.3. Thus the moments sequences
MUSp(2g)[tr] converge to a limiting sequence as g → ∞:

MUSp(2)[tr] = (1, 0, 1, 0, 2, 0, 5, 0, 14, 0, 42, . . .),

MUSp(4)[tr] = (1, 0, 1, 0, 3, 0, 14, 0, 84, 0, 594, . . .),

MUSp(6)[tr] = (1, 0, 1, 0, 3, 0, 15, 0, 104, 0, 909, . . .),

MUSp(8)[tr] = (1, 0, 1, 0, 3, 0, 15, 0, 105, 0, 944 . . .).

...

MUSp(∞)[tr] = (1, 0, 1, 0, 3, 0, 15, 0, 105, 0, 945, . . .).

The limiting sequence MUSp(∞)[tr] is precisely the moment sequence of the
standard normal distribution (mean 0 and variance 1); the nth moment is zero if n
is odd, and for even n it is given by

(n− 1)!! := n(n− 2)(n− 4) · · · 3 · 1.
Figure 4 shows the a1-distributions for g = 1, 2, 3, 4, normalized to the same scale,
which illustrates convergence to the standard normal distribution.

4.5. Exercises.

Exercise 4.1. Give combinatorial proofs of the identities used in (4.4), (4.5),
(4.6).

Exercise 4.2. Using the combinatorial interpretation of the trace moment
sequence MUSp(2g)[tr], prove that for g

′ > g the moment sequences MUSp(2g′)[tr] and
MUSp(2g)[tr] agree up to the 2gth moment but disagree at the (2g + 2)th moment.
Then show that the limiting trace moment sequence MUSp(∞)[tr] is equal to the
moment sequence of the standard normal distribution.

Exercise 4.3. Characterize each of the 6 trace moment sequences that arise
for connected Sato–Tate groups in dimension g = 2 by showing that each sequence
counts returning walks on an 2-dimensional integer lattice that are constrained to
a certain region of the plane.

Exercise 4.4. Similarly characterize the 14 trace moment sequences that arise
for connected Sato–Tate groups in dimension g = 3 in terms of returning walks on
a 3-dimensional integer lattice.

Exercise 4.5. For each of the 5 non-generic connected Sato–Tate groups that
arise in dimension g = 2 compute the moment sequence for a2, the quadratic
coefficient of the characteristic polynomial.
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Figure 4. Generic trace distributions for g = 1, 2, 3, 4 (shown
with the same vertical scale).
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Sci. Ind., no. 1041, Publ. Inst. Math. Univ. Strasbourg 7 (1945), Hermann et Cie., Paris,
1948. MR0027151
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