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Abstract. We study the sequence of zeta functions Z(Cp, T ) of a generic
Picard curve C : y3 = f(x) defined over Q at primes p of good reduction
for C. We define a degree 9 polynomial ψf ∈ Q[x] such that the splitting field

of ψf (x
3/2) is the 2-torsion field of the Jacobian of C. We prove that, for

all but a density zero subset of primes, the zeta function Z(Cp, T ) is uniquely
determined by the Cartier–Manin matrix Ap of C modulo p and the splitting
behavior modulo p of f and ψf ; we also show that for primes ≡ 1 (mod 3) the
matrix Ap suffices and that for primes ≡ 2 (mod 3) the genericity assumption
on C is unnecessary. An element of the proof, which may be of independent
interest, is the determination of the density of the set of primes of ordinary
reduction for a generic Picard curve. By combining this with recent work
of Sutherland, we obtain a practical deterministic algorithm that computes
Z(Cp, T ) for almost all primes p ≤ N using N log(N)3+o(1) bit operations.
This is the first practical result of this type for curves of genus greater than 2.

1. Introduction

Let C be a Picard curve defined over Q, that is, a curve admitting an affine
model given by an equation of the form

(1.1) y3 = f(x),

where f ∈ Q[x] is a degree 4 separable polynomial. Without loss of generality we
will assume from now on that C is given by an integral model in which f(x) =
x4 + f2x

2 + f1x+ f0 and the fi are integers. Let ζ3 denote a primitive cubic root
of unity in an algebraic closure Q of Q. The obvious action of 〈ζ3〉 on C induces a
ring monomorphism from Z[ζ3] to the geometric endomorphism ring End(Jac(C)Q)
of the Jacobian of C. We will say that C is generic if this ring monomorphism is an
isomorphism. This amounts to asking that the geometric endomorphism algebra
End(Jac(C)Q)⊗Q is isomorphic to Q(ζ3).

For a prime p of good reduction for C, let Cp denote the reduction of C modulo p.
The zeta function of Cp is a formal power series

Z(Cp, T ) := exp

⎛
⎝∑

n≥1

#Cp(Fpn)
Tn

n

⎞
⎠ ∈ Q[[T ]],
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defined in terms of the number of points of Cp over the finite extensions of the
finite field of p elements Fp. It can be shown to be a rational function admitting
an expression of the form

Z(Cp, T ) =
Lp(C, T )

(1− T )(1− pT )
,

where Lp(C, T ) is a degree 6 polynomial with coefficients in Z, which we call the
L-polynomial of C at p.

The purpose of the present paper is twofold. On the one hand, we contribute
several theoretical results related to the L-polynomials of C. On the other hand, we
apply these results to develop and implement an efficient and practical deterministic
algorithm to compute the Lp(C, T ), for almost all p up to some bound N . The
sequence of the Lp(C, T ) contains deep arithmetic information about C, and it has
been the object of celebrated conjectures in number theory, such as generalized
forms of the Sato–Tate conjecture (see for example [Ser12, Chap. 8], [KS09]) or of
the Lang–Trotter conjecture. Convincing numerical evidence for these conjectures
sometimes requires computing Lp(C, T ) for p up to a bound N within the range
[230, 240]. In recent years, there have been several breakthroughs to make these
computations feasible for curves of genus at most 2; the methods of previous articles,
however, do not allow for computations forN within this range for curves of genus 3.

Before we return to this question in more detail let us start by describing the
theoretical contributions on which the main algorithm of this paper relies.

Theoretical contributions. Let Cp denote the Cartier operator acting on the 3-
dimensional Fp-vector space H0(Cp,Ω

1
Cp/Fp

) of regular differentials of Cp. By the

Cartier–Manin matrix Ap of C at p, we will mean the matrix of the operator Cp
acting on this space in a certain basis. By the work of Katz and Serre, the reduction
of Lp(C, T ) modulo p is uniquely determined by Ap (see Section 2.1 for a quick
recollection of these facts and their references).

In the first part of this article (corresponding to Sections 2 and 3), we show
that in fact Ap carries enough information to uniquely determine Lp(C, T ) quite
often. In order to state more precisely our main results, let us consider separately
the cases p ≡ 1 (mod 3) and p ≡ 2 (mod 3). To this aim, let S(C) (resp. I(C))
denote the set of odd primes coprime to the discriminant of f and congruent to 1
(resp. 2) modulo 3. In the first case, we obtain the following.

Theorem 1.1. Let C be a Picard curve defined over Q. Then:

(i) For every p ≥ 53 in S(C) of ordinary reduction for C, the Cartier–Manin
matrix of C at p uniquely determines the L-polynomial Lp(C, T ).

(ii) If C is generic, then every prime in S(C) outside a density 0 set is ordinary
for C.

See Corollaries 3.3 and 3.16. Let gp(C, T ) denote the reversed T 3χp(1/T ) of
the characteristic polynomial χp(T ) of Cp acting on H0(Cp,Ω

1
Cp/Fp

). To prove the

theorem, we first show that the existence of a functorial map from the crystalline
cohomology space H1

crys(Cp/Zp) onto the semisimple subspace H0(Cp,Ω
1
Cp/Fp

)ss
implies that the action of Z[ζ3] on these two spaces induces compatible factorizations
of the polynomials Lp(C, T ) and gp(C, T ), over Z[ζ3][T ] and Fp[T ], respectively.
This is the content of Section 2.2, which is written for general superelliptic curves
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of prime exponent (with no cost of extra conceptual or technical complication with
respect to the case of Picard curves).

The first assertion of the theorem is proven in Section 3.1. It relies on the
compatible factorizations of Lp(C, T ) and gp(C, T ), and uses the Weil bounds and
the fact that if p is ordinary, then gp(C, T ) has degree 3.

While the proof of the first assertion is p-adic in nature, the proof of the sec-
ond statement (accomplished in Section 3.4) relies on �-adic methods. It uses the
description of Lp(C, T ) in terms of the étale cohomology group H1

ét(CQ,Z�) (or

alternatively, in terms of the Tate module T�(Jac(C))). It should be regarded as a
refinement of [Fit20, Thm. 1] obtained by replacing Ogus’ method by that of Sawin
(see [Saw16]). We actually need a mild generalization of Sawin’s result, which is
presented in Section 3.3.

We now turn to primes p ≡ 2 (mod 3). Attached to the Picard curve C, define
the polynomial

ψf (x) := x9 + 24f2x
7 − 168f1x

6 + (1080f0 − 78f2
2 )x

5 + 336f1f2x
4(1.2)

+ (1728f0f2 − 636f2
1 + 80f3

2 )x
3 + (−864f0f1 − 168f1f

2
2 )x

2

+ (−432f2
0 + 216f0f

2
2 − 120f2

1 f2 − 27f4
2 )x− 8f3

1 .

The splitting field of ψf (x
3/2) is the 2-torsion field of the Jacobian of C. This is

explained in the Lemma of the Appendix to this article, which was kindly written
for us by Andrew Sutherland. We then have the following result.

Theorem 1.2. Let C be a Picard curve defined over Q, and let f, ψf ∈ Z[x] be as
in (1.1) and (1.2), respectively. For every prime in I(C), the data:

(i) the Cartier–Manin matrix of C at p,
(ii) the knowledge of ψf having a root or not modulo p, and
(iii) the knowledge of f being irreducible or not modulo p

uniquely determine the L-polynomial Lp(C, T ).

Its proof is the content of Section 3.2 and the Appendix. It is based on the
following simple idea. For all p ∈ I(C), the L-polynomial Lp(C, T ) is uniquely
determined by the coefficient of T 2. By writing this coefficient as p − tp, one has
that |tp| ≤ 2p. Since condition (i) determines tp modulo p, the theorem follows
from the facts that (ii) determines tp modulo 2 (see the Theorem in the Appendix),
and that (iii) determines it modulo 3 (see Lemma 3.9 and Proposition 3.11). The
latter should be no surprise, as it is well known that the splitting field of f is closely
related to the 3-torsion field of the Jacobian of C.

We highlight the constructive nature of the proofs of Theorems 1.1 and 1.2. By
this, we mean that they provide a way to compute Lp(C, T ) from the given data.
This is exploited in the second part of the paper.

A practical algorithm. In the second part of the paper (corresponding to Sec-
tion 4), we are concerned with the problem of computing the L-polynomials Lp(C, T ),
for p ≤ N .

At a theoretical level, this problem is well understood: for a fixed smooth and
projective curve of genus g and defined over Q, Pila’s algorithm [Pil90] (extending

[Sch85]) computes the zeta function at a prime p of good reduction using log(p)g
O(1)

operations.
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As mentioned above, there are situations in which one is interested in computing
the zeta functions at all primes p ≤ N . In these situations, one can do better
than applying Pila’s algorithm prime by prime. In fact, Harvey has proposed
an algorithm that achieves this computation using a total of N log(N)3+o(1) bit
operations (see [Har14] for the case of hyperelliptic curves and [Har15] for the case
of a general arithmetic scheme, including, of course, the case of smooth projective
curves).

The existence of Pila’s and Harvey’s theoretical algorithms sets the challenge
to develop practical versions of them, amenable for implementation and producing
effective results when run by real hardware and N is in the range, say, [230, 240].

Let us summarize part of the progress which has been made toward the obtaining
of practical versions of Harvey’s algorithm. In the hyperelliptic curve case, practical
algorithms to compute the Cartier–Manin matrix Ap have been developed and
implemented by Harvey and Sutherland (see [HS14] and [HS16]). In [HMS16], such
practical algorithms were developed for genus g = 3 geometrically hyperelliptic
curves, that is, curves admitting an affine model given by the equations

h(x, y) = 0, w2 = f(x, y),

where f, h ∈ Z[x, y] are polynomials of respective degrees 4 and 2. In genus g ≤ 2,
computing Ap suffices to compute the L-polynomial, but this is no longer true for
g ≥ 3. This makes adapting Harvey’s algorithm more difficult.

In another direction, the case of cyclic covers of the projective line has been
examined in [ABCMT19]. The authors provide an algorithm to compute the L-
polynomial at p using p1/2+o(1) bit operations in the case of a superelliptic curve,
and this yields the fastest practical algorithm in the literature for computing the
L-polynomials at all primes p ≤ N . In [Abe18], a Las Vegas type algorithm with
expected complexity log(p)14+o(1) is provided to compute the L-polynomial at p of
a genus three hyperelliptic curve. However, for computing the L-polynomials at
all p ≤ N , when N is in the range we consider, [ABCMT19] still exhibits better
performance.

For a Picard curve C defined over Q, our case of interest, [BTW05] provides an
algorithm of complexity O(p1/2) to compute Lp(C, T ). The main computational
contribution of this article is a practical deterministic algorithm for the computa-
tion of the L-polynomials of a generic Picard curve at almost all primes p ≤ N ,
performing N log(N)3+o(1) bit operations. This is obtained by combining the recent
work of Sutherland [Sut20] with the constructive proofs of Theorems 1.1 and 1.2.

Before stating the result more precisely, let us establish some conventions and
notation. From now on, the term algorithm, without further qualification, is used
to refer to a deterministic algorithm. For a generic Picard curve C defined over Q,
let S∗(C) denote the subset of ordinary primes of S(C). For N ≥ 1, set

S
∗
N (C) := S

∗(C) ∩ [1, N ], IN (C) := I(C) ∩ [1, N ].

Theorem 1.3. Let C be a generic Picard curve. Algorithm 4.2 determines S∗
N (C)

and returns Lp(C, T ) for every prime p ∈ S∗
N (C)∪IN (C) using N log(N)3+o(1) bit

operations.

One might speculate that the time spent with the computation of the Lp(C, T )
for primes p ≤ N in the complement of the set S∗

N (C) ∪ IN (C) using existing
algorithms (such as [ABCMT19] or lifting methods; see Remark 4.5) would be
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subsumed by the bound N log(N)3+o(1). Despite showing that this complement is
of 0 density, we were not able to prove that it is thin enough to retrieve such a
conclusion. Algorithm 4.2 is described in Section 4.1, where we also analyze its
correctness and running time. In Section 4.2, we discuss our implementation of the
algorithm and its speed compared to the implementation in [Sut20]. In Section 4.2,
we also explain how the methods of this article can be combined with the algorithm
of [ABCMT19] to provide a constant factor improvement in the performance of the
latter.

2. Preliminaries

Fix an algebraic closure Q of Q and let Z denote its ring of algebraic integers.
For a rational prime p, let Fp denote the finite field with p elements, and let vp
denote a prime ideal of Z lying above p (by abuse of notation, we will also denote
by vp the corresponding extension of the p-adic valuation). The residue field of vp
is an algebraic closure of Fp, which we will denote by Fp.

Let Dvp denote the decomposition group of vp. We will denote by ϕp the (arith-

metic) Frobenius element of GFp
:= Gal(Fp/Fp) and by Frobp a preimage in Dvp

of ϕp by the canonical projection from Dvp to GFp
.

2.1. L-polynomials modulo p. Throughout this section, C denotes a smooth and
projective curve of genus g defined over Q. Let S denote a finite set of primes such
that C has good reduction outside S. By this, we mean that there exists a smooth
and projective scheme C → Spec(Z)− S whose generic fiber is C. We will denote
by Cp the special fiber of C at p, and will refer to it as the reduction of C modulo p.
We will denote by Jac(C) the Jacobian of C.

Reduction from étale cohomology. Let � denote a rational prime. Suppose
from now on that p �= � is a prime of good reduction for C. Let V�(Jac(C)) denote
the rational �-adic Tate module of Jac(C). We define the L-polynomial of C at p
as

(2.1) Lp(C, T ) := det(1− Frobp T |V�(Jac(C))) = det(1− Frob−1
p T |H1

ét(C,Z�)).

Here C stands for the base change of C from Q to Q. It is a degree 2g polynomial
with integer coefficients, and it does not depend on the choice of �. Let us write

gp(C, T ) := det(1− ϕ−1
p T |H1

ét(Cp,Z/pZ)),

where Cp is the base change of Cp from Fp to Fp. By [Kat73, Thm. 3.1], we have
the congruence

(2.2) Lp(C, T ) ≡ gp(C, T ) (mod p).

We will give an alternative description of gp(C, T ) in terms of the Cartier opera-
tor. Let Fp : Cp → Cp be the absolute Frobenius, the map which is the identity on
the underlying topological space of Cp and which acts by Fp(ν) = νp on sections ν
of OCp

. By abuse of notation, let us also denote by Fp the map

H1(Cp,OCp
) → H1(Cp,OCp

)

induced in cohomology. Let Cp : H0(Cp,Ω
1
Cp/Fp

) → H0(Cp,Ω
1
Cp/Fp

) denote the

Cartier operator as defined in [Ser58, §10] (see also [Sut20, §2] or [AH19, §2] for
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a concise treatment). The Fp-linear operators Fp and Cp give rise to Fp-linear
operators

Fp ⊗ Fp : H
1(Cp,OCp

) → H1(Cp,OCp
),

Cp ⊗ Fp : H
0(Cp,Ω

1
Cp/Fp

) → H0(Cp,Ω
1
Cp/Fp

).

We denote with a subscript ss the semisimple part of the above spaces with respect
to the respective operators. Fundamental to our discussion will be the existence of
isomorphisms

(2.3) H1
ét(Cp,Z/pZ)⊗Fp

Fp 
 H1(Cp,OCp
)ss 
 H0(Cp,Ω

1
Cp/Fp

)ss.

For the first isomorphism we refer to [Kat73, Prop. 2.2.5], where it is moreover
shown that it transforms the automorphism ϕ−1

p ⊗Fp into the automorphism Fp⊗Fp.

The second isomorphism is Serre duality, and by [Ser58, Prop. 9] it sends Fp ⊗ Fp

to Cp ⊗ Fp. We deduce that

gp(C, T ) = det(1− CpT |H0(Cp,Ω
1
Cp/Fp

)ss) = det(1− CpT |H0(Cp,Ω
1
Cp/Fp

)).

Reduction from crystalline cohomology. Crystalline cohomology provides a
functorial version of (2.2), which we now recall. Let W denote the ring of Witt
vectors of Fp, and let H1

crys(Cp/W ) denote the crystalline cohomology of Cp. The
latter is a free module over W 
 Zp of rank 2g. By abuse of notation, we also
denote by

Fp : H
1
crys(Cp/W ) → H1

crys(Cp/W )

the map induced by the absolute Frobenius. By [KM74], we have the equality

(2.4) Lp(C, T ) = det(1− FpT |H1
crys(Cp/W )).

The cohomology group H1
crys(Cp/W ) comes equipped with a functorial map to de

Rham cohomology

(2.5) H1
crys(Cp/W ) → H1

dR(Cp/Fp) → H1
dR(Cp/Fp)ss

preserving the action of the absolute Frobenius on the respective spaces. By [Kat73,
(3.3.4)] and Serre duality, respectively, there are functorial isomorphisms

H1
dR(Cp/Fp)ss 
 H1(Cp,OCp

)ss 
 H0(Cp,Ω
1
Cp/Fp

)ss

mapping Fp to Cp. Together with (2.5), this provides a functorial map

(2.6) H1
crys(Cp/W ) → H0(Cp,Ω

1
Cp/Fp

)ss

mapping the absolute Frobenius Fp to the Cartier operator Cp, which refines (2.2)
and which will be exploited in Section 2.2.

Note that further subtleties arise when working over a nonprime field, but we
will not encounter them in our discussion.

2.2. Superelliptic curves and Cartier–Manin matrices. From now on, let C
be a superelliptic curve defined over Q, that is, a curve admitting an affine model
given by the equation

ym = f(x),

where m ≥ 2 is an integer and f ∈ Z[x] is a separable polynomial of degree d ≥ 3.
Let O denote Z[ζm], where ζm denotes a fixed primitive mth root of unity in Z.
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We will further assume that m is prime. Then (see [Sch98, p. 149]) the action of
〈ζm〉 on C induces a ring monomorphism

(2.7) O ↪→ End(Jac(C)Q(ζm)).

The genus of C is then expressed by the formula

g =
(d− 1)(m− 1)− gcd(m, d) + 1

2
.

Let S(C) denote the set1 of rational primes coprime to the discriminant of f
and to its leading coefficient, and congruent to 1 modulo m. Assume until the end
of this section that p belongs to S(C). In particular, p is a prime of good reduction
for C which splits completely in Q(ζm). The choice of a prime vp of Z lying over p
singles out one of the ϕ(m) primes of O lying over p, where ϕ denotes Euler’s totient
function. Call it p0. For a prime p of O lying over p, define the Fp-algebra map

(2.8) σp : O ⊗Z Fp 

⊕
p′|p

Fp′
prp−−→ Fp,

where prp denotes the projection from the Fp-component. To shorten the notation,
we will often simply write σ to denote σp, and σ0 to denote σp0

. Note that there
exists an integer 1 ≤ j(σ) ≤ m such that the equality

(2.9) σ(ζm) = σ0(ζm)j(σ)

holds in Fp. Fix a W -algebra map O ⊗Z W → W rendering the diagram

(2.10) O ⊗Z W

⊗W Fp

��

�� W

⊗W Fp

��
O ⊗Z Fp

σ �� Fp

commutative. Let us still denote by σ the map O ⊗Z W → W .
We will use σ0 to define an action of the cyclic group 〈ζm〉 on Cp. It is given by

[ζm]σ0
· (x, y) = (x, σ0(ζm)y).

Define the σ-eigenspaces

H1
σ(Cp/W ) := H1

crys(Cp/W )⊗O⊗ZW,σ W,

H0
σ(Cp,Ω

1
Cp/Fp

) := H0(Cp,Ω
1
Cp/Fp

)⊗O⊗ZFp,σ Fp.

The commutativity of (2.10) yields a commutative diagram

H1
crys(Cp/W )

��

⊗W Fp �� H1
crys(Cp/W )⊗W Fp

��
H1

σ(Cp/W )
⊗W Fp �� H1

σ(Cp/W )⊗W Fp
� �� (H1

crys(Cp/W )⊗W Fp)⊗O⊗Fp,σ Fp,

where the vertical arrows are projections to the respective σ-eigenspaces. By com-
bining the bottom row of the above diagram with the functorial map (2.6), we
obtain a map

(2.11) H1
σ(Cp/W ) → H0

σ(Cp,Ω
1
Cp/Fp

)ss

1Note that the set S(C) in fact depends on the model chosen for C.
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that sends the absolute Frobenius Fp to the Cartier operator Cp. Set the polyno-
mials
(2.12)

Lσ
p (C, T ) := det(1− FpT |H1

σ(Cp/W )),

gσp (C, T ) := det(1− CpT |H0
σ(Cp,Ω

1
Cp/Fp

)ss) = det(1− CpT |H0
σ(Cp,Ω

1
Cp/Fp

)).

We now describe the basis of H0(Cp,Ω
1
Cp/Fp

) given by [Sut20, Lem. 6]. Namely,
set

μ := m−
⌊m
d

⌋
− 1, and dj := d−

⌊
dj

m

⌋
− 1 for 1 ≤ j ≤ μ,

and then define

(2.13) ωi,j = xi−1yj−mdx for 1 ≤ j ≤ μ, 1 ≤ i ≤ dj .

We then denote by ω the basis (ω11, ω12, . . . , ω21, . . . ), where the ωij are lexico-
graphically ordered by subindex. Let Ap be the matrix of the Cartier operator Cp
acting on H0(Cp,Ω

1
Cp/Fp

) with respect to ω. We refer to Ap as the Cartier–Manin

matrix of Cp with respect to ω.
Let ωσ denote the tuple (ωi,j(σ))i, where i runs over the interval [1, dj(σ)] and

j(σ) is as defined in (2.9). From the relation

[ζm]∗σ0
(ωi,j(σ)) = σ0(ζm)j(σ)ωi,j(σ) = σ(ζm)ωi,j(σ),

we obtain that ωσ is a basis of the σ-eigenspace H0
σ(Cp,Ω

1
Cp/Fp

). Let us denote by

Aσ
p the matrix of the restriction of Cp on this subspace with respect to ωσ.

Lemma 2.1. The following holds:

(i) Lσ
p (C, T ) is a polynomial with coefficients in O and degree 2g/ϕ(m).

(ii) We have factorizations

Lp(C, T ) =
∏
σ

Lσ
p (C, T ), gp(C, T ) =

∏
σ

gσp (C, T )

where σ = σp : O ⊗Z W → W runs through the W -algebra maps defined
in (2.10). Moreover, for every such σ we have

Lσ
p (C, T ) ≡ gσp (C, T ) ≡ T dj(σ) · χσ

p (1/T ) (mod p0),

where χσ
p is the characteristic polynomial of Aσ

p .

Proof. Given the ring homomorphism (2.7), in the “�-adic setting”, part (i) is a
special case of [Rib76, Thm. 2.11, Thm. 2.12]. The same arguments apply in
the present “p-adic setting”. The first part of (ii) follows from the eigenspace
decompositions

H1(Cp/W ) 

⊕
σ

H1
σ(Cp/W ), H0

σ(Cp,Ω
1
Cp/Fp

) 

⊕
σ

H0
σ(Cp,Ω

1
Cp/Fp

).

As for the second part, by (2.11), we have a congruence

Lσ
p (C, T ) ≡ gσp (C, T ) (mod p0),

and the discussion in the paragraph preceeding this lemma implies that gσp (C, T ) is
the reversed characteristic polynomial of Aσ

p . �
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3. L-polynomials of Picard curves: Some theoretical results

From now on, let C be a Picard curve defined over Q, that is, a curve admitting
an affine model given by the equation

y3 = f(x),

where f(x) = x4 + f2x
2 + f1x + f0 is a separable polynomial in which the fi are

integers. Thus C is a superelliptic curve for whichm = 3 and d = 4, and accordingly
we will denote Z[ζ3] by O from now on.

3.1. The split case. Recall from the introduction that S(C) denotes the set of
primes coprime to the discriminant of f and congruent to 1 modulo 3. Resume
also the notations from Section 2.2, with the following slight modifications: for a
prime p in S(C) we simply denote by p the prime of O singled out by vp and by p

the prime of O such that pO = pp; we write σ and σ for the maps σp and σp. We
also fix once and for all generators π, π in O of the ideals p, p.

With the notation of Section 2.2, we have that d1 = 2 and d2 = 1. Set n1 :=
(2p − 2)/3 and n2 := (p − 1)/3. Let f̃ ∈ Fp[x] denote the reduction of f ∈ Z[x]

modulo p and let fn
a denote the coefficient of xa in f̃(x)n. From [Sut20, (8)] we see

that

(3.1) Aσ
p =

(
fn1
p−1 fn1

p−2

fn1
2p−1 fn1

2p−2

)
, Aσ

p =
(
fn2
p−1

)
.

Recall the polynomials defined in (2.12). Note that Lσ
p (C, T ) and Lσ

p (C, T ) are
complex conjugate to each other. Let us define their coefficients as:

Lσ
p (C, T ) =: 1− apT + bpT

2 − cpT
3,

Lσ
p (C, T ) =: 1− apT + bpT

2 − cpT
3,

gσp (C, T ) =: 1− rpT + spT
2,

gσp (C, T ) =: 1− rpT.

Recall that a prime p is said to be ordinary for C if the central coefficient of
Lp(C, T ) is not divisible by p, or equivalently if the polynomial gp(C, T ) ∈ Fp[T ]
has degree 3. Our goal is to show that, for an ordinary prime p, the L-polynomial
Lp(C, T ) can be recovered from the Cartier–Manin matrix.

Lemma 3.1. Let p in S(C) be of ordinary reduction for C. Then there exists a
sixth root of unity ζ such that

(3.2) cp = ζπp.

Proof. Since cp divides p3 and it is the product of three p-Weil numbers, there exists
an integer 0 ≤ i ≤ 3 such that cp = ζπiπ3−i, where ζ is a unit of O and thus a
sixth root of unity. Since gσp (C, T ) has degree < 3, we know that i ≥ 1. Proving the
lemma amounts to showing that i = 1. Let αp denote a reciprocal root of Lσ

p (C, T ).
Since αp is an algebraic integer and αpαp = p, we have 0 ≤ vp(αp) ≤ 1. Since p
is ordinary, the polynomial gσp (C, T ) has degree 2. The usual Newton polygon
argument then shows that two of the reciprocal roots of Lσ

p (C, T ) have vp-adic
valuation 0. Hence the vp-adic valuation of cp is that of the third reciprocal root
of Lσ

p (C, T ), which as argued before is at most 1. The lemma follows. �
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Lemma 3.2. For p in S(C) the following hold:

(i) pbp = cp · ap.
(ii) If bp is not divisible by π, then ap is not divisible by π.
(iii) p is ordinary for C if and only if bp is not divisible by π.
(iv) p is ordinary for C if and only if bp (or, equivalently, bp) is not divisible by

p.

Proof. Complex conjugation interchanges the roots of Lσ
p (C, T ) and those of Lσ

p (C,
T ). Therefore we can pair each reciprocal root αp of Lσ

p (C, T ) with a reciprocal

root αp of Lσ
p (C, T ) in such a way that αp · αp = p, and this implies (i) (c.f.

[BTW05, (3.3)]). The coprimality of π and π and part (i), imply that vp(ap) =
1 + vp(bp) − vp(cp). Since gσp (C, T ) has degree ≤ 2, we have vp(cp) ≥ 1. Thus
vp(ap) ≤ vp(bp), and (ii) follows. By Lemma 2.1, the prime p is ordinary for C if
and only if

gσp (C, T ) · gσp (C, T ) = gp(C, T ) ∈ Fp[T ]

has degree 3. This happens if and only if sp, rp are nonzero, which by (ii) amounts
to saying that bp is not divisible by π. This shows (iii). Finally, note that since bp
is always divisible by π, divisibility by p amounts to divisibility by π. �

Corollary 3.3. Let p ≥ 53 be a prime in S(C) ordinary for C. Then the Cartier–
Manin matrix Ap of C at p uniquely determines the L-polynomial Lp(C, T ).

Proof. We will in fact show that gσp (C, T ) and gσp (C, T ) already uniquely determine
Lp(C, T ). By Lemma 2.1 and part (i) of Lemma 3.2, in order to determine Lp(C, T )
it suffices to determine ap and cp. Write ap = x + ζ3y for some integers x and y.
Recall the map σ : O ⊗ Fp → Fp, originating from the prime of O singled out by
vp. Recall that the generator of this prime has been denoted π. Given α ∈ O, by
abuse of notation, let us write σ(α) to denote σ(α ⊗ 1). Then the reductions of x
and y modulo p are uniquely determined by the invertible linear system

(3.3)

(
1 σ(ζ3)
1 σ(ζ3)

)(
x
y

)
=

(
rp
rp

)
.

From the trivial inequalities (2y − x)2 ≥ 0 and (2x − y)2 ≥ 0 and the Weil bound
|ap| ≤ 3

√
p, one finds that

max{x2, y2} ≤ 4

3
(x2 + y2 − xy) =

4

3
|ap|2 ≤ 12p.

Therefore the reductions of x and y modulo p determine x and y uniquely as soon
as p ≥ 53. The coefficient cp is uniquely determined by the sixth root of unity
ζ ∈ O appearing in (3.2). Note that ζ is determined by its image σ(ζ) ∈ Fp. Using
that p is ordinary, by Lemma 3.2 the equation

(3.4) σ(ζ) =
σ(bp)

σ(ap)σ(π)
=

sp
rpσ(π)

makes sense in Fp, and it determines σ(ζ). �

In Section 4 Corollary 3.3 will be used to describe an algorithm to compute the
Lp(C, T ) for ordinary primes p in S(C).

In Section 3.4 we will study the density of ordinary primes. In order to do so, we
will need to apply an analogue of Lemma 3.2 to certain “λ-adic counterparts” of
the polynomials Lσ

p (C, T ). We conclude this section by defining these polynomials
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and discussing analogues of Lemma 3.1 and Lemma 3.2 in the λ-adic setting. Let
� �= p be a prime totally split in O, and let λ and λ denote the primes of O lying
above �. Denote by Oλ the completion of O at λ and consider the module

(3.5) H1
λ(C) := H1

ét(C,Z�)⊗O⊗Z�,σλ
Z�.

The above tensor product is taken with respect to the Z�-algebra map

σλ : O ⊗ Z� 
 Oλ ⊕Oλ

prλ−−→ Z�,

where prλ denotes projection from the Oλ-component. We define an action of the
absolute Galois group GQ(ζ3) on H1

λ(C) by letting it act naturally on H1
ét(C,Z�)

and trivially on Z�. Since p splits in O, we have Frobp ∈ Dvp ⊆ GQ(ζ3), and the
polynomial

Lλ
p (C, T ) := det(1− Frob−1

p T |H1
λ(C))

is well defined. By [Rib76, Thm. 2.11, Thm. 2.12], it has coefficients in O and

degree 3. Define similarly H1
λ
(C) and Lλ

p(C, T ). The decomposition H1
ét(C,Z�) 


H1
λ(C)⊕H1

λ
(C) implies that

Lp(C, T ) = Lλ
p(C, T ) · Lλ

p(C, T ).

Note that the polynomials Lλ
p(C, T ) and Lλ

p(C, T ) are complex conjugate to each
other. Set the following notation for their coefficients

Lλ
p(C, T ) =: 1−ap,λT + bp,λT

2− cp,λT
3, Lλ

p(C, T ) =: 1−a
p,λT + b

p,λT
2− c

p,λT
3.

Remark 3.4. Let δλ denote det(H1
λ(C)). By [Fit20, Thm. 14], the 1-dimensional

representation δλ is a Hecke character of infinity type equivalent to (1, 2). After
interchanging λ and λ if necessary, this implies that

δλ(Frobp) = ζπp,

where ζ is a root of unity in O, and hence a sixth root of unity. It follows that
cp,λ = δλ(Frobp) = ζπp, in analogy with Lemma 3.1.

Remark 3.5. By unique factorization in O[T ], if Lσ
p (C, T ) is irreducible, then after

interchanging λ and λ we have that

(3.6) Lσ
p (C, T ) = Lλ

p(C, T ).

Hence when Lσ
p (C, T ) is irreducible, (3.6) together with Remark 3.4 provides an

alternative proof of Lemma 3.1. It may be interesting to investigate to which further
generality equality (3.6) holds, which may be possible via comparison isomorphisms
in cohomology. Instead of taking this approach in this paper, we will show that

the polynomials Lλ
p(C, T ) and Lλ

p(C, T ) satisfy the same desired properties that

Lσ
p (C, T ) and Lσ

p (C, T ) satisfy. This is explained in Remark 3.6.

Remark 3.6. A glimpse at the proof of Lemma 3.2 shows that the only properties
of Lσ

p (C, T ) and Lσ
p (C, T ) that it uses are that they belong to O[T ], that they

are complex conjugates to each other, that their product is Lp(C, T ), and that the
reductions of Lσ

p (C, T ) and Lσ
p (C, T ) modulo p have degree ≤ 2. That Lλ

p(C, T ) and

Lλ
p(C, T ) satisfy the first three properties follows from their definition. In virtue of

Remark 3.4, the fourth property also holds. Therefore Lemma 3.2 also holds after
replacing ap, bp, cp with a

p,λ, bp,λ, cp,λ.
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Remark 3.7. It would be interesting to investigate to which extent the results of
this section admit generalizations to superelliptic curves of the form y4 = f(x),
where f is a degree 3 polynomial.

3.2. The inert case. Let I(C) denote the set of rational primes coprime to the
discriminant of f and congruent to 2 modulo 3. In particular, any prime of I(C)
is of good reduction for C.

Lemma 3.8. For every p in I(C) there exist algebraic integers α, α satisfying
α · α = p such that

Lp(C, T ) = (1 + pT 2)(1− α2T 2)(1− α2T 2).

In particular, Lp(C, T ) = (1 + pT 2)(1− tpT
2 + p2T 4), where tp is an integer such

that |tp| ≤ 2p.

Proof. The statement follows from the fact that #Cp(Fp) = 1+ p and #Cp(Fp3) =
1 + p3 (see [BTW05, Lemma 2.1]). �

Let f̃ ∈ Fp[x] denote the reduction of f modulo p.

Lemma 3.9. For every p in I(C), we have:

tp ≡
{
2 (mod 3) if f̃ ∈ Fp[x] is reducible,

1 (mod 3) if f̃ ∈ Fp[x] is irreducible.

Proof. On the one hand, from Lemma 3.8 one easily finds that

#Cp(Fp2) = (1 + p)2 − 2(α2 + α2) ≡ tp (mod 3).

On the other hand, since every nonzero element of Fp2 has three distinct cubic

roots and Cp has a single (Fp-rational) point at infinity P∞, its number of points
over Fp2 satisfies

#Cp(Fp2) ≡ 1 + n(f̃) (mod 3),

where n(f̃) is the number of roots of f̃ over Fp2 . The lemma follows from the fact

that n(f̃) = 0, 1, or 4 depending on whether f̃ ∈ Fp[x] is irreducible, decomposes
and has an irreducible factor of degree 3, or decomposes in factors of degree at
most 2, respectively. �

Lemma 3.9 tells that for every p in I(C) the reduction of Lp(C, T ) modulo 3 is

uniquely determined by the factorization of f̃ ∈ Fp[x]. Let us give an alternative
proof of this fact, which will also extend to the case that p belongs to S(C). The
method is an adaptation of the technique used in [CDF20], where the hyperelliptic
case (of arbitrary genus) was considered.

We will first need to introduce some notations. Let Jac(C) denote the Jacobian
variety of C. Let αi ∈ Q, for 1 ≤ i ≤ 4, denote the roots of f ∈ Z[x], and denote
by Ei the degree 0 divisor (αi, 0)− P∞. By [Aru21, Prop. 2.1], there is a degree 3

effective divisor D̃i such that

(1− ζ3)D̃i ∼ Ei.

Let Di denote the degree 0 divisor D̃i − 3P∞, and thus also (1− ζ3)Di ∼ Ei.
Note that 3Ei, 3Di ∼ 0, and let V1 denote the subspace of Jac(C)[3](Q) generated

by the classes [Ei]. Note that V1 is stable under the Galois action. Let [Di] denote
the image of [Di] in the quotient V2 := Jac(C)[3](Q)/V1.
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Lemma 3.10. [D1], [D2], [D3] is a basis for V2.

Proof. Note that V1 is generated by [E1], [E2], [E3] since −E1 − E2 − E3 ∼ E4. In
fact, by [Sch98, Prop. 3.2], there is a GQ-equivariant isomorphism

(3.7) Jac(C)[1− ζ3](Q) 
 V1

of 3-dimensional F3-vector spaces. Hence it suffices to show that [D1], [D2], [D3]
are linearly independent. Suppose there were a nontrivial linear relation among
[D1], [D2], [D3]. This would yield, by multiplication by (1− ζ3), a nontrivial linear
relation among [E1], [E2], [E3], but this is absurd. �

Proposition 3.11. Let {di}i denote the set of degrees of the irreducible factors

of f̃ . Then:

(i) For every p in S(C), we have

Lp(C, T ) ≡ (1− T )−2
∏
i

(1− T di)2 (mod 3).

(ii) For every p in I(C), we have

Lp(C, T ) ≡ (1− T 2)−1
∏
i

(1− T di)(1− (2T )di) (mod 3).

Proof. For any prime p of good reduction, by taking � = 3 in (2.1), we obtain

Lp(C, T ) ≡ det(1− Frobp T | Jac(C)[3](Q)) (mod 3).

By Lemma 3.10, we need only determine how Frobp acts on the basis [Ei] for V1

and [Di] for V2. Associated to Frobp, there is an element τ in the symmetric group
on 4 letters such that Frobp(αi) = ατ(i). Then Frobp([Ei]) = [Eτ(i)]. Note that the
set of lengths of the cycles in the cycle decomposition of τ coincides with the set of
degrees {di}i.

Suppose that p is in S(C). In this case Frobp(1 − ζ3) = (1 − ζ3), and hence,
from the definition of the [Ei] and [Di], we find

Frobp([Ei]) = [Eτ(i)], (1− ζ3) Frobp([Di]) = (1− ζ3)[Dτ(i)].

By (3.7), the second equality means that Frobp([Di]) and [Dτ(i)] differ by an element

of V1. Hence Frobp([Di]) = [Dτ(i)]. By Lemma 3.12 below applied to V1 and V2,
we deduce that

Lp(C, T ) ≡ (1− T )−2
∏
i

(1− T di)2 (mod 3).

Suppose that p is in I(C). In this case, we have that Frobp(1− ζ3) = 1 − ζ23 , and
thus we get

(1− ζ23 ) Frobp([Di]) = Frobp((1− ζ3)[Di]) = Frobp([Ei]) = [Eτ(i)] = (1− ζ3)[Dτ(i)].

By (3.7), the above equality means that (1 + ζ3) Frobp([Di]) and [Dτ(i)] differ by
an element of V1. Since (1 − ζ3) Frobp([Di]) is an element of V1, we get that

2 Frobp([Di]) = [Dτ(i)], or equivalently that Frobp([Di]) = 2[Dτ(i)]. By Lemma 3.12
applied to V1 and V2, we deduce that

Lp(C, T ) ≡ (1− T )−1(1− 2T )−1
∏
i

(1− T di)(1− (2T )di) (mod 3),

which completes the proof of the proposition. �
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Lemma 3.12 is used in the proof of Proposition 3.11.

Lemma 3.12. Let k be a field, V a k-vector space of dimension n, and v1, . . . , vn
a basis of V . Define vn+1 := −v1 + · · · − vn. Let f : V → V be the k-linear
automorphism defined by

f(vi) = avτ(i), for i = 1, . . . , n,

where a ∈ k and τ is an element of the symmetric group in n+ 1 letters. Let {di}i
be the set of lengths of the cycles in the cycle decomposition of τ . Then the reversed
characteristic polynomial of f is

χf,V (T ) =
1

1− aT

∏
i

(1− (aT )di).

Proof. Let W be a k-vector space of dimension n + 1 with basis w1, . . . , wn+1.
Define the k-linear maps

Φ: W → V, g : W → W,

by Φ(wi) = vi and g(wi) = awτ(i). It is clear that Φ is equivariant with respect
to the actions of g and f on W and V , respectively, and that the kernel N of Φ
is generated by

∑
i wi. Therefore χf,V (T ) = χg,W (T )/(1 − aT ), and the lemma

follows. �

Recall the polynomial ψf defined in (1.2). Let ψ̃f denote its reduction modulo p.

Theorem 3.13. Let C be a Picard curve defined over Q, and let f, ψf ∈ Z[x] be
as in (1.1) and (1.2), respectively. For every prime in I(C), the data:

(i) the Cartier–Manin matrix of C at p,

(ii) the knowledge of ψ̃f having an Fp-rational root or not, and

(iii) the knowledge of f̃ ∈ Fp[x] being irreducible or not

uniquely determine the L-polynomial Lp(C, T ).

Proof. By Lemma 3.8, it suffices to determine tp. Since |tp| ≤ 2p, it suffices to
detemine tp modulo 6p. But (i) determines tp modulo p; by the Theorem in the
Appendix, (ii) determines tp modulo 2; and both by Lemma 3.9 or Proposition 3.11,
(iii) determines tp modulo 3. �

In Section 4 Theorem 3.13 will be used to describe a (deterministic) algorithm
to compute the Lp(C, T ) for primes p in I(C). Let Jac(Cp) denote the Jacobian
variety of Cp, and let n (resp. λ) denote the order (resp. exponent) of the group
of Fp-rational points of Jac(Cp). Below we present a variant of Theorem 3.13 in
which we replace condition (ii) by the knowledge of λ.

Theorem 3.14. Let p ≥ 877 be a prime in I(C). The data:

(i) tp modulo p,

(ii) the knowledge of f̃ ∈ Fp[x] being irreducible or not, and
(iii) the exponent λ of Jac(Cp)(Fp)

uniquely determine the L-polynomial Lp(C, T ).

Proof. Since n = (1+p)(1+p2−tp), in order to determine tp, it suffices to determine
n. By Lemmas 3.8 and 3.9, from (i) and (ii) we may assume given an integer
0 ≤ sp ≤ 3p such that tp ≡ sp (mod 3p). In fact, sp uniquely determines tp
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unless p ≤ sp ≤ 2p, and hence we will assume that the latter restriction holds from
now on. In this case, the order n is either

(3.8) n1 = (1 + p)(1 + p2 − sp) or n2 = (1 + p)(1 + p2 − sp + 3p).

If λ fails to divide one among n1 and n2, then the order n is uniquely determined.
Thus, we suppose from now on that λ divides both n1 and n2, and hence that it
divides their difference 3p(p+ 1). By [CFADLNV05, Prop. 5.78], we have that

(3.9) Jac(Cp)(Fp) 

6⊕

j=1

Z/mjZ,

where the integers mj satisfy mj | mj+1 for 1 ≤ j ≤ 5, mj | p − 1 for 1 ≤ j ≤ 3,
and m6 = λ.

Suppose first that p does not divide m6. Then m6 must divide 3(1 + p). Since
p ≡ 2 (mod 3) and for 1 ≤ j ≤ 3 we have that mj divides p−1 and m6, this implies
that mj | 2 for 1 ≤ j ≤ 3. For 4 ≤ j ≤ 6, let us write mj = 3(1 + p)/cj for some
integer cj . From (3.8) and the bounds on sp, we obtain

(p+ 1)(p− 1)2 ≤ #Jac(Cp)(Fp) ≤ (p+ 1)3.

This implies

1 ≤ c4c5c6
27m1m2m3

≤
(
p+ 1

p− 1

)2

=: B(p).

A straightforward computation shows that B(p) < 1+2−3 · 3−3 under the assump-
tion of the statement that p ≥ 877. Since the denominator of the central term of
the above inequality is bounded by 23 · 33, we deduce that c4c5c6 = 27m1m2m3, or
equivalently that n = (1 + p)3, sp = p, and tp = −2p.

Suppose next that p divides m6. Then (3.8) implies that sp = p+ 1. Therefore

(3.10) n1 = (1 + p)p(p− 1) and n2 = (1 + p)p(p+ 2).

We claim that this can only occur if p is a Fermat prime. Indeed, suppose the
contrary for the sake of contradiction. Then there is an odd prime � dividing p− 1.
Note that such an � does not divide (1 + p)p. As p ≡ 2 (mod 3), in particular
we have that � �= 3 and thus � does not divide n2. Let �′ be a prime dividing
p + 2. Since p ≡ 2 (mod 3), necessarily �′ ≥ 5. Note that such an �′ does not
divide n1. By Lagrange’s theorem, exactly one among � and �′ divides λ. But this
is a contradiction with the fact that λ divides both n1 and n2. Thus there exists an
integer r such that p = 2r + 1. If r ≥ 6 (which is clearly satisfied by assumption),
we have v2(n1) ≥ 7, where v2 denotes the 2-adic valuation. Hence n = n1 implies
that v2(m6) ≥ 2. On the other hand, we have that v2(m6) = 1 if n = n2. �

In Section 4.1, Theorem 3.14 will be used to sketch a randomized algorithm of
Las Vegas type with the same complexity as the deterministic one to compute the
Lp(C, T ) for p in I(C).

3.3. Interlude on a theorem of Sawin. Throughout this section, let A be an
abelian variety defined over a number field k and of dimension g, let E be a number
field of degree e, and suppose that there exists a Q-algebra homomorphism

E ↪→ End(A)⊗Q,

where End(A) denotes the ring of endomorphisms of A defined over k.
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By [Fit20, Thm. 1], if g = 3 and E is imaginary quadratic, there exists a positive
density set of primes of k of ordinary good reduction for A. In Section 3.4, we will
refine this result in the particular case that A is the Jacobian of a generic Picard
curve C. More precisely, we will show that every prime in S(C) outside a density
0 set is ordinary for C.

The main input in the proof of [Fit20, Thm. 1] is a result due to Ogus (see for
example [Fit20, Prop. 8, Prop. 10]), which allows to prove the existence of a positive
density of ordinary primes by studying the p-divisibility of the trace of a certain
Galois representation. In order to obtain the sought refinement of [Fit20, Thm. 1],
we will take the powerful approach of [Saw16], which by a finer argument permits
to in fact compute the exact value of this density. In this section, we present a mild
generalization of [Saw16, Thm. 1]. It is this generalization that will be employed
in Section 3.4.

Let � be a rational prime, V�(A) denote the rational �-adic Tate module of A,
and

�A,� : Gk → Aut(V�(A))

be the associated �-adic representation. Our first task will be to define some spaces
Vλ(A), which are analogues of the spaces H1

λ(C) introduced in (3.5) in our current
more general setting. From now on, suppose that � is totally split in E so that
Eλ 
 Q�. For every prime λ of E lying above �, let Eλ be the completion of E at λ,
and let Vλ(A) denote the tensor product V�(A)⊗E⊗Q�,σλ

Eλ taken with respect to
the Q�-algebra map

σ := σλ : E ⊗Q� 

⊕
λ′|�

Eλ′
prλ−−→ Q�,

where prλ denotes the projection from the Eλ-component. Denote by Gk the ab-
solute Galois group of k. By letting Gk act naturally on V�(A) and trivially on Eλ,
one obtains a continuous representation

�A,λ : Gk → Aut(Vλ(A)) 
 GL2g/e(Q�)

unramified outside a finite set S of primes of k and which is integral and of weight 1
(by [Rib76, Thm. 2.11]). By integral, we mean that the characteristic polynomial
of �A,λ(Frobp) has coefficients in the ring of integers OE of E for every prime p

of k outside S. After fixing a polarization on A, the image Γ of �A,� sits inside
GSp2g(Q�). Let G denote the Zariski closure of Γ inside GSp2g (seen as an algebraic
group over Q�). Let Γλ denote the image of �A,λ inside GL2g/e(Q�) and let Gλ

denote the Zariski closure of Γλ inside GL2g/e. The isomorphism

V�(A) 

⊕
λ

Vλ(A)

of Q�[Gk]-modules induces a monomorphism G ↪→
∏

λ Gλ. Composing this injec-
tion with the projection to the λ-component yields a representation of G inside
GL2g/e(Q�) that we will denote by Wλ. Let χ denote the restriction to G of the
similitude character of GSp2g. Let wλ denote the number of connected components

of G on which the trace of the representation ∧2Wλ ⊗ χ−1 is identically equal to a
constant function. By Nm(·) we denote both the absolute norm function on ideals
of a given number field, and the absolute norm function on algebraic numbers. For
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a prime p outside S, let us denote by bp,λ the trace2 Tr(∧2�A,λ(Frobp)). Note that
if ∧2Wλ ⊗ χ−1 is identically equal to the constant function t ∈ Q� on a connected
component of G, then there exist at least two primes p and q of k such that

t =
bp,λ

Nm(p)
=

bq,λ
Nm(q)

.

This implies that t in fact belongs to OE ⊆ Q�. We will denote by p the residue
characteristic of the prime p.

Theorem 3.15 (After Sawin). Suppose that E is either Q or an imaginary qua-
dratic field. The density of the set of primes p of k outside S such that bp,λ is
divisible by p equals wλ divided by the number of connected components of G.

Proof. Let T denote the set of elements t in OE such that |Nm(t)| ≤
(
2g/e
2

)2
.

For any real number C ≥ 0 the set of elements a of OE whose norm satisfies
|Nm(a)| ≤ C is finite. Indeed, if E = Q this is obvious, and if E is an imaginary
quadratic field, then this follows from the fact that both the number of units in OE

and the number of ideals of absolute norm ≤ C are finite. Therefore the set T is
finite. Since ∧2�A,λ is of weight 2, for every prime p outside S we have∣∣∣∣Nm

(
bp,λ
p

)∣∣∣∣ ≤ dim(∧2Wλ)
2 =

(
2g/e

2

)2

,

and thus if bp,λ = pt, for some t ∈ OE and some p outside S, then t ∈ T . Let Zt
λ

denote the closed subset of G on which ∧2Wλ ⊗ χ−1 is identically equal to the
constant function t. Let Zλ denote the finite union

Zλ :=
⋃
t∈T

Zt
λ.

Let μ denote the Haar measure of Γ, normalized so that it has total mass 1. Then
exactly as in the proof of [Saw16, Thm. 1] one shows that μ(Zλ ∩ Γ) is the sought
for density and that μ(Zλ ∩ Γ) equals wλ divided by the number of connected
components of G. �

3.4. Ordinary primes for generic Picard curves. Resume the notations from
Sections 3.1 and 3.2. In particular, let C be a Picard curve defined over Q.

Corollary 3.16. Suppose that C is a generic Picard curve. Then, every prime p
in S(C) outside a density 0 set is ordinary for C.

Proof. Let k = E = Q(ζ3) and A = Jac(C)k. Denote by G the Zariski closure of
the image of the �-adic representation attached to A. By [FKRS12, Prop. 2.17],
when C is generic, G is connected (in fact, Upton [Upt09] has shown that if C is
generic, then for all but finitely many � ≡ 1 (mod 3) one has �A,�(Gk) 
 GL3(Z�)).
Since the trace of ∧2Wλ ⊗ χ−1 is not constant on G, the set of primes p in S(C)
for which bp,λ is divisible by p has density 0. But, by Lemma 3.2 and Remark 3.6,
a prime p in S(C) is ordinary for C if and only if bp,λ is not divisible by p. �

Combining Corollary 3.16 with Corollary 3.3, we obtain the following result.

2In the particular case that A is the Jacobian of a Picard curve and E = Q(ζ3), this coincides
with the definition of bp,λ given in Section 3.1.
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Corollary 3.17. Suppose that C is a generic Picard curve. Then, for every prime p
in S(C) outside a density 0 set, the Cartier–Manin matrix of C at p uniquely
determines the L-polynomial Lp(C, T ).

By Lemma 3.8, no prime in I(C) is ordinary. Let bp denote the coefficient of T 2

in Lp(C, T ). For the sake of completeness, we study the density of the set of primes
in I(C) for which bp ≡ 0 (mod p).

Corollary 3.18. Suppose that C is a generic Picard curve. Then, the set of
primes p in I(C) such that bp ≡ 0 (mod p) has density 0.

Proof. Since C is generic, the Zariski closure G of the image of �A,� consists of
two connected components G0 and G1, which are the respective Zariski closures of
the images of GQ(ζ3) and GQ − GQ(ζ3). By Theorem 3.15 applied to k = E = Q,

A = Jac(C), and λ = �, it suffices to show that the trace of ∧2W� ⊗ χ on G1 is not
a constant function.

Let ST(A) denote the Sato–Tate group of A. It is a compact real Lie subgroup of
the unitary symplectic group USp(6) of degree 6. Let U(3) denote the unitary group
of degree 3 in its standard representation, and let I3 ∈ U(3) denote the identity
matrix. Let W denote the standard representation of USp(6). By [FKS21, §3.3.1],
we have that ST(A) = 〈ST(A)0, J〉, where

ST(A)0 =

{(
u 0
0 u

)
: u ∈ U(3)

}
and J =

(
0 I3

−I3 0

)
.

As argued in the proof of [Saw16, Thm. 3], the trace of ∧2W�⊗χ on G1 is a constant
function if and only if the trace of ∧2W on JST(A)0 is a constant function. But
the latter is not true, since if we set

A = J

(
u 0
0 u

)
, with u =

⎛
⎝0 0 1
1 0 0
0 1 0

⎞
⎠,

then Tr∧2W (A) = 0, while Tr∧2W (J) = 3. �

4. L-polynomials of Picard curves: A practical algorithm

Let C be a generic Picard curve defined over Q. In this section we use the results
obtained in Section 3 to develop and implement an algorithm for the computation
of the L-polynomials Lp(C, T ) for almost all primes up to some bound N . We first
describe the algorithm, then analyze its running time and correctness, and finally
discuss its implementation.

4.1. Description. Denote by S∗(C) the subset of ordinary primes in S(C). For
N ≥ 1, set

S∗
N (C) := S∗(C) ∩ [1, N ], IN (C) := I(C) ∩ [1, N ].

We will rely on the following algorithms documented in the literature:

• ComputeCartierManinMatrices ([Sut20, p. 10]). Algorithm that,
given an integer N ≥ 1 and a Picard curve C, computes the Cartier–
Manin matrix Ap of C at p for every prime 5 ≤ p ≤ N not dividing the
discriminant of f .
Running time: N log(N)3+o(1).
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• FindCubicRoots (See Remark 4.1). Algorithm that, given an integer
N ≥ 1, returns a primitive cubic root of unity in F×

p for every prime p ≡ 1
(mod 3) and ≤ N .
Running time: N log(N)3+o(1).

• IsIrreducible ([GG13, Thm. 14.4]). Algorithm that, given the polyno-

mial f̃ ∈ Fp[x] of degree 4, determines whether it is irreducible or not.

Running time: log(p)2+o(1).

• HasRationalRoot (See the Corollary in the Appendix). Algorithm that,

given the polynomial ψ̃f ∈ Fp[x] of degree 9, determines whether it has an
Fp-rational root or not.

Running time: log(p)2+o(1).

Remark 4.1. We describe algorithm FindCubicRoots. Pick an elliptic curve with
CM discriminant D = −12, for example E : y2 = x3 − 15x + 22. The algorithms
given in [HS14], [HS16], and [Sut20] compute the trace of Frobenius tp of E at p

for all primes p ≤ N in time N log(N)3+o(1), excluding a finite subset of all primes.
For every prime p ≡ 1 (mod 3), which is necessarily of good ordinary reduction,
there exists an integer up satisfying the norm equation

4p = t2p + 12u2
p.

Since p is ordinary for E, up is invertible modulo p, and the above equation provides
a way to compute a square root of −3 in Fp as tp/(2up), and hence ζ3 ∈ Fp. We
note that this is a one-time computation if one wishes to run the algorithm for
multiple curves.

At this point we have described all the theoretical and computational tools nec-
essary in order to state the main algorithm of this article.

Algorithm 4.2 (ComputeLpolynomials). Given an integer N ≥ 1 and a Picard
curve C over Q, compute Lp(C, T ) for every prime p ∈ S∗

N (C)∪IN(C), by following
the steps:

(a) Apply ComputeCartierManinMatrices to obtain Ap for every prime
5 ≤ p ≤ N not dividing the discriminant of f .

(b) By means of FindCubicRoots, find primitive cubic roots of unity for
every p ≡ 1 (mod 3) up to N .

(c) For every p ≡ 1 (mod 3) as in (a), determine whether p ∈ S∗(C), by
computing rk(Ap), and if so then:
(1) If p < 53, then use naive point counting to compute Lp(C, T ). Other-

wise continue to (2).
(2) Let σ(ζ3), σ(ζ3) ∈ F×

p be the primitive cubic roots of unity found in
(b). Solve the linear system (3.3) to determine ap (and hence ap).

(3) Choose an integer 1 ≤ γ ≤ p such that γ ≡ σ(ζ3) (mod p). Determine
π ∈ Z[ζ3] as the gcd(γ − ζ3, p), by applying the extended Euclidean
division algorithm in Z[ζ3].

(4) Solve the linear equation (3.4) to determine ζ and thereby cp.
(5) Apply part (i) of Lemma 3.2 to determine bp and thereby Lp(C, T ).

(d) For every p ≡ 2 (mod 3) as in (a), let tp be as in Lemma 3.8. Then:
(1) Determine tp modulo p by means of Ap.
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(2) Apply the Corollary in the Appendix to determine tp modulo 2 by

applying HasRationalRoot to ψ̃f .
(3) Apply Lemma 3.9 or Proposition 3.11 to determine tp modulo 3 by

applying IsIrreducible to f̃ .
(4) Determine Lp(C, T ) from the above information by using Lemma 3.8.

Theorem 4.3. Let C be a Picard curve. Algorithm 4.2 computes Lp(C, T ) for

every prime p ∈ S∗
N (C) ∪ IN (C) in time N log(N)3+o(1). When C is generic, the

complement of S∗(C) ∪ I(C) in the set of primes has density 0.

Proof. Once we have computed the Cartier–Manin matrix by using Compute-

CartierManinMatrices, correctness of the algorithm follows from the proofs
of Corollary 3.3 and Theorem 3.13. Note that in step (c) (3), we may set π =
gcd(γ− ζ3, p) in virtue of the Dedekind–Kummer theorem. As for complexity, note
that both steps (a) and (b) already have the claimed complexity (although we note
that (b) is a one-time computation). We only need to show that the remaining steps
do not exceed this complexity. As we have seen, none of the algorithms IsIrre-

ducible and HasRationalRoot does, and the remaining steps are clearly faster
as they solve a small linear system or compute a small gcd in Z[ζ3]. In the generic
case, the claim about density is ensured by Corollary 3.16. �

Remark 4.4. There exist several methods of verifying that a given Picard curve C
defined over k = Q(ζ3) is generic. On the one hand, one may apply the criterions
provided by Zarhin (specifically see [Zar18, Thm 1.3]). On the other hand, one
can use results due to Upton. More precisely, we claim that if � ≥ 5 is a prime
≡ 1 (mod 3) such that the mod-� image of the Galois representation associated
to A := Jac(C) is GL3(F�), then C is generic. Indeed, by [Upt09, Prop. 6],
the hypotheses imply that the image of the �-adic representation �A,� is GL3(Z�).
Then, for any finite extension L/k, the commutant of �A,�(GL) in End(V�(A)) is
2-dimensional. By Faltings’ isogeny theorem, this commutant is End(AL) ⊗ Q�,
and hence End(AQ) 
 Z[ζ3], which completes the proof of the claim. Verifying that

the mod-� image of the Galois representation associated to A is GL3(F�) can be
done by using [Upt09, Lemma 3] and computing a few Lp(C, T ) (this is done in
[Upt09, §6] for two specific curves, to which we will return in Section 4.2).

Remark 4.5. Note that by Dirichlet’s density theorem and by Corollary 3.16, the
set of primes p ≤ N in S(C)−S∗(C) has size o(N/ log(N)). Despite being unable
to prove it, it is conceivable that this set is actually small enough so that the
combination of Algorithm 4.2 with the algorithm of [ABCMT19] (to separately
treat the primes in S(C)−S∗(C)) would yield an algorithm to compute Lp(C, T )

for every prime p ≤ N in time N log(N)3+o(1).

We will now sketch how one can use the proof of Theorem 3.14 to give a random-
ized algorithm of Las Vegas time accomplishing the same task as ComputeLPoly-

nomials and having the same expected complexity (for details and an actual im-
plementation we refer to [AP20]).

While from a computational perspective the determination of the exponent λ
of Jac(Cp)(Fp) presents difficulties, a detailed examination of the proof of Theo-
rem 3.14 shows that only partial (and effectively computable) information on λ is
required in order to uniquely determine Lp(C, T ).
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The variant that we want to discuss only differs from Algorithm 4.2 in case p
is in I(C). Let p ≥ 877 be one such prime. Assume given the data (i) and (ii) of
Theorem 3.14. Suppose also that we are in the case that there exists p ≤ sp ≤ 2p
such that tp ≡ sp (mod 3p), and let n1 and n2 be as defined by (3.8). We claim
that exactly one of the following options occurs:

(i) sp �= p, p + 1 or sp = p + 1 and p is not a Fermat prime. In this case,
λ � 3p(p + 1) = n2 − n1 so it cannot divide both n1 and n2. Thus, there
is a point P in Jac(Cp)(Fp) such that ni · P �= 0 for i = 1 or 2, and then
n = n3−i.

(ii) sp = p and there is a prime � ≥ 5 dividing λ but not p + 1. In this case
n = (p+ 1)(p2 − p+ 1).

(iii) sp = p and there are three points P, Q,R in Jac(Cp)(Fp) generating a

subgroup of order divisible by 3v3(p+1)+2. In this case n = (p+ 1)3.
(iv) sp = p+1, p is a Fermat prime, and there is an odd prime � dividing λ but

not p(p+ 1)(p− 1). In this case n = (1 + p)p(p+ 2).
(v) sp = p + 1, p is a Fermat prime, and there is a point P in Jac(Cp)(Fp) of

order divisible by 4. In this case n = (1 + p)p(p− 1).

Indeed, it has been shown in the course of the proof of Theorem 3.14 that we have
the conclusion of (i) if sp �= p, p+1 or if sp = p+1 and p is not a Fermat prime. From
(3.8), sp = p implies that n is either n1 = (p+1)(p2−p+1) or n2 = (p+1)3. To show
that (ii) and (iii) are mutually exclusive, it suffices to note that v3(p

2 − p+ 1) = 1.
Thus, v3(n1) = v3(p+1)+1 and p2−p+1 has a divisor � ≥ 5. Such an � necessarily
fails to divide p+1. Recall the valuesmj introduced in (3.9). It remains to show that
if n = n2, then v3(m4m5m6) ≥ v3(p+1)+2. But we have seen that v3(mj) = 0 for
1 ≤ j ≤ 3 and therefore we have v3(m4 ·m5 ·m6) = 3v3(p+1) ≥ v3(p+1)+2. From
(3.8), sp = p+1 implies that n is either n1 = (1+p)p(p−1) or n2 = (1+p)p(p+2).
Under the assumption that p is a Fermat prime, the conclusions of (iv) and (v)
have been seen at the end of the proof of Theorem 3.14.

Given these five cases, we may produce a Las Vegas algorithm by generating
random points of the Jacobian (using [MJS20, §12.2], for example) and checking
these conditions efficiently (using the methods of [Sut11], for example). We note
that to check each such condition only requires expected O(1) random elements
of Jac(Cp)(Fp). On a generic Picard curve, Section 3.4 ensures a dense subset of
primes fall into case (i), the simplest case to check. The expected complexity of
such an algorithm is identical to that of the deterministic algorithm, but in practice
slower.

4.2. Implementation. The Github repository [AP20] includes an implementation
of Algorithm 4.2 in [PARIGP]. This repository also contains an implementation in
[Sage] of the Las Vegas algorithm discussed at the end of the previous section, for
which we used the Jacobian arithmetic from [MJS20]. We note that this algorithm
is still practical, but is slower by a constant factor due to Jacobian arithmetic being
expensive.

In either case, the full algorithm for lifting is significantly faster than previous
algorithms and has complexity N log(N)3+o(1) when computing Zp(C, T ) for al-
most all p ≤ N . Our algorithm can also operate independently for fixed p when
Lp(C, T ) (mod p) is already provided - this means we can speed up algorithms such
as [ABCMT19] for a specific prime, since the most expensive lifting component is
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now negligible. As a result, it can also be used to more efficiently compute Lp(C, T )
when p is large enough that computing Lp(C, T ) for almost all p ≤ N is impractical.
For a given generic Picard curve over Q, in Table 1 we report the average running
time per prime over the primes ≤ N of Algorithm 4.2 with the implementation in
[PARIGP].

Table 1. For the curves C1 : y3 = x4 + x + 1 and C2 : y3 =
x4 + 3x2 + 2x+ 1, we display the average computation time spent
per prime p ≤ N for [ABCMT19], [Sut20], and Algorithm 4.2 in
milliseconds (ms). Bold numbers indicate new results from our
algorithm. The timings are taken on a 3.40GHz Intel(R) Xeon(R)
E5-2687W CPU. All computations were run with a single core.

N 216 220 224 228

Algorithm Old New Old New Old New Old New
Full zeta function
C1 113.2 0.31 215.1 0.69 1152.7 1.50 5051.4 4.76
C2 111.3 0.33 213.5 0.71 1152.9 1.54 5053.9 4.87
Lifting component
C1 0.12 0.12 0.13 0.14
C2 0.12 0.12 0.13 0.14
Cartier–Manin matrix
C1 35.4 0.19 79.1 0.57 277.8 1.37 1368.3 4.63
C2 34.4 0.20 77.6 0.59 276.7 1.41 1366.7 4.74

In Table 1, to compute these running times we ran each computation for p ≤
N three times and took the minimum of those attempts. The “New” columns
have running times for our algorithm and [Sut20], since they are used together to
compute the full zeta function. In the “Lifting component” section, we have put
running times for Algorithm 4.2 and in the “Cartier–Manin matrix” section we have
put running times for an implementation of [Sut20] in C. In the “Old” columns, we
have the implementation of the algorithm [ABCMT19] in [Sage] computing the full
zeta function. We have also used the Frobenius matrix method in [Sage] to compute
a matrix which determines the Cartier–Manin matrix. These times are shown in
“Old” columns of the “Full zeta function” and “Cartier–Manin” matrix sections
respectively in Table 1. Running times for all of these algorithms have been given
for two chosen generic curves C1 : y3 = x4 + x+ 1 and C2 : y3 = x4 + 3x2 + 2x+ 1
(see [Upt09, §6.1.1, §6.2.2] for a proof of the genericity of these curves; we note that
Zarhin’s criterion recalled in Remark 4.4 also applies). For example, we can read
off the table that for C1 computing the zeta function with our algorithm for p ≤ 228

takes an average of 4.76 ms per prime. Of this time, on average we spend 0.14 ms
on the lifting component described in this paper and 4.63 ms on computing the
Cartier–Manin matrices. In comparison, the implementation of [ABCMT19] takes
roughly 5051.4 ms per prime.

We note that [ABCMT19] is not fast enough to compute the full zeta function
for all p ≤ N in a reasonable amount of time when N is very large, so we sampled
one out of 102, 103, 104, 105 primes respectively for N = 216, 220, 224 and 228 to get
estimates for the running times. The same was done for the computation of the
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Frobenius matrices. Each computation was run on a single core in order to have
a fair comparison. Algorithm 4.2 is used in the ‘Lifting component’ part of the
table to compute the full zeta function once the algorithm from [Sut20] finishes. As
can be seen from the table, the lifting component is always faster on average and
performs better relative to computing Lp(C, T ) (mod p) as p becomes very large.
There is some variation in the average running times between the two curves, but
in each example this is ≈ 10−4 ms which is why it does not appear in the table.

As noted in the beginning of this section, Algorithm 4.2 also allows us to speed
up [ABCMT19] on a Picard curve for a specific prime p by a constant factor. In
particular, we need only compute Lp(C, T ) (mod p), and then lifting this takes a
negligible amount of time. The time for the computating Lp(C, T ) (mod p) differs
by a constant factor compared to computing Lp(C, T ) using [ABCMT19]. Using
[Sage], we can estimate this constant factor to be about 8, for example from

sage: p=(2**40).next_prime()

sage: x = PolynomialRing(GF(p),"x").gen()

sage: CyclicCover(3, x^4 + x + 1).frobenius_matrix(1)

which takes a total of 3 min and 23 s, while using the algorithm to compute the full
result Lp(C, T ) takes 24 min and 24 s. By applying Algorithm 4.2 after computing
the Frobenius matrix modulo p we improve the running time by around a factor
of 8, because for primes of this size our algorithm still takes on the order of a
millisecond, which is negligible.

Appendix

by Andrew V. Sutherland3

In this appendix we give a constructive proof of the following theorem.

Theorem. Let p > 3 be a prime congruent to 2 modulo 3, let Cp : y
3 = f(x) be a

Picard curve over Fp with L-polynomial Lp ∈ Z[T ]. The reduction of Lp(T ) modulo
2 can be computed (deterministically) in O((log p)2(log log p)) time.

Without loss of generality we may assume Cp is the reduction of a Picard curve
C : y3 = f(x) over Q. The Jacobian J := k Jac(C) is an abelian variety of dimen-
sion 3, thus the action of Gal(Q/Q) on J [2] gives rise to a mod-2 Galois represen-
tation

ρ̄2 : Gal(Q/Q) → Aut(J [2]) 
 GSp6(F2) = Sp6(F2),

where we have used the Weil pairing to view J [2] 
 F6
2 as a symplectic space. The

endomorphism ring of the base change of J to Q(ζ3) contains Z[ζ3] and the prime
2 is inert in Q(ζ3); these facts imply that the restriction of ρ̄2 to Gal(Q/Q(ζ3)) has
image in U(3, 2) = GU(3,F4); see [Upt09, §2] for details.

Up to conjugacy, there is a unique subgroup H ⊆ Sp6(F2) that is isomorphic to
GU(3,F4), which has small group identifier 〈648, 533〉.4 The endomorphism ring of
J/Q does not contain Z[ζ3], so the image of ρ̄2 does not lie in H, in general. It lies
in a subgroup of Sp6(F2) isomorphic to GU(3,F4)�Gal(F4/F2), with small group
identifier 〈1296, 2891〉, which contains H with index 2. Up to conjugacy there is

3Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Ave.,
Cambridge, MA 02139, USA; email: drew@math.mit.edu, URL: https://math.mit.edu/ drew

4In this appendix isomorphism classes of groups of order n < 2048 are identified by the label
〈n, i〉 assigned to them by the Small Groups Library [BEO01] used in GAP, Sage, and Magma.
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a unique such subgroup G; it is the normalizer of H in Sp6(F2). Let I := ( 1 0
0 1 ),

z3 := ( 1 1
1 0 ), s2 := ( 1 1

0 1 ), and define

A :=

⎛
⎝z3 0 0

0 I 0
0 0 z3

⎞
⎠ , B :=

⎛
⎝ 0 0 z23

0 z23 z23
z23 z23 z3

⎞
⎠ , S2 :=

⎛
⎝s2 0 0

0 s2 0
0 0 s2

⎞
⎠ .

Then we can take H = 〈A,B〉 and G = 〈A,B, S2〉.
For each prime p > 3 of good reduction for C the representation ρ̄2 maps the

Frobenius element Frobp ∈ Gal(Q/Q) to a conjugacy class of Sp6(F2) whose char-
acteristic polynomial is the reduction of the characteristic polynomial χp ∈ Z[T ]
of the Frobenius endomorphism π of Jp := Jac(Cp), equivalently, the characteristic
polynomial of the endomorphism of Jp[2] 
 F6

2 induced by π. The polynomials
χp(T ) and Lp(T ) are reciprocal, meaning that Lp(T ) = T 6χp(T

−1), as are their
reductions to F2[T ]. The image of Frobp under ρ̄2 lies H when p splits in Q(ζ3),
and in the complement G −H when p is inert in Q(ζ3), equivalently, when p ≡ 2
(mod 3).

Thus to compute the reduction L̄p ∈ F2[T ] for p ≡ 2 (mod 3), it suffices to
determine the characteristic polynomial of ρ̄2(Frobp) ∈ G−H, for which there are
only two possibilities:

T 6 + T 4 + T 2 + 1 or T 6 + 1.

The first occurs whenever ρ̄2(Frobp) has order 2 or 8; the second occurs when
ρ̄2(Frobp) has order 6. It is an easy computation in [Sage] to verify this fact, and
that every element of G−H has order 2, 6, or 8.

The fixed field of the kernel of ρ̄2 is the 2-torsion field Q(J [2]), and we have
an isomorphism Gal(Q(J [2])/Q) 
 Im ρ̄2. It follows that to compute L̄p ∈ F2[T ]
it suffices to determine the order of the restriction of Frobp to Gal(Q(J [2])/Q).
The group G contains a unique normal subgroup Z of order 3 generated by the
matrix Z3 := diag(z3, z3, z3) which gives the action of ζ3 ∈ End(JQ(ζ3)) on J [2].
The quotient G/Z is isomorphic to the general affine group AGL(3, 2), with small
group identifier 〈432, 734〉; the projection G → G/Z does not change the order of
elements of G−H.

The group G/Z 
 AGL(3, 2) has a natural permutation representation of de-
gree 9 corresponding to the transitive group with LMFDB label 9T26 [LMFDB].
This permutation representation can be realized via the action of Gal(Q/Q) on the
ζ3-orbits of the 27 affine bitangents of a generic Picard curve.

As shown in [BTW05, §2.2], each point of order 2 in Jp(Fp) corresponds to the
class of an ideal of the form 〈s, u+y〉 in the ring Fp[x, y]/(y

3−f(x)), with s, u ∈ Fp[x]
satisfying deg u < deg s ≤ 3, with s monic and s2 = u3 + f . Those with deg s = 2
correspond to divisors of the form P1+P2−2∞ arising from the 27 bitangents that
intersect the curve at the affine points P1, P2, where s(x) = (x− x(P1))(x− x(P2))
and the linear polynomial u is determined by u(x(Pi)) = y(Pi). If we assume
f(x) = x4 + f2x

2 + f1x + f0 and let s(x) = x2 + s1x + s0 and u(x) = u1x + u0,
equating coefficients on both sides of the equation s2 = u3 + f yields the system

2s1 = u3
1, 2s0 = f2 + 3u0u

2
1 − s21, 2s0s1 = f1 + 3u2

0u1, s20 = f0 + u3
0.

https://www.lmfdb.org/GaloisGroup/9T26
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A Groebner basis calculation over Q(f0, f1, f2) shows that s1 must be a root of

ψf (x) := x9 + 24f2x
7 − 168f1x

6 + (1080f0 − 78f2
2 )x

5 + 336f1f2x
4

+ (1728f0f2 − 636f2
1 + 80f3

2 )x
3 + (−864f0f1 − 168f1f

2
2 )x

2

+ (−432f2
0 + 216f0f

2
2 − 120f2

1 f2 − 27f4
2 )x− 8f3

1 ,

and s0 can be written as a polynomial in s1 whose coefficients are rational functions
of f0, f1, f2. Each of the 9 possibilities for (s0, s1) gives rise to 3 possibilities for
(u0, u1) that differ only by a cube root of unity and comprise a single ζ3-orbit.
The 27 possible values of u1 are the roots of ψf (x

3/2), each of which determines
rational values for u0, s0, s1. The discriminant of ψf has the form −224327D2

f with

Df ∈ Z[f0, f1, f2], a fact we will use in the proof of the lemma below.
This calculation of ψf (x) is valid over any field k whose characteristic is not 2

or 3, and we can define ψf for any Picard curve y3 = f(x) over k by putting f in
the form x4 + f2x

2 + f1x + f0 as follows: if f =
∑

fix
i ∈ k[x] with f4 �= 1 then

replace f with f3
4 f(x/f4) and if f4 = 1 and f3 �= 0 replace f with f(x− f3/4).

Lemma. Let C : y3 = f(x) be a Picard curve over k with char(k) �= 2, 3 and let
J := Jac(C). Then k(J [2]) is the splitting field K of ψf (x

3/2) over k, and when
k = Fp with p ≡ 2 (mod 3) this is also the splitting field K ′ of ψf (x).

Proof. The points in J [2] corresponding to bitangents are defined overK, so J(K)[2]
has order at least 27 and must be 32 or 64, since J [2] 
 (Z/2Z)6. The three
cuberoots of unity in k̄ lie in K (take ratios of appropriate roots of ψ(x3/2)), so
Z[ζ3] ⊆ End(JK). The endomorphism ζ3 acts bijectively on the points of order 2
in J(K)[2], with ζ3-orbits of size 3. We cannot have #J(K)[2] = 32 because 3 does
not divide 31. Thus #J(K)[2] = 64 and K = k(J [2]).

Now assume k is a finite field Fp with p > 3 and p ≡ 2 (mod 3). The discriminant
−224327D2

f of ψf is a square in its splitting field K ′, thus Fp � Fp(ζ3) ⊆ K ′. The

action of the Frobenius endomorphism π on J [2] is given by a matrixM in the group
G := 〈A,B, S2〉 ⊆ Sp6(F2) defined above that does not lie in the index 2 subgroup
H := 〈A,B〉. For any such M , its order n is unchanged in the quotient G/Z3 which
gives the action of π on the ζ3-orbits of J [2]. This action is determined by (and
has the same order as) the action of π on the ζ3-orbits of the points in J [2] arising
from bitangents of C, which coincides with the action of the p-power Frobenius
automorphism on the roots of ψf (x). The p-power Frobenius automorphisms of
Fp(J [2]) and K ′ thus have the same order n, so Fp(J [2]) = K ′. �
Corollary. Let y3 = f(x) be a Picard curve over Fp with p �= 2, p ≡ 2 (mod 3).
Let L̄p ∈ F2[T ] be the reduction of its L-polynomial modulo 2. Then

L̄p(T ) =

{
T 6 + T 4 + T 2 + 1 if ψf (x) has an Fp-rational root,

T 6 + 1 if ψf (x) has no Fp-rational roots.

These cases can be distinguished in O((log p)2 log log p) time by computing the degree
of gcd(xp − x, ψf (x)).

Proof. Let J := Jac(C). Then L̄p(T ) is reciprocal to the characteristic polynomial
of the Frobenius endomorphism π as an element of End(J [2]), corresponding to a
matrix M in the group G := 〈A,B, S2〉 ⊆ Sp6(F2) defined above that does not lie
in the index two subgroup H := 〈A,B〉. As noted above, the two possibilities for
L̄p(T ) are those listed in the statement of the corollary; the first occurs when M
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has order 2 or 8, while the second occurs when M has order 6. The order of M
is equal to the order of Gal(Fp(J [2])/Fp) = Gal(K ′/Fp), where K ′ is the splitting
field of ψf (x) over Fp. The Galois group of ψf (x) over Fp is a cyclic subgroup
of the transitive group 9T26 whose generator σ does not lie in the unique index 2
subgroup (we note that this is true even if ψf (X) is not squarefree). The cycle
structure of the degree 9 permutation σ must be one of 2313, 8111, or 6131, the last
of which has order 6 and occurs if and only if ψf (x) has no Fp-rational roots.

As is well known, the roots of gcd(xp − x, ψf (x)) are the distinct Fp-rational
roots of ψf (x); the degree of this polynomial is nonzero if and only if ψf (x) has
an Fp-rational root. To efficiently compute gcd(xp − x, ψf (x)) one computes xp in
the ring Fp[x]/(ψf (x)) via binary exponentiation to obtain a polynomial g ∈ Fp[x]
of degree less than degψf = 9 and then computes gcd(g(x) − x, ψf (x)). This
involves O(log p) ring operations in Fp[x]/(ψf (x)), each of which can be computed
using O(1) ring operations and a Euclidean division in Fp[x], followed by a GCD
computation on polynomials of degree O(1), which requires O(1) ring operations
and Euclidean divisions in Fp[x] using the standard Euclidean algorithm.

Each Euclidean division in Fp[x] can be accomplished using O(1) ring operations
in Fp[x] via Newton iteration [GG13, Thm. 9.6], and each ring operation in Fp[x]
involving polynomials of degree O(1) can be achieved using O(1) ring operations in
Z via Kronecker substitution and Euclidean division in Z. The entire computation
of gcd(xp − x, ψf (x)), including the cost of deriving ψf (x) from f(x), reduces to
O(log p) ring operations on integers with n = O(log p) bits. Applying the O(n logn)
bound for integer multiplication [HvdH21] completes the proof. �
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[AH19] Jeffrey D. Achter and Everett W. Howe, Hasse-Witt and Cartier-Manin matrices:
a warning and a request, Arithmetic geometry: computation and applications,
Contemp. Math., vol. 722, Amer. Math. Soc., Providence, RI, [2019] c©2019, pp. 1–
18, DOI 10.1090/conm/722/14534. MR3896846

[AP20] S. Asif, D. Pentland, Computing Picard, Github repository containing Sage code,
https://github.com/sualehasif/computingPicard.

[Aru21] Vishal Arul, Division by 1 − ζ on superelliptic curves and Jacobians, Int. Math.
Res. Not. IMRN 4 (2021), 3143–3185, DOI 10.1093/imrn/rnaa075. MR4218349

[BEO01] Hans Ulrich Besche, Bettina Eick, and E. A. O’Brien, A millennium project: con-
structing small groups, Internat. J. Algebra Comput. 12 (2002), no. 5, 623–644,
DOI 10.1142/S0218196702001115. MR1935567

https://www.lmfdb.org/GaloisGroup/9T26
https://www.ams.org/mathscinet-getitem?mr=3952003
https://www.ams.org/mathscinet-getitem?mr=3896846
https://github.com/sualehasif/computingPicard
https://www.ams.org/mathscinet-getitem?mr=4218349
https://www.ams.org/mathscinet-getitem?mr=1935567


This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

COMPUTING L-POLYNOMIALS OF PICARD CURVES 969

[BTW05] Mark Bauer, Edlyn Teske, and Annegret Weng, Point counting on Picard
curves in large characteristic, Math. Comp. 74 (2005), no. 252, 1983–2005, DOI
10.1090/S0025-5718-05-01758-8. MR2164107

[CDF20] E. Costa, R. Donepudi, R. Fernando, V. Karemaker, C. Springer, and M. West,
Restrictions on Weil polynomials of Jacobians of hyperelliptic curves, to ap-
pear in Arithmetic geometry, number theory, and computation, Simons Symp.,
arXiv:2002.02067v2, 2020.

[CFADLNV05] Christophe Doche, Finite field arithmetic, Handbook of elliptic and hyperelliptic
curve cryptography, Discrete Math. Appl. (Boca Raton), Chapman & Hall/CRC,
Boca Raton, FL, 2006, pp. 201–237. MR2162727
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