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TORSION SUBGROUPS OF RATIONAL ELLIPTIC CURVES

OVER THE COMPOSITUM OF ALL CUBIC FIELDS

HARRIS B. DANIELS, ÁLVARO LOZANO-ROBLEDO, FILIP NAJMAN,
AND ANDREW V. SUTHERLAND

Abstract. Let E/Q be an elliptic curve and let Q(3∞) be the compositum
of all cubic extensions of Q. In this article we show that the torsion subgroup
of E(Q(3∞)) is finite and we determine 20 possibilities for its structure, along

with a complete description of the Q-isomorphism classes of elliptic curves
that fall into each case. We provide rational parameterizations for each of the
16 torsion structures that occur for infinitely many Q-isomorphism classes of
elliptic curves, and a complete list of j-invariants for each of the 4 that do not.

1. Introduction

Interest in the rational points on elliptic curves dates back at least to Poincaré,
who in 1901 conjectured that the group E(Q) of rational points on an elliptic curve
E over Q is a finitely generated abelian group [35]. This conjecture was proved by
Mordell [32] in 1922 and then vastly generalized by Weil [44], who proved in 1929
that the group of rational points on an abelian variety defined over a number field
is finitely generated. An immediate consequence of the Mordell-Weil theorem is
that the torsion subgroup E(F )tors of an elliptic curve E over a number field F is
finite, and therefore isomorphic to a group of the form

Z/aZ⊕ Z/abZ,

for some integers a, b ≥ 1. In 1996, Merel [31] proved the existence of a uniform
bound on the cardinality of E(F )tors that depends only on the number field F ,
not the particular elliptic curve E/F ; in fact, Merel’s bound depends only on the
degree of the field extension F/Q. This bound was improved and made effective by
Oesterlé in 1994 (unpublished), and later by Parent [34] in 1999.

It is thus a natural goal to classify (up to isomorphism) the torsion subgroups
of elliptic curves defined over number fields of degree d for fixed integers d ≥ 1.
Mazur famously proved such a classification for d = 1.

Theorem 1.1 (Mazur [28]). Let E/Q be an elliptic curve. Then

E(Q)tors �
{
Z/MZ with 1 ≤ M ≤ 10 or M = 12, or

Z/2Z⊕ Z/2MZ with 1 ≤ M ≤ 4.

The classification for d = 2 was initiated by Kenku and Momose, and completed
by Kamienny.
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Theorem 1.2 (Kenku, Momose [22], Kamienny [16]). Let E/F be an elliptic curve
over a quadratic number field F . Then

E(F )tors �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Z/MZ with 1 ≤ M ≤ 16 or M = 18, or

Z/2Z⊕ Z/2MZ with 1 ≤ M ≤ 6, or

Z/3Z⊕ Z/3MZ with M = 1 or 2, only if F = Q(
√
−3), or

Z/4Z⊕ Z/4Z only if F = Q(
√
−1).

The case d = 3 remains open. Jeon, Kim, and Schweizer have determined the
torsion structures that appear infinitely often as one runs through all elliptic curves
over all cubic fields [15], and Jeon, Kim, and Lee have constructed infinite families
of elliptic curves that realize each of these torsion structures [12].

Theorem 1.3 (Jeon, Kim, Lee, Schweizer [12, 15]). Suppose that T is an abelian
group for which there exist infinitely many Q-isomorphism classes of elliptic curves
E over cubic number fields F , such that E(F )tors � T . Then

T �
{
Z/MZ with 1 ≤ M ≤ 16 or M = 18, 20, or

Z/2Z⊕ Z/2MZ with 1 ≤ M ≤ 7.

Moreover, for each such T an explicit infinite family of elliptic curves over cubic
fields with torsion subgroup isomorphic to T is known and contains infinitely many
Q-isomorphism classes.

A similar list of possible torsion structures that appear infinitely often as one
runs through all elliptic curves over all quartic fields was determined by Jeon, Kim
and Park [14], and infinite families of elliptic curves that realize each of these torsion
structures were constructed by Jeon, Kim, and Lee [13].

Sharper results can be proved if one restricts to base extensions of elliptic curves
that are defined over Q. In this setting the second author has obtained bounds on
the largest prime-power order that may appear in a torsion subgroup [25, 27], and
the third author has classified the torsion subgroups that can arise over extensions
of degrees 2 and 3 [33]. Chou [2] has classified the groups that can appear when
base-extending to a Galois quartic extension of Q.

Theorem 1.4 ([33, Thm. 2]). Let E/Q be an elliptic curve and let F be a quadratic
number field. Then

E(F )tors �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Z/MZ with 1 ≤ M ≤ 10 or M = 12, 15, 16, or

Z/2Z⊕ Z/2MZ with 1 ≤ M ≤ 6, or

Z/3Z⊕ Z/3MZ with 1 ≤ M ≤ 2 and F = Q(
√
−3), or

Z/4Z⊕ Z/4Z with F = Q(
√
−1).

Theorem 1.5 ([33, Thm. 1]). Let E/Q be an elliptic curve and let F be a cubic
number field. Then

E(F )tors �
{
Z/MZ with 1 ≤ M ≤ 10 or M = 12, 13, 14, 18, 21, or

Z/2Z⊕ Z/2MZ with 1 ≤ M ≤ 4 or M = 7.

Moreover, the elliptic curve 162b1 over Q(ζ9)
+ is the unique rational elliptic curve

over a cubic field with torsion subgroup isomorphic to Z/21Z. For all other groups
T listed above there are infinitely many Q-isomorphism classes of elliptic curves
E/Q for which E(F ) � T for some cubic field F .
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In the setting of base extensions of elliptic curves E/Q, one may also consider
the torsion subgroups that can arise over certain infinite algebraic extensions of Q.
In general these need not be finite, and there may be infinitely many possibilities;
but for suitably chosen extensions, this is not the case. For example, Ribet proved
that for an abelian variety defined over a number field F , the torsion subgroup of
its base change to the maximal cyclotomic extension of F is finite [36]. Here we
consider infinite extensions obtained as the compositum of all number fields of a
fixed degree d.

Definition 1.6. For each fixed integer d ≥ 1, let Q(d∞) denote the compositum
of all field extensions F/Q of degree d. More precisely, let Q be a fixed algebraic
closure of Q, and define

Q(d∞) := Q
(
{β ∈ Q : [Q(β) : Q] = d}

)
.

The fields Q(d∞) have been studied by Gal and Grizzard [10], who use the
notation Q[d] (they also consider the fields Q(d) = Q[2]Q[3] · · ·Q[d] and show that
Q[d] = Q(d) precisely when d < 5). For elliptic curves E/Q, the group E(Q(d∞))
is not finitely generated. This was proved for d = 2 by Frey and Jarden [7] in
1974, and the result for d ≥ 2 follows from the inclusion Q(2∞) ⊆ Q(d∞) given by
[10, Theorem 1].

The torsion subgroups of E(Q(d∞)) have been studied in the case d = 2, in
which the field Q(2∞) is the maximal elementary abelian 2-extension of Q. Even
though E(Q(2∞)) is not finitely generated, the torsion subgroup E(Q(2∞))tors is
known to be finite, and the possible torsion structures have been classified by Laska
and Lorenz [23], and Fujita [8, 9].

Theorem 1.7 (Laska, Lorenz [23], Fujita [8,9]). Let E/Q be an elliptic curve and
let

Q(2∞) := Q
(
{
√
m : m ∈ Z}

)
.

The torsion subgroup E(Q(2∞))tors is finite, and

E(Q(2∞))tors �

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Z/MZ with M ∈ 1, 3, 5, 7, 9, 15, or

Z/2Z⊕ Z/2MZ with 1 ≤ M ≤ 6 or M = 8, or

Z/3Z⊕ Z/3Z or

Z/4Z⊕ Z/4MZ with 1 ≤ M ≤ 4, or

Z/2MZ⊕ Z/2MZ with 3 ≤ M ≤ 4.

In this article we classify the torsion subgroups E(Q(3∞))tors that arise for el-
liptic curves E/Q. Our main theorem is the following.

Theorem 1.8. Let E/Q be an elliptic curve. The torsion subgroup E(Q(3∞))tors
is finite, and

E(Q(3∞))tors �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Z/2Z⊕ Z/2MZ with M = 1, 2, 4, 5, 7, 8, 13, or

Z/4Z⊕ Z/4MZ with M = 1, 2, 4, 7, or

Z/6Z⊕ Z/6MZ with M = 1, 2, 3, 5, 7, or

Z/2MZ⊕ Z/2MZ with M = 4, 6, 7, 9.
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All but 4 of the torsion subgroups T listed above occur for infinitely many Q-
isomorphism classes of elliptic curves E/Q; for T = Z/4Z × Z/28Z, Z/6Z ×
Z/30Z, Z/6Z × Z/42Z, and Z/14Z × Z/14Z there are only 2, 2, 4, and 1 (re-
spectively) Q-isomorphism classes of E/Q for which E(Q(3∞))tors � T .

Remark 1.9. Minimal conductor examples of elliptic curves E/Q that realize each
of the torsion subgroups permitted by Theorem 1.8 are listed in the table below.
Here and throughout we identify elliptic curves over Q by their Cremona label [3]
and provide a hyperlink to the corresponding entry in the L-functions and Modular
Forms Database (LMFDB) [24].

E/Q E(Q(3∞))tors E/Q E(Q(3∞))tors

11a2 Z/2Z⊕ Z/2Z 338a1 Z/4Z⊕ Z/28Z
17a3 Z/2Z⊕ Z/4Z 20a1 Z/6Z⊕ Z/6Z
15a5 Z/2Z⊕ Z/8Z 30a1 Z/6Z⊕ Z/12Z
11a1 Z/2Z⊕ Z/10Z 14a3 Z/6Z⊕ Z/18Z
26b1 Z/2Z⊕ Z/14Z 50a3 Z/6Z⊕ Z/30Z
210e1 Z/2Z⊕ Z/16Z 162b1 Z/6Z⊕ Z/42Z
147b1 Z/2Z⊕ Z/26Z 15a1 Z/8Z⊕ Z/8Z
17a1 Z/4Z⊕ Z/4Z 30a2 Z/12Z⊕ Z/12Z
15a2 Z/4Z⊕ Z/8Z 2450a1 Z/14Z⊕ Z/14Z
210e2 Z/4Z⊕ Z/16Z 14a1 Z/18Z⊕ Z/18Z

Magma [1] scripts to verify these examples, and all other computational results
cited herein, are available at [5]. These include explicit models of the modular curves
we constructed in the course of proving our theorems, two algorithms to compute
E(Q(3∞))tors for an elliptic curve E/Q (one is described in §5.5 and the other is
an effective version of Theorem 7.1), and an implementation of the computational
strategy that is used to prove Theorem 7.1, which precisely characterizes the sets
of elliptic curves that realize each of the subgroups listed in Theorem 1.8 and, in
particular, which are finite and which are infinite.

For each of the torsion structures T in Theorem 1.8 that arise infinitely often, we
provide a complete set of rational functions that parameterize the j-invariants of
the elliptic curves E/Q for which E(Q(3∞))tors contains a subgroup isomorphic to
T (for the general member of each family, isomorphism holds), and for those that
occur only finitely often we provide a complete list of j-invariants; this information
appears in Table 1 at the end of the article.

Key to our results are a number of recent advances in our explicit understanding
of Galois representations attached to elliptic curves over number fields. In par-
ticular, we rely on work of Rouse and Zureick-Brown [38] classifying the 2-adic
representations of elliptic curves over Q, work of Zywina [46] on the possible mod-p
representations of an elliptic curve over Q, and algorithms developed by the fourth
author [42] for efficiently computing the images of Galois representations of elliptic
curves over number fields.

2. Notation and terminology

We fix once and for all an algebraic closure Q that contains all the algebraic
extensions of Q that we may consider, including the fields Q(d∞) and the Galois
closure and algebraic closure of every number field. As usual, for an elliptic curve

http://www.lmfdb.org/EllipticCurve/Q/11a2
http://www.lmfdb.org/EllipticCurve/Q/338a1
http://www.lmfdb.org/EllipticCurve/Q/17a3
http://www.lmfdb.org/EllipticCurve/Q/20a1
http://www.lmfdb.org/EllipticCurve/Q/15a5
http://www.lmfdb.org/EllipticCurve/Q/30a1
http://www.lmfdb.org/EllipticCurve/Q/11a1
http://www.lmfdb.org/EllipticCurve/Q/14a3
http://www.lmfdb.org/EllipticCurve/Q/26b1
http://www.lmfdb.org/EllipticCurve/Q/50a3
http://www.lmfdb.org/EllipticCurve/Q/210e1
http://www.lmfdb.org/EllipticCurve/Q/162b1
http://www.lmfdb.org/EllipticCurve/Q/147b1
http://www.lmfdb.org/EllipticCurve/Q/15a1
http://www.lmfdb.org/EllipticCurve/Q/17a1
http://www.lmfdb.org/EllipticCurve/Q/30a2
http://www.lmfdb.org/EllipticCurve/Q/15a2
http://www.lmfdb.org/EllipticCurve/Q/2450a1
http://www.lmfdb.org/EllipticCurve/Q/210e2
http://www.lmfdb.org/EllipticCurve/Q/14a1
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E/F , we use E[n] to denote the n-torsion subgroup of E(F ), where F = Q when
F is a number field. We recall that E[n] � Z/nZ⊕ Z/nZ, so long as n is prime to
the characteristic of F , which holds for all the cases we consider. If L/F is a field
extension, we write E(L)[n] for the n-torsion subgroup of E(L), and for primes p,
we write E(L)(p) for the p-primary component of E(L). For any point or set of
points P in E(F ), we write F (P) for the extension generated by the coordinates of
P and F (x(P)) for the extension generated by the x-coordinates of P (we assume
E is given by a Weierstrass equation in x and y).

For an elliptic curve E/F , an n-isogeny is a cyclic isogeny ϕ : E → E′ of degree
n; this means kerϕ is a cyclic subgroup of E[n], and as all the isogenies we consider
are separable, this cyclic group has order n. The isogenies ϕ that we consider are
also rational, meaning that ϕ is defined over F , equivalently, that kerϕ is Galois-
stable: the action of Gal(F/F ) on E[n] given by its action on the coordinates of the
points P ∈ E[n] permutes kerϕ ⊆ E[n]. To avoid any possible confusion, we will
usually state the rationality of ϕ explicitly. We consider two (separable) isogenies
to be distinct only when their kernels are distinct (otherwise they differ only by an
isomorphism).

We recall that if E/Q is an elliptic curve, then for each positive integer n the
action of the group Gal(Q/Q) on the Z/nZ-module E[n] induces a Galois repre-
sentation (continuous homomorphism)

ρE,n : Gal(Q/Q) → Aut(E[n]) � GL2(Z/nZ),

whose image we view as a subgroup of GL2(Z/nZ) (determined only up to conju-
gacy). When n = p is prime, we may identify GL2(Z/pZ) with GL2(Fp). The exten-
sion Q(E[n])/Q is Galois, and the homomorphism Gal(Q(E[n])/Q) → GL2(Z/nZ)
induced by restriction is injective; thus Gal(Q(E[n])/Q) is isomorphic to a subgroup
of GL2(Z/nZ). This subgroup necessarily contains elements of every possible de-
terminant (each residue class in (Z/nZ)× contains the norms of infinitely many
unramified primes of Q(E[n])/Q), and an element γ with trace 0 and determinant
−1 (corresponding to complex conjugation).1 We refer the reader to [39] for further
background on Galois representations.

We distinguish two standard subgroups of GL2(Z/nZ) (up to conjugacy): (1)
the Borel group of upper triangular matrices, and (2) the split Cartan group of
diagonal matrices. Recall that an elliptic curve E/Q admits a rational n-isogeny
if and only if the image of ρE,n in GL2(Z/nZ) is conjugate to a subgroup of the
Borel group (both conditions hold if and only if E[n] contain a Galois-stable cyclic
subgroup of order n). Similarly, E/Q admits two rational n-isogenies whose kernels
intersect trivially if and only if the image of ρE,n in GL2(Z/nZ) is conjugate to a
subgroup of the split Cartan group.

If H is a subgroup of GL2(Z/nZ) with surjective determinant map that contains
−1, we use XH to denote the associated modular curve over Q whose non-cuspidal
rational points parameterize elliptic curves E/Q for which the image of ρE,n in
GL2(Z/nZ) is conjugate to a subgroup of H. Certain information about XH , in-
cluding its genus, can be determined from the congruence subgroup ΓH of PSL2(Z)
obtained by taking the inverse image of the intersection of H with SL2(Z/nZ) in

1The element γ also must act trivially on a maximal cyclic subgroup of Z/nZ ⊕ Z/nZ corre-
sponding to the real line, an additional constraint that is important when n is even; see Remark
3.14 in [42].
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PSL2(Z) = SL2(Z)/{±1}. The tables of Cummins and Pauli [4] contain data for
all congruence subgroups of genus up to 24 in which subgroups are identified by
labels of the of the form “mXg”, where m is the level, g is the genus, and X is a
letter that distinguishes groups of the same level and genus. We note that the level
m of ΓH divides but need not equal n, and two non-conjugate H1 and H2 may give
rise to the same congruence subgroup ΓH1

= ΓH2
in PSL2(Z).

3. The field Q(3∞)

As noted in the introduction, the field Q(2∞) ⊆ Q(3∞) is the maximal elemen-
tary abelian 2-extension of Q; the number fields in Q(2∞) are precisely those whose
Galois group is isomorphic to (Z/2Z)n for some integer n ≥ 0. In this section we
similarly characterize the number fields in Q(3∞) in terms of their Galois groups.

Definition 3.1. We say that a finite group G is of generalized S3-type, if it is
isomorphic to a subgroup of a direct product S3 × · · · × S3 of symmetric groups of
degree 3.

Recall that a finite group G is supersolvable (or supersoluble) if it has a normal
cyclic series; an equivalent criterion is that every maximal subgroup of G has prime
index [11], or that every subgroup of G is Lagrangian (each subgroup H contains
subgroups of every order dividing |H|) [45]. The following lemma characterizes
finite groups of generalized S3-type.

Lemma 3.2. A finite group G is of generalized S3-type if and only if (i) G is
supersolvable, (ii) the exponent of G divides 6, and (iii) the Sylow subgroups of G
are abelian.

Proof. For the forward implication, properties (i), (ii), and (iii) are all preserved by
taking direct products and subgroups (and quotients). Thus, to show that every
finite group G of generalized S3-type has all three properties, it is enough to note
that S3 does, which is clearly the case.

For the reverse implication, suppose that G is a finite group with properties
(i), (ii), and (iii). Then G is supersolvable, so it has a cyclic normal series whose
successive quotients have non-increasing prime orders (see [37, Thm. 5.4.8], for
example), and since G has abelian Sylow subgroups and exponent dividing 6, we
can write this series as

1 � 〈σ1〉 � · · · � 〈σ1, . . . , σm〉 � 〈σ1, . . . , σm, τ1〉 � · · · � 〈σ1, . . . , σs, τ1, . . . , τn〉 = G,

where each σj has order 3, each τi has order 2, the σj commute, and so do the τi.
Conjugation by any τi fixes both 〈σ1, . . . , σj〉 and 〈σ1, . . . σj+1〉 � 〈σ1, . . . , σj〉 ×
〈σj+1〉, and therefore 〈σj+1〉; it follows that for each τi and σj , either τi and σj

commute or τiσjτ
−1
i = σ−1

j .

If we now consider an n ×m matrix (aij) over F2 with aij = 1 if and only if τi
and σj do not commute, by row-reducing this matrix so that each column has at
most one non-zero entry, we can construct a new basis {τ ′1, . . . , τ ′n} for the 2-Sylow
subgroup of G with the property that each σj commutes with all but at most one τ ′i .
We can then write G in the form

(1) G � (Z/3Z)s0 ×
(
(Z/3Z)s1 � Z/2Z

)
× · · · ×

(
(Z/3Z)sn � Z/2Z

)
,

where s0 is the number of zero columns and si is the number of non-zero entries in
the ith row of the reduced matrix (possibly si = 0). It is then clear from (1) that
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G is isomorphic to a subgroup of the product of s0 + · · ·+ sn copies of S3, hence of
generalized S3-type. �

Example 3.3. The alternating group A4, the cyclic group Z/4Z, and the Burn-
side group B(2, 3) (the unique non-abelian group of order 27 and exponent 3) are
examples of groups that are not of generalized S3-type; each satisfies only two of
the three properties required by Lemma 3.2.

Corollary 3.4. The product of two groups of generalized S3-type is of generalized
S3-type, as is every subgroup and every quotient of a group of generalized S3-type.

Our main goal in this section is to show that the groups that arise as Galois
groups of number fields in Q(3∞) are precisely the groups of generalized S3-type.
We first address the forward implication.

Theorem 3.5. Let L be a number field in Q(3∞) with Galois closure L̂. Then

L̂ ⊆ Q(3∞) and Gal(L̂/Q) is of generalized S3-type. In particular, the exponent of

Gal(L̂/Q) divides 6.

Proof. Every number field L in Q(3∞) lies in a compositum of cubic fields F1 · · ·Fm.

The compositum of the Galois closures F̂1 · · · F̂m is a Galois extension F̂ /Q that

contains L, and therefore L̂, and it is a subfield of Q(3∞), since we can write each

F̂i = Fi,1Fi,2Fi,3 as a compositum of cubic fields Fi,j := Q(αj) generated by the

roots αj of an irreducible cubic polynomial defining Fi/Q. Each Gi := Gal(F̂i) is

isomorphic to either Z/3Z or S3, both of which are of generalized S3-type, Gal(F̂ /Q)
is isomorphic to a subgroup of G1 × · · · × Gm, hence of generalized S3-type, and

Gal(L̂/Q) is isomorphic to a quotient of Gal(F̂ /Q), hence also of generalized S3-
type, by Corollary 3.4. �

We now prove the converse of Theorem 3.5.

Theorem 3.6. Let L be a number field with Galois closure L̂, and suppose that

Gal(L̂/Q) is of generalized S3-type. Then L ⊆ L̂ ⊆ Q(3∞).

Proof. From the proof of Lemma 3.2, if Gal(L̂/Q) is of generalized S3-type, then,
as in (1), we have

Gal(L̂/Q) � (Z/3Z)s0 ×
(
(Z/3Z)s1 � Z/2Z

)
× · · · ×

(
(Z/3Z)sn � Z/2Z

)
.

It follows that L̂ is a compositum of linearly disjoint Galois extensions F0, . . . , Fn

of Q for which

Gal(F0/Q) � (Z/3Z)s0 and Gal(Fi/Q) � (Z/3Z)si � Z/2Z

for 1 ≤ i ≤ n. It suffices to show Fi ⊆ Q(3∞) for 0 ≤ i ≤ n. Note that F0 is the
compositum of cyclic (Galois) cubic extensions of Q, so F0 ⊆ Q(3∞). It remains to
show that if F/Q is Galois and

Gal(F/Q) �
(
(Z/3Z)s � Z/2Z

)
for some s ≥ 0, then F ⊆ Q(3∞). Let Gal(F/Q) = 〈{τ, σj : 1 ≤ j ≤ s}〉, where
τ2 = σ3

j = 1, and τσjτ
−1 = σ−1

j , and put

Hj,k =
〈
{σk

j τ, σi : 1 ≤ i ≤ s, i �= j}
〉



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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for j = 1, . . . , s, and k = 0, 1, 2. Each Hj,k is a subgroup of Gal(F/Q) of order
2 ·3s−1, and if Kj,k is the subfield of F fixed by Hj,k, then [Kj,k : Q] = 3. Moreover,
the extension Kj = Kj,0Kj,1Kj,2 is Galois over Q (because Gal(F/Kj) = 〈{σi : 1 ≤
i ≤ s, i �= j}〉 is normal in Gal(F/Q)) with Gal(Kj/Q) � S3. Since F = K1 · · ·Ks,
it follows that

F =

s∏
j=1

Kj,0Kj,1Kj,2

is a compositum of cubic fields and therefore lies in Q(3∞). �

We will appeal to Theorems 3.5 and 3.6 repeatedly in the sections that follow;
for the sake of brevity we do not cite them in every case.

We conclude this section by determining the roots of unity ζn of prime-power
order n that lie in Q(3∞). The possible values of n are severely constrained by
the fact that if ζn ∈ Q(3∞), then the exponent of Gal(Q(ζn)/Q) � (Z/nZ)× must
divide 6.

Lemma 3.7. Let n be a prime power. Then Q(ζn) ⊆ Q(3∞) if and only if n ∈
{2, 3, 4, 7, 8, 9}.

Proof. Suppose Q(ζn) ⊆ Q(3∞). Then the exponent λ(n) of Gal(Q(ζn)/Q) �
(Z/nZ)× divides 6. We have λ(2e) = 2e−2 and λ(pe) = ϕ(pe) = (p − 1)pe−1 for
primes p > 2. It follows that λ(n) divides 6 only for n ∈ {2, 3, 4, 7, 8, 9}. The group
(Z/nZ)× is abelian, hence it is supersolvable and has abelian Sylow subgroups.
Lemma 3.2 and Theorem 3.6 imply Q(ζn) ⊆ Q(3∞) for n ∈ {2, 3, 4, 7, 8, 9}. �

4. Finiteness results

Our goal in this section is to prove that E(Q(3∞))tors is finite. The only property
of Q(3∞) that we actually require is that it is a Galois extension of Q that contains
only a finite number of roots of unity, a property that applies to all the fields Q(d∞).
We thus work in a more general setting.

Theorem 4.1. Let E/Q be an elliptic curve and let F be a (possibly infinite) Galois
extension of Q that contains only finitely many roots of unity. Then E(F )tors is
finite. Moreover, there is a uniform bound B, depending only on F , such that
#E(F )tors ≤ B for every elliptic curve E/Q.

Before proving the theorem we first establish some intermediate results. We
begin with the usual consequence of the existence of the Weil pairing.

Proposition 4.2 ([40, Ch. III, Cor. 8.1.1]). Let E/L be an elliptic curve with
L ⊆ Q. For each integer n ≥ 1, if E[n] ⊆ E(L), then the nth cyclotomic field
Q(ζn) is a subfield of L.

This immediately implies the following result.

Lemma 4.3. Let E and F be as in Theorem 4.1. Then E[n] ⊆ E(F ) for only
finitely many n.

The following theorem summarizes results of Mazur and Kenku that yield a
complete classification of the rational n-isogenies that can arise for elliptic curves
over Q (recall that n-isogenies are defined to be cyclic). See [25, §9] for further
details.
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Theorem 4.4 ([18–21,29]). Let E/Q be an elliptic curve with a rational n-isogeny.
Then

n ≤ 19 or n ∈ {21, 25, 27, 37, 43, 67, 163}.
Theorem 4.4 limits the primes p for which E(F )[p] can be cyclic.

Lemma 4.5. Let E and F be as in Theorem 4.1. If E(F )[p] has order p, then
p ≤ 163.

Proof. The group H = E(F )[p] is stable under the action of Gal(F/Q), hence
Galois-stable. If |H| = p, then H is the kernel of a rational p-isogeny and p ≤ 163,
by Theorem 4.4. �

Lemmas 4.3 and 4.5 together imply that for any elliptic curve E/Q, the p-torsion
subgroup of E(F ) is trivial for all but finitely many primes p, and E[pk] ⊆ E(F )
for only finitely many prime powers pk. It remains only to check that the cyclic
prime-power torsion of E(F ) is finite.

Lemma 4.6. Let E and F be as in Theorem 4.1, let p be a prime, and let k be the
largest integer for which E[pk] ⊆ E(F ). If E(F )tors contains a subgroup isomorphic
to Z/pkZ ⊕ Z/pjZ with j ≥ k, then E admits a rational pj−k-isogeny. Moreover,
j−k ≤ 4, 3, 2, if p = 2, 3, 5, respectively, j−k ≤ 1 if p = 7, 11, 13, 17, 19, 43, 67, 163,
and j = k otherwise.

Proof. Let Q ∈ E(F ) be a point of order pj , and choose P ∈ E[pj ] so that {P,Q} is
a Z/pjZ-basis for E[pj ]. If σ ∈ Gal(Q/Q), then σ(Q) ∈ E(F ), because F is Galois,
and σ(Q) is a point of order pj . Thus σ(Q) ∈ E[pj ], so σ(Q) = aP + bQ for some
integers a and b.

We claim that a ≡ 0 mod pj−k. Indeed, the equality σ(Q) = aP + bQ implies
that

aP = σ(Q)− bQ ∈ E(F ),

and if t is the p-adic valuation of a, then aP ∈ E[pj−t] and {aP, ptQ} ⊆ E(F ) is
a Z/pj−tZ-basis for E[pj−t]. By the definition of k, we must have j − t ≤ k, so
j−k ≤ t. Thus a ≡ 0 mod pj−k, as claimed, and we may write a = a′pj−k for some
integer a′.

Let Qj−k := pkQ ∈ E(F ). We claim that 〈Qj−k〉 is Gal(Q/Q)-stable. Indeed,
we have

σ(Qj−k) = σ(pkQ) = pkσ(Q) = pk
(
aP + bQ

)
= pk

(
a′pj−kP + bQ

)
= a′pjP + bpkQ = bQj−k,

for any σ ∈ Gal(Q/Q). Thus 〈Qj−k〉 is a Galois-stable cyclic subgroup of E(F ) of
order pj−k, and E → E/〈Qj−k〉 is a rational pj−k-isogeny. The bounds on j − k
then follow from Theorem 4.4. �
Proof of Theorem 4.1. To show that E(F )tors is finite, it suffices to show that (1)
E(F )tors has a non-trivial p-primary component for only finitely many primes p,
and (2) for each of these primes p, the p-primary component of E(F )tors is finite.

(1) Let n be the maximum of 163 and the largest order of a root of unity in
F , and let p > n be prime. Then E[p] �⊆ E(F ), by Lemma 4.3, so if the
p-primary component of E(F )tors is non-trivial, it must be cyclic, and in
this case Lemma 4.5 implies that p ≤ 163 ≤ n, which is a contradiction. So
the p-primary part of E(F )tors is trivial for all p > n.
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(2) Let p ≤ n be prime and let k be the largest integer for which Q(ζpk) ⊆ F .
It follows from Lemma 4.6 that the cardinality of the p-primary part of
E(F )tors is bounded by p2k+4.

The integer n and the maximum value of k over primes p ≤ n depend only on F ,
as does the bound on E(F )tors. This concludes the proof of Theorem 4.1. �

Lemma 3.7 allows us to apply Theorem 4.1 with F = Q(3∞); more generally, we
have the following proposition.

Proposition 4.7. For every d ≥ 2 the cardinality of E(Q(d∞))tors is finite and
uniformly bounded as E varies over elliptic curves over Q.

Proof. It follows from [10, Prop. 10] that for any finite Galois extension K/Q in
Q(d∞), the exponent of Gal(K/Q) is bounded. Indeed, K is a subfield of a com-
positum of degree-d fields, and Gal(K/Q) is isomorphic to a quotient of a subgroup
of a direct product of transitive groups of degree d, each of which has exponent
dividing the exponent λ(Sd) of the symmetric group Sd. For all sufficiently large
prime powers pk, the exponent λ(pk) ≥ pk/4 of Gal(Q(ζpk)/Q) is larger than λ(Sd),
implying that ζpk �∈ Q(d∞). The proposition then follows from Theorem 4.1. �

We now make this result more precise in the case d = 3 by determining the
primes p for which E(Q(3∞))(p) can be non-trivial. We first note the following
lemma.

Lemma 4.8. Let E/Q be an elliptic curve that admits a rational n-isogeny ϕ, and
let P ∈ E[n] be a point of order n in the kernel of ϕ. The field extension Q(P )/Q
generated by the coordinates of P is Galois and Gal(Q(P )/Q) is isomorphic to a
subgroup of (Z/nZ)×. In particular, if n is prime, then Gal(Q(P )/Q) is cyclic and
its order divides n− 1.

Proof. The fact that ϕ is rational implies that 〈P 〉 is a Galois-stable subgroup of
E[n]. It follows that Q(P )/Q is Galois: every Galois conjugate of a coordinate of
P is necessarily a coordinate of some aP ∈ 〈P 〉, all of which lie in Q(P ) because
E (and therefore the group law on E) is defined over Q. The homomorphism
Gal(Q(P )/Q) → (Z/nZ)× given by σ �→ a, where σ(P ) = aP , is injective, since if
σ(P ) = τ (P ), then στ−1(P ) = P , and this implies στ−1 = 1 fixes Q(P ). �

Proposition 4.9. Let E/Q be an elliptic curve, and let p be a prime dividing the
cardinality of E(Q(3∞))tors. Then p ∈ {2, 3, 5, 7, 13}.

Proof. For primes p ≥ 11, Lemma 3.7 implies that Q(3∞) does not contain a
primitive pth root of unity, and therefore E[p] �⊆ Q(3∞), by Proposition 4.2. If
p > 17 with p �= 37, 43, 67, 163, then Lemma 4.6 implies that E(Q(3∞))[p] is trivial.

For the primes p = 11, 17, 37, 43, 67, and 163, if the p-primary part H of
E(Q(3∞))tors is not trivial, then it must be cyclic of order p, in which case E ad-
mits a rational p-isogeny with a point P ∈ E(Q(3∞))[p] of order p in its kernel. By
Lemma 4.8, the group Gal(Q(P )/Q) is cyclic, and it follows from Theorems 6.2 and
9.4 of [25] that its order is at least (p−1)/2 for p �= 37, and at least (p−1)/3 = 12 for
p = 37. In each case, the exponent of Gal(Q(P )/Q) cannot divide 6, and therefore
Q(P ) �⊆ Q(3∞), by Theorem 3.5. But this contradicts P ∈ E(Q(3∞)) so, in fact,
E(Q(3∞))[p] must be trivial for all p ≥ 11 except possibly p = 13. The proposition
follows. �
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As can be seen by the examples in Remark 1.9, all the values of p permitted
by Proposition 4.9 actually do arise for some E/Q. Lemmas 3.7 and 4.6 imply
explicit bounds on the prime powers pk that can divide E(Q(3∞))tors (namely,
k ≤ 10, 7, 2, 3, 1 for p = 2, 3, 5, 7, 13, respectively), but as we will show in the next
section, these bounds are not tight.

5. Maximal p-primary components of E(Q(3∞))tors

In this section we obtain sharp bounds on the p-primary components of E(Q(3∞))
for elliptic curves E/Q. We will prove the following theorem.

Theorem 5.1. Let E/Q be an elliptic curve. Then E(Q(3∞))tors is isomorphic to
a subgroup of

Tmax := (Z/8Z⊕ Z/16Z)⊕ (Z/9Z⊕ Z/9Z)⊕ Z/5Z⊕ (Z/7Z⊕ Z/7Z)⊕ Z/13Z,

and Tmax is the smallest group with this property.

In order to prove the theorem it suffices to address the p-primary components
E(Q(3∞))(p) for each of the primes p = 2, 3, 5, 7, 13 permitted by Proposition 4.9.
We first prove two preliminary results that will be used in the subsections that
follow. We recall that the Q-isomorphism class of an elliptic curve E/Q may be
identified with its j-invariant j(E).

Proposition 5.2. Let E/Q be an elliptic curve with j(E) �= 1728. The isomor-
phism type of E(Q(3∞))tors depends only on the Q-isomorphism class of E, equiv-
alently, only on j(E).

Proof. Recall that for j(E) �= 0, 1728, if j(E′) = j(E) for some E′/Q, then E′, is a
quadratic twist of E, hence isomorphic to E over an extension of degree at most 2.
If j(E) = 0 and j(E′) = j(E), then E′/Q is isomorphic to E over a cyclic extension
of Q of order dividing 6 (see §X.5 of [40], for example). Thus for j(E) = j(E′) �= 0,
the elliptic curves E and E′ are isomorphic over a field of generalized S3-type, hence
their base changes to Q(3∞) are isomorphic and E(Q(3∞)tors � E′(Q(3∞))tors. �

Remark 5.3. When j(E) = 1728 there are two possibilities: either E(Q(3∞))tors �
Z/2Z ⊕ Z/2Z or E(Q(3∞))tors � Z/4Z ⊕ Z/4Z. These are realized by the elliptic
curves 256b1 and 32a1, respectively.

Lemma 5.4. Let p and q be distinct primes, let K2/K1 be a finite Galois extension
of number fields with [K2 : K1] a power of q, and let E be an elliptic curve defined
over Q.

(1) If E(K1)[p] = E(K2)[p], then E(K1)(p) = E(K2)(p), that is, if the p-
torsion of E does not grow when we move from K1 to K2, then neither
does the p-primary torsion.

(2) Let P = E(K2)[p]. Then E(K1(P))(p) = E(K2)(p), that is, the p-primary
torsion of E(K2) stabilizes over the extension of K1 generated by the p-
torsion of E(K2).

Proof. We first note that (2) is implied by (1), since K1(P) has all the properties
required of K1 (indeed, K1 ⊆ K1(P) ⊆ K2, so K2/K1(P) and [K2 : K1(P)] divides
[K2 : K1], so it is a power of q).

To prove (1), we assume E(K1)[p] = E(K2)[p]; (1) clearly holds when this group
is trivial, we assume otherwise. We now suppose for the sake of contradiction

http://www.lmfdb.org/EllipticCurve/Q/256b1
http://www.lmfdb.org/EllipticCurve/Q/32a1
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436 H. DANIELS, Á. LOZANO-ROBLEDO, F. NAJMAN, AND A. SUTHERLAND

that E(K1)(p) is properly contained in E(K2)(p). Then there exists a point Q ∈
E(K2)(p) for which P = pQ is a non-zero point in E(K1)(p), say of order pk for
some k ≥ 1. Then R = pk−1P is a non-zero element of E(K1)[p] ⊆ E[p], and we
may choose S ∈ E[p] so that {R,S} is a Z/pZ-basis for E[p].

The multiplication-by-p map is a separable endomorphism of degree p2, so there
are p2 distinct preimages of P under multiplication by p (including Q); these are
precisely the points in the set

Q := [p]−1(P ) = {Q+ aR+ bS : 0 ≤ a, b < p}.
Put Q1 := Q ∩ E(K1) and Q2 := Q ∩ E(K2). Of the p2 points in Q, at least p lie
in E(K2), namely, the points Q+ aR (since Q,R ∈ E(K2)), so Q2 has cardinality
at least p. If its cardinality is greater than p, then Q + aR + bS ∈ E(K2) for
some b �≡ 0 mod p, which implies bS ∈ E(K2), and therefore S ∈ E(K2), since b is
invertible modulo p and S has order p. Thus the cardinality of Q2 is either p2 or
p, depending on whether E(K2)[p] = E[p] or not.

We claim that Q1 is empty. For the sake of contradiction, suppose Q + aR +
bS ∈ Q1 ⊆ E(K1). We then have Q + bS ∈ E(K1), since R ∈ E(K1), and since
Q /∈ E(K1) by assumption, we must have b �≡ 0 mod p. This implies S ∈ E(K2),
since Q,Q + bS ∈ E(K2). But then S ∈ E(K2)[p] = E(K1)[p], so S ∈ E(K1),
which contradicts Q /∈ E(K1), since Q+ bS ∈ E(K1).

The Galois group Gal(K2/K1) acts on the set Q, since it is the solution set of
pX = P , which is stable under Gal(K2/K1) because P ∈ E(K1). The fact that
Q1 is empty implies that this action has no fixed points. By the orbit-stabilizer
theorem, the size of each orbit divides |Gal(K2/K1)|, a power of the prime q, and
since no orbit is trivial, the size of each orbit is divisible by q. It follows that the
cardinality p2 of Q is divisible by q, which is a contradiction, since p and q are
distinct primes. Thus our supposition that E(K1)(p) �= E(K2)(p) must be false,
which proves (1). �

5.1. Primes without the possibility of full p-torsion (p = 5, 13). We start
with the primes p for which E[p] �⊆ E(Q(3∞)), namely, p = 5, 13. In these cases
E(Q(3∞))(p) is necessarily cyclic.

Lemma 5.5. Let E/Q be an elliptic curve. Then E(Q(3∞))(5) is either trivial or
isomorphic to Z/5Z; the latter holds if and only if E admits a rational 5-isogeny
whose kernel generates an extension of degree at most 2.

Proof. It follows from Lemma 3.7 and Proposition 4.2 that E[5] �⊆ E(Q(3∞)), thus
E(Q(3∞))(5) is cyclic of order 5j for some j ≥ 0. Lemma 4.6 implies, j ≤ 2; we
will show that in fact j ≤ 1. Suppose for the sake of contradiction that E(Q(3∞))
contains a point P of order 25. Let K := Q(P ) ⊆ Q(3∞), let K2 ⊆ Q(3∞) be
the Galois closure of K, and let K1 := K2 ∩ Q(2∞). Then [K2 : K1] is a power
of 3, since Gal(K2/Q) is of generalized S3-type and Q(3∞)/Q(2∞) is elementary
3-abelian. Theorem 1.7 then implies that E(K1)(5) ⊆ E(Q(2∞))(5) is either trivial
or isomorphic to Z/5Z.

Suppose first that E(K1)(5) is trivial. The point P1 = 5P ∈ E(K2) has order
5, but E[5] �⊆ E(K2), since K2 ⊆ E(Q(3∞)), so 〈P1〉 ⊆ E(K2) is Galois-stable and
therefore the kernel of a rational 5-isogeny. This implies that G := Gal(Q(P1)/Q)
is isomorphic to a subgroup of (Z/5Z)×, by Lemma 4.8. The group G cannot have
order 4, because it is the Galois group of a number field in Q(3∞) and must have
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exponent dividing 6, by Theorem 3.5. On the other hand, G cannot have order 1
or 2, because then P1 would be defined over a quadratic extension, and therefore
over K1 = K2 ∩Q(2∞), contradicting our assumption that E(K1)(5) is trivial.

We therefore must have E(K1)(5) � Z/5Z, in which case E(K1)[5] = E(K2)[5] �
Z/5Z, and we may apply Lemma 5.4 with p = 5 and q = 3. But then E(K1)(5) =
E(K2)(5), which contradicts our assumption that E(K2) contains a point of order
25. So j ≤ 1 as claimed and E(Q(3∞))(5) is either trivial or isomorphic to Z/5Z. In
the latter case E(Q(3∞))(5) is a Galois-stable cyclic subgroup of order 5 that is the
kernel of a rational 5-isogeny. It follows from Lemma 4.8 that this kernel generates
a cyclic extension K/Q whose degree divides 4 and, in fact, it must have degree 2,
since K ⊆ Q(3∞) implies that the exponent of Gal(K/Q) divides 6. Conversely, if
E admits a rational 5-isogeny whose kernel generates an extensionK/Q of degree at
most 2, then K ⊆ Q(3∞), by Theorem 3.6, in which case E(Q(3∞))(5) � Z/5Z. �

Example 5.6. Any elliptic curve E/Q with a rational point of order 5 has

E(Q(3∞))(5) � Z/5Z;

the curve 11a1 is an example. Another example is the curve 50a3, which has
trivial rational 5-torsion but admits a rational 5-isogeny whose kernel generates an
extension of degree 2.

Lemma 5.7. Let E/Q be an elliptic curve. Then, E(Q(3∞))(13) is either trivial or
isomorphic to Z/13Z; the latter holds if and only if E admits a rational 13-isogeny
whose kernel generates an extension of degree dividing 6.

Proof. It follows from Lemma 3.7 and Proposition 4.2 that E[13] �⊆ E(Q(3∞)),
thus E(Q(3∞))) is cyclic of order 13j for some j ≥ 0, and Lemma 4.6 implies j ≤ 1.
The last statement follows from Lemma 4.8: The kernel of a 13-isogeny admitted
by E generates a cyclic extension K/Q of degree dividing 12, and then K ⊆ Q(3∞)
if and only [K : Q] divides 6, by Theorems 3.5 and 3.6. �

Example 5.8. The curve 147b1 has E(Q(3∞)) � Z/13Z; its 13-division polyno-
mial has a cubic factor, so it has a point of order 13 over an extension whose degree
divides 6 (in fact, 3).

5.2. Primes with the possibility of full p-torsion (p = 2, 3, 7). We now con-
sider the primes p = 2, 3, 7 for which Q(3∞) contains a primitive pth root of unity
(so E[p] ⊆ E(Q(3∞)) is not immediately ruled out by the Weil pairing). In this
subsection we address p = 2, 7; the case p = 3 is addressed in the next subsection.

Lemma 5.9. If E/Q is an elliptic curve, then E(Q(3∞))[2] = E[2] � Z/2Z⊕Z/2Z.

Proof. If we put E/Q in the form y2 = f(x) with f(x) cubic, the non-trivial points
in E[2] are precisely the points of the form (α, 0) with α a root of f , all of which
lie in Q(3∞). �

Lemma 5.10. Let E/Q be an elliptic curve. If E(Q)[2] is non-trivial, then
E(Q(3∞))(2) is equal to E(Q(2∞))(2); otherwise E(Q(3∞))(2) is equal to E[2]
or E[4] and E(Q(2∞))(2) is trivial. In either case, E(Q(3∞)) is isomorphic to a
subgroup of Z/8Z⊕ Z/8Z or Z/4Z⊕ Z/16Z.

Proof. We first suppose that E(Q)[2] is non-trivial. Then E(Q(2∞))[2] is also non-
trivial, and therefore E(Q(2∞))[2] = E[2], by Theorem 1.7. Lemma 5.4 then implies

http://www.lmfdb.org/EllipticCurve/Q/11a1
http://www.lmfdb.org/EllipticCurve/Q/50a3
http://www.lmfdb.org/EllipticCurve/Q/147b1
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that the 2-primary torsion cannot grow in any 3-power Galois extension of Q(E[2]).
Since Q(E[2]) ⊆ Q(2∞) ⊆ Q(3∞), we must have E(Q(3∞))(2) = E(Q(2∞))(2),
and Theorem 1.7 then implies that E(Q(3∞))(2) is isomorphic to a subgroup of
Z/8Z⊕ Z/8Z or Z/4Z⊕ Z/16Z.

We now suppose that E(Q)[2] is trivial. Then E(Q(2∞))(2) is also trivial: If
E : y2 = f(x) has no rational points of order 2, then the cubic f must be irreducible,
in which case every point of order 2 generates a field of degree 3. We also note that
E cannot admit a rational 2-isogeny, since the unique point of order 2 in the kernel
of such an isogeny would be Galois-stable, hence rational. Thus E does not admit a
rational 2j-isogeny for any j > 0; Lemma 4.6 then implies E(Q(3∞))(2) � Z/2kZ×
Z/2kZ for some k ≥ 0, and Proposition 4.2 and Lemma 3.7 imply k ≤ 3. To show
k < 3, we note that an enumeration (in Magma) of the subgroups G of GL2(Z/8Z)
with surjective determinant maps finds that whenever G is of generalized S3-type,
it is actually elementary 2-abelian. This implies that if Q(E[8]) ⊆ Q(3∞), then,
in fact, Q(E[8]) ⊆ Q(2∞), but we have assumed that E(Q[2]) is trivial, hence
E(Q(2∞))(2) is trivial, so this cannot occur. �
Example 5.11. The elliptic curves 15a1 and 210e2 realize the maximal possibili-
ties Z/8Z⊕ Z/8Z and Z/4Z⊕ Z/16Z, respectively, for E(Q(3∞))(2).

Before addressing the 7-primary component of E(Q(3∞)), we prove a lemma that
relates the degree of the p-torsion field Q(E[p]) of E/Q to the number of rational
p-isogenies admitted by E (we consider two isogenies to be distinct only if their
kernels are distinct).

Lemma 5.12. Let E/Q be an elliptic curve and let p > 2 be a prime for which E
admits a rational p-isogeny. Then [Q(E[p]) : Q] is relatively prime to p if and only
if E admits two rational p-isogenies (with distinct kernels). For p > 5 this implies
that p divides [Q(E[p]) : Q].

Proof. The hypothesis implies that the image of ρE,p is conjugate to a subgroup B
of the Borel group in GL2(Z/pZ). Lemma 2.2 of [26] implies that B = BdB1 where

B1 := B∩
{(

1 b
0 1

)
: b ∈ Z/pZ

}
and Bd := B∩

{(
a 0
0 c

)
: a, c ∈ (Z/pZ)×

}
.

Thus the order of B � Gal(Q(E[p])/Q) is relatively prime to p if and only if B1 is
trivial, equivalently, B = Bd is a subgroup of the split Cartan group, in which case
E admits two rational p-isogenies with distinct kernels. However, as proved in [17],
this can only occur for p ≤ 5. �
Lemma 5.13. Let E/Q be an elliptic curve. Then E(Q(3∞))(7) is isomorphic to
a subgroup of Z/7Z⊕ Z/7Z. The case E(Q(3∞))(7) � Z/7Z⊕ Z/7Z occurs if and
only if j(E) = 2268945/128, and the case E(Q(3∞))(7) � Z/7Z occurs if and only
if E admits a rational 7-isogeny, equivalently,

j(E) =
(t2 + 13t+ 49)(t2 + 5t+ 1)

t
,

for some t ∈ Q×.

Proof. Lemma 3.7 and Proposition 4.2 imply that E[49] �⊆ Q(3∞), and Lemma 4.6
then implies that E(Q(3∞))(7) � Z/7kZ⊕ Z/7jZ with k ≤ 1, and k ≤ j ≤ k + 1.

If j > k, then Lemma 4.6 implies that E admits a rational 7-isogeny, and
Lemma 5.12 then implies that [Q(E[7]) : Q] is divisible by 7. The exponent of

http://www.lmfdb.org/EllipticCurve/Q/15a1
http://www.lmfdb.org/EllipticCurve/Q/210e2
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Gal(Q(E[7])/Q) is therefore not divisible by 6, so Q(E[7]) �⊆ Q(3∞), therefore
k = 0, j = 1, and E(Q(3∞))(7) � Z/7Z. This also rules out the case k = 1 and
j = 2, which proves the first statement in the theorem.

If j = k then we claim that E cannot admit a rational 7-isogeny. Indeed, if E
admits a rational 7-isogeny and P is a non-trivial point in its kernel, then Lemma 4.8
implies that Gal(Q(P )/Q) is cyclic of order dividing 6, hence of generalized S3-
type, so Q(P ) ∈ Q(3∞), by Theorem 3.6. But then we must have j = k = 1, so
Q(E[7]) ⊆ Q(3∞), but then Lemma 5.12 implies that 7 divides [Q(E[7]) : Q], which
contradicts Q(E[7]) ⊆ Q(3∞). Thus k = 0,j = 1 if and only if E admits a rational
7-isogeny, equivalently, j(E) lies in the image of the map from X0(7) to the j-line
that appears in the statement of the lemma and can be found in [25, Table 3], for
example.

If j = k = 1, then Q(E[p]) ⊆ Q(3∞), so Gal(Q(E[p])/Q) has exponent dividing 6,
by Theorem 3.5. This implies that for every prime p �= 7 of good reduction for
E, the elliptic curve Ep/Fp obtained by reducing E modulo p has its 7-torsion
defined over an Fp-extension of degree dividing 6 and, in particular, admits an
Fp-rational 7-isogeny (two in fact). Thus E/Q admits a rational 7-isogeny locally
everywhere but not globally, and as proved in [41], this implies j(E) = 2268945/128.
Conversely, as also proved in [41], for every elliptic curve E/Q with this j-invariant
the group Gal(Q(E[7])/Q) is isomorphic to a subgroup of GL2(F7) with surjective
determinant map whose image in PGL2(F7) is isomorphic to S3; up to conjugacy
there are exactly two such groups (labeled 7NS.2.1 and 7NS.3.1 in [42]), and both
are of generalized S3-type. Thus every elliptic curve E/Q with j(E) = 2268945/128
has E(Q(3∞))(7) � Z/7Z⊕ Z/7Z.

Otherwise, j = k = 0 and E(Q(3∞))(7) is trivial; the lemma follows. �

Example 5.14. The curve 2450a1 has j-invariant 2268945/128 and is thus an
example of an elliptic curve E/Q for which E(Q(3∞))(7) � Z/7Z⊕ Z/7Z.

Corollary 5.15. Let E/Q be an elliptic curve. Then E(Q(3∞))tors � Z/14Z ⊕
Z/14Z if and only if j(E) = 2268945/128.

Proof. The forward implication is an immediate consequence of Lemmas 5.9 and
5.13. A direct computation of E(Q(3∞))(p) for p = 2, 3, 5, 7, 13 for the elliptic
curve 2450a1 in Example 5.14 finds that E(Q(3∞))tors = E[14] for this particular
E/Q with j(E) = 2268945/128, hence for every E/Q with the same j-invariant, by
Proposition 5.2. �

5.3. The 3-primary component of E(Q(3∞))tors.

Lemma 5.16. Let E/Q be an elliptic curve. Then E(Q(3∞))[3] = E[3] if and only
if E admits a rational 3-isogeny, and E(Q(3∞))(3) is trivial otherwise.

Proof. An enumeration of the subgroups G of GL2(Z/3Z) finds that G is of gen-
eralized S3-type if and only if it is conjugate to a subgroup of the Borel group;
this implies the first part of the lemma, since E(Q(3∞))[3] = E[3] if and only if
Gal(Q(E[3])/Q) � im ρE,3 ⊆ GL2(Z/3Z) is of generalized S3-type. If Q(E[3]) �⊆
Q(3∞), then Lemma 4.6 implies that if E(Q(3∞))(3) is non-trivial, then E admits
a rational 3-isogeny, but this cannot occur, so E(Q(3∞))(3) is trivial. �

Lemma 5.17. Let E/Q be an elliptic curve. Then E(Q(3∞)) does not contain a
subgroup isomorphic to Z/9Z⊕ Z/27Z.

http://www.lmfdb.org/EllipticCurve/Q/2450a1
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Proof. Suppose for the sake of contradiction that there is an elliptic curve E/Q
for which E(Q(3∞)) contains a subgroup isomorphic to Z/9Z ⊕ Z/27Z. Then the
image G := im ρE,27 ⊆ GL2(Z/27Z) of the mod-27 Galois representation attached
to E satisfies the following properties:

(i) G has a surjective determinant map and an element with trace 0 and deter-
minant −1;

(ii) G contains a normal subgroup N that acts trivially on a Z/27Z-submodule
of Z/27⊕Z/27 isomorphic to Z/9Z⊕Z/27Z for which G/N is of generalized
S3-type.

As noted in §2, the first condition is required by ρE,n for any elliptic curve E/Q.
The second requirement reflects the fact that Q(E[27]) contains the Galois extension
Q(E(Q(3∞))[27])/Q whose Galois group is a quotient G/N of G and for which the
Galois group Gal(Q(E[27]/Q(E(Q(3∞))[27]) � N acts trivially on a subgroup of
E[27] isomorphic to Z/9Z⊕ Z/27Z.

An enumeration in Magma of the subgroups of GL2(Z/27Z) finds that every
such G is conjugate to a subgroup of the full inverse image of

H :=

〈(
1 3
0 1

)
,

(
1 0
0 2

)
,

(
8 0
0 1

)〉
⊆ GL2(Z/9Z)

in GL2(Z/27Z). Taking the intersection of H with SL2(Z/9Z) shows that H cor-
responds to the congruence subgroup labeled 9H1 in the tables of Cummins and
Pauli [4]. The modular curve XH of level 9 and genus 1 is defined over Q and has 3
rational cusps (the number of rational cusps can be determined via [47, Lemma 3.4],
for example). The group H is equal to the intersection H1 ∩H2 of two subgroups
of GL2(Z/9Z) whose intersection with SL2(Z/9Z) gives the congruence subgroups
9I0 and 9J0. Explicit rational parameterizations for the genus zero modular curves
XH1

and XH2
appear in [43]; these curves both admit rational maps to X0(3),

allowing us to explicitly construct a rational model for XH as the fiber product of
these maps over X0(3). This model is isomorphic to the elliptic curve 27a3, which
has just 3 rational points, which is equal to the number of rational cusps on XH ,
so there are no non-cuspidal rational points. It follows that for every elliptic curve
E/Q, the image of ρE,27 is not conjugate to a subgroup of H, which is our desired
contradiction. �

Proposition 5.18. If E/Q is an elliptic curve, then E(Q(3∞)) does not have a
point or order 27.

Proof. Suppose for the sake of obtaining a contradiction that E/Q is an elliptic
curve with a point of order 27 defined over Q(3∞). Lemmas 5.16 and 5.17 imply
E(Q(3∞))(3) � Z/3Z×Z/27Z. We now proceed as in the proof of Lemma 5.17, and
consider the subgroups G of GL2(Z/27Z) that may arise as the image of the mod-27
Galois image im ρE,27, except in (ii) we now only require the normal subgroup N of
G for which G/N is of generalized S3-type to act trivially on a submodule isomor-
phic to Z/3Z⊕Z/27Z. We find that every such G is conjugate to a subgroup of one
of three subgroups H1, H2, H3 ⊆ GL2(Z/27Z) whose intersection with SL2(Z/27Z)
yields the congruence subgroups with Cummins-Pauli labels 27C1, 27B4, 27A4, re-
spectively. We now show that no elliptic curve E/Q can have im ρE,27 conjugate
to a subgroup of any of the groups H1, H2, H3, which is our desired contradiction.

http://www.uncg.edu/mat/faculty/pauli/congruence/csg1.html#group9H1
http://www.uncg.edu/mat/faculty/pauli/congruence/csg0.html#group9I0
http://www.uncg.edu/mat/faculty/pauli/congruence/csg0.html#group9J0
http://www.lmfdb.org/EllipticCurve/Q/27a3
http://www.uncg.edu/mat/faculty/pauli/congruence/csg1.html#group27C1
http://www.uncg.edu/mat/faculty/pauli/congruence/csg4.html#group27B4
http://www.uncg.edu/mat/faculty/pauli/congruence/csg4.html#group27A4
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The group H1 lies in the Borel subgroup of upper triangular matrices in
GL2(Z/27Z), so if im ρE,27 is conjugate to a subgroup of H1, then E admits a

rational 27-isogeny. From [25, Table 4] we see that there is just one Q-isomorphism
class of elliptic curves that admit a rational 27-isogeny, represented by the curve
27a2. None of the four curves in its isogeny class 27a have j-invariant 1728, so
by Proposition 5.2, it is enough to check whether E(Q(3∞)) contains a point of
order 27 for each of the four curves E/Q in isogeny class 27a; a direct computation
finds that none do.

The group H2 is conjugate to a subgroup of

H4 :=

〈(
1 1
9 1

)
,

(
1 0
0 2

)(
2 0
0 1

)〉
⊆ GL2(Z/27Z),

whose intersection with SL(2,Z/27Z) is conjugate to 27A2. Using the methods
of [38], Rouse and Zureick-Brown have computed a model for the corresponding
modular curve XH4

of genus 2, which has two rational cusps:

XH4
: y2 = x6 − 18x3 − 27.

A 2-descent on the Jacobian of this curve shows that it has rank zero, so the
rational points on XH4

can be easily determined via Chabauty’s method (using the
Chabauty0 function in Magma, for example). The only points in XH4

(Q) are the 2
points at infinity, both of which must be cusps. This rules out the possibility that
im ρE,27 is conjugate to a subgroup of H2 ⊆ H4.

This leaves only the group

H3 :=

〈(
1 2
9 1

)
,

(
1 0
0 2

)
,

(
8 0
0 1

)〉
⊆ GL2(Z/27Z).

Using the results of [43], a singular model for the modular curve XH3
can be

explicitly constructed as the fiber product over X0(9) of two genus zero curves with
maps t3 and (t3 − 6t2 + 3t + 1)/(t2 − t) to X0(9) (the corresponding congruence
subgroups are 27A0 and 9I0, respectively). This yields the genus 4 curve

XH3
: x3y2 − x3y − y3 + 6y2 − 3y = 1,

which has two rational points at infinity (both singular).
Over Q(ζ3) the automorphism group of XH3

is isomorphic to Z/3Z⊕Z/3Z, and
with a suitable choice of basis for Aut(XH3

) the two cyclic factors yield two distinct
genus 2 quotients, corresponding to the curve

C : y2 = x6 − 18ζ3x
3 − 27ζ23

and its complex conjugate C. The curve C is isomorphic to XH4
over Q(ζ9),

consistent with the fact that the restriction of H3 to elements with determinant
1 mod 9 is a subgroup of H4. A calculation by Jackson Morrow (see [5] for details)
shows that the Jacobian of C has rank 0 and torsion subgroup of order 3 generated
by the difference of the two points at infinity on C (and similarly for C). It follows
that the only rational points on C and C are the points at infinity. Pulling back
these points to our model forXH3

yields only the two rational points at infinity, both
of which correspond to cusps on XH3

; this rules out the possibility that im ρE,27 is
conjugate to a subgroup of H3. �

Having ruled out points of order 27 in E(Q(3∞))tors, we now give a necessary
and sufficient criterion for E(Q(3∞))(3) to be maximal.

http://www.lmfdb.org/EllipticCurve/Q/27a2
http://www.lmfdb.org/EllipticCurve/Q/27a
http://www.lmfdb.org/EllipticCurve/Q/27a
http://www.uncg.edu/mat/faculty/pauli/congruence/csg2.html#group27A2
http://www.uncg.edu/mat/faculty/pauli/congruence/csg0.html#group27A0
http://www.uncg.edu/mat/faculty/pauli/congruence/csg0.html#group9I0
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Lemma 5.19. Let E/Q be an elliptic curve. Then E(Q(3∞))(3) = E[9] � Z/9Z⊕
Z/9Z if and only if one of the following holds:

(i) The image of ρE,3 is conjugate to a subgroup of the split Cartan subgroup of
GL2(Z/3Z); equivalently, E admits two distinct rational 3-isogenies. This
case occurs if and only if

j(E) =
27t3(8− t3)3

(t3 + 1)3
,

for some t ∈ Q, t �= −1.
(ii) The image of ρE,9 is conjugate in GL2(Z/9Z) to a subgroup of

H :=

〈(
1 2
3 1

)
,

(
1 3
0 1

)
,

(
1 0
0 8

)
,

(
2 0
0 2

)〉
.

This case occurs if and only if

j(E)=
432t(t2 − 9)(t2 + 3)3(t3 − 9t+ 12)3(t3 + 9t2 + 27t+ 3)3(5t3 − 9t2 − 9t− 3)3

(t3 − 3t2 − 9t+ 3)9(t3 + 3t2 − 9t− 3)3

for some t ∈ Q.

Proof. It is easy to verify that both H and the full inverse image of the split Cartan
subgroup C of GL2(Z/3Z) in GL2(Z/9Z) are of generalized S3-type; it follows that
if the image of ρE,3 lies in C or if the image of ρE,9 lies in H, then ρE,9 gives an
isomorphism from Gal(Q(E[9])/Q) to a group of generalized S3-type and therefore
Q(E[9]) ⊆ Q(3∞), so E(Q(3∞))[9] = E[9].

An enumeration of the subgroups G ⊆ GL2(Z/9Z) of generalized S3-type shows
that either the image of G in GL2(Z/3Z) is conjugate to a subgroup of C, or G is
conjugate to a subgroup of H. The groups C and H correspond to the congruence
subgroups 3D0 and 9J0, both of genus 0; the rational maps from XC and XH to
the j-line are taken from [43]. �

Example 5.20. The elliptic curve E/Q with Cremona label 27a3 admits two
rational 3-isogenies, hence E(Q(3∞))(3) � Z/9Z ⊕ Z/9Z. On the other hand, the
curve 17100g2 admits only one rational 3-isogeny but also has E(Q(3∞))(3) �
Z/9Z⊕ Z/9Z.

Lemma 5.21. Let E/Q be an elliptic curve. Then E(Q(3∞))(3) � Z/3Z ⊕ Z/9Z
if and only if the image of ρE,9 in GL2(Z/9Z) is not of generalized S3-type and is
conjugate in GL2(Z/9Z) to a subgroup of one of the following two groups:

H1 :=

〈(
1 1
0 1

)
,

(
2 0
0 1

)
,

(
2 0
0 2

)〉
, H2 :=

〈(
1 2
3 1

)
,

(
2 0
0 1

)
,

(
2 0
0 2

)〉
.

Equivalently, j(E) lies in the image of one of the rational maps

j1(t) =
(t+ 3)3(t3 + 9t2 + 27t+ 3)3

t(t2 + 9t+ 27)
, j2(t) =

(t+ 3)(t2 − 3t+ 9)(t3 + 3)3

t3
.

Proof. It is easy to verify that neither H1 nor H2 are of generalized S3-type (which
rules out E(Q(3∞))(3) � Z/9Z⊕Z/9Z), and that each contains a normal subgroup
Ni for which the quotient Hi/Ni is of generalized S3-type, and for which the image
of Ni in GL2(Z/3Z) is trivial and for which Ni acts trivially on an element of
order 9 in Z/9Z⊕ Z/9Z. This implies that if Gal(Q(E[9])/Q) � Hi, then the base
change of E to the field Ki ⊆ Q(3∞) corresponding to the normal subgroup of

http://www.uncg.edu/mat/faculty/pauli/congruence/csg0.html#group3D0
http://www.uncg.edu/mat/faculty/pauli/congruence/csg0.html#group9J0
http://www.lmfdb.org/EllipticCurve/Q/27a3
http://www.lmfdb.org/EllipticCurve/Q/17100g2
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Gal(Q(E[9])/Q) isomorphic to Ni has torsion subgroup that contains a subgroup
isomorphic to Z/3Z⊕Z/9Z; moreover, E(Q(3∞))(3) cannot be any larger than this
because we have ruled out any points of order 27 in E(Q(3∞)) (Proposition 5.18)
and Ni cannot be the trivial group.

An enumeration of the subgroups of GL2(Z/9Z) shows that every group G that
is not of generalized S3-type and which contains a normal subgroup N satisfying
all the properties of Ni above is either conjugate to a subgroup of H1 or H2, or is
conjugate to a subgroup of

H3 :=

〈(
1 1
3 1

)
,

(
2 0
0 1

)
,

(
2 0
0 2

)〉
,

with congruence subgroup 9A1. As computed by Rouse and Zureick-Brown (using
the techniques of [38]), the corresponding modular curve XH3

has genus 1 and is
isomorphic to the elliptic curve 27a3, which has just 3 rational points; two of these
are cusps, while the other corresponds to j-invariant 0. But for every elliptic curve
E/Q with j-invariant 0, we have E(Q∞)(3) � Z/9Z ⊕ Z/9Z as can be verified by
checking one example and applying Proposition 5.2.

The groups H1 and H2 yield congruence subgroups 9B0 and 9C0, respectively,
both of genus zero; the maps j1(t) and j2(t) to the j-line are taken from [43]. �

5.4. Proof of Theorem 5.1. Let E/Q be an elliptic curve. Proposition 4.9 shows
that any prime divisor p of the order of E(Q(3∞))tors lies in the set {2, 3, 5, 7, 13}.
Lemma 5.10 (p = 2), Lemma 5.17 and Proposition 5.18 (p = 3), Lemma 5.5 (p = 5),
Lemma 5.13 (p = 7), and Lemma 5.7 (p = 13) together imply that E(Q(3∞))tors is
isomorphic to a subgroup of

Tmax = (Z/16Z⊕ Z/8Z)⊕ (Z/9Z⊕ Z/9Z)⊕ Z/5Z⊕ (Z/7Z⊕ Z/7Z)⊕ Z/13Z.

Examples 5.11, 5.20, 5.6, 5.14, 5.8 for p = 2, 3, 5, 7, 13, respectively, show that Tmax

is the smallest group with this property. �

5.5. An algorithm to compute the structure of E(Q(3∞))tors. With Theo-
rem 5.1 in hand we can now sketch a practical algorithm to compute the isomor-
phism type of E(Q(3∞))tors for a given elliptic curve E/Q, which we may assume
is defined by y2 = f(x). The strategy is to separately compute each p-primary
component E(Q(3∞))(p) for p = 2, 3, 5, 7, 13 by first determining the largest inte-
ger k for which E(Q(3∞))[pk] = E[pk] and then determining the largest integer j
for which E(Q(3∞))(p) contains a point of order pj .

Both steps make use of the division polynomials fE,n(x) whose roots are the
distinct x-coordinates of the non-zero points P ∈ E[n]. The polynomials fE,n(x)
satisfy well-known recurrence relations that allow them to be efficiently computed;
see [30], for example. If m divides n then fE,n is necessarily divisible by fE,m, and
roots of the polynomial fE,n/fE,m are the distinct x-coordinates of the points in
E[n] that do not lie in E[m]; by removing the factor fE,m of fE,n for each maximal
proper divisor m of n one obtains a polynomial hE,n whose roots are the distinct
x-coordinates of the points in E[n] of order n.

The field Q(E[n]) is an extension of the splitting field Kf of fE,n(x) of degree at
most 2 (the degree is 2 when im ρE,n contains −1 ∈ GL2(Z/nZ), and 1 otherwise;
see [42, Lemma 5.17]). A necessary and sufficient condition for Q(E[n])) ⊆ Q(3∞) is
that for every irreducible factor g of hE,n(x) with splitting field Kg, the field Lg :=

Kg(
√
f(r)) is of generalized S3-type, where f(x) is the cubic defining E : y2 = f(x)

http://www.uncg.edu/mat/faculty/pauli/congruence/csg1.html#group9A1
http://www.lmfdb.org/EllipticCurve/Q/27a3
http://www.uncg.edu/mat/faculty/pauli/congruence/csg0.html#group9B0
http://www.uncg.edu/mat/faculty/pauli/congruence/csg0.html#group9C0
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and r is any root of g; note that each field Lg is of the form Q(P ) for some P ∈ E[n]
of order n and is necessarily a Galois extension of Q that contains the coordinate
of every point in 〈P 〉. A necessary and sufficient condition for E(Q(3∞))tors to
contain a point of order n is that for some irreducible factor g of hE,n(x) the field
Lg is of generalized S3-type.

We may thus compute E(Q(3∞))(p) as follows:

• Determine the largest k for which E[pk] ⊆ Q(3∞) by checking increasing
values of k from 1 up to the bound given by Theorem 5.1. For each k,
compute the polynomial hE,pk , factor it over Q, and for each irreducible
factor g compute the field Lg and check whether Gal(Lg/Q) is of generalized
S3-type (via Lemma 3.2) for all g.

• Determine the largest j for which E(Q(3∞))(p) contains a point of order
pj by checking increasing values of j from k up to the bound given by
Theorem 5.1. For each k, compute the polynomial hE,pj , factor it over Q,
and for each irreducible factor g compute the field Lg and check whether
Gal(Lg/Q) is of generalized S3-type for some g.

As written this algorithm is not quite practical, but there are two things that may
be done to make it so. First, one can use a Monte Carlo algorithm to quickly rule
out polynomials g whose splitting fields cannot be of generalized S3-type by picking
random primes and factoring the reduced polynomial ḡ over the corresponding finite
field; if ḡ has an irreducible factor whose degree does not divide 6, then the splitting
field of g cannot be of generalized S3-type. The second practical improvement is
to use the explicit criterion for j(E) given by Lemmas 5.13, 5.19, and 5.21 to more
quickly compute the 3-primary and 7-primary components of E(Q(3∞))tors.

2

A Magma script implementing the algorithm with these optimizations can be
found in [5]; it was used to determine the 20 examples of minimal conductor that
appear in Remark 1.9. These examples prove that each of these cases arise; in the
next section we prove that no others do.

Remark 5.22. In Section 7 we obtain a complete list of parameterizations for each
torsion structure E(Q(3∞))tors; see Table 1. With this list in hand one can im-
mediately determine E(Q(3∞))tors from j(E) whenever j(E) �= 1728, making it
unnecessary to use the algorithm sketched above, except for distinguishing the two
possibilities when j(E) = 1728 (see Remark 5.3). However, the algorithm is im-
plicitly used in several of the proofs in the next section that require us to explicitly
check a finite number of cases, and our list of parameterizations depends on these
results. (We did not use the algorithm to prove any of the results in this section;
see [5] for details of our computations.)

6. The structure of E(Q(3∞))tors

In this section we complete the classification of the torsion structures T �
E(Q(3∞))tors that appear in Theorem 1.8. There are a total of 1008 isomorphism
types T given by subgroups of the maximal group Tmax that appears in Theo-
rem 5.1, of which 648 contain the minimal subgroup Z/2Z ⊕ Z/2Z required by
Lemma 5.9, but we will prove that in fact only 20 occur as E(Q(3∞))tors for some

2We did not exploit this second improvement when using the algorithm to perform any of the
explicit computations of E(Q(3∞))tors cited in §5, since this improvement depends on some of
these computations.
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elliptic curve E/Q. In the five subsections that follow, for p = 13, 7, 5, 3, 2, we
will prove that there are 1, 4, 2, 5, 8 (respectively) possibilities for T when p is the
largest prime divisor of its cardinality, and determine these T explicitly.

We begin with a lemma that allows us to distinguish the two possibilities for
E(Q(2∞))(2) permitted by Lemma 5.10 when E(Q)[2] is trivial. For an elliptic
curve E/Q, we use Δ(E) ∈ Q× to denote its discriminant. We recall that for
j(E) �= 0, 1728, the image of Δ(E) in Q×/Q×2 is determined by j(E) (see [40, Cor.
5.4.1]); in fact,

(2) Δ(E) ≡ j(E)− 1728 (in Q×/Q×2),

as one can verify by computing the discriminant Δ(E) = −16(4A3 + 27B2) of
the elliptic curve E : y2 = x3 + Ax + B with A = 3j(E)(1728 − j(E)) and B =
2j(E)(1728− j(E))2 both non-zero.

Lemma 6.1. Let E/Q be an elliptic curve for which E(Q)[2] is trivial, but

E(Q(3∞))[4] = E[4].

Then −Δ(E) is a square in Q and

j(E) =
−4(t2 − 3)3(t2 − 8t− 11)

(t+ 1)4
,

for some t ∈ Q \ {−1}.

Proof. If E(Q)[2] is trivial and E(Q(3∞))[4] = E[4], then the image G := im ρE,4

is conjugate to a subgroup of GL2(Z/4Z) of generalized S3-type whose image in
GL2(Z/2Z) does not fix any non-zero element of Z/2Z ⊕ Z/2Z (equivalently, has
order at least 3). As noted in §2, the group G must have a surjective determinant
map and contain an element γ corresponding to complex conjugation (here we use
the stronger criterion of [42, Rem. 3.15]). An enumeration of the subgroups of
GL2(Z/4Z) finds that every such G is conjugate to a subgroup of

H :=

〈(
3 1
0 1

)
,

(
0 3
1 3

)
,

(
3 0
0 3

)〉
.

The corresponding modular curve XH is labeled X20a in [38] and has genus zero.
A map to the j-line is given by the rational function

j(t) :=
−4(t2 − 3)3(t2 − 8t− 11)

(t+ 1)4
.

Since neither 0 nor 1728 lie in the image of the map j(t), from (2) we see that the
discriminant Δ(t) of an elliptic curve over Q with j-invariant j(t) must satisfy

Δ(t) ≡ j(t)− 1728 ≡ −1 (in Q×/Q×2),

thus −Δ(t) is always a square, as claimed. �

6.1. When 13 divides #E(Q(3∞))tors. There is only one possibility for
E(Q(3∞))tors when it contains a point of order 13.

Proposition 6.2. Let E/Q be an elliptic curve for which E(Q(3∞)tors contains a
point of order 13. Then E(Q(3∞))tors is isomorphic to Z/2Z⊕ Z/26.
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Proof. By Lemma 5.7, E must admit a rational 13-isogeny, since E(Q(3∞))(13) is
non-trivial. Theorem 4.4 implies that E admits no other rational n-isogenies, and
it follows that Q(3∞)(3), Q(5∞)(5), and Q(7∞)(7) are all trivial, by Lemma 5.16,
Lemma 5.5, and Lemma 5.13 and Corollary 5.15, respectively. Since E admits no
rational 2-isogenies, E(Q)[2] is trivial, and Lemma 5.10 implies that E(Q(3∞))(2)
is isomorphic to either E[2] or E[4]. By Lemma 6.1, if the latter holds, then −Δ(E)
is a rational square; we claim that this cannot occur.

The modular curveX0(13) that parameterizes 13-isogenies has genus 0 and yields
a rational parameterization of the j-invariants of elliptic curves E/Q that admit a
rational 13-isogeny. From [25, Table 3] we see that j(E) must lie in the image of
the rational map

j(t) :=
(t2 + 5t+ 13)(t4 + 7t3 + 20t2 + 19t+ 1)3

t
.

Neither 0 nor 1728 lie in the image of the map j(t), so by (2), the corresponding
discriminant Δ(t) of an elliptic curve over Q with j-invariant j(t) must satisfy

Δ(t) ≡ (j(t)− 1728)3 ≡ t(t2 + 6t+ 13) (in Q×/Q×2),

with t �= 0. Finding t ∈ Q× for which −Δ(t) ∈ Q is a square is equivalent to finding
non-zero rational points P on the elliptic curve

EΔ : y2 = x(x2 − 6x+ 13)

for which x(P ) �= 0, equivalently, P �∈ EΔ(Q)[2]. But a calculation shows that EΔ

has rank 0 and torsion subgroup isomorphic to Z/2Z, so no such P exists. �

Remark 6.3. One can obtain infinitely many elliptic curves E/Q with E(Q(3∞))tors
� Z/2Z ⊕ Z/26 and distinct j-invariants by choosing E for which E(F ) � Z/13Z
for some cubic field F , as shown in [33]. The curve 147b1 is an example F =
Q[x]/(x3 + x2 − 2x− 1).

6.2. When 7 divides #E(Q(3∞))tors. We now address the cases where
#E(Q(3∞))tors is divisible by 7 (but not 13). The case where it is also divisi-
ble by 49 is already covered by Lemma 5.13 and Corollary 5.15, which imply that
we then must have E(Q(3∞))tors � Z/14Z⊕Z/14Z. Theorem 4.4 and Lemma 5.13
then leave us just 3 possibilities to consider: (1) E admits a rational 21-isogeny,
(2) E admits a rational 14-isogeny, (3) E admits a rational 7-isogeny and no others.
These are addressed in the next three lemmas. Recall that if E admits a rational
m-isogeny ϕ and a rational n-isogeny ψ, with m and n coprime, then it necessarily
admits a rational mn-isogeny, namely, the isogeny E → E/〈kerϕ, kerψ〉.

Lemma 6.4. Let E/Q be an elliptic curve. Then E admits a rational 21-isogeny
if and only if E(Q(3∞))tors � Z/6Z⊕ Z/42Z.

Proof. It follows from Lemmas 5.13 and 5.16 that if E(Q(3∞))tors � Z/6Z⊕Z/42Z,
then E admits a rational 7-isogeny and a rational 3-isogeny, hence a rational 21-
isogeny. From [25, Table 4] we see that there are just four Q-isomorphism classes
of elliptic curves E/Q that admit a rational 21-isogeny, represented by the four
elliptic curves in the isogeny class with Cremona label 162b. A direct computation
finds that E(Q(3∞))tors � Z/6Z⊕ Z/42Z for each of these four curves. �

Lemma 6.5. Let E/Q be an elliptic curve. If E admits a rational 14-isogeny, then
E(Q(3∞))tors is isomorphic to Z/2Z⊕ Z/14Z.

http://www.lmfdb.org/EllipticCurve/Q/147b1
http://www.lmfdb.org/EllipticCurve/Q/162b
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Proof. From [25, Table 4] we see that there are just two Q-isomorphism classes
of elliptic curves E/Q that admit a rational 14-isogeny, represented by the curves
49a1 and 49a2. A direct computation finds that E(Q(3∞))tors � Z/2Z ⊕ Z/14Z
for both curves. �

Lemma 6.6. Let E/Q be an elliptic curve. If E admits a rational 7-isogeny and no
other non-trivial rational n-isogenies, then E(Q(3∞))tors is isomorphic to Z/2Z⊕
Z/14Z or Z/4Z⊕ Z/28Z.

Proof. Lemmas 5.16, 5.5, and 5.7 imply that E(Q(3∞))(p) is trivial for p = 3, 5, 13,
and Lemma 5.10 implies that E(Q(3∞))(2) = E[2] or E[4]. �

We summarize the results of this subsection in the following proposition.

Proposition 6.7. Let E/Q be an elliptic curve for which E(Q(3∞))tors contains
a point of order 7. Then E(Q(3∞))tors is isomorphic to one of the groups: Z/2Z⊕
Z/14Z, Z/4Z⊕ Z/28Z, Z/6Z⊕ Z/42Z, Z/14Z⊕ Z/14Z.

Proof. This follows from Corollary 5.15 and Lemmas 6.4, 6.5, 6.6. �

6.3. When 5 divides #E(Q(3∞))tors. We now address the cases where
#E(Q(3∞))tors is divisible by 5 (but not 7 or 13).

Lemma 6.8. Let E/Q be an elliptic curve. If E admits a rational 15-isogeny,
then E(Q(3∞))tors is isomorphic to Z/6Z ⊕ Z/6Z or Z/6Z ⊕ Z/30Z (both occur).
If E(Q(3∞))tors � Z/6Z⊕ Z/30Z, then E admits a rational 15-isogeny.

Proof. As can be seen in [25, Table 4], there are four Q-isomorphism classes of
elliptic curves E/Q that admit a rational 15-isogeny, represented by the four curves
in isogeny class 50a. A direct computation finds that E(Q(3∞))tors � Z/6Z⊕Z/6Z
for the curves 50a1 and 50a2, while E(Q(3∞))tors � Z/6Z⊕ Z/30Z for the curves
50a3 and 50a4. It follows from Lemmas 5.5 and 5.16 that if E(Q(3∞))tors �
Z/6Z⊕ Z/30Z, then E admits a rational 5-isogeny and a rational 3-isogeny, hence
a rational 15-isogeny. �

Proposition 6.9. Let E/Q be an elliptic curve for which E(Q(3∞)) contains a
point of order 5 Then E(Q(3∞))tors is isomorphic to Z/2Z ⊕ Z/10Z or Z/6Z ⊕
Z/30Z.

Proof. As noted above, the results of the previous two subsections imply that
E(Q(3∞))tors is not divisible by 7 or 13. Lemma 5.5 implies that E admits a
rational 5-isogeny, and if E(Q(3∞))(3) is non-trivial, then E also admits a rational
3-isogeny, by Lemma 5.16, in which case it falls into the case covered by Lemma
6.8. We know that E(Q(3∞))(5) � Z/5Z, by Lemma 5.5, thus it remains only to
consider E(Q(3∞))(2) when E(Q(3∞))(p) is trivial for p = 3, 7, 13.

We first suppose that E(Q)[2] is non-trivial. Then E(Q(3∞))(2) = E(Q(2∞))(2),
by Lemma 5.10. Lemma 5.5 implies that E(Q(3∞))(5) = E(Q(2∞))(5), since E
must admit a rational 5-isogeny whose kernel generates and extension of degree
at most 2, hence a subfield of Q(2∞). Theorem 1.7 then implies E(Q(3∞))tors =
E(Q(2∞))tors � Z/2Z⊕ Z/10Z.

We now suppose that E(Q)[2] is trivial. Then E(Q(2∞)) is trivial and E(Q(3∞))
= E[2] or E[4], by Lemma 5.10. Lemma 6.1 implies that the latter holds only when
−Δ(E) is a rational square. We claim that this cannot occur. From [25, Table 3],

http://www.lmfdb.org/EllipticCurve/Q/49/a//4
http://www.lmfdb.org/EllipticCurve/Q/49/a/3
http://www.lmfdb.org/EllipticCurve/Q/50a
http://www.lmfdb.org/EllipticCurve/Q/50a1
http://www.lmfdb.org/EllipticCurve/Q/50a2
http://www.lmfdb.org/EllipticCurve/Q/50a3
http://www.lmfdb.org/EllipticCurve/Q/50a4
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we see that since E admits a rational 5-isogeny, its j-invariant must lie in the image
of the rational map

j(t) =
(t2 + 10t+ 5)3

t
.

Neither 0 nor 1728 lie in the image of this map, so by (2), the discriminant Δ(t) of
an elliptic curve over Q with j-invariant j(t) must satisfy

Δ(t) ≡ (j(t)− 1728)3 ≡ t(t2 + 22t+ 125) (in Q×/Q×2),

with t �= 0. Finding t ∈ Q× for which −Δ(t) is a square is equivalent to finding
rational points P on the elliptic curve

EΔ : y2 = x(x2 − 22x+ 125)

that do not lie in EΔ(Q)[2]. But we find that EΔ(Q) � Z/2Z, so no such P
exist. Thus we must have E(Q(3∞))(2) = E[2], and therefore E(Q(3∞))tors �
Z/2Z⊕ Z/10Z. �
6.4. When only 2 and 3 divide #E(Q(3∞)). We now consider the case where
#E(Q(3∞))tors is divisible by 3 but not by 5, 7, or 13. Lemmas 5.9 and 5.16 imply
E(Q(3∞))[6] = E[6], thus if E(Q(3∞)) cannot contain any points of order 24 or 36,
then Theorem 5.1 implies that E(Q(3∞))tors must be isomorphic to one of the five
groups
(3)
Z/6Z⊕Z/6Z, Z/6Z⊕Z/12Z, Z/6Z⊕Z/18Z, Z/12Z⊕Z/12Z, Z/18Z⊕Z/18Z.

As shown by the examples in Remark 1.9, these cases all occur for some E/Q, so
it suffices to show that E(Q(3∞)) cannot contain any points of order 24 or 36.

Proposition 6.10. Let E/Q be an elliptic curve. There are no points of order 24
in E(Q(3∞)).

Proof. Suppose E(Q(3∞)) contains a point of order 24; then it contains both a
point of order 3 and a point of order 8. Lemma 5.16 implies that E admits a
rational 3-isogeny, and the points in the kernel of this 3-isogeny are defined over
a quadratic extension (by Lemma 4.8), so E(Q(2∞)) contains a point of order 3.
Lemma 5.10 implies that E(Q)[2] is non-trivial and E(Q(3∞))(2) = E(Q(2∞))(2),
so E(Q(2∞)) contains a point of order 8. But then E(Q(2∞)) contains a point of
order 24, which contradicts Theorem 1.7. �

In order to rule out a point of order 36 in E(Q(3∞)) we require the following
lemmas.

Lemma 6.11. Let E/Q be an elliptic curve. If E(Q) contains a point of order 2,
and E(Q(3∞)) contains a point of order 4, then either E(Q)[2] = E[2] or E admits
a rational 4-isogeny.

Proof. It suffices to consider the possible images G ⊆ GL2(Z/4Z) of ρE,4. An
enumeration of the subgroups G of GL2(Z/4Z) finds that whenever the image of G
in GL2(Z/2Z) fixes a non-zero element of Z/2Z⊕Z/2Z (i.e., E(Q) contains a point
of order 2) and G contains a normal subgroup N for which G/N is of generalized
S3-type and N fixes an element of order 4 in Z/4Z⊕Z/4Z (i.e., E(Q(3∞)) contains
a point of order 4), then either the image of G in GL2(Z/2Z) is trivial (E(Q)[2] =
E[2]) or G stabilizes a cyclic subgroup of Z/4Z ⊕ Z/4Z of order 4 (E admits a
rational 4-isogeny). �
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Lemma 6.12. Let E/Q be an elliptic curve that admits a rational 9-isogeny. Then
E(Q(3∞)) does not contain a point of order 4.

Proof. If E(Q)[2] = E[2], then E is isogenous to an elliptic curve that admits a
rational 4-isogeny and a rational 9-isogeny, hence a rational 36-isogeny, which is
ruled out by Theorem 4.4. If E(Q)[2] has order 2, then E(Q(3∞)) cannot contain
a point of order 4, because E would then admit a rational 4-isogeny, by Lemma
6.11, hence a rational 36-isogeny, which is again ruled out by Theorem 4.4.

We are thus left to consider the possibility that E(Q)[2] is trivial and E(Q(3∞))
has a point of order 4, in which case Lemma 5.10 implies E(Q(3∞))[4] = E[4],
and Lemma 6.1 implies that −Δ(E) is a square. We can assume j(E) �= 0 be-
cause a direct computation shows that for the curve 27a3 with j(E) = 0 we have
E(Q(3∞))tors � Z/18Z⊕Z/18Z, which does not contain a point of order 4. Propo-
sition 5.2 implies that this is true for every E/Q with j(E) = 0.

From [25, Table 3] we see that j(E) must lie in the image of the rational map

j(t) =
t3(t3 − 24)3

t3 − 27
.

Having ruled out j(E) = 0, we can assume j(t) �= 0 (so t �= 0), and 1728 does
not lie in the image of j(t), so by (2), for any t �= 0, 3 the discriminant Δ(t) of an
elliptic curve with j-invariant j(t) satisfies

Δ(t) ≡ (j(t)− 1728)3 ≡ (t− 3)(t2 + 3t+ 9) (in Q×/Q×2).

To see whether −Δ(t) can be square when t �= 0, 3, we search for non-zero rational
points P with x(P ) �= 0, 3 on the elliptic curve

EΔ : y2 = (x+ 3)(x2 − 3x+ 9).

We find that EΔ(Q) � Z/2Z, and the non-zero rational point has x-coordinate 3.
Thus no such P exist and the lemma follows. �

Lemma 6.13. Suppose that E/Q admits just one rational 3-isogeny and no rational
9-isogenies, and that E(Q(3∞)) contains a point of order 9. Then

j(E) =
(t+ 3)(t2 − 3t+ 9)(t3 + 3)3

t3

for some t ∈ Q×.

Proof. To determine the possible images of the mod-9 Galois representation of an
elliptic curve E/Q satisfying the hypothesis of the proposition, we conducted a
search similar to that used in the proof of Lemma 5.17, using Magma to enumerate
the subgroups of GL2(Z/9Z) (up to conjugacy). We find that ρE,9(Gal(Q(E[9])/Q)
must be conjugate in GL2(Z/9Z) to a subgroup of one of the groups

H1 :=

〈(
1 0
0 2

)
,

(
2 0
0 1

)
,

(
1 3
0 1

)
,

(
1 1
6 1

)〉
,

H2 :=

〈(
1 0
0 2

)
,

(
2 0
0 1

)
,

(
1 3
0 1

)
,

(
1 1
3 1

)〉
,

whose intersections with SL2(Z/9Z) yield the congruence subgroups 9C0 and 9A1,
of genus 0 and 1, respectively. We will show that H2 cannot occur unless j(E) = 0,
which we note is of the form required by the lemma (take t = −3); in fact, when

http://www.lmfdb.org/EllipticCurve/Q/27a3
http://www.uncg.edu/mat/faculty/pauli/congruence/csg0.html#group9C0
http://www.uncg.edu/mat/faculty/pauli/congruence/csg1.html#group9A1
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450 H. DANIELS, Á. LOZANO-ROBLEDO, F. NAJMAN, AND A. SUTHERLAND

j(E) = 0 the image of ρE,9 is conjugate to a subgroup of H1 that may also lie in
H2 (this depends on E).

The intersection of H1 and H2 is the subgroup

H3 :=

〈(
1 0
0 2

)
,

(
2 0
0 1

)
,

(
1 3
0 1

)〉
,

which is equal to the image of Γ0(3, 9) in GL2(Z/9Z); the modular curve XH3
=

X0(3, 9) has genus 1 (it corresponds to the congruence subgroup 9A1), and parame-
terizes elliptic curves that admit a 3-isogeny and a 9-isogeny whose kernels intersect
trivially. The index-3 inclusion H3 ⊆ H2 gives a degree-3 map ϕ : XH3

→ XH2
of

genus 1 curves, and a calculation using [47, Lemma 3.4] shows that both curves have
two rational cusps (X0(3, 9) has six cusps in all, but only two are rational). We may
thus view the modular curves XH2

and XH3
as elliptic curves over Q, and since ϕ

must map cusps to cusps, we can choose the origins so that ϕ is an isogeny. Both
curves are defined over Q (H2 and H3 both have surjective determinant maps), so
ϕ is also defined over Q; we thus have a rational 3-isogeny from X0(3, 9) to XH2

.
The elliptic curve corresponding to XH3

= X0(3, 9) has Cremona label 27a1,
and an examination of its isogeny class 27a shows that XH2

is isomorphic to either
27a2 or 27a3, and it must be the latter, since 27a2 has only one rational point but
XH2

has two rational cusps. The curve 27a3 isomorphic to XH2
has three rational

points, so XH2
has exactly one non-cuspidal rational point, corresponding to the

Q-isomorphism class of an elliptic curve E/Q with im ρE,9 ⊆ H2.

To determine this Q-isomorphism class it suffice to find one representative. The
curve 27a1 itself admits a rational 3-isogeny and a rational 9-isogeny with distinct
kernels and thus corresponds to a non-cuspidal rational point on X0(3, 9), and its
image under ϕ is a non-cuspidal rational point on XH2

.3 It follows that if j(E) �= 0
then its mod-9 image must be conjugate to a subgroup of H1.

From the tables in [43] we see that for the genus 0 curve XH1
the map to the

j-line is given by

j(t) =
(t+ 3)(t2 − 3t+ 9)(t3 + 3)3

t3
,

which is the function appearing in the statement of the lemma. �

Example 6.14. The elliptic curve 722a1 satisfies the hypothesis of Lemma 6.13:
it admits a single rational 3-isogeny but not a 9-isogeny, and has a point of order 9
over the compositum of the cubic fields of discriminant 361 and −1083, hence over
Q(3∞). The image of ρE,9 is conjugate to G1, and we note that j(E) = 2375/8 is
of the form required by the lemma if we take t = −2.

Lemma 6.15. Let E/Q be an elliptic curve. If E admits more than one rational
3-isogeny, then E(Q(3∞)) does not contain a point of order 4.

Proof. If E admits more than one rational 3-isogeny, then it is related by a rational
3-isogeny ϕ to an elliptic curve E′/Q that admits a rational 9-isogeny. The 3-
isogeny ϕ : E → E′ will map any point of order 4 in E(Q(3∞)) to a point of order
4 in E′(Q(3∞)), but no such point can exist, by Lemma 6.12. �

3This does not contradict the fact that 27a1 does not satisfy the hypothesis of Lemma 6.13;
elliptic curves whose mod-9 image is properly contained in H2 may admit more than one rational
3-isogeny and/or a rational 9-isogeny.

http://www.uncg.edu/mat/faculty/pauli/congruence/csg1.html#group9A1
http://www.lmfdb.org/EllipticCurve/Q/27a1
http://www.lmfdb.org/EllipticCurve/Q/27/a
http://www.lmfdb.org/EllipticCurve/Q/27a2
http://www.lmfdb.org/EllipticCurve/Q/27a3
http://www.lmfdb.org/EllipticCurve/Q/27a2
http://www.lmfdb.org/EllipticCurve/Q/27a3
http://www.lmfdb.org/EllipticCurve/Q/27a1
http://www.lmfdb.org/EllipticCurve/Q/722a1
http://www.lmfdb.org/EllipticCurve/Q/27a1
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Proposition 6.16. Let E/Q be an elliptic curve. Then E(Q(3∞)) contains no
points of order 36.

Proof. Suppose for the sake of contradiction that E(Q(3∞)) does contain a point
of order 36. It follows from Lemmas 5.16, 6.12 and 6.15 that E admits exactly one
rational 3-isogeny and no rational 9-isogenies. We now consider two cases.

Let us first suppose that E(Q)[2] is trivial. Since Q(3∞) contains a point of
order 36, it contains a point of order 4, and Lemma 6.1 implies that

j(E) =
−4(t2 − 3)3(t2 − 8t− 11)

(t+ 1)4
,

for some t ∈ Q\{−1}. Since E admits a rational 3-isogeny, its j-invariant must also
satisfy

j(E) =
(s+ 27)(s+ 3)3

s
for some s ∈ Q× (see [25, Table 3], for example). The valid pairs (t, s) lie on the
(singular) curve

C1 : −4s(t2 − 3)3(t2 − 8t− 11)− (s+ 27)(s+ 3)3(t+ 1)4 = 0,

which has genus 1 and the rational point (0,−1). Its normalization is isomorphic
to the elliptic curve 48a3, which has 8 rational points and is a smooth model for
the modular curve XG obtained by taking the fiber product over X(1) of the two
maps above from the genus zero curves XH and X0(3) to X(1); here H is the group
in the proof of Lemma 6.1 and G is the intersection in GL2(Z/12Z) of the inverse
images of H ⊆ GL2(Z/4Z) and the Borel group in GL2(Z/3Z). A calculation in
Magma shows that XG has four rational cusps, and that the points

(−5,−36), (7,−81/4), (−5/4,−81/4), (−1/2,−36) ∈ C1(Q),

are valid solutions (t, s) corresponding to the four non-cuspidal rational points on
XG. These solutions yield two distinct j-invariants: −35937/4 and 109503/64.
Taking the curves 162a1 and 162d1 as representatives of these Q-isomorphism
classes, we find that neither has a point of order 36 defined over Q(3∞), and by
Proposition 5.2, this applies to every E/Q in these two classes.

We now suppose that E(Q)[2] is non-trivial and proceed similarly. Now E has a
rational point of order 2, so its j-invariant has the form

j(E) =
(s+ 256)3

s2
,

for some s ∈ Q× (see [25, Table 3], for example). By Lemma 6.13, the j-invariant
j(E) also satisfies

j(E) =
(t+ 3)(t2 − 3t+ 9)(t3 + 3)3

t3
,

for some t ∈ Q×. The possible solutions (t, s) lie on the genus 2 curve

C2 : (t+ 3)(t2 − 3t+ 9)(t3 + 3)3s2 − t3(s+ 256)3 = 0,

which has the hyperelliptic model

C3 : y2 = x6 − 34x3 + 1.

The Jacobian of C3 has rank 0, and using Chabauty’s method we find that

C3(Q) = {±∞, (−1,±6), (0,±1)} .

http://www.lmfdb.org/EllipticCurve/Q/48a3
http://www.lmfdb.org/EllipticCurve/Q/162a1
http://www.lmfdb.org/EllipticCurve/Q/162d1
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There are thus six rational points on the modular curve XG corresponding to the
fiber product overX(1) of the two rational maps from the genus zero curvesX1(2) =
X0(2) and XH1

, where H1 is the group in the proof of 6.13 and G is the intersection
in GL2(Z/18Z) of the inverse images of the Borel group in GL2(Z/2Z) and H1 ⊆
GL2(Z/9Z). A calculation in Magma shows that XG has four rational cusps, and
that the points

(3,−16), (−3,−256) ∈ C2(Q)

are valid solutions (t, s) corresponding to the two non-cuspidal rational points on
XG, which yield the j-invariants 0 and 54000. Taking the elliptic curves 27a1 and
36a2 as representatives of these Q-isomorphism classes, we find that neither has a
point of order 36 defined over Q(3∞). �

Corollary 6.17. Let E/Q be an elliptic curve. If 3 is the largest prime divisor of
#E(Q(3∞))tors, then E(Q(3∞))tors is isomorphic to one of the five groups listed in
(3).

Proof. As argued at the start of this subsection, this now follows from Proposi-
tions 6.10 and 6.16. �

6.5. When only 2 divides #E(Q(3∞))tors. If #E(Q(3∞)) is a power of 2, then
Lemmas 5.9 and 5.10 imply that

E(Q(3∞)) �

⎧⎪⎨⎪⎩
Z/2Z⊕ Z/2jZ j = 1, 2, 3, 4, or

Z/4Z⊕ Z/2jZ j = 2, 3, 4, or

Z/8Z⊕ Z/8Z.

The examples listed in Remark 1.9 show that these cases all occur. In conjunction
with Propositions 6.2, 6.7, 6.9 and Corollary 6.17, this proves the first statement
in Theorem 1.8.

7. Explicit parameterizations for each torsion structure

In this section we complete the proof of Theorem 1.8 by giving an explicit de-
scription of the sets

ST := {j(E) : E(Q(3∞))tors � T},

where T ranges over the set T of 20 possible torsion structures for E(Q(3∞))
determined in the previous section. It follows from Proposition 5.2 that the sets
ST partition Q\{1728}. As noted in Remark 5.3, the j-invariant 1728 lies in two
of the sets ST , namely, the sets for T = Z/2Z⊕ Z/2Z and T = Z/4Z⊕ Z/4Z.

We will determine the sets ST in terms of sets FT of (possibly constant) rationals
functions j(t) that parameterize the j-invariants j(E) of elliptic curves E/Q for
which E(Q(3∞))tors � T . These appear in Table 1, which lists a set FT of functions
j(t) for each T ∈ T . Let us partially order the set T by inclusion (so T1 ≤ T2

whenever T1 is isomorphic to a subgroup of T2).

Theorem 7.1. Let E/Q be an elliptic curve with j(E) �= 1728. Let T (E) ⊆ T be
the set of groups T for which j(E) lies in the image of some j(t) ∈ FT . Then T (E)
contains a unique maximal element T (E), and it is isomorphic to E(Q(3∞))tors;
equivalently, j(E) ∈ ST if and only if T = T (E).

http://www.lmfdb.org/EllipticCurve/Q/27a
http://www.lmfdb.org/EllipticCurve/Q/36a2
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Table 1. Parameterizations j(t) of the Q-isomorphism classes of
elliptic curves E/Q according to the isomorphism type of
E(Q(3∞)).

T j(t)

Z/2Z⊕ Z/2Z t

Z/2Z⊕ Z/4Z (t2+16t+16)3

t(t+16)

Z/2Z⊕ Z/8Z (t4−16t2+16)3

t2(t2−16)

Z/2Z⊕ Z/10Z (t4−12t3+14t2+12t+1)3

t5(t2−11t−1)

Z/2Z⊕ Z/14Z (t2+13t+49)(t2+5t+1)3

t

Z/2Z⊕ Z/16Z (t16−8t14+12t12+8t10−10t8+8t6+12t4−8t2+1)3

t16(t4−6t2+1)(t2+1)2(t2−1)4

Z/2Z⊕ Z/26Z (t4−t3+5t2+t+1)(t8−5t7+7t6−5t5+5t3+7t2+5t+1)3

t13(t2−3t−1)

Z/4Z⊕ Z/4Z (t2+192)3

(t2−64)2

−16(t4−14t2+1)3

t2(t2+1)4

−4(t2+2t−2)3(t2+10t−2)
t4

Z/4Z⊕ Z/8Z 16(t4+4t3+20t2+32t+16)3

t4(t+1)2(t+2)4

−4(t8−60t6+134t4−60t2+1)3

t2(t2−1)2(t2+1)8

Z/4Z⊕ Z/16Z (t16−8t14+12t12+8t10+230t8+8t6+12t4−8t2+1)3

t8(t2−1)8(t2+1)4(t4−6t2+1)2

Z/4Z⊕ Z/28Z { 351
4 , −38575685889

16384 }
Z/6Z⊕ Z/6Z (t+27)(t+3)3

t

Z/6Z⊕ Z/12Z (t2−3)3(t6−9t4+3t2−3)3

t4(t2−9)(t2−1)3

Z/6Z⊕ Z/18Z (t+3)3(t3+9t2+27t+3)3

t(t2+9t+27)

(t+3)(t2−3t+9)(t3+3)3

t3

Z/6Z⊕ Z/30Z {−121945
32 , 4696965532768 }

Z/6Z⊕ Z/42Z { 3375
2 , −140625

8 , −1159088625
2097152 , −189613868625

128 }
Z/8Z⊕ Z/8Z (t8+224t4+256)3

t4(t4−16)4

Z/12Z⊕ Z/12Z (t2+3)3(t6−15t4+75t2+3)3

t2(t2−9)2(t2−1)6

{−35937
4 , 109503

64 }
Z/14Z⊕ Z/14Z { 2268945

128 }
Z/18Z⊕ Z/18Z 27t3(8−t3)3

(t3+1)3

432t(t2−9)(t2+3)3(t3−9t+12)3(t3+9t2+27t+3)3(5t3−9t2−9t−3)3

(t3−3t2−9t+3)9(t3+3t2−9t−3)3



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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Remark 7.2. The set T (E) need not contain every T ≤ T (E). The curve 15a1 is an
example: T (E) = Z/8Z⊕Z/8Z but j(E) is not in the image of the unique function
j(t) for T = Z/2Z⊕ Z/8Z.

Corollary 7.3. Of the 20 groups T listed in Theorem 1.8, the following 4 arise as
E(Q(3∞))tors for only a finite set of Q-isomorphism classes of elliptic curves E/Q:

Z/4Z× Z/28Z, Z/6Z× Z/30Z, Z/6Z× Z/42Z, Z/14Z× Z/14Z.

The remaining 16 arise for infinitely many Q-isomorphism classes of elliptic curves
E/Q.

Proof of Theorem 7.1. For each group T ∈ T we enumerate subgroups G of
GL2(Z/nZ), where n is the exponent of T , and determine the G that are maxi-
mal with respect to the following properties:

(i) the determinant map G → (Z/nZ)× is surjective and G contains an element
of trace 0 and determinant −1 that acts trivially on a maximal cyclic Z/nZ-
submodule of Z/nZ⊕ Z/nZ;

(ii) the submodule of Z/nZ⊕Z/nZ on which the minimal normal subgroup N of
G for which G/N is of generalized S3-type acts trivially is isomorphic to T .

Note that the minimal N is unique, since if N1 and N2 are two normal subgroups
of G for which G/N1 and G/N2 are both of generalized S3-type, then for N = N1∩
N2 the quotient G/N is isomorphic to a subgroup of the direct product of G/N1 and
G/N2, hence also of generalized S3-type. We recall that (i) is necessarily satisfied
by any subgroup G of GL2(Z/nZ) that arises as the image of ρE,n for an elliptic
curve E/Q, and (ii) implies that if G � ρE,n(Gal(Q(E[n])/Q)) for some E/Q, then
G/N � Gal((Q(E[n]) ∩ Q(3∞))/Q) and N � Gal(Q(E[n])/(Q(E[n]) ∩ Q(3∞)).
The n-torsion points of E fixed by Gal(Q/Q(3∞)) must then form a subgroup
isomorphic to T , equivalently, E(Q(3∞))tors contains a subgroup isomorphic to
T . The existence of the examples in Remark 1.9 ensures that we get at least one
maximal G for each T .

Our maximality condition ensures that G always contains −1 (otherwise we can
add −1 to both G and N). The corresponding modular curve XG has a rational
model (because the determinant map of G is surjective), and each non-cuspidal
rational point on XG determines a Q-isomorphism class that contains an elliptic
curve E/Q for which im ρE,n is conjugate in GL2(Z/nZ) to a subgroup of G. For
j(E) �= 1728 the group E(Q(3∞))tors depends only on j(E), by Proposition 5.2,
thus we may restrict our attention to the image JG of the non-cuspidal points in
XG(Q) under the map to X(1); if j(E) lies in this image, then there is an elliptic
curve E′ in this Q-isomorphism class for which im ρE′,n is conjugate to a subgroup
of G, and it follows that E′(Q(3∞))tors, and therefore E(Q(3∞))tors, must contain
a subgroup isomorphic to T . In the other direction, if E(Q(3∞))tors � T , then
im ρE,n must be conjugate to a subgroup of one of the maximal groups G for this
T , and j(E) must lie in JG. The set T (E) thus contains a unique maximal element,
namely, T (E) � E(Q(3∞))tors, since if T ′ ∈ T (E) then E(Q(3∞))tors � T must
contain a subgroup isomorphic to T ′. The theorem then follows, provided that for
each T ∈ T we can determine a set of rational functions FT for which the union
of the images of these functions is equal to the union of the image JG over the
maximal groups G for T . This amounts to explicitly expressing each of the images
JG as the union of the images of a set of (possibly constant) rational functions j(t).
We turn now to this problem.

http://www.lmfdb.org/EllipticCurve/Q/15a1
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We first note that it may happen that G is the full inverse image of the reduction
map from GL2(Z/nZ) to GL2(Z/mZ) for some m dividing n; in this case we reduce
G modulo the largest such m and call m the level of G. For example, when T =
Z/2Z⊕Z/2Z we have G = GL2(Z/2Z) and can reduce G to the trivial group of level
1 corresponding to X(1); this is consistent with the fact that E(Q(3∞))[2] = E[2]
holds for all E/Q. Similar remarks apply whenever n = 2m with m odd.

A Magma script to enumerate the maximal groups G for each torsion structure
T can be found at [5]; for each G we may determine the genus of XG by taking
the intersection of G with SL2(Z/nZ) (all the cases of interest are already listed
in the tables of Cummins and Pauli [4]), and we use [47, Lemma 3.4] to determine
the number of rational cusps on XG. There are a total of 33 maximal groups G for
the 20 groups T , and we find that for each of these G, one of the following holds:
(1) XG has genus 0 and a rational point, in which case XG is isomorphic to P1 and
the map XG → X(1) is given by a rational function j(t), or (2) XG is isomorphic
to either a genus 1 curve with no rational points, an elliptic curve of rank 0, or a
curve of genus greater than 1, and in every case the image of XG(Q) in X(1) is
finite (by Faltings’ Theorem [6]).

For the first five groups T listed in Table 7.1, there is a unique maximal G and
XG has genus 0 and is of prime-power level; for these G we may take j(t) from
[43] (for the 2-power levels, maps that are equivalent up to an automorphism of P1

(hence have the same image) can also be found in the tables of [38]). The same
applies to the groups Z/2Z ⊕ Z/26Z, Z/6Z ⊕ Z/6Z, and Z/8Z ⊕ Z/8Z. We now
briefly discuss each of the remaining 12 groups T :

• Z/2Z⊕Z/16Z: There are two maximal G, both of level 16; for the first, XG

has genus 0 and the corresponding map j(t) from [43] is listed in Table 1.
For the second XG is a genus 1 curve with no rational points (the curve
X335 in [38]).

• Z/4Z⊕Z/4Z: There are three maximal G, one of level 2 and two of level 4,
all of genus 0; the corresponding maps j(t) from [43] are listed in Table 1.

• Z/4Z⊕ Z/8Z: There are two maximal G, one of level 4 and one of level 8,
both of genus 0; the corresponding maps j(t) from [43] are listed in Table 1.

• Z/4Z ⊕ Z/16Z: There are two maximal G, one of level 8 and one of level
16. The level 8 curve has genus 0 and the corresponding map j(t) from
[43] is listed in Table 1, while the level 16 curve is a genus 1 curve with no
rational points (the curve X478 in [38]).

• Z/4Z ⊕ Z/28Z: There are three maximal G, one of level 14 and two of
level 28, all of which have genus greater than 2. Two are ruled out by
the fact that any E/Q with this image would be isogenous to an E′/Q
admitting a rational 28-isogeny, but no such E′ exist, by Theorem 4.4. The
remaining G of level 28 corresponds to a modular curve XG of of genus 3
with congruence subgroup 28E3. This curve admits a degree-2 map to a
genus 2 curve XH , where G ⊆ H, with congruence subgroup 28A2. The
curve XH has a hyperelliptic model,

XH : y2 = x6 − 2x5 − 4x4 − 4x3 − 4x2 − 2x+ 1,

whose Jacobian has rank 1. Chabauty’s method finds that XH has four
rational points, two of which are the image of known non-cuspidal rational

http://www.uncg.edu/mat/faculty/pauli/congruence/csg3.html#group28E3
http://www.uncg.edu/mat/faculty/pauli/congruence/csg2.html#group28A2
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points on XG (the corresponding j-invariants are listed in Table 1), while
the other two are cusps.

• Z/6Z ⊕ Z/12Z: There is one maximal G and it is conjugate to the Borel
group in GL2(Z/12Z), and XG = X0(12) has genus 0; the map to the j-line
is taken from [25, Table 3].

• Z/6Z ⊕ Z/18Z: There are three maximal G, all of level 9, two of genus 0
and one of genus 1. The corresponding maps j(t) for the genus 0 curves
form [43] are listed in Table 1. As shown in the proof of Lemma 5.21, the
genus 1 curve has only one non-cuspidal rational point corresponding to
j-invariant 0, but for j(E) = 0 we have E(Q(3∞))tors � Z/18Z⊕ Z/18Z.

• Z/6Z ⊕ Z/30Z: There is one maximal G, of level 15 and genus 1 and XG

admits a map toX0(15) whose rational points give four distinct j-invariants;
see [25, Table 4]. Of these, two correspond to elliptic curves whose mod-15
Galois image is isomorphic to a subgroup of G (of index 2 but yielding the
same E(Q(3∞))tors structure); these are listed in Table 1.

• Z/6Z⊕ Z/42Z: There is one maximal G, of level 21 and genus 1, and XG

is the curve X0(21) whose rational points give rise to four the j-invariants
listed in Table 1; see [25, Table 4].

• Z/12Z ⊕ Z/12Z: There are three maximal G, one of level 6 and genus 0
whose corresponding map j(t) can be computed as a fiber product of maps
in [43]; this map appears in Table 1. The other two have level 12 and
genus 1, and the XG are isomorphic to 48a1 and 48a3, respectively. The
first has four rational points, all cuspidal, and the second has eight rational
points, four of which are non-cuspidal and yield the two j-invariants listed
in Table 1.

• Z/18Z⊕ Z/18Z: There are two maximal G, one of level 3 and one of level
9 and both of genus 0; the corresponding maps j(t) from [43] appear in
Table 1.

Further details of these computations can be found in [5]. �
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Math. 73 (1983), no. 3, 349–366, DOI 10.1007/BF01388432. MR718935

[7] G. Frey and M. Jarden, Approximation theory and the rank of abelian varieties over large
algebraic fields, Proc. London Math. Soc. (3) 28 (1974), 112–128. MR0337997

[8] Y. Fujita, Torsion subgroups of elliptic curves with non-cyclic torsion over Q in elementary
abelian 2-extensions of Q, Acta Arith. 115 (2004), no. 1, 29–45, DOI 10.4064/aa115-1-3.
MR2102804

[9] Y. Fujita, Torsion subgroups of elliptic curves in elementary abelian 2-extensions of Q, J.
Number Theory 114 (2005), no. 1, 124–134, DOI 10.1016/j.jnt.2005.03.005. MR2163908

[10] I. Gal and R. Grizzard, On the compositum of all degree d extensions of a number field, J.
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