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Persistent homology and topological statistics of hyperuniform point clouds
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Hyperuniformity, the suppression of density fluctuations at large length scales, is observed across a wide
variety of domains, from cosmology to condensed matter and biological systems. Although the standard
definition of hyperuniformity only utilizes information at the largest scales, hyperuniform configurations have
distinctive local characteristics. However, the influence of global hyperuniformity on local structure has remained
largely unexplored; establishing this connection can help uncover long-range interaction mechanisms and detect
hyperuniform traits in finite-size systems. Here, we study the topological properties of hyperuniform point
clouds by characterizing their persistent homology and the statistics of local graph neighborhoods. We find
that varying the structure factor results in configurations with systematically different topological properties.
Moreover, these topological properties are conserved for subsets of hyperuniform point clouds, establishing a
connection between finite-sized systems and idealized reference arrangements. Comparing distributions of local
topological neighborhoods reveals that the hyperuniform arrangements lie along a primarily one-dimensional
manifold reflecting an order-to-disorder transition via hyperuniform configurations. The results presented here
complement existing characterizations of hyperuniform phases of matter, and they show how local topological
features can be used to detect hyperuniformity in size-limited simulations and experiments.
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I. INTRODUCTION

Hyperuniform (HU) systems are characterized by van-
ishing density fluctuations at large length scales [1]. This
property is trivially present in ordered systems, whereas for
disordered systems it realizes a distinguishable state of matter
[2] lying between (quasi)crystalline and amorphous or liquid
phases: HU systems feature long-range order while being
statistically isotropic with no Bragg peaks. These systems
can exist either as equilibrium or quenched nonequilibrium
phases and exhibit a range of peculiar electronic, photonic, or
other transport properties [2,3]. HU arrangements emerge in
diffusive systems [4,5], emulsions [6], amorphous materials
[7], nanostructure self-assembly [8], supercooled liquid and
glasses [9–11], vortices in superconductors [12–14], avian
photoreceptors [15], swimmers [16], and cosmology [17,18]
(for which it was first termed superhomogeneity). Systems
engineered to be HU have found many applications, including
polarization sensitivity [19], lasing [20,21], coatings with un-
usual antireflective properties or appearance [22,23] and full
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photonic band gaps for light propagation [19,24,25] within
optics, as well as topologically protected electronic states [26]
and mechanical systems [27]. HU patterns also attract signifi-
cant attention from statistics and probability theory [28–30].

Proper analysis of HU patterns is necessary for thorough
explorations and detection of their distinctive properties. Al-
though it has become straightforward to generate HU point
patterns [31–34], the identification and characterization of HU
patterns in both experimental systems and numerical simu-
lation frameworks remains challenging: HU characteristics
are only rigorously defined for infinitely large systems [2],
whereas any experimental or simulated data set is finite in
size, and often only contains hundreds of points, see for in-
stance [10–13]. Consequently, their characterization is based
on empirical diagnostics, essentially extrapolating measure-
ments from finite-length scales to infinity. Recent analyses
have improved this statistical estimation [35]. However, an
ideal HU character may be lost due to the presence of defects
or perturbations even in strongly correlated systems [36–38],
although the corresponding pattern should retain some es-
sential properties of the ideal HU arrangements. In brief,
HU patterns exhibit local structures that we would like to
characterize and explore in finite systems, aside from infi-
nite wavelength measurements. Here, we pursue a topological
approach, which by its nature, is robust to small changes
in the system, providing an orthogonal way to characterize
and explore HU structure without estimating global properties
directly.
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Specifically, we aim to characterize HU point configu-
rations by applying methods from topological data analysis
(TDA). The TDA framework employs techniques from alge-
braic topology to extract and analyze structures from complex
datasets [39]. A method of particular interest to our study
is persistent homology [40–42], which enables the robust
and compact characterization of topological features across
multiple scales for point clouds and other discrete data [43].
Practical computational methods have been developed to im-
plement persistent homology calculations, and these tools
have been applied across a range of disciplines [44,45].
Furthermore, we will also investigate the statistics of local
topological neighborhoods in HU point patterns derived from
the Delaunay tessellation [46,47], using a recently introduced
framework [48,49]. The Delaunay tessellation characterizes
the topological neighborhood structure, and whilst it will
be different for each specific realization, we can robustly
quantify its statistical properties, essentially counting how fre-
quently each local topological neighborhood motif occurs in
a point pattern. As these neighborhoods only change through
discrete topological transitions, counting the number of tran-
sitions needed to transform one system into another gives a
measure of the distance between HU systems [48,49]. Alto-
gether, our results demonstrate that topological approaches
can provide robust characterizations of HU configurations,
even for finite systems.

The paper is organized as follows. In Sec. II, we briefly
review the basic notions of HU systems and describe the
generation and parametrization of point clouds. In Sec. III
we study the persistent homology of these patterns, quan-
tifying differences and similarities between patterns. We
also investigate how the underlying HU character can be
detected in subsets of generated HU configurations. Sec-
tion IV analyzes the statistics of local graph neighborhoods,
which enables comparisons between HU configurations. We
find that many different HU configurations lie on a primar-
ily one-dimensional manifold reflecting an order-to-disorder
transition. The main conclusions are summarized in Sec. V.

II. HYPERUNIFORMITY AND GENERATION
OF POINT CLOUDS

An arrangement of points in a d-dimensional Euclidean
space is said to be HU if the variance σ 2

N (R) of the number of
points in a d-dimensional spherical observation window with
radius R scales slower than the volume of this window [1],

lim
R→∞

σ 2
N (R)

Rd
= 0. (1)

Rather than work with the variance directly, it is equivalent,
and often easier, to define hyperuniformity in terms of the
structure factor for an N particle system [2]

S(k, {r j}) = 1

N

∣∣∣∣
N∑

j=1

exp(ik · r j )

∣∣∣∣2

, (2)

with r j the position of particle j, and k a wave vector. For-
mally, we only define S(k, {r j}) at a finite number of k =
(k1, . . . , kd ) vectors with components ki = 2πn/Li, confining
our particles in a d-dimensional box with side lengths Li.
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FIG. 1. The parametrized structure factor S0(|k|) from Eq. (6)
for different α and H = 0, showing hyperuniformity (S(|k|) → 0 as
k → 0).

In the N → ∞ limit, S(k, {r j}), simply referred to as S(k)
hereafter, becomes a continuous function of k, aside from a
formal singularity at k = 0 (note S(0) = N) [2]. Having taken
this limit, a definition of a HU system equivalent to (1) is [2]

lim
|k|→0

S(k) = 0. (3)

Both conditions (1) and (3) can be realized with different scal-
ings of σ 2

N (R) and S(k). For systems characterized by a power
law S(k) = |k|α with α > 0 for |k| → 0, three characteristic
scaling behaviors are realized, namely

σ 2
N (R) ∼

⎧⎨
⎩

Rd−1 α > 1
Rd−1 ln(R) α = 1
Rd−α 0 < α < 1

, (4)

with these three conditions referred to as HU classes I, II, and
III, respectively [2].

Point clouds with a prescribed structure factor S0(k)
can be generated by solving an optimization problem
[31,32]. In short, from an initial N-point arrangement
with position of points {r j} given, minimize an objective
function,

F ({r j}) =
∑

k

|S(k) − S0(k)|2, (5)

resulting in a least-square problem, where the sum over k
is taken over wave vectors appropriate for the finite-size
bounding box. The minimization can be performed with
standard algorithms like the conjugate-gradient, Broyden-
Fletcher-Goldfarb-Shanno, or dogleg algorithms [31,32].

We consider here a tunable, prototypical form for a power-
law behavior of S0 as follows (see also Fig. 1):

S0(k) =
{

D(1 − H )|k|α + H |k| < K,

1 otherwise, (6)

with D = K−α and H , K , and α three parameters controlling
specific pattern features as detailed below.
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FIG. 2. Examples of HU and non-HU point patterns (N = 780) generated as described in Sec. II, shown together with the radial average
of the structure factor S(|k|) and the target structure factor S0. (a) K = 44π , H = 10−4 with α = 0.5, 2, and 100 from top to bottom. For
α = 100 an effective stealthy HU point cloud is obtained. (b) α = 100, H = 10−4 with K = 20π , 40π , and 52π from top to bottom. These are
all stealthy HU point clouds and the order-disorder transition is expected for K ≈ 45π . Note that for K = 52π a slightly perturbed triangular
lattice is obtained. (c) α = 100, K = 40π , with H = 1.0, 0.3162, and 0.1 from top to bottom. S(|k|) is shown for the same range of |k|
(|k| ∈ [0, 52π ]) in all the plots.

The scaling exponent α controls the class of HU as defined
in Eq. (4), and thus the overall shape of the structure factor,
Fig. 1. The limit of large α gives a finite-size region with
S(k) = H , a feature referred to as stealth hyperuniformity
for H ≈ 0 [see Fig. 2(a), with a stealthy HU point cloud
effectively obtained for α = 100 and H = 10−4].

Loosely speaking, K sets the length scale 2π/K above
which correlations are enforced in the system. A small K
only suppresses fluctuations on the largest scales, allowing
for more locally disordered arrangements whereas a large K
constrains arrangements at the size of a typical neighborhood.
For stealthy HU configurations (S(k) ∼ 0 for 0 < |k| � K), a
known transition from disordered to ordered systems, signaled
by the emergence of Bragg peaks in S(k), is obtained at [2,50]

K = cdρ
1/d , (7)

where ρ = N/V is the density, d the system dimensionality,
and cd a (known) constant. In 2D, for V = 1, stealthy HU
disordered configuration are obtained for K <

√
8πN [see

also Fig. 2(b), for which
√

8πN ≈ 45π ].
The parametrization in (6) is chosen so that H = H̃ , where

H̃ [S] = lim
|k|→0

S(|k|)
S(kmax)

, (8)

with kmax the characteristic wavenumber at which S(k) as-
sumes its maximum value. Formally, H̃ = 0 for HU patterns
[Eq. (3)], although for finite-size systems H̃ cannot be directly
evaluated and must be extrapolated, as |k| → 0 implies a
system with infinite size [2,8]. Moreover, this quantity may
deviate from zero due to the presence of defects or data arti-
facts (e.g., in experimental images). A commonly accepted

convention is to say a point pattern is nearly HU for H̃ �
10−2 and effectively HU for H̃ � 10−4 [51,52]. By tuning the
parameter H , we can study the convergence to HU, and how
that alters the topology of the patterns [see also Fig. 2(c)].

In the following, we will consider d = 2 space dimen-
sions and generate point patterns for N = 780 in a square
2D domain with unitary sides, as illustrated in Fig. 2. N is
chosen such that the points can be arranged almost as an ideal
triangular arrangement (closest packing in 2D). Such a lattice
can be obtained by arranging 2q rows of p particles with p/q
a close approximation of

√
3. A set of possible p, q choices is

reported in [31]. We obtain patterns by varying parameters in
the following ranges:

H ∈ [10−4, 1], α ∈ [0.5, 100], K ∈ [20π, 56π ]. (9)

We generated 880 patterns by varying the parameters in the
range shown in Eq. (9). All combinations start from a peri-
odic point pattern with relatively small random noise before
minimizing F [31,32], with ten different random seeds, and
hence ten final patterns for each parameter combination.

Examples of generated patterns, with varying K , α, and H
parameter values, are shown in Fig. 2 together with the radial
average of the structure factor, S(|k|), and the target structure
factor S0. Varying α for a small H (effective HU) and a fixed
K close to the nominal order-disorder transition for stealthy
HU patterns explores the three different HU classes from
Eq. (4), where increasing α leads to more and more uniformly
distributed points (Fig. 2, first column). A qualitatively similar
effect is observed by varying K (Fig. 2, second column). For
small K , even a stealthy HU configuration leads to small-scale
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FIG. 3. Illustration of the persistence diagram (bottom left) for
a four-point arrangement (top left), and a family of nested Vietoris-
Rips complexes. We parametrize the complex by r, where r is the
radius (time) of circles centered on the points. Shown are radii ri at
which features are added to the persistence diagram. Blue points on
the persistence diagram represent the birth/death of h0, or connected
components, including initial isolated circles, which all have a birth
time of 0, and death times of r1,2,3. The red square represents h1, the
hole (or closed loop) within the domains, forming at r3 and vanishing
at r4.

agglomerates because no correlation is imposed for length
scales smaller than 2π/K . Approaching the order-disorder
transition leads to a more uniform arrangement, while above
the critical point, a (slightly perturbed) triangular arrangement
is obtained. The effect of H is illustrated first in the limiting
case of H = 1, resulting in a random point pattern, and for
two other values (Fig. 2, third column) showing the impact
of lowering the small wave vector limit of S (still far from
a nearly HU pattern). Although the trends appear clear, it
remains challenging to quantify differences and similarities
between these patterns, particularly when far away from limit-
ing cases (random or ordered). In the remainder, we show how
one can overcome this problem by studying and characterizing
the topology of these point patterns.

III. PERSISTENT HOMOLOGY

Persistent homology [40–42] uses ideas from algebraic
topology to understand the “shape” of a data set, building on
how homology characterizes geometric objects through con-
nected components, loops, and voids (Betti numbers). Starting
from a point set P, persistent homology constructs a family
of simplicial complexes (collection of points, lines, triangles,
tetrahedrons, and higher-dimensional analogs) Kr

P, parame-
terized by r � 0, such that Kl

P ⊆ Km
P for l < m. This nested

family of simplicial complexes is called a filtration. Persis-
tent homology takes the appearance (birth) and disappearance
(death) of homological features of this filtration, as r is varied,
as the essential topological information that characterizes the
point set. A graphical representation for the births and deaths
of topological features in the filtration is called the persistence
diagram [44,45,53], see Fig. 3, which is discussed further
below. For our choice of filtration, we use the widely adopted
Vietoris-Rips complex [42]. In short, consider placing a circle
of radius r, which we use as the filtration parameter, around
each point in the data set. If two circles overlap, the line

connecting the two corresponding points is included in the
simplicial complex. In other words, two separated connected
components, the points, become one connected component.
If three circles all pairwise overlap, then the triangle de-
fined by the three corresponding points is included in the
simplicial complex, and so on, see Fig. 3. We increase the
radius r, which we hereafter refer to as time [44,45], from
zero to infinity, and consider how the resulting topology of
the simplicial complex changes. This procedure echoes the
concept of diffusion spreadability in a two-phase medium,
namely the time-dependent mass transfer from one phase (say,
circles) into a second phase (space surrounding the circles),
which, interestingly, shows peculiar behaviors for disordered
HU configurations [55]. A topological feature, such as a hole,
is created at some time and disappears at a later time, Fig. 3.
This can be represented as a point on the persistence diagram,
with the birth and death times of this feature as the x and y
coordinates, respectively. The persistence of a feature is the
difference between its death time and birth time, indicating
how long the feature exists as the parameter r changes. For
our analysis, we will look at the birth/death of connected
components h0, and of holes or loops h1 (see Fig. 3). In gen-
eral, hk generalizes the concept of holes through homology:
hk quantifies k-dimensional holes [42], with zero-dimensional
holes then corresponding to connected components and one-
dimensional holes corresponding to closed loops or “holes” in
an informal sense. Persistent diagrams are computed using the
python library ripser [56,57].

Figure 4 shows persistent homology analysis applied to
HU patterns, here obtained by varying α whilst keeping the
other parameters constant. Starting from the HU point pat-
terns (first row), we can compute a histogram of death times
τ0 for connected components (second row), and persistence
diagrams of connected components h0, and holes h1 (third
row). The same analysis for patterns obtained by varying K
and H is reported in the Supplemental Material (SM) [54].
Clear trends emerge, with a narrowing of the distributions for
more pronounced HU characters (larger α and K , as well as
smaller H). Note that significant variations in the topological
features are also observed for patterns that closely resemble
each other; cf. α = 10 and α = 100 in Fig. 4. We find that a
skew-normal distribution fits histograms of the death times τ0

well, see Fig. 4 (second row). Clear trends in the parameters
of the skew-normal also emerge when varying α, K , and H ,
see the SM [54] for details.

To quantify differences between patterns from the topolog-
ical features obtained above, we use the Wasserstein distance
between two persistence diagrams, specifically the distribu-
tions of death/birth times for h0 (connected components) and
h1 (holes). The pth Wasserstein distance between two persis-
tence diagrams A and B (including the diagonal) is defined as
[45]

Wp(A, B) = inf
γ

(∑
x∈A

(||x − γ (x)||q)p

)1/p

, (10)

with γ (x) ranging over all bijections from A to B and ||a −
b||q = (

∑2
i=1 |ai − bi|q)1/q (as a, b ∈ R2). Here, q determines

the cost of transporting x to γ (x); for example, if q = 1, the
cost is the L1 (Manhattan) distance, and if q = 2 the cost is
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FIG. 4. Persistent homology analysis for representative patterns featuring different α with K = 44π and H = 10−4. The first row shows
four-point patterns. The second row illustrates the death times distribution τ0 for connected components (h0) through a histogram and a fit with
the skew-normal distribution �. The third row shows persistence diagrams for h0 (connected components) and h1 (holes). Additional results
obtained by varying K and H are reported in the Supplemental Material (SM) [54].

the Euclidean distance. Throughout, we set p = q. Overall,
Wp quantifies the similarities between two sets of points by
computing the minimal cost to transform one set of points
into another. Calculations involving Wasserstein distances be-
tween persistence diagrams used the GUDHI libraries [58].
Other methods to compare persistence diagrams or related
barcodes are summarized in [59].

Figure 5 illustrates W1 between h0 (connected components)
persistence diagrams of a random pattern and patterns ob-
tained by varying (a) H and K with α = 100 and (b) α and
K with H = 10−4, both featuring stealthy HU configurations
for sufficiently small H and large α. The qualitative trends
emerging in Fig. 2 are quantified by W1, showing that, as K
and α increase, the pattern becomes less similar to a random
pattern, whereas when H increases the pattern looks more
like a random pattern, Fig. 5. From these results, we see
that the topological properties of the ideal limit H ∼ 0 are
effectively obtained for H < 10−3 [see Fig. 5(a)]. No further
effects are expected by lowering H below 10−4 for the do-
main size and number of points considered here. This is a
useful estimation as H quantifies HU character in realistic

settings: In a system with hundreds of points, we find that
H < 10−3 leads to topologies sufficiently similar to the ones
of ideal HU point clouds. Similar results are obtained with W2

between persistence diagrams for h0; see SM [54]. Distances
(both W1 and W2) between persistence diagrams for h1 (holes)
follow similar trends for a broad range of K and α values.
However, distances from random patterns slightly decrease for
increasingly large values of K and α (ordered systems). Thus,
comparing h1 is somewhat less effective at characterizing
topological differences than comparing h0.

Alternatively, we can measure the distance of persistent
diagrams to a reference one obtained for a HU arrangement.
This is illustrated in Fig. 5(c), which shows W1 between h0

(connected components) persistence diagrams of a reference
configuration corresponding to a pattern obtained with K =
44π , α = 10, and H = 10−4 [red dot in Fig. 5(c)], and ones
obtained by varying α and K . W1 generally increases when
moving towards random (small K and α) or ordered (large
K and α) arrangements. Interestingly, a vanishing distance is
obtained for the reference configuration (at the red dot) as well
as along a curve in the K − α parameter space passing through
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FIG. 5. Illustration of distances W1(h(I)
0 , h(II)

0 ) with (I) and (II) labeling the corresponding point patterns from which persistence diagrams
for h0 (connected components) are computed. In panels (a) and (b), (I) is a random arrangement and (II) is varied with (a) different H and K
with α = 100 (corresponding to the stealthy HU regime for sufficiently small H ), and (b) different α and K with H = 10−4. In panel (c), we
show the distance from a selected HU pattern: (I) is an arrangement featuring K = 44π , H = 10−4, α = 10 and (II) patterns featuring different
α and K with H = 10−4. The parameter corresponding to the pattern (I) is marked as a red dot.

this point. Analogous topological properties are thus obtained
with different parameter combinations for S(k). Said other-
wise, there exists a manifold in the parameter space where
patterns possess analogous topological properties. The same
conclusion can be drawn from W2 and h1 (holes) persistent
diagrams; see SM [54]. This concept will be explored further
in Sec. IV.

We now investigate how the structure factor and topolog-
ical properties are affected by finite-sized data. We consider
two specific arrangements of points generated as above with
H = 10−2, a nearly-HU pattern, and K = 44π , α = 1 as
well as K = 44π , α = 20, resulting in visually distinct point

patterns, Figs. 6(a1) and 6(a2). We select points within ν × ν

squares of different sizes with ν � 1 (ν = 1 is the original
arrangement), see Fig. 6(a). Whilst the structure factor S(k)
matches the desired S0 at ν = 1 by construction, for subsets
ν < 1 it deviates from that of the full data (ν = 1), Figs. 6(b1)
and 6(b2). These subsets, which are not periodic and mimic
realistic data where only a portion of the system can be
analyzed, highlight the issue with characterizing HU arrange-
ments by an inferred S(k). Instead, we leverage topological
features to assess how similar a finite-size pattern is to an ide-
ally generated HU arrangement. For instance, one may look
at the normalized histograms τ0 (death times of connected

FIG. 6. Topological properties of an ideal HU point pattern are conserved in subsets of that point pattern. (a1) (a2) Different sets obtained
by selecting a ν × ν region of a pattern generated as in the previous section (ν = 1) with K = 44π , H = 10−2, (a1) α = 1 and (a2) α = 20.
For these patterns we show: (b1) (b2) S(|k|), (c1) (c2) histograms τ0, (d1) (d2) h1 persistence diagrams.
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FIG. 7. Topological properties of finite subsets of a HU point pattern are closest to reference patterns generated with the same parameters.
We compute W1(τ (I)

0 , τ
(II)
0 ) with (I) the patterns in Fig. 6(a2) and (II) reference arrangements generated with different S(|k|) parameters,

averaged over ten numerical realizations. Different panels show variation of one parameter, namely (a) α, (b) K , (c) H , while others are held
constant for values specified in the figure. Vertical-grey lines show the actual value used to generate the subset data Fig. 6(a2).

components), see Figs. 6(c1) and 6(c2). These distributions
have a similar shape for ν � 0.4, pointing at some robust
topological properties only deviating for small ν (ν = 0.2).
Similarly, the persistence diagrams for h1 (holes) appears
conserved across ν, Figs. 6(d1) and 6(d2).

To quantitatively assess the extent to which topological
properties, here τ0, are conserved for finite-sized data, we
computed the W1 distance between the τ0 distribution of the
five patterns in Fig. 6(a2) and reference ideal patterns gener-
ated by varying separately α, K , H , see Fig. 7. The reference
distribution was created using ten simulated repetitions for
each ideal pattern. The finite-sized data was closest to the cor-
rect reference parameters in all cases for ν � 0.4, Fig. 7. The
minimum distance obtained for the smallest subset (ν = 0.2)
deviates significantly due to the extremely small number of
points, reflecting a statistical lower bound on the size of the
point set required to correctly identify its topological features.
Consistent with observations reported above, using W2 also
finds that the finite-sized patterns are closest to the correct
reference pattern for ν � 0.4.

We conclude that topological properties of point patterns
set by an ideal S(k) are still present in subsets of the same ar-
rangements. In this case, we compared distributions of τ0 with
a W1 distance as an example, but other topological features or
distances can be used.

IV. TOPOLOGICAL STRUCTURE OF NEIGHBORHOODS

Beyond the topological features of connected components
and loops (persistent homology), we now examine the related
[60] topological structure of neighborhoods [48,49,61,62].
Given a point pattern, we start from the corresponding Delau-
nay triangulation, dual of the Voronoi diagram, a topological
object connecting neighboring points [46]. The Delaunay tri-
angulation will be different for each realization of a point
pattern. Still, by capturing its statistical properties, we can
examine how the topology of neighborhoods systematically
changes across different generating procedures.

We use a recently introduced framework that statistically
characterizes the local structure of the Delaunay triangula-
tion and allows physically interpretable comparisons between
different point patterns [48,49]. Starting from the Delaunay

triangulation, interpreted as a planar graph, for each vertex of
this graph, we take the local neighborhood of radius rg; the
induced subgraph formed by the set of all vertices, which are
at most rg edges away from the central vertex, Fig. 8(a). We
use rg = 2 for computational and statistical purposes, which
still results in tens of thousands of unique local neighborhoods
[48]. Two local neighborhoods are the same topological type,
or motif, if they are graph-isomorphic. We characterize the
topo-statistical state of a point pattern M as a probability
distribution over the space of these motifs, where PM (i) is the
probability of seeing motif i.

Delaunay triangulations are invariant under infinitesimal
perturbation and change only through discrete topological
transitions, Fig. 8(b). A natural distance between two motifs is
then the minimum number of topological transitions required
to transform one into the other, Fig. 8(c), a mathematically
well-defined metric [63]. Given two probability distributions
PA and PB corresponding to different classes of point patterns,
a natural distance between A and B is to measure how many
transitions are required to transform distribution PA into PB.
Mathematically, this is a Wasserstein distance, known as a
topological earth mover’s (TEM) distance

TEM(A, B) = min
γ

∑
i j

γi jd (i, j), (11)

with d (i, j) the distance between motifs i and j and γi j

a transport map from A to B [γi j � 0,
∑

j γi j = PA(i), and∑
i γi j = PB( j)], which can be solved as a minimum cost flow

problem on a network, Fig. 8(d). Interpreting each transition
as having an energetic cost associated with it, the distance
TEM(A, B) can be interpreted as the average overall energetic
cost to transform A into B.

Taking different point patterns generated by varying α,
K , and that are effectively HU (H < 10−3), we computed
the pairwise distance between each of them, resulting in an
np × np distance matrix D, where np is the overall number
of unique parameters. To visualize this matrix, we find a
low-dimensional embedding with multidimensional scaling
(MDS) [64], which finds the most faithful way to embed
points in Euclidean space while matching the embedded Eu-
clidean distances to the distance matrix D. Interestingly, we
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FIG. 8. Comparing two HU patterns based on the distribution of local topological networks or motifs. (a) Starting from a HU point pattern,
shown for two parameter values (α = 0.5, K = 20π , top and α = 100, K = 56π , bottom), we take the Delaunay tessellation. The local network
of radius r = 2 is the subgraph induced by neighbors and nearest neighbors around a central vertex; four examples are shown in black with
a red central vertex. (b) The Delaunay tessellation is a topological object and only changes through discrete T1 transitions or flips. (c) Any
motif can be transformed into any other motif through a finite sequence of flips. The motif on the left is transformed into the motif on the right
with as few flips as possible. The triangles to be flipped as one moves to the right are shown in blue. (d) For a given HU point pattern, there is
a probability distribution of local motifs, each occurring with some frequency; to compare two HU patterns, we compare these distributions.
We do this by solving an optimal transport problem, finding a transport map γ between two distributions, with the cost of transforming motif
i to j set by the number of flips to transform one motif into the other. In effect, the distance represents the minimal number of flips needed to
transform the left distribution into the right one.

find that in the embedded area, the data falls on an effectively
one-dimensional manifold, Fig. 9(a), despite us varying two
independent parameters (to quantify manifold dimensionality
see SM [54]). We see a systematic trend on varying either α

or K , where increasing either parameter moves us from the
disordered side of the manifold (positive principal component
1) towards the ordered side of the manifold (negative principal
component 1).

Generically, when varying m parameters, one expects
a m-dimensional data manifold, yet our effectively one-
dimensional manifold means that topologically similar pat-
terns can be obtained with different values in parameter space.
This is consistent with our finding in Fig. 5(c), that there is a
region of α − K parameter space at zero (or very small) W1

distance from a given HU reference arrangement, suggesting
that fewer than two parameters are needed to specify the
topological features.

To test this property further, we consider another
parametrization of S0, which differs from the previous power-
law definition, namely,

ST
0 = H + (1 − H )

1

2

[
1 − tanh

(
3(K ′ − |k|)

α′π

)]
, (12)

with K ′ and α′ auxiliary parameters mimicking the role K
and α in Eq. (6) (the same names without “prime” will be
used in the following). Combining new point patterns with this
modified parametrization, we calculate an expanded distance
matrix and once again embed it in a low-dimensional space

with MDS. The data still lies on a one-dimensional manifold,
Fig. 9(b), showing that this is not just a property emerging
from a particular form for S0. Indeed, the space of topologi-
cal neighborhoods for these HU point patterns appears to be
one-dimensional, which is not a generic property of 2D point
patterns [48].

Looking at the manifold, or curve, we see that it is not
a straight line in the embedding. This means that the path
taken along the curve is not optimal with respect to the
number of topological transitions. Alternatively said, if one
were to take an optimal path from, say K = 20π , α = 0.5
to K = 56π , α = 100, then intermediate points on this path
would not lie on the 1D manifold. The manifold appears
to be maximally distorted for values of principal compo-
nent 1 greater than zero. Still, one can not judge this solely
by eye due to inherent distortions that occur when em-
bedding a distance matrix in a low-dimensional Euclidean
space.

Instead, we can turn to metric geometry to quantify how
far from optimal the manifold path is without resorting to
Euclidean embeddings. In plane geometry, three points, A, B,
and C, uniquely define a circle. If those points lie on a curve, in
the limit that A,C → B, the circle converges, and the inverse
radius of the limiting circle defines the curvature at B. The
Menger curvature is the curvature defined by this procedure,
but which calculates the radius of the circle using only the
distances AB, AC, and BC, Fig. 9(c). This definition can then
be extended to compute curvatures for any metric space, not
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α

α

FIG. 9. Across a 2D region of parameter values, the resulting HU patterns lie on a nearly 1D manifold in a low-dimensional embedding.
(a) HU patterns were created for a range of α (left) and K (right) parameter values for a power law S0. The pairwise topological distance matrix
was computed, which then was embedded into Euclidean space with MDS, resulting in an approximately 1D manifold when plotting the first
two principal components (PCs); see Fig. S8 within the SM [54] for PC3 and a residual variance analysis. (b) To test whether the manifold in
(a) resulted from the specific power-law form of S0, we included patterns obtained with a tanh function ST

0 . Including these additional patterns
did not change the form of the embedding. (c) For three points, A, B, and C (green) on an arbitrary curve (black), there is a unique circle
that intersects those points (grey), with some radius R and curvature 1/R, which can be computed by knowing only the pairwise distances
between A, B, and C. In the limit that A,C → B, the limit of the curvature 1/R is the Menger curvature, a definition that can be extended to an
arbitrary metric space. (d) Menger curvature as a function of position along the manifold in (b). Shown for different KDE widths σ as well as
the average value.

just Euclidean ones, as it only uses distances. This allows us
to quantify curvature along a 1D manifold in the topological
space without ever embedding it into a lower-dimensional
Euclidean space.

We can compute the Menger curvature at each point by
parametrizing the 1D embedding manifold by a single pa-
rameter t , say the position along PC 1. As an aside, we
could add new HU or non-HU patterns to the embedding and
compute their value of t , finding where they lie along the
manifold or whether they lie away from the manifold. Given
the parametrization, t , we use a Gaussian kernel density esti-
mator with width σ to approximate a continuous probability
distribution pt (i) for motif index i. The curvature can be com-
puted from this by effectively regularizing the distance into a
space with a unique geodesic [48,49]. We find that the cur-
vature is indeed smallest in the region corresponding to more
ordered HU configurations and largest when approaching the
region of disordered arrangements, Fig. 9(d). Interestingly, the
curvature is always nonzero, reflecting that the path taken is
not optimal. If our samples effectively span the space of HU

patterns, then the curved nature of the manifold means that
to get from one HU pattern to another, either you have to
transition through a non-HU pattern or the path taken is not
optimal with respect to neighborhood rearrangements.

V. CONCLUSIONS

In summary, by looking at the topological properties of HU
configurations we can characterize and study their features in
a way that is orthogonal to the structure factor. The persistence
diagrams differentiate HU patterns across a wide range of
parameters. Moreover, distributions of topological properties
are approximately conserved for finite-sized patterns. This
enables the matching of these properties from a finite pat-
tern, arising for instance from an experiment, to that of a
reference ideal configuration. This approach can complement
the characterization of hyperuniformity with classical tools
when directly estimating the structure factor is challenging.
Additionally, we analyzed the topological structure of local
neighborhoods, comparing point patterns through a topolog-
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ical earth mover’s distance, which measures the number of
rearrangements needed to go from one pattern to another.
This also robustly identifies differences between topological
properties in HU patterns.

Both distances between local graph-neighborhood motifs
distributions and persistence diagrams show that different
parameters used for the generation can lead to similar topo-
logical properties. Indeed, when varying two parameters in
the structure factor, there was a one-dimensional curve along
which (h0 and h1) persistence diagrams were equivalent under
both the W1 and W2 distance (Fig. 5 and SM [54]). Similarly,
in the space of distribution of local motifs, patterns gener-
ated by varying two parameters lie along a one-dimensional
curve (Fig. 9). The latter analysis leads to the same results
after including patterns generated with different forms of the
structure factor. On the one hand, this result points out that
there is no unique correspondence between a structure factor
parametrization and the resulting topological features, with
important implications for inverse design. On the other hand,
this demonstrates that one can control distinctive topological
properties by varying one effective parameter.

By analyzing the curvature of the 1D manifold in the space
of distributions of local motifs [48], we show that the vari-
ation of topological properties along the manifold does not
correspond to the solution of a topological optimal transport
problem. In other words, a system that transitions between
different HU states may need to explore topologies that differ
from characteristics of HU patterns or take a nonoptimal path.
Besides its theoretical relevance, this result could be used to
interpret the emergence of HU states and the transition be-
tween HU and non-HU states in systems far from equilibrium
[16,65].

The analysis provided here for prototypical HU point
clouds can be straightforwardly extended to patterns featuring
different kinds of correlated disorder, such as in disordered
lattices [13,66] or colloidal particles systems with clustering

effects [10,67,68]. Moreover, an interesting question sug-
gested by this paper is whether finite, and ultimately
experimental, patterns could be designed based on their
topological properties rather than imposing directly the HU
condition, which is not defined for finite systems. One could
eventually explore their physical properties, for instance their
interaction with light, and connect them to specific topo-
logical features. Further, our approach, characterizing local
topological properties, could be used to investigate local ef-
fects of boundaries in finite-size or experimental systems [69].
We remark that closing the gap with experimental systems
would involve extending the analysis from point patterns to a
broader class of HU patterns, such as HU heterogeneous me-
dia and scalar fields, which are also amenable to a topological
analysis.
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