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Notation

General

α+ & α− The positive and negative parts of α ∈ R (§1.2).

btc The integer part of t ∈ R.

f � S The restriction of the function f to the set S.

‖ · ‖u The uniform (supremum) norm.

i The imaginary number
√
−1.

o
(
g(t)

)
A function f for which f(t)

g(t) tends to 0 as t tends to a limit.

BE(a, r) The ball of radius r around a in the metric space E.

Γ̊ & Γ̄ , The interior, and closure of a subset in a topological space.

〈x, ξ〉 The action of ξ ∈ B∗ on x ∈ B.



Sets, Functions, and Spaces

C The complex numbers.

Z & Z+ The integers and the positive integers.

N The non-negative integers: N = {0} ∪ Z+.

Q The set of rational numbers.

A{ The complement of the set A.

SN−1 The unit sphere in RN .

1A The indicator function of the set A.

sgn(x) The signum function: equal to 1 if x ≥ 0 and −1 if
x < 0.

Cb

(
E;R

)
or Cb

(
E;C

)
The space of bounded continuous functions from a
topological space E into R or C.

S (RN ;R) or S (RN ;C) The Schwartz test function space of smooth R or
C-valued functions with rapidly decreasing deriva-
tives.

Cb(E;R) or Cb(E;C) The space of bounded, continuous, R or C-valued
functions on E.

Cn(E;RN ) The space of f : G −→ RN with n ∈ N ∪ {∞}
continuous derivatives.

Cnc (E;RN ) The space of f ∈ Cn(G;RN ) that vanish off of a
compact set.

S (RN ;R) or S (RN ;C) The Schwartz space of smooth R orC-valued func-
tions with rapidly decreasing derivatives.



ix

Measure Theoretic

(a.e., µ) To be read almost everywhere with respect to µ.

σ(C) The σ-algebra generated by C (§ 2.1.2).

BE The Borel σ-algebra σ
(
G(E)

)
over E.

Bµ The completion of the σ-algebra B with respect to the
measure µ.

δa The unit point mass at a.

λS Lebesgue measure on the set S ∈ BRN .

M1(E) Space of probability Borel measures on E.

µ� ν µ is absolutely continuous with respect to ν.

µ ⊥ ν µ is singular to ν.

Φ∗µ The pushforward (image) of µ under Φ.∫
Γ
f(x) dx Equivalent to the Lebesgue integral

∫
Γ
f dλRN of f on

Γ .

Lp(µ;E) or Lp(µ;E) The Lebesgue space of E-valued or C-valued functions
f for which ‖f‖pE is µ-integrable.

〈ϕ, µ〉 The integral of ϕ with respect to µ.

(R)
∫

[a,b]
ϕ(t) dψ(t) The Riemann–Stieltjes integral of ϕ on [a, b] with re-

spect to ψ.

E & Eµ The expected value and expected value with respect to
µ.
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Chapter 1

Characteristic Functions

This chapter is devoted to a few facts, several of which I learned from an
interesting set of notes by W. Bryc [1], about and related to what probabilists
call characteristic functions.

1.1 Some Basic Facts

Given a Borel probability measure µ on RN , its characteristic function is its
Fourier transform µ̂ defined by

µ̂(ξ) =

∫
ei(ξ,x)RN µ(dx) for ξ ∈ RN .

Lemma 1.1.1 For every µ ∈ M1(RN ), µ̂ is a a uniformly continuous C-
valued function such that ‖µ‖u ≤ 1 = µ̂(0) and µ̂(−ξ) = µ̂(ξ). Moreover, if
ϕ ∈ Cb(RN ;C) ∩ L1(λRN ;C) for which ϕ̂ ∈ L1(λRN ;C), then∫

ϕdµ = (2π)−N
∫
ϕ̂(ξ)µ̂(−ξ) dξ. (1.1.1)

In particular, µ = ν if and only if µ̂ = ν̂.

Proof. That ‖µ̂‖u ≤ 1 = µ̂(0) is obvious, as is the continuity of µ̂. To see that
µ̂ is uniformly continuous, note that

|µ̂(η)− ν̂(ξ)|2 ≤
∫ ∣∣1− ei(η−ξ,x)RN

∣∣2 µ(dx) = 2

∫ (
1− cos(η− ξ, x)RN

)
µ(dx),

and therefore that

|µ̂(η)− µ̂(ξ)|2 ≤ 2
(
1−<µ̂(η − ξ)

)
. (1.1.2)

1



2 1 Characteristic Functions

Turning to (1.1.1), note that, because ϕ and ϕ̂ are λRN -integrable, the
L1-Fourier inversion formula says that

ϕ(x) = (2π)−N
∫
e−i(ξ,x)RN ϕ̂(ξ) dξ.

Hence, by Fubini’s theorem

(2π)N
∫
ϕdµ =

∫ (∫
e−i(ξ,x)RN ϕ̂(ξ) dξ

)
µ(dx)

=

∫
ϕ̂(ξ)

(∫
e−i(ξ,x)RN µ(dx)

)
dξ =

∫
ϕ̂(ξ)µ̂(−ξ) dξ.

Finally, to see that µ = ν if µ̂ = ν̂, remember that the Fourier transform
takes the Schwartz space S (RN ;C) (cf. § 3.6.1) into itself. Thus, if ϕ ∈
S (RN ;C), then both ϕ and ϕ̂ are in L1(λRN ;C), and so, by (1.1.1),

µ̂ = ν̂ =⇒
∫
ϕdµ =

∫
ϕdν for all ϕ ∈ S (RN ;C),

which means that µ = ν. ut

Lemma 1.1.2 If µ is the distribution of a random variable X, and, for some
n ≥ 1, E[|X|n] <∞, then µ̂ ∈ Cn(R;C) and

E
[
XmeiξX ] = (−i)m∂mµ̂(ξ) for 0 ≤ m ≤ n.

Proof. This is trivial when m = 0. If it holds for some 0 ≤ m < n, then

im
∂mµ̂(ξ + η)− ∂mµ̂(ξ)

η
= E

[
XmeiξX

eiηX − 1

η

]
.

Since
∣∣∣XmeiξX eiηX−1

η

∣∣∣ ≤ |X|m+1, the result follows from Lebesgue’s Domi-

nated Convergence theorem. ut

Define ∆tϕ(ξ) =
ϕ(ξ+ t

2 )−ϕ(ξ− t2 )

t for functions ϕ : R −→ C. If ϕ vanishes
at 0 faster than |ξ|n for some n ≥ 1, then limt↘0∆

n
t ϕ(0) = 0. Thus, for f ’s

which are n times differentiable in a neighborhood of 0, limt↘0∆
n
t f(0) =

limt↘0∆
n
t Pn(0), where Pn is the Taylor polynomial

∑n
m=0

f(m)(0)
m! ξm. There-

fore we will know that limt↘0∆
n
t f(0) = f (n)(0) once we show that ∆n

t ξ
m =

n!δm,n for 0 ≤ m ≤ n, which comes down to checking that ∆m
t ξ

m = m! for
all m ≥ 1. That ∆tξ = 1 is obvious. Now assume the result for 1 ≤ m < M .
Then
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t∆M
t ξ

M = ∆M−1
t

((
ξ + t

2

)M − (ξ − t
2

)M)
=

M∑
m=0

(
M

m

)(
∆M−1
t ξM−m

)(
t
2 )m

(
1 + (−1)m+1

)
= Mt∆M−1

t ξM−1 = tM !.

Lemma 1.1.3 If n ≥ 1 and there exists a sequence tk ↘ 0 such that
supk≥1 |∆2n

tk
µ̂(0)| < ∞, then E[X2n] < ∞. In particular, this will be the

case if µ̂ is 2n times continuously differentialble in a neighborhood of 0.

Proof. Set ex(ξ) = eixξ, and observe that

∆2
t ex(ξ) = 2ex(x)

cosxt− 1

t2
= −4t−2ex(ξ) sin2 xt

2
,

and therefore

∆2n
t ex(ξ) = (−4)nt−2nex(ξ) sin2n xt

2
.

Thus∣∣∆2n
tk
µ̂(0)

∣∣ = 4nt−2n
k E

[
sin2n Xtk

2

]
≥ 4nt−2n

k E
[
sin2n Xtk

2
, |X| ≤ π

2tk

]
≥ 2−nE

[
X2n, |X| ≤ π

2tk

]
.

ut

Theorem 1.1.4 If µ̂ admits an extension as an analytic function on BC(0, r),
then E

[
eα|X|

]
<∞ for α ∈ [0, r), and so

ζ ∈ {z ∈ C : <ζ ∈ (−r, r)} 7−→M(ζ) = E
[
eζX

]
∈ C

is analytic.

Proof. Since µ̂ ∈ C∞(R;C), Lemma 1.1.3 implies that E[|X|n] <∞ and, by
Lemma 1.1.2, ∂nµ̂(0) = inE[Xn] for all n ≥ 1. Hence,

µ̂(ξ) =

∞∑
n=0

E[Xn]

n!
(iξ)n

where the radius of convergence of the series is at least r. In particular, for
α ∈ [0, r),

E
[
eαX + e−αX

]
= 2

∞∑
n=0

E[X2n]

(2n)!
α2n <∞,

and so E
[
eα|X|

]
<∞. ut

Knowing that the map µ ∈ M1(RN ) 7−→ µ̂ ∈ Cb(RN ;C) is one-to-one,
one should ask about its continuity properties. For that purpose, introduce



4 1 Characteristic Functions

the notation 〈ϕ, µ〉 to denote the integral of a function ϕ with respect to
a (not necessarily finite) measure µ, and say that a sequence {µn : n ≥
1} ⊆ M1(RN ) converges weakly to µ ∈ M1(RN ) if, for every ϕ ∈ Cb(RN ;C),

〈ϕ, µn〉 −→ 〈ϕ, µ〉. I will write µn
w−→ µ to mean that {µn : n ≥ 1} converges

weakly to µ.
It is clear that µ̂n −→ µ̂ pointwise if µn

w−→ µ. In fact, as we will see, the
convergence of the µ̂n’s is uniform on compact. More important, we will show
that uniform convergence on compacts of the µ̂n’s implies weak convergence
of the µn’s.

Lemma 1.1.5 Let {µn : n ≥ 1}∪{µ} ⊆M1(RN ) be given, and assume that
〈ϕ, µn〉 −→ 〈ϕ, µ〉 for all ϕ ∈ C∞c (RN ;R). Then, for any ψ ∈ C

(
RN ; [0,∞)

)
,

〈ψ, µ〉 ≤ limn→∞〈ψ, µn〉. Moreover, if ψ ∈ C
(
RN ; [0,∞)

)
is µn-integrable for

each n ∈ Z and if 〈ψ, µn〉 −→ 〈ψ, µ〉 ∈ [0,∞), then for any sequence {ϕn :
n ≥ 1} ⊆ C(RN ;C) that converges uniformly on compacts to a ϕ ∈ C(RN ;C)
and satisfies |ϕn| ≤ Cψ for some C <∞ and all n ≥ 1, 〈ϕn, µn〉 −→ 〈ϕ, µ〉.

Proof. Choose ρ ∈ C∞c
(
RN ; [0,∞)

)
with total λR-integral 1, and set ρε(x) =

ε−Nρ(ε−1x) for ε > 0. Also, choose η ∈ C∞c
(
RN ; [0, 1]

)
so that η = 1 on

BRN (0, 1) and 0 off of BRN (0, 2), and set ηR(x) = η(R−1x) for R > 0.
Begin by noting that 〈ϕ, µn〉 −→ 〈ϕ, µ〉 for all ϕ ∈ C∞c (RN ;C). Next,

suppose that ϕ ∈ Cc(RN ;C), and, for ε > 0, set ϕε = ρε ? ϕ, the convolution∫
RN

ρε(x− y)ϕ(y) dy

of ρε with ϕ. Then, for each ε > 0, ϕε ∈ C∞c (RN ;C) and therefore
〈ϕε, µn〉 −→ 〈ϕε, µ〉. In addition, there is an R > 0 such that supp(ϕε) ⊆
BRN (0, R) for all ε ∈ (0, 1]. Hence,

lim
n→∞

∣∣〈ϕ, µn〉 − 〈ϕ, µ〉∣∣ ≤ 2〈ηR, µ〉‖ϕε − ϕ‖u.

Since limε↘0 ‖ϕε − ϕ‖u = 0, we have now shown that 〈ϕ, µn〉 −→ 〈ϕ, µ〉 for
all ϕ ∈ Cc(RN ;C).

Now suppose that ψ ∈ C
(
RN ; [0,∞)

)
, and set ψR = ηRψ, where ηR is as

above. Then, for each R > 0, 〈ψR, µ〉 = limn→∞〈ψR, µn〉 ≤ limn→∞〈ψ, µn〉.
Hence, by Fatou’s Lemma, 〈ψ, µ〉 ≤ limR→∞〈ψR, µ〉 ≤ limn→∞〈ψ, µn〉.

Finally, suppose that ψ ∈ C
(
RN ; [0,∞)

)
is µn-integrable for each n ∈ Z

and that 〈ψ, µn〉 −→ 〈ψ, µ〉 ∈ [0,∞). Given {ϕn : n ≥ 1} ⊆ C(RN ;C)
satisfying |ϕn| ≤ Cψ and converging uniformly on compacts to ϕ, one has∣∣〈ϕn, µn〉 − 〈ϕ, µ〉∣∣ ≤ ∣∣〈ϕn − ϕ, µn〉∣∣+

∣∣〈ϕ, µn〉 − 〈ϕ, µ〉∣∣.
Moreover, for each R > 0,
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lim
n→∞

∣∣〈ϕn − ϕ, µn〉∣∣
≤ lim
n→∞

sup
x∈BRN (0,2R)

|ϕn(x)− ϕ(x)|〈ηR, µn〉+ lim
n→∞

∣∣〈(1− ηR)(ϕn − ϕ), µn〉
∣∣

≤ 2C lim
n→∞

〈(1− ηR)ψ, µn〉 = lim
n→∞

2C
(
〈ψ, µn〉 − 〈ηRψ, µn〉

)
= 2C〈(1− ηR)ψ, µ〉,

and similarly

lim
n→∞

∣∣〈ϕ, µn〉 − 〈ϕ, µ〉∣∣
≤ lim
n→∞

∣∣〈ηRϕ, µn〉 − 〈ηRϕ, µ〉∣∣+ C lim
n→∞

〈(1− ηR)ψ, µn〉+ C〈(1− ηR)ψ, µ〉

= 2C〈(1− ηR)ψ, µ〉.

Finally, because ψ is µ-integrable, 〈(1 − ηR)ψ, µ〉 −→ 0 as R → ∞ by
Lebesgue’s Dominated Convergence Theorem, and so we are done. ut

In the proof of the following theorem and elsewhere, a function ϕ : RN −→
C is said to be rapidly decreasing if supx∈RN (1+x2n)|ϕ(x)| <∞ for all n ≥ 0.

Theorem 1.1.6 Given a sequence {µn : n ≥ 1} ⊆ M1(RN ) and a µ ∈
M1(RN ), µ̂n −→ µ̂ uniformly on compacts if µn

w−→ µ. Conversely, if
µ̂n(ξ) −→ µ̂(ξ) pointwise, then 〈ϕn, µn〉 −→ 〈ϕ, µ〉 whenever {ϕn : n ≥ 1}
is a uniformly bounded sequence in Cb(RN ;C) that tends to ϕ uniformly on
compacts. In particular, µ̂n −→ µ̂ uniformly on compacts.

Proof. Since ei(ξn,x)RN −→ ei(ξ,x)RN uniformly for x in compacts if ξn → ξ,
Lemma 1.1.5 says that, if µn

w−→ µ, then µ̂n(ξn) −→ µ̂(ξ) if ξn → ξ, and

therefore that µn
w−→ µ implies that µ̂n → µ uniformly on compacts.

Turning to the second part of the theorem, suppose that µ̂n −→ µ̂ point-
wise. By Lemma 1.1.5, we need only check that 〈ϕ, µn〉 −→ 〈ϕ, µ〉 when
ϕ ∈ C∞c

(
RN ;R

)
. But, for such a ϕ, ϕ̂ is smooth and rapidly decreasing, and

therefore the result follows immediately from (1.1.1) together with Lebesgue’s
Dominated Convergence Theorem. ut

The following is a generalization to RN of the classical Helly-Bray The-
orem. It was further generalized to complete separable metric spaces by Y.
Prohorov, and, with only minor changes (cf. Theorem 9.1.9 in [10]), the treat-
ment here can be used to prove Prohorov’s result.

Lemma 1.1.7 A subset S of M1(RN ) is sequentially relatively compact in
the weak topology if and only if

lim
R→∞

sup
µ∈S

µ
(
BRN (0, R){

)
= 0. (1.1.3)

Proof. The first step is to recognize that there is a countable set {ϕk :
k ∈ Z+} ⊆ Cc(RN ;R) of linear independent functions whose span is dense,
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with respect to uniform convergence, in Cc(RN ;R). To see this, choose
η ∈ Cc

(
RN ; [0, 1]

)
so that η = 1 on BRN (0, 1) and 0 off BRN (0, 2), and

set ηR(y) = η(R−1y) for R > 0. Next, for each ` ≥ 1, apply the Stone–
Weierstrass Theorem to choose a countable dense subset {ψj,` : j ∈ Z} of

C
(
BRN (0, 2`);R

)
, and set ϕj,` = η`ψj,`. Clearly {ϕj,` : (j, `) ∈ (Z+)2} is

dense in Cc(RN ;R). Finally, using lexicographic ordering of (Z+)2, extract
a linearly independent subset {ϕk : k ≥ 1} by taking ϕk = ϕjk,`k , where
(j1, `1) = (1, 1) and (jk+1, `k+1) is the first (j, `) such that ϕj,` is linearly
independent of {ϕ1, . . . , ϕk}.

Given a sequence {µn : n ≥ 1} ⊆ S, we can use a diagonalization proce-
dure to find a subsequence {µnm : m ≥ 1} such that ak = limm→∞〈ϕk, µnm〉
exists for every k ∈ Z+. Next, define the linear functional Λ on the span of
{ϕk : k ≥ 1} so that Λ(ϕk) = ak. Notice that if ϕ =

∑K
k=1 αkϕk, then

∣∣Λ(ϕ)
∣∣ = lim

m→∞

∣∣∣∣∣
K∑
k=1

αk〈ϕk, µnm〉

∣∣∣∣∣ = lim
m→∞

∣∣〈ϕ, µnm〉∣∣ ≤ ‖ϕ‖u,
and similarly that Λ(ϕ) = limm→∞〈ϕ, µnm〉 ≥ 0 if ϕ ≥ 0. Therefore Λ
admits a unique extension as a non-negativity preserving linear functional on
Cc(RN ;R) that satisfies |Λ(ϕ)| ≤ ‖ϕ‖u for all ϕ ∈ Cc(RN ;R).

Now assume that (1.1.3) holds. For each ` ∈ Z, apply the Riesz Repre-
sentation Theorem to produce a non-negative Borel measure ν` supported
on BRN (0, 2`) so that 〈ϕ, ν`〉 = Λ(η`ϕ) for ϕ ∈ Cc(RN ;R). Since 〈ϕ, ν`+1〉 =
Λ(ϕ) = 〈ϕ, ν`〉 whenever ϕ vanishes off of BRN (0, `), it is clear that

ν`+1

(
Γ ∩BRN (0, `+ 1)

)
≥ ν`+1

(
Γ ∩BRN (0, `)

)
= ν`

(
Γ ∩BRN (0, `)

)
for all Γ ∈ BRN . Hence the limit

µ(Γ ) ≡ lim
`→∞

ν`
(
Γ ∩BRN (0, `)

)
=

∞∑
`=1

ν`

(
Γ ∩

(
BRN (0, `) \BRN (0, `− 1)

))
,

exists and determines a non-negative Borel measure µ on RN whose re-
striction to BRN (0, `) is ν` for each ` ∈ Z+. In particular, µ(RN ) ≤ 1 and
〈ϕ, µ〉 = limm→∞〈ϕ, µnm〉 for every ϕ ∈ Cc(RN ;R). Thus, by Lemma 1.1.5,
all that remains is to check that µ(RN ) = 1. But

µ(RN ) ≥ 〈η`, µ〉 = lim
m→∞

〈η`, µnm〉 ≥ lim
m→∞

µnm
(
BRN (0, `)

)
= 1− lim

m→∞
µnm

(
BRN (0, `){

)
,

and, by (1.1.3), the final term tends to 0 as `→∞.
To prove the converse assertion, suppose that S is sequentially relatively

compact. If (1.1.3) failed, then we could find an θ ∈ (0, 1) and, for each n ∈ Z,
a µn ∈ S such that µn

(
BRN (0, n)

)
≤ θ. By sequential relative compactness,
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this would mean that there is a subsequence {µnm : m ≥ 1} ⊆ S and a

µ ∈ M1(RN ) such that µnm
w−→ µ and µnm

(
BRN (0, nm)

)
≤ θ. On the other

hand, for any R > 0,

µ
(
BRN (0, R)

)
= lim
m→∞

〈ηR, µnm〉 ≤ lim
m→∞

µnm
(
BRN (0, nm)

)
≤ θ,

and so we would arrive at the contradiction 1 = limR→∞ µ
(
BRN (0, R)

)
≤ θ.
ut

Lemma 1.1.8 Let µ ∈ M1(RN ). Then, for all (r,R) ∈ [0,∞)2 and e ∈
SN−1, ∣∣1− µ̂(re)

∣∣ ≤ rR+ µ
(
{x ∈ RN : |(x, e)RN | ≥ R}

)
. (1.1.4)

Next, define

s(r) = sup
θ≥r

(
1− sin θ

θ

)
for r > 0.

Then 0 < s(r) ≤ Cr for some C <∞, and

µ
(
{x ∈ RN : |x| ≥ R}

)
≤ max
|ξ|≤r

N |1− µ̂(ξ)|
s(N−

1
2 rR)

for all (r,R) ∈ (0,∞)2. (1.1.5)

Proof. The facts about s(r) are easily checked using elementary calculus.
To prove (1.1.4), simply observe that, since |1− eiξ| ≤ |ξ| ∧ 1,∣∣1− µ̂(re)

∣∣ ≤ ∫ ∣∣1− eir(x,e)RN ∣∣µ(dx) ≤ rR+ µ
(
{x : |(x, e)| ≥ R}

)
.

Turning to (1.1.5), note that, for t ≥ 0,∣∣1− µ̂(te)
∣∣ ≥ ∫ (1− cos(tx, e)RN

)
dµ.

Now integrate this inequality with respect to t ∈ [0, r], and divide by r to see
that

max
|ξ|≤r
|1− µ̂(ξ)| ≥ 1

r

∫ r

0

∣∣1− µ̂(te)
∣∣ dt ≥ ∫ (1− sin(re, x)RN

(re, x)RN

)
µ(dx)

≥
∫

|(e,x)RN |≥R

(
1− sin(re, x)RN

(re, x)RN

)
µ(dx) ≥ s(rR)µ

(
{x : |(e, x)RN | ≥ R}

)
.

Finally, use the fact that

µ
(
{x : |x| ≥ R}

)
≤ N sup

e∈SN−1

µ
(
{x : |(e, x)RN | ≥ N−

1
2R}

)
to arrive at (1.1.5) ut
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The following theorem answers the question posed above about the re-
lationship between characteristic functions and weak convergence. It was
proved by P. Lévy and is called Lévy’s Continuity Theorem.

Theorem 1.1.9 Let {µn : n ≥ 1} ⊆ M1(RN ), and assume that f(ξ) =
limn→∞ µ̂n(ξ) exists for each ξ ∈ RN . Then f is the characteristic function
of a µ ∈M1(RN ) if and only if there is a δ > 0 for which

lim
n→∞

sup
|ξ|≤δ

∣∣µ̂n(ξ)− f(ξ)
∣∣ = 0,

in which case µn
w−→ µ.

Proof. The only assertion not already covered by Lemmas 1.1.5 and 1.1.1 is
the “if” part of the equivalence. But, if µ̂n −→ f uniformly in a neighborhood
of 0, then it is easy to check that supn≥1 |1 − µ̂n(ξ)| must tend to zero as
|ξ| → 0. Hence, by (1.1.5) and Lemma 1.1.7, we know that there exists a µ

and a subsequence {µnm : m ≥ 1} such that µnm
w−→ µ. Since µ̂ must equal

f , Lemma 1.1.1 says that µn
w−→ µ. ut

Bochner found an interesting characterization of characteristic functions.
To describe his result, say that a function f : RN −→ C is non-negative
definite if the matrix ((

f(ξj − ξk)
))

1≤j,k≤n

is non-negative definite for all n ≥ 2 and ξ1, . . . , ξn ∈ RN , which is equivalent
to saying

n∑
j,k=1

f(ξj − ξk)αjαk ≥ 0

for all α1, . . . , αn ∈ C.

Theorem 1.1.10 A function f : RN −→ C is a characteristic function if
and only if f is continuous, f(0) = 1, and f is non-negative definite.

Proof. Assume that f = µ̂ for some µ ∈ M1(RN ). Then it is obvious that
f is continuous and that f(0) = 1. To see that it is non-negative definite,
observe that

n∑
j,k=1

f(ξj − ξk)αjαk =

∫  n∑
j,k=1

ei(ξj−ξk)xαjαk

 µ(dx)

=

∫ ∣∣∣∣∣∣
n∑

j,k=1

eiξjxαj

∣∣∣∣∣∣
2

µ(dx) ≥ 0.

Now assume that f is a continuous, non-negative definite function with
f(0) = 1. Because
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A ≡

 1 f(ξ)

f(−ξ) 1


is non-negative definite, =

(
f(ξ) + f(−ξ)

)
and =

(
if(ξ) − if(−ξ)

)
are both

0, and therefore f(ξ) = f(−ξ). Thus A is Hermitian, and because it is
non-negative definite, 1 − |f(ξ)|2 ≥ 0. Therefore |f(ξ)| ≤ 1. Next, let
ψ ∈ S (RN ;R), and use Riemann approximations to see that∫∫

f(ξ − η)ψ̂(ξ)ψ̂(η) dξdη ≥ 0.

Assume for the moment that f ∈ L1(λRN ;C), and set

g(x) = (2π)−N
∫
e−i(ξ,x)f(ξ) dξ.

By Fubini’s Theorem and the fact that ψ̂(ξ) = ψ̂(−ξ),

(2π)N
∫
g(x)ψ(x)2 dx =

∫
f(ξ)ψ̂2(−ξ) dξ =

∫
f(ξ)

(
ψ̂ ∗ ψ̂

)
(−ξ) dξ

=

∫∫
f(ξ)ψ̂(ξ + η)ψ̂(η) dξdη =

∫∫
f(ξ − η)ψ̂(ξ)ψ̂(η) dξdη ≥ 0.

Hence, since g is continuous, it follows that g ≥ 0. In addition, f = ĝ and
so
∫
g(x) dx = f(0) = 1 and f is the Fourier transform of the probability

measure dµ = g dλRN .
To remove the assumption that f is integrable, choose a non-negative, even

ρ ∈ S (RN ;R) for which 〈ρ, λRN 〉 = 1, and set ρt(x) = t−
N
2 ρ(t−1x) for t > 0.

Then ρ̂ ∈ S (RN ;R) and ρ̂t(ξ) = ρ̂(tξ). Therefore ft ≡ ρ̂tf is a continuous,
λRN -integrable function that is 1 at 0. To see that ft is non-negative definite,
note that

n∑
j,k=1

ft(ξj − ξk)αjαk =

n∑
j,k=1

f(ξj − ξk)αjαk

∫
ei(ξj−ξk)x ρt(x) dx

=

∫  n∑
j,k=1

f(ξj − ξk)
(
αje

iξjx
)(
αkeiξkx

) ρt(x) dx ≥ 0.

Thus ft = µ̂t for some µt ∈ M1(RN ), and so, since ft −→ f uniformly
on compacts, Lévy’s Continuity Theorem implies that µt tends weakly to a
µ ∈M1(RN ) for which f = µ̂. ut

Because it is difficult to check whether a function is non-negative definite,
it is the more or less trivial necessity part of Bochner’s Theorem that turns
out in practice to be more useful than the sufficiency conditions.
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Exercise 1.1.1

(i) By combining Theorem 1.1.10 with (1.1.2), one sees that if f is a
continuous, non-negative function for which f(0) = 1, then |f(ξ)| ≤ 1 and
|f(η)− f(ξ)|2 ≤ 2

(
1− <f(η − ξ)

)
. Show that these inequalities hold even if

one drops the continuity assumption.

Hint: Use the non-negative definiteness of the matrices

 1 f(−ξ)

f(ξ) 1

 and


1 f(−ξ) f(−η)

f(ξ) 1 f(ξ − η)

f(η) f(η − ξ) 1


to see that f(−ξ) = f(ξ) and that

1 + 2α
(
1−<f(η − ξ)

)
+ 2α2

∣∣f(η)− f(ξ)
∣∣ ≥ 0 for all α ∈ R.

(ii) Show that if f1 and f2 are continuous, non-negative definite functions,
then so are f1f2 and, for any a, b ≥ 0, af1 + bf2. See if you can drop the
continuity assumption.

(iii) Suppose that f : RN −→ C is a function for which f(0) = 1. Show

that if lim|x|↘0
1−f(x)
|x|2 = 0, then f cannot be a characteristic function. In

particular, if α > 2, then e−|ξ|
α

is not a characteristic function.

(iv) Given a finite signed Borel measure µ on RN , define µ̂(ξ) =
∫
ei(ξ,x)RN µ(dx),

and show that µ̂ = 0 if and only if µ = 0.

Hint: Use the Hahn Decomposition Theorem to write µ as the difference of
two, mutually singular, non-negative Borel measures on RN .

(v) Suppose that f : R −→ C is a non-constant, twice continuously differ-

entiable characteristic function. Show that f ′′(0) < 0 and that f ′′

f ′′(0) is again

a characteristic function. In addition, show that ‖f ′‖u ∨ ‖f ′′‖u ≤ |f ′′(0)| 12
and that |f(η)− f(ξ)| ≤

(
|f ′(0)|+ |f ′′(0)| 12

)
|η − ξ|.

(vi) Let µn ∈M1(R) be the measure for which dµn
dλR

= (2n)−11[−n,n]. Show
that µ̂n −→ 1{0} pointwise, and conclude that {µn : n ≥ 1} has no weak
limits. This example demonstrates the important role that continuity plays
in Bochner’s and Lévy’s theorems.

1.2 Infinitely Divisible Laws

Except for Lemma 1.2.1, the contents of this subsection will not be used
below.

Because sums of independent, identically distributed random variables
play a prominent role in probability theory, Lévy and Khinchine asked what
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are the distributions of random variables that, for every n ≥ 1, can be
written as the sum of n independent, identically distributed random vari-
ables. To express this in terms of measures, remember that the convolution
of µ, ν ∈M1(RN ) is the measure µ ∗ ν ∈M1(RN ) given by

µ ∗ ν(Γ ) =

∫∫
1Γ (x+ y)µ(dx)ν(dy)

and that, if µ and ν are the distributions of independent random variables X
and Y , then µ ∗ ν is the distribution of X + Y . Thus, what they were asking
is which µ ∈M1(RN ) have the property that, for every n ≥ 2, µ admits nth
root µ 1

n
∈M1(RN ) with respect to convolution. That is,

µ = (µ 1
n

)∗n = µ 1
n
∗ · · · ∗ µ 1

n︸ ︷︷ ︸
n

,

which, since µ̂ ∗ ν = µ̂ν̂, is equivalent to µ̂ = (µ̂ 1
n

)n.

Denote by I(RN ) the set of infinitely divisible µ ∈ M1(RN ). What Lévy
and Khinchine proved is that µ ∈ I(RN ) if and only if

µ̂(ξ) = exp

(
i(b, ξ)RN −

1

2

(
ξ, Aξ

)
RN

+

∫ (
ei(ξ,y)RN − 1− i1BRN (0,1)(y)(ξ, y)RN

)
M(dy)

)
,

(1.2.1)

for some b ∈ RN , non-negative definite, symmetric A ∈ Hom(RN ;RN ), and

Borel measure M on RN such that M({0}) = 0 and
∫ |y|2

1+|y|2 M(dy) < ∞.

The expression in (1.2.1) is called the Lévy–Khinchine formula, a measure
M satisfying the stated conditions is called a Lévy measure, and the triple
(b, A,M) is called a Lévy system. It is clear that if the right hand side of
(1.2.1) is a characteristic function for every Lévy system, then these are
characteristic functions of infinitely divisible laws. Namely, if µ corresponds
to (b, A,M) and µ 1

n
corresponds to

(
b
n ,

A
n ,

M
n

)
, then µ̂ = (µ̂ 1

n
)n.

Proving that the function f(b,A,M) on the right hand side of (1.2.1) is a
characteristic function is a relatively easy. Indeed, f(0,I,0) = γ̂ (cf. (2.1.1)),

where γ(dx) = (2π)−
N
2 e−

|x|2
2 λRN (dx), and so it is easy to check that fb,A,0

is the characteristic function of the distribution of b+A
1
2x under γ. Also, if

the Lévy measure M is finite and πM is the Poisson measure given by

πM = e−M(RN )
∞∑
n=0

M∗n

n!
,

then fbM ,0,M = π̂M , where
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bM =

∫
BRN (0,1)

yM(dy).

Hence, when M is finite, f(b,A,M) is the characteristic function of γb−bM ,A ∗
πM . Finally, for general Lévy measures M , set Mk(dy) = 1[ 1

k ,∞)(|y|)M(dy).
Then Mk is finite, and so f(b,A,Mk) is a characteristic function. Therefore,
since f(b,A,Mk) −→ f(b,A,M) uniformly on compacts, Theorem 1.1.9 says that
f(b,A,M) is a characteristic function.

There are several proofs that (1.2.1) describes the characteristic function
of every µ ∈ I(RN ), but none of them is simple. Nonetheless, it is possible
to explain the idea on which all approaches are based. Namely, elements of
I(RN ) have nth roots for all n ≥ 1 in the Abelian group M1(RN ) with
convolution. Thus, for any m, n ≥ 1, a µ ∈ I(RN ) has an m

n th root µm
n

=
(µ 1

n
)∗m. Hence one should expect that one can take the logarithm of µ.

Equivalently, one should expect that the limit

`µ(ξ) = lim
n→∞

n
(
µ̂ 1
n

(ξ)− 1
)

exists and that µ̂ = e`u . As we will show, the existence of this limit is quite
easy, but the proof that

`µ(ξ) = i(b, ξ)RN−
1

2

(
ξ, Aξ

)
RN+

∫ (
ei(ξ,y)RN−1−i1BRN (0,1)(y)(ξ, y)RN

)
M(dy)

for some Lévy system (b, A,M) is harder.
To prove that `µ exists, we will need the following elementary fact about C-

valued functions. In its statement, log is the principle branch of the logarithm
function on C \ (−∞, 0]. That is, log(reiθ

)
= log r + θ for r > 0 and θ ∈

(−π, π). In particular,

log(ζ) = −
∞∑
n=0

(1− ζ)n

n
when |1− ζ| < 1.

Lemma 1.2.1 Given R > 0, suppose that f : BRN (0, R) −→ C is a continu-
ous function that equals 1 at 0 and never vanishes. Then there exists a unique
continuous function `f : BRN (0, R) −→ C such that `f (0) = 0 and f = e`f

on BRN (0, R). Moreover, if ξ ∈ BRN (0, R) and r > 0, then

sup

{∣∣∣∣1− f(η)

f(ξ)

∣∣∣∣ : η ∈ BRN (ξ, r) ∩BRN (0, R)

}
< 1

=⇒ `f (η) = `f (ξ) + log
f(η)

f(ξ)
for η ∈ BRN (ξ, r) ∩BRN (0, R),

and so ∣∣∣∣1− f(η)

f(ξ)

∣∣∣∣ ≤ 1

2
=⇒

∣∣`f (η)− `f (ξ)
∣∣ ≤ 2

∣∣∣∣1− f(η)

f(ξ)

∣∣∣∣ .
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Finally, if g : BRN (0, R) −→ C is a second function with the same properties
as f , then

sup
ξ∈BRN (0,R)

∣∣∣∣1− g(ξ)

f(ξ)

∣∣∣∣ ≤ 1

2
=⇒ |`g(ξ)− `f (ξ)| ≤ 2

∣∣∣∣1− g(ξ)

f(ξ)

∣∣∣∣ .
Proof. To prove the existence and uniqueness of `f , begin by observing that
there exists an M ∈ Z and 0 = r0 < r1 < · · · < rM = R such that∣∣∣∣∣∣1− f(ξ)

f
(
rm−1ξ
|ξ|

)
∣∣∣∣∣∣ ≤ 1

2
for 1 ≤ m ≤M and ξ ∈ BRN (0, rm) \BRN (0, rm−1).

Thus we can define a function `f on BRN (0, R) so that `f (0) = 0 and

`f (ξ) = `f

(
rm−1ξ

|ξ|

)
+ log

f(ξ)

f
(
rm−1ξ
|ξ|

)
if 1 ≤ m ≤M and ξ ∈ BRN (0, rm) \BRN (0, rm−1).

Furthermore, working by induction on 1 ≤ m ≤ M , one sees that this `f
is continuous and satisfies f = e`f . Finally, for any ` ∈ C

(
BRN (0, R);C

)
satisfying `(0) = 0 and f = e`, (i2π)−1(` − `f ) is a continuous, Z-valued
function that vanishes at 0, and therefore ` = `f .

Next suppose that ξ ∈ BRN (0, R) and that∣∣∣∣1− f(η)

f(ξ)

∣∣∣∣ < 1 for all η ∈ BRN (ξ, r) ∩BRN (0, R).

Set

`(η) = `f (ξ) + log
f(η)

f(ξ)
for η ∈ BRN (ξ, r) ∩BRN (0, R),

and check that η  (i2π)−1
(
`(η)− `f (η)

)
is a continuous, Z-valued function

that vanishes at ξ. Hence, ` = `f on BRN (0, R)∩BRN (ξ, r), and therefore on

BRN (0, R) ∩B(ξ, r). Since | log(1 − ζ)| ≤ 2|ζ| if |ζ| ≤ 1
2 , this completes the

proof of the asserted properties of `f .

Turning to the comparison between `g and `f when
∣∣∣1− g(ξ)

f(ξ)

∣∣∣ ≤ 1
2 for all

ξ ∈ BRN (0, R), set `(ξ) = `f (ξ)+log g(ξ)
f(ξ) , check that `(0) = 0 and g = e`, and

conclude that `g − `f = log g
f . From this, the asserted estimate for |`g − `f |

is immediate. ut

Lemma 1.2.2 If µ ∈ I(RN ), then µ̂ never vanishes.

Proof. Choose r > 0 so that |1− µ̂(ξ)| ≤ 1
2 for |ξ| ≤ r. By Lemma 1.2.1, there

is a unique continuous ` : BRN (0, r) −→ C such that `(0) = 0 and µ̂ = e`
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on BRN (0, r). Now choose µ 1
n

so that µ̂ = (µ̂ 1
n

)n. Then µ̂ 1
n

doesn’t vanish

on BRN (0, r), and there is an `n : BRN (0, r) −→ C such that `n(0) = 0 and
µ̂ 1
n

= e`n on BRN (0, r). Hence, µ̂ = en`n , and so, by uniqueness, ` = n`n and

therefore µ̂ 1
n

= e
`
n on BRN (0, r).

Next, because ` = log µ̂ and |1 − µ̂| ≤ 1
2 on BRN (0, r), |`| ≤ 2 there.

Therefore, since <` ≤ 0, |1 − µ̂ 1
n
| = |1 − e `n | ≤ 2

n on BRN (0, r). Now apply

(1.1.5) to see that, for any ρ > 0,

µn
(
{x : |x| ≥ ρ}

)
≤ 2N

ns(N−
1
2 ρr)

and therefore, by (1.1.4), that

|1− µ̂ 1
n

(ξ)| ≤ ρR+
2N

ns(N−
1
2 rρ)

for ρ, R > 0 and |ξ| ≤ R.

Finally, take ρ = 1
4R and n ≥ 4N

s(N−
1
2 rρ)

, and conclude that µ̂ 1
n

, and therefore

µ̂, doesn’t vanish on BRN (0, R) for any R > 0. ut

As a consequence of Lemmas 1.2.2 and 1.2.1, we know that if µ ∈ I(RN ),
then µ̂ = e`µ for a unique continuous `µ : RN −→ C which vanishes at
0. Further, by the argument at the beginning of the preceding proof, µ =

(µ 1
n

)∗n =⇒ µ̂ 1
n

= e
`µ
n . Thus `µ is the limit which was predicted above.

The challenge now is to show that

`µ(ξ) = `(b,A,M)(ξ) ≡ i(b,ξ)RN −
1

2

(
ξ, Aξ

)
RN

+

∫ (
ei(ξ,y)RN − 1− i1BRN (0,1)(y)(ξ, y)RN

)
M(dy)

for some Lévy system (b, A,M). Here is an outline of one approach. Using
the estimates in Lemma 1.1.8, one can show that `µ(ξ) has at most quadratic
growth, thereby justifying∫
ϕ̂(ξ)`µ(−ξ) dξ = lim

t↘0
t−1

∫
ϕ̂(ξ)

(
et`µ(−ξ)−1

)
dξ = (2π)N lim

t↘0

〈ϕ, µt〉 − ϕ(0)

t

for ϕ ∈ S (RN ;C). Next, define the linear functional Aµ on S (R;R) by

Aµϕ = lim
t↘0

〈ϕ, µt〉 − ϕ(0)

t
.

At this point the problem becomes that of showing that
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Aµϕ =
(
b,∇ϕ(0)

)
RN +

1

2

N∑
j,k=1

Aj,k∂j∂kϕ(0)

+

∫ (
ϕ(x)− ϕ(0)− 1BRN (0,1)(x)

(
x,∇ϕ(0)

)
RN

)
M(dx)

for some Lévy system (b, A,M). Indeed, define the Lévy operator L(b,A,M) on
C2

b(RN ;C) by

L(b,A,M)ϕ(x) =
(
bj ,∇ϕ(x)

)
RN +

1

2

N∑
j,k=1

Aj,k∂j∂kϕ(x)

+

∫ (
ϕ(x+ y)− ϕ(x)− 1BRN (0,1)(x)

(
y,∇ϕ(x)

)
RN

)
M(dy).

Using Fubini’s theorem and elementary Fourier theory, one can check that

(2π)−N
∫
ϕ̂(ξ)`(b,A,M)(−ξ) dξ = L(b,A,M)ϕ(0),

and therefore one would know that∫
ϕ̂(ξ)`µ(−ξ) dξ =

∫
ϕ̂(ξ)`(b,A,M)(−ξ) dξ for ϕ ∈ S (R;C),

which is possible only if `µ = `(b,A,M).
The proof that Aµϕ = L(b,A,M)ϕ(0) for some Lévy system (b, A,M) relies

on two facts, the most crucial of which is the simple observation that Aµϕ ≥ 0
if ϕ ∈ S (RN ;R) satisfies ϕ ≥ ϕ(0), a property that is reminiscent of the
minimum principle for second order elliptic operators and is obvious from
original expression for Aµϕ. The second required fact is that Aµ has a quasi-
local property. Namely, if ϕ ∈ S (R;C) and ϕR(x) = ϕ

(
x
R

)
, then AµϕR −→ 0

as R→∞. Verifying this property is most easily done by using the expression
for the action of Aµ in terms of `µ. Finally, based on these two properties
alone, one can show that Aµϕ = L(b,A,M)ϕ(0) for some (b, A,M). See § 3.1
in [10] for more details.

Exercise 1.2.1

(i) Show that if µ ∈ I(RN ), then et`µ is a characteristic function for each
t > 0.

(ii) Let µ ∈ M1(RN ) and {nk : k ≥ 1} ⊆ Z+ is a sequence that increases
to ∞. Show that if, for each k ≥ 1, there is an µ 1

nk

∈ M1(RN ) such that

µ = (µ 1
nk

)∗nk , then µ ∈ I(RN ).

(iii) Show that for each α ∈ (0, 2] there is a µ ∈ I(RN ) for which e−|ξ|
α

is
the characteristic function. Thus, when combined with (iii) in Exercise 1.1.1,



16 1 Characteristic Functions

this proves that, for any t > 0, e−t|ξ|
α

is a non-negative definite function if
and only α ∈ (0, 2].

(iv) The Poisson kernel for the upper halfspace R× (0,∞) is the function
py(x) = y

π(x2+y2) . After checking that
∫
py(x) dx = 1, take dµy = py dλR, and

show that µ̂y(ξ) = e−y|ξ|.

Hint: Show that ∂2
ypy(x) = −∂2

xpy(x) and therefore that ∂2
y p̂y(ξ) =

ξ2p̂y(ξ). Next, show that limy↘0 p̂y(ξ) = 1, and use the fact that |p̂y(ξ)| ≤ 1
to conclude that p̂y(ξ) = e−y|ξ|.



Chapter 2

Gaussian Measures and Families

This chapter deals with some of the properties of Gaussian measures and the
construction of families of Gaussian random variables.

2.1 Gaussian Measures on R

The standard Gaussian measure on R is the Borel probability measure γ0,1 �
λR with Randon–Nikodym derivative

dγ0,1

dλR
(x) = (2π)−

1
2 e−

x2

2 λR(dx).

If b ∈ R and a ≥ 0, then the γb,a ∈ M1(RN ) is the distribution of b + a
1
2x

under γ0,1. Thus, γb,0 = δb, the unit point mass at b, and if a > 0, then

γb,a(dx) = (2πa)−
1
2 e−

(x−b)2
2a λR(dx). It is easy to check that a real valued

random variable with distribution γb,a has mean value b and variance a.
Some people say that such a random variable is Gaussian and others say it is
normal, and we will sometimes use one term and sometimes the other term.
Finally, the set N(b, a) will denote the set of normal random variables with
mean b and variance a.

The following lemma contains a few useful facts about Gaussian random
variables.

Lemma 2.1.1 If a > 0 and X ∈ N(0, a), then

E
[
eζX

]
= e

aζ2

2 for all ζ ∈ C, (2.1.1)

E
[
e
αX2

2

]
= (1− αa)−

1
2 for α ∈

[
0, a−1

)
, (2.1.2)

17
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E
[
|X|α

]
= Cαa

α
2 where Cα =

∫
|x|α γ0,1(dx) for α ∈ [0,∞), (2.1.3)

and, for n ≥ 1,

E
[
X2n−1

]
= 0 and E

[
X2n

]
=

(2n)!

2nn!
an = an

n∏
m=1

(2m− 1). (2.1.4)

Moreover, if {Xn : n ≥ 1} is a sequence of Gaussian random variables and
Xn converges in probability to X, then X is Gaussian and E

[
|Xn−X|p

]
−→ 0

for all p ∈ [1,∞).

Proof. When ζ ∈ R, (2.1.1) follows by writing ζx− x2

2a as

− (x− aζ)2

2a
+
aζ2

2

and using the translation invariance of λR. To handle general ζ ∈ C, note that
both sides of the equation are entire functions that agree on R and therefore
on C.

To prove (2.1.2), set c = a
1−αa , and observe that

E
[
e
αX2

2

]
= (2πa)−

1
2

∫
exp
(
−x

2

2c

)
dx =

( c
a

) 1
2

.

Since X has the same distribution as a
1
2 times a standard normal random

variable, (2.1.3) is trivial and (2.1.4) reduces to the case when a = 1. But,
when a = 1, Theorem 1.1.4 justifies

∞∑
m=0

αm

m!
E
[
Xm

]
= E

[
eαX

]
= e

α2

2 =

∞∑
m=0

α2m

2mm!
,

from which (2.1.4) with a = 1 follows immediately.
Now suppose that Xn ∈ N(bn, an) and that Xn −→ X in probability.

Then, for all ξ ∈ R,

eibnξ−
anξ

2

2 = E
[
eiξXn

]
−→ E

[
eiξX

]
.

Choose r > 0 so that E
[
eiξX

]
6= 0 for |ξ| ≤ r. Then, by Lemma 1.2.1, there is

a unique continuous ` : [−r, r] −→ C such that `(0) = 0 and E
[
eiξX

]
= e`(ξ),

and so, by that lemma, ibn − aξ2

2 −→ `(ξ) for |ξ| ≤ r. Hence, there exist
b ∈ R and a ≥ 0 such that bn −→ b and an −→ a, and so X ∈ N(b, a).
Furthermore, since bn −→ b, to see that E

[
|Xn−X|p

]
−→ 0, it suffices to do

so when bn = 0 for all n. But, since {an : n ≥ 1} is bounded, in that case,
(2.1.2) says that there exists and α > 0 such that
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E
[
e
αX2

2

]
≤ sup
n≥1

E
[
e
αX2

n
2

]
<∞,

and so
{
|Xn −X|p : n ≥ 1

}
is a sequence of uniformly integrable functions

that tend to 0 in probability. ut

2.2 Cramér–Lévy Theorem

The following remarkable theorem was discovered by Cramér and Lévy. So
far as I know, there is no truly probabilistic or real analytic proof of it.

Theorem 2.2.1 If X and Y are independent random variables whose sum
is Gaussian, then each of them is Gaussian.

Proof. Without loss in generality, assume that X + Y ∈ N(0, 1).
Choose r > 0 so that P(|X| ≥ r) ∨ P(|Y | ≥ r) ≤ 1

2 . Then

P(|X| ≥ r +R) ≤ 2P(|X| ≥ r +R & |Y | ≤ r) ≤ 2P(|X + Y | ≥ R) ≤ 4e−
R2

2 ,

and similarly P(|Y | ≥ r + R) ≤ 4e−
R2

2 . Therefore E
[
eαX

2] ∨ E
[
eαY

2]
< ∞

for some α > 0. Knowing that X and Y are integrable, one can reduce to the
case when they have mean 0, and so we will proceed under that assumption.

Set f(ζ) = E
[
eζX

]
and g(ζ) = E

[
eζY
]

for ζ ∈ C. Both f and g are

entire functions whose product equals e
ζ2

2 . In particular, neither of them
vanishes anywhere, and so, by Lemma 1.2.1, there is an entire function θ

such that θ(0) = 0, f(ζ) = eθ(ζ), and g(ζ) = exp
(
ζ2

2 − θ(ζ)
)
. Furthermore,

since E[X] = 0 and therefore θ′(0) = 0,

θ(ζ) =

∞∑
n=2

cnζ
n where n!cn = ∂nξ logE

[
eξX

] ∣∣
ξ=0
∈ R.

Observe that, by Hölder’s inequality, log ◦f and log ◦g are convex functions
of ξ ∈ R. Thus, since they and their first derivatives vanish at ξ = 0, they
must be non-negative on R. That is,

θ(ξ) ≥ 0 ≤ ξ2

2
− θ(ξ).

Therefore, for ζ = ξ + iη,

e<θ(ζ) =
∣∣eθ(ζ)∣∣ ≤ E

[∣∣eζX∣∣]∣∣ = eθ(ξ) ≤ e
ξ2

2

and

e
ξ2−η2

2 −<θ(ζ) ≤ e
ξ2

2 −θ(ξ),
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which means that −η2 ≤ 2<θ(ζ) ≤ ξ2 and therefore that
∣∣<θ(ζ)

∣∣ ≤ |ζ|22 .
Finally, by Cauchy’s Theorem, for n > 2 and any r > 0,

2πcn = r−n
∫ 2π

0

θ(reit)e−int dt = 2r−n
∫ 2π

0

<θ(reit)e−int dt

since ∫ 2π

0

θ(reit)e−int dt =

∫ 2π

0

θ(reit)eint dt = 0.

Thus 2π|cn| ≤ 2πr2−n for all r > 0, which means that cn = 0 for n > 2.

Therefore f(ζ) = ecnζ
2

, which is possible only if cn ≤ 0. ut

In the following and elsewhere, I will employ the technique of symmetriza-
tion of a µ ∈M1(R). To describe this technique, define µ̃ by µ̃(Γ ) = µ(−Γ ).

Then the symmetrizaton of µ is the measure µ∗ µ̃. Equivalently, µ̂ ∗ µ̃ = |µ̂|2,
and if X and Y are independent random variables with distribution µ, then
X−Y has distribution µ∗µ̃. Obviously, µ∗µ̃ is even in the sense that it assigns
−Γ the same measure as it does Γ . Less obvious is the fact that integrability
properties of X are intimately related to those of X − Y . Specifically, let α
be a median of X (i.e., P(X ≥ α) ≥ 1

2 ≤ P(X ≤ α)). For any R > 0,

P(X ≥ R+ α) ≤ 2P(X ≥ R+ α & Y ≤ α) ≤ 2P(X − Y ≥ R),

and similarly P(X ≤ −R+ α) ≤ 2P(X − Y ≤ −R). Therefore

P(|X − α| ≥ R) ≤ 2P(|X − Y | ≥ R),

and so
E
[
|X|p

] 1
p ≤ 2

1
pE
[
|X − Y |p

] 1
p + α

for all p ∈ [1,∞).
The following corollary, which is closely related to (iii) in Exercise 1.1.1

and 1.2.1, was proved originally by J. Marcinkiewicz.

Corollary 2.2.2 If µ̂ is the exponential of a polynomial, then µ is Gaussian.

Proof. By symmetrization and the Lévy–Cramér Theorem, we may assume
that µ is even, and therefore that µ̂(ξ) = eP (ξ), where P (ξ) =

∑n
m=0 cmξ

2m

with cm ∈ R for all 0 ≤ m ≤ n. If n = 0, there is noting to do, and so we
will assume that n ≥ 1 and cn 6= 0, in which case, since |µ̂(ξ)| ≤ 1, it is clear
that cn < 0, and, by Theorem 1.1.4, we know that

E
[
eζX

]
= eP (−iζ) for ζ ∈ C.

Now let X be a random variable with distribution µ, and take ζK = iKe
π
2n ,

where K > 0. Then, on the one hand,∣∣E[eζKX]∣∣ = exp
(
<P
(
Kei

π
2n

))
= exp

(
−cnK2n + o(K2n)

)
,
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and, on the other hand,∣∣E[eζKX]∣∣ ≤ E
[
e<ζKX

]
= E

[
e−K sin π

2nX
]

= eP (iK sin π
2n ) = exp

(
(−1)ncnK

2n sin2n π

2n
+ o(K2n)

)
.

Hence |cn| ≤ (−1)ncn sin2n π
2n , which is possible only if n = 1. ut

By combinining Corollary 2.2.2 with Theorem 1.1.10, one sees that the
only non-negative definite functions which are the exponential of a polynomial
are, apart from a multiplicative constant, characteristic functions of Gaussian
random variables.

2.2.1 Cauchy’s Equation

A function f : R −→ R is additive if f(x + y) = f(x) + f(y) for all x, y ∈
R. Cauchy asked which additive functions are linear. The following lemma
provides a way to answer Cauchy’s question.

Lemma 2.2.3 Let µ ∈ M1(R) and α, β ∈ (0, 1) with α2 + β2 = 1 be given.
Then µ is a centered Gaussian if and only if µ̂(ξ) = µ̂(αξ)µ̂(βξ).

Proof. The necessity part is trivial.
Now assume the sufficiency condition. Using induction, one sees that, for

any n ≥ 0,

µ̂(ξ) =

n∏
m=0

µ̂(αmβn−mξ)(
n
m).

In particular, µ̂ never vanishes and so there is a unique continuous choice of
log µ̂(ξ) which vanishes at ξ = 0.

First, suppose the t ≡
∫
x2 µ(dx) <∞. Then∫

xµ(dx) =

∫∫ (
αx+ βy

)
µ(dx)µ(dy) = (α+ β)

∫
xµ(dx),

which, since α+β > 1, means that
∫
xµ(dx) = 0. In addition, for each ξ ∈ R,

log µ̂(ξ) =

n∑
m=0

(
n

m

)
log
(
µ̂(αmβn−mξ)

)
= −

n∑
m=0

(
n

m

)(
tα2mβ2(n−m)ξ2

2
+ o
(
α2mβ2(n−m)

))
−→ − tξ

2

2
.

as n→∞. Thus, it suffices to show that
∫
x2 µ(dx) <∞.

Next suppose that µ is symmetric. Then µ̂ > 0 everywhere and
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log µ̂(1) =

n∑
m=0

(
n

m

)
log

(∫
cos(αmβn−mx)µ(dx)

)
.

Hence, since 1− t ≤ − log t for t ∈ (0, 1],

− log µ̂(1) ≥
n∑

m=0

(
n

m

)∫ (
1− cos(αmβn−mx)

)
µ(dx).

Because

0 ≤
n∑

m=0

(
n

m

)(
1− cos(αmβn−mx)

)
−→ x2

2
,

Fatou’s lemma implies that
∫
x2 µ(dx) ≤ −2 log

(
µ̂(1)

)
<∞.

Finally, for general µ’s, one can use either the Theorem 2.2.1 or observe
that the symmetrization of µ will again satisfy the hypothesis and therefore
have a second moment. ut

Say that a function f : R −→ R is a.e. additive if f(x+ y) = f(x) + f(y)
for λR2 -almost every (x, y) ∈ R2.

Theorem 2.2.4 Let f : R −→ R be a Borel measurable function. If f is
additive, then f(x) = f(1)x for all x ∈ R. If f is a.e. additive, then there is
an a ∈ R such that f(x) = ax for λR-almost every x ∈ R.

Proof. Assume that f is additive. It is easy to check that f(qx) = qf(x)
for all q ∈ Q and x ∈ R. Thus, if f is continuous, then f(x) = f(1)x. Now
assume that f is locally λR-integrable, and choose ρ ∈ C∞c (R;R) with total
integral 1. Then f ∗ ρ is smooth and f ∗ ρ(x) = f(x) +

∫
f(−y)ρ(y) dy. Thus

f is smooth and therefore it is linear. In general, let µ be the distribution
of f under the standard Gaussian measure γ0,1, and set q1 = 3

5 and q2 = 4
5 .

Then, because q2
1 + q2

2 = 1,

µ̂(q1ξ)µ̂(q2ξ) =

∫∫
eıξ(q1f(x)+q2f(y)) γ0,1(dx)γ0,1(dy)

=

∫∫
eıξf(q1x+q2y) γ0,1(dx)γ0,1(dy) = µ̂(ξ),

and therefore, by Lemma 2.2.3, µ is a centered Gaussian measure. In partic-
ular, ∫

f(x)2 γ0,1(dx) =

∫
x2 µ(dx) <∞,

and so f is locally integrable and therefore linear.
Now assume that f is a.e. additive. The first step is to show that, for

all q1, q2 ∈ Q+, f(q1x + q2y) = q1f(x) + q2f(y) (a.e.,λR2). To this end, let
n ≥ 1, and assume that f(nx+ y) = nf(x) + f(y) (a.e.,λR2). Then, because
the distribution of (x, x+ y) under λR2 is equivalent to that of (x, y),
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f
(
(n+ 1)x+ y

)
= f

(
nx+ (x+ y)

)
= nf(x) + f(x+ y)

= nf(x) + f(x) + f(y) = (n+ 1)f(x) + f(y)

for λR2-a.e. (x, y) ∈ R2. Hence, by induction, for all n ≥ 1, f(nx + y) =
nf(x) + f(y) for λR2-a.e. (x, y) ∈ R2. At the same time, because the distri-
bution of (nx, y) under λR2 is equivalent to that of (x, y),

f(nx) + f(y) = f(nx+ y) = nf(x) + f(y) for λR2 -a.e. (x, y) ∈ R2,

and so, by Fubini’s Theorem, f(nx) = nf(x) (a.e.,λR). Similarly, because the
λR2-distribution of

(
x
n , y

)
is equivalent of that of (x, y), for all m, n ∈ Z+,

f
(
m
n x
)

= m
n f(x) (a.e.,λR). Finally, given q1, q2 ∈ Q+, the λR2-distribution

of (q1x, q2y) is equivalent to that of (x, y), and therefore

f(q1x+ q2y) = f(q1x) + f(q2y) = q1f(x) + q2f(y) for λR2-a.e. (x, y) ∈ R2.

To complete the proof, again take q1 = 3
5 and q2 = 4

5 , and again consider
the distribution µ of f under γ0,1. Then, just as before, µ̂(ξ) = µ̂(q1ξ)µ̂(q2ξ),
and therefore f is locally λR-integrable. In addition, if ρ ∈ C∞c (R;R) has
total integral 1, then

f̃(x) ≡ f ∗ ρ(x)−
∫
f(−y)ρ(y) dy = f(x) for λR-a.e. x ∈ R.

In particular, for each y, f̃(x + y) = f(x + y) for λR-a.e. x ∈ R, and from
this and Fubini’s Theorem, it follows that f̃ is a smooth additive function.
Hence, f̃ is linear, and so f(x) = f̃(1)x for λR-a.e. x ∈ R. ut

Extentions of these results and ideas can be found in [2].

2.3 Gaussian Spectral Properties

The first goal here is to prove∫ (
ϕ− 〈ϕ, γ0,1〉

)2
dγ0,1 ≤ ‖ϕ′‖2L2(γ0,1;R) (2.3.1)

for ϕ ∈ C1(R;R). A closely related inequality was used to great effect by
H. Poincaré, and such inequalities have ever since been called a Poincaré
inequality.

In the proof of (2.3.1), we will make use of the function

p(t, x, y) =
(
2π(1−e−t)

)− 1
2 exp

(
− (y − e− t2x)2

2(1− e−t)

)
for (t, x, y) ∈ (0,∞)×R×R.
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Observe that∫
p(t, x, y) dy = 1 and p(s+ t, x, y) =

∫
p(s, x, ξ)p(t, ξ, y) dξ

and
∂tp(t, x, y) = 1

2

(
∂2
s − x∂x

)
p(t, x, y).

Hence, if Pt is the operator on Cb(R;C) given by

Ptϕ(x) =

∫
ϕ(y)p(t, x, y) dy, (2.3.2)

then it is a contraction on Cb(R;C) into itself, and Ps+t = Pt◦Ps. In addition,

∂tPtϕ = LPtϕ where L = 1
2

(
∂2
x − x∂x

)
, (2.3.3)

and so, if ϕ ∈ C2
b(R;C),

lim
t↘0

Ptϕ− ϕ
t

= Lϕ, (2.3.4)

where the convergence is uniform on compacts. Probabilists call L the
Ornstein–Uhlenbeck operator.

Note that

p(t, x, y)γ0,1(dx) =
(
2π(1− e−t) 1

2

)−1
exp

(
−x

2 − 2e−
t
2xy + y2

2(1− e−t)

)
λR(dx),

and so (
ϕ, Ptψ

)
L2(γ0,1;R)

=
(
Ptψ,ϕ

)
L2(γ0,1;R)

.

In particular,∫
Ptϕdγ0,1 =

(
1, Ptϕ

)
L2(γ0,1;R)

=
(
Pt1, ϕ

)
L2(γ0,1;R)

=

∫
ϕdγ0,1.

Next, by Jensen’s inequality, |Ptϕ|p ≤ Pt|ϕ|p, and therefore

‖Ptϕ‖Lp(γ0,1;R) ≤ ‖ϕ‖Lp(γ0,1;R)

for p ∈ [1,∞]. Hence, Pt extends to L2(γ0,1;R) as a self-adjoint contraction,
and so {Pt : t > 0} can be viewed as a strongly continuous semigroup of
self-adjoint contractions on L2(γ0,1;R). Finally, note that

lim
t→∞

Ptϕ(x) =

∫
ϕdγ0,1 and lim

t↘0
Ptϕ = ϕ,
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first uniformly on compacts for ϕ ∈ Cb(R;C) and then in Lp(γ0,1;R) for
p ∈ [1,∞) and ϕ ∈ Lp(γ0,1;R).

The estimate (2.3.1) is equivalent to

‖ϕ‖2L2(γ0,1;R) ≤ ‖ϕ
′‖2L2(γ0,1;R) + 〈ϕ, γ0,1〉2,

and it suffices to check it when ϕ ∈ S (R;R). Thus let ϕ ∈ S (R;R) be given,
and observe that

(Ptϕ)′(x) = ∂x

∫
ϕ(y + e−

t
2x)p(t, 0, y) dy = e−

t
2Ptϕ

′(x).

Using (2.3.3), integration by parts, and the preceding, conclude that

d

dt

(
ϕ, Ptϕ

)
L2(γ0,1;R)

=
(
ϕ,LPtϕ

)
L2(γ0,1;R)

= − 1
2

(
ϕ′, (Ptϕ)′

)
L2(γ0,1;R)

= −e
− t2

2

(
ϕ′, Ptϕ

′)
L2(γ0,1;R)

.

Since∣∣(ϕ′, Ptϕ′)L2(γ0,1;R)
| ≤ ‖ϕ′‖L2(γ0,1;R)‖Ptϕ′‖L2(γ0,1;R) ≤ ‖ϕ′‖2L2(γ0,1;R),

− d

dt

(
ϕ, Ptϕ

)
L2(γ0,1;R)

≤ e−
t
2

2
‖ϕ′‖2L2(γ0,1;R).

Integrating the preceding over t ∈ (0,∞), one arrives at (2.3.1).
An important application of (2.3.1) is the following ergodic property of

{Pt : t > 0}. Namely, suppose that 〈ϕ, γ0,1〉 = 0. Then

d

dt
‖Ptϕ‖2L2(γ0,1;R) = 2

(
Ptϕ,LPtϕ

)
γ0,1

= −‖(Ptϕ)′‖2L2(γ0,1;R) ≤ −‖Ptϕ‖
2
L2(γ0,1;R),

where the final inequality comes from (2.3.1) and the fact that 〈Ptϕ, γ0,1〉 = 0.
Hence, ‖Ptϕ‖2L2(γ0,1;R) ≤ e

−t‖ϕ‖2L2(γ0,1;R), and so, even if 〈ϕ, γ0,1〉 6= 0,

‖Ptϕ− 〈ϕ, γ0,1〉‖2L2(γ0,1;R) ≤ e
−t‖ϕ− 〈ϕ, γ0,1〉‖2L2(γ0,1;R)

≤ e−t‖ϕ‖2L2(γ0,1;R).
(2.3.5)

A feature of Poincaré inequalities like (2.3.1) is their behavior when one
takes products. Namely, suppose that µj ∈M1(RNj ), j ∈ {1, 2}, and that

‖ϕ‖2L2(µj ;R) ≤ c‖|∇jϕ|‖
2
L2(µj ;R) + 〈ϕ, µj〉2,

where ∇j is the gradient for functions on RNj . Then, if N = N1 + N2 and
µ = µ1 × µ2 on RN , an application of Fubini’s Theorem shows that
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‖ϕ‖2L2(µ) ≤ c‖|∇ϕ|‖
2
L2(µ) + 〈ϕ, µ〉2,

where ∇ is the gradient for functions on RN . As a consequence, we now see
that (2.3.1) implies that, for any N ∈ Z+,

‖ϕ− 〈ϕ, γN0,1〉‖2L2(γN0,1;R) ≤ ‖|∇ϕ|‖
2
L2(γN0,1;R). (2.3.6)

Define

P
(N)
t ϕ(x) =

∫
RN

ϕ(y)

N∏
j=1

p(t, xj , yj)λRN (dy)

for ϕ ∈ Cb(RN ;C). Then it is easy to check from (2.3.3) that ∂tP
(N)
t ϕ =

L(N)P
(N)
t ϕ, where L(N)ψ(x) = 1

2

(
∆ψ(x)−

(
x,∇ψ(x)

)
RN
)
. Thus, proceeding

as we did in the derivation of (2.3.5), one finds that

‖P (N)
t ϕ− 〈ϕ, γN0,1〉‖2L2(γN0,1)

≤ e−t‖ϕ− 〈ϕ, γN0,1〉‖2L2(γN0,1) ≤ e
−t‖ϕ‖2L2(γN0,1).

(2.3.7)

2.3.1 A Logarithmic Sobolev Inequality

It turns out that one can prove a slightly stronger inequality than (2.3.1).
Namely, ∫

ϕ2 log
ϕ2

‖ϕ‖2L2(γ0,1;R)

dγ0,1 ≤ 2‖ϕ′‖2L2(γ0,1;R). (2.3.8)

This inequality was proved first by L. Gross [5] who called it a logarithmic
Sobolev inequality.

Obviously, (2.3.8) looks a lot like (2.3.1), especially when one rewrites it
as ∫

ϕ2 logϕ2 dγ0,1 ≤ 2‖ϕ′‖2L2(γ0,1;R) + ‖ϕ‖2L2(γ0,1;R) log ‖ϕ‖2L2(γ0,1;R).

However, as Gross showed, it has regularity consequences similar to, albeit
weaker than, a classical Sobolev inequality. To prove (2.3.8), let ϕ be a strictly
positive element of S (R;R), and set (cf. (2.3.2)) ϕt = Ptϕ. Then, since
〈∂tϕt, γ0,1〉 = ∂t〈ϕt, γ0,1〉 = 0,

d

dt

〈
ϕt logϕt, γ0,1

〉
=
〈
Lϕt logϕt, γ0,1〉

= −1

2

〈
(ϕ′t)

2

ϕt
, γ0,1

〉
= −e

−t

2

〈
(Ptϕ

′)2

Ptϕ
, γ0,1

〉
.
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Observe that, by Schwarz’s inequality,

(Ptϕ
′)2 =

(
Pt

(
ϕ′

ϕ
1
2

ϕ
1
2

))2

≤ Pt
(

(ϕ′)2

ϕ

)
Ptϕ,

and therefore

d

dt

〈
ϕt logϕt, γ0,1

〉
≥ −e

−t

2

〈
Pt

(
(ϕ′)2

ϕ

)
, γ0,1

〉
= −e

−t

2

〈
(ϕ′)2

ϕ
, γ0,1

〉
.

After integrating over t ∈ (0,∞), one has that

〈
ϕ logϕ, γ0,1

〉
≤ 1

2

〈
(ϕ′)2

ϕ
, γ0,1

〉
+ 〈ϕ, γ0,1〉 log〈ϕ, γ0,1〉.

Knowing this inequality for strictly positive ϕ’s in S (R;R), it is obvious that
it extends to non-negative ϕ’s in C1(R;R). Finally, given a ϕ ∈ C1(R;R),
apply the inequality to ϕ2 and thereby arrive at (2.3.8).

To see that (2.3.8) is optimal, suppose that it holds with 2‖ϕ′‖2L2(γ0,1;R)

replaced by c‖ϕ′‖2L2(γ0,1;R), and take ϕ = eα
x2

4 for α ∈ (0, 1). Show that

〈
ϕ2 logϕ2γ0,1

〉
=

α

2(1− α)
3
2

,
〈
ϕ2, γ0,1〉 = (1−α)−

1
2 , ‖ϕ′‖2L2(γ0,1;R) =

α2

4(1− α)
3
2

,

and conclude that α ≤ c
2α

2 − (1−α)
2 log(1 − α). Now let α ↗ 1 to see that

c ≥ 2.
The regularity result alluded to above was discovered by E. Nelson [8]

and is called hypercontraction. It states that the semigroup {Pt : t > 0} is
smoothing in the sense that

‖Ptϕ‖Lq(t)(γ0,1;R) ≤ ‖ϕ‖Lp(γ0,1;R)

when p ∈ (1,∞) and q(t) = 1 + (p− 1)et
(2.3.9)

Gross’s proof of this from (2.3.8) is the following. Let a uniformly positive
ϕ ∈ C1

b(R;R) be given, and set ϕt = Ptϕ and F (t) = ‖ϕt‖Lq(t)(γ0,1). Then,

with q̇ = dq
dt , one sees that

dF

dt
= − q̇

q2
F logF q +

q̇F 1−q

q
〈ϕqt logϕt, γ0,1〉+ F 1−q〈ϕq−1

t Lϕt, γ0,1〉

=
F 1−q

q2

[
q̇

〈
ϕqt log

ϕqt
〈ϕqt , γ0,1〉

, γ0,1

〉
− q2(q − 1)

2
〈ϕq−2
t (ϕ′t)

2, γ0,1〉
]
.

Since q̇ = q − 2 and ϕq−1
t (ϕ′t)

2 = 4
q2

(
ψ′t
)2

where ψt = ϕ
q
2
t , the bracketed

expression equals
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(q − 1)

[〈
ψ2
t log

ψ2
t

‖ψt‖2L2(γ0,1;R)

, γ0,1

〉
− 2‖ψt‖2L2(γ0,1;R)

]
,

which, by (2.3.8) is less than or equal to 0. Hence F is non-increasing, and
so (2.3.9) holds.

Notice that, because Ps+t = Pt ◦ Ps and q(s + t) = 1 +
(
q(s) − 1

)
et,

(2.3.9) implies that ‖Ptϕ‖Lq(t)(γ0,1) is a non-decreasing function of t ≥ 0,
and therefore Gross’s computation shows that (2.3.9) is equivalent to (2.3.8).
In particular, q(t) cannot be replaced by 1 + (p − 1)ect for any c > 1. In
fact, by direct computation of ‖ϕ‖Lp(γ0,1;R) and ‖ϕ‖Lq(γ0,1) when ϕ = eαx,
one can show that, for any q > q(t) there is a ϕ ∈ Lp(γ0,1;R) for which
‖Ptϕ‖Lq(γ0,1;R) =∞.

Just as was the case for the Poincaré inequality, one can use Fubini’s
theorem to check that (2.3.8) implies∫

RN
ϕ2 log

ϕ2

‖ϕ‖2
L2(γN0,1;R)

dγN0,1 ≤ 2‖|∇ϕ|‖2L2(γN0,1;R) (2.3.10)

for ϕ ∈ C2(RN ;R). Thus, by Gross’s argument, one knows that

‖P (N)
t ϕ‖Lq(t)(γN0,1;R) ≤ ‖ϕ‖Lp(γN0,1;R)

when p ∈ (1,∞) and q(t) = 1 + (p− 1)et.
(2.3.11)

Because his goal was to construct quantum fields on infinite dimensional
spaces, Nelson’s interest in these matters was their dimension independence.
Given a Borel measurable function V : RN −→ R which is bounded either be-
low or above, a key step in his program was to prove a dimension independent
estimate for

Λ(V ) = sup
{
〈V ϕ2, γN0,1〉2 − 1

2‖∇ϕ‖
2
L2(γN0,1;RN )

: ϕ ∈ C1(RN ;R) with ‖ϕ‖L2(γ0,1∗N ;R) = 1
}
,

(2.3.12)

which is the upper bound for the spectrum of the Schrödinger operator

L(N) + V =
1

2

(
∆− (x,∇)RN

)
+ V

on L2(γN0,1;R), and what he showed is that

Λ(V ) ≤ 1

4
log
〈
e4V , γN0,1

〉
. (2.3.13)

Although Nelson based his proof of (2.3.13) on (2.3.11), it can be seen as a
direct consequence of (2.3.10) combined with the following interesting varia-
tional formula. Given a pair of probability measures µ and ν on a measurable
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space (E,F), define the relative entropy H(ν|µ) of ν with respect to µ by

H(ν|µ) =

{∫
f log f dµ if ν � µ and f = dν

dµ

∞ if ν 6� µ.

Because t log t is a convex function of t ∈ [0,∞), Jensen’s inequality implies
that, for each µ, H(ν|µ) is a non-negative, convex function of ν and that it
is 0 when µ = µ. Less obvious is the fact that

‖ν − µ‖2var ≤ 2H(ν|µ), (2.3.14)

where ‖ · ‖var is the variation norm. One need only check this when H(ν|µ) <
∞, in which case ‖ν − µ‖var = ‖f − 1‖L1(µ;R) where f = dν

dµ . At this point
one needs the inequality

3(t− 1)2 ≤ (4 + 2t)
(
t log t− t+ 1

)
for t ≥ 0.

To prove this inequality, let g(t) be the right hand side minus the left hand
side, and check that g is a convex function for which g(1) = g′(1) = 0. Now
apply this inequality to see that

3‖f − 1‖2L1(µ) ≤ ‖(4 + 2f)
1
2 (f log f − f + 1)

1
2 ‖2L1(µ;R)

≤ 〈4 + 2f, µ〉〈f log f − f + 1, µ〉 = 6H(ν|µ).

Lemma 2.3.1 Let B(E;R) denote the space of bounded, F-measurable R-
valued functions on E, and, for any probability measures µ and ν on (E,F),
set

Iµ(ν) = sup
{
〈ϕ, ν〉 − log〈eϕ, µ〉 : ϕ ∈ B(E;R)

}
.

Then H(ν|µ) = Iµ(ν).

Before proving Lemma 2.3.1, notice that (2.3.13) is a relatively easy
consequence of (2.3.10) combined with Lemma 2.3.1 applied to µ = γN0,1.
Namely, given ϕ ∈ C1(R;R) with ‖ϕ‖L2(γN0,1;R) = 1, set f = ϕ2 and take

dν = fdµ. Then H(ν|γN0,1) =
〈
ϕ2 logϕ2, γN0,1〉 ≤ 2‖|∇ϕ|‖2

L2(γN0,1;R)
, and so, if

V is bounded, then

2‖|∇ϕ|‖2L2(γN0,1;R) ≥ 4
〈
V ϕ2, γN0,1

〉
− log

〈
e4V , γN0,1

〉
,

which means that

1
4 log

〈
e4V , γN0,1

〉
≥
〈
V ϕ2, γN0,1

〉
− 1

2‖|∇ϕ|‖
2
L2(γN0,1;R),

which proves (2.3.13) for bounded V ’s. Finally, knowing it for bounded V ’s,
it is easy to extend it to V ’s which are bounded either above or below.
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Proof of Lemma 2.3.1. First note that ν  Iµ(ν) is non-negative and convex.
Further, because, by Jensen’s inequality, 〈ϕ, µ〉 ≤ log〈eϕ, µ〉, Iµ(µ) = 0.

Next, given θ ∈ (0, 1), set νθ = (1− θ)ν + θµ. Then, because H(µ|µ) = 0,
convexity implies H(νθ|µ) ≤ (1− θ)H(ν|µ). On the other hand,

ν 6� µ =⇒ νθ 6� µ =⇒ H(νθ|µ) =∞,

and if dν = f dµ, then dνθ = fθ dµ, where fθ = (1 − θ)f + θ, and therefore,
since log is non-decreasing and concave,

H(νθ|µ) = 〈fθ log fθ, µ〉
= θ〈log fθ, µ〉+ (1− θ)〈f log fθ, µ〉 ≥ θ log θ + (1− θ)2H(ν|µ).

Hence H(ν|µ) = limθ↘0H(νθ|µ).
We now show that Iν(µ) ≤ H(ν|µ), and clearly we need do so only when

H(ν|µ) < ∞ and therefore dν = f dµ. If f is everywhere positive, then, by
Jensen’s inequality,

exp
(
〈ϕ, ν〉 −H(ν|µ)

)
= exp

(
〈ϕ− log f, ν〉

)
≤
〈
eϕ

f
, ν

〉
= 〈eϕ, µ〉,

and so 〈ϕ, ν〉 − log
〈
eϕ, µ

〉
≤ H(ν|µ). If f can vanish, consider νθ, and, after

letting θ ↘ 0, conclude that this inequality continues to hold, and therefore
that Iµ(ν) ≤ H(ν|µ).

In proving that H(ν|µ) ≤ Iµ(ν), we will assume Iµ(ν) <∞. The first step
is to show that ν � µ. Thus, suppose Γ ∈ F with µ(Γ ) = 0, and, given
r > 0, set ϕr = r1Γ . Then

Iµ(ν) ≥ 〈ϕr, ν〉 − log
〈
eϕr , µ

〉
= rν(Γ ),

for all r > 0, and so ν(Γ ) = 0. Now assume that dν = f dµ. If f is bounded
and uniformly positive, then log f ∈ B(E;R), and so

Iµ(ν) ≥ 〈log f, ν〉 − log
〈
f, µ〉 = H(ν|µ).

If f is uniformly positive and not necessarily bounded, set fn = f ∧n. Then,
since limn→∞〈fn, µ〉 = 1,

H(ν|µ) = lim
n→∞

〈log fn, ν〉 = lim
n→∞

(
〈log fn, ν〉 − log〈fn, µ〉

)
≤ Iµ(ν)

Finally if f can vanish,

H(νθ|µ) ≤ Iµ(νθ) ≤ (1− θ)Iµ(ν),

and so H(ν|µ) ≤ Iµ(ν). ut
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2.3.2 Hermite Polynomials

For n ≥ 0, set Hn(x) = (−1)ne
x2

2 ∂nx e
− x22 . Then ∂Hn(x) = xHn(x) −

Hn+1(x), and so Hn+1 = a+Hn, where a+ = x − ∂x is the raising opera-
tor. Proceeding by induction, one sees that Hn is an nth order polynomial,
known as the nth unnormalized Hermite polynomial, for which 1 is the coef-
ficient of xn and Hn(−x) = (−1)nHn(x). Next, observe(

a+ϕ,ψ
)
L2(γ0,1;R)

=
(
ϕ, ∂ψ

)
L2(γ0,1;R)

(2.3.15)

for ϕ,ψ ∈ C1(R;C) whose derivatives have at most exponential growth.
Hence, if m ≤ n, then(
Hn, Hm

)
L2(γ0,1;R)

=
(
an+H0, Hm

)
L2(γ0,1;R)

=
(
H0, ∂

nHm

)
L2(γ0,1;R)

= n!δm,n,

and therefore ‖Hn‖L2(γ0,1;R) = (n!)
1
2 and {Hn : n ≥ 0} is an orthogonal

sequence in L2(γ0,1;R). In addition, for n ≥ 1,

(
∂Hn, Hm

)
L2(γ0,1;R)

=
(
Hn, a+Hm

)
L2(γ0,1;R)

=

{
n! if m = n− 1

0 if m 6= n− 1.

Since ∂Hn is in the span of {Hm : 0 ≤ m < n}, ∂Hn =
∑n−1
m=0 αmHm for

some {αm : 0 ≤ m < n} ⊆ R. By taking inner products in L2(γ0,1;R), one
finds that αm = 0 for m < n−1 and (n−1)!αn−1 = n! and thereby concludes
that ∂Hn = nHn−1.

Summarizing, our results thus far,

(x− ∂)Hn = Hn+1, ∂Hn = nHn−1,
(
Hn, Hm

)
L2(γ0,1;R)

= n!δm,n. (2.3.16)

In particular,

LHn = −n
2
Hn, (2.3.17)

where L = 1
2 (∂2 − x∂) is the Ornstein–Uhlenbeck operator.

To show that {Hn : n ≥ 0} is a basis in L2(γ0,1;R), use the exponential
Taylor’s series to see that

eζx−
ζ2

2 =

∞∑
n=0

ζn

n!
Hn(x) for (ζ, x) ∈ C× R, (2.3.18)

where the convergence is uniform on compact subsets. In addition, using the
preceding computations, one sees that, as a function of x, the convergence is
in L2(γ0,1;R) uniformly for ζ is compacts. Now suppose that ϕ ∈ L2(γ0,1;R)

is orthogonal to {Hn : n ≥ 0}, and set ψ(x) = (2π)−
1
2 e−

x2

2 ϕ(x). Then,
ψ ∈ L1(λR;R) ∩ L2(λR;R), and, by (2.3.18) with ζ = iξ,
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ψ̂(ξ) = e−
ξ2

2

∑
n=0

(iξ)n

n!

(
ϕ,Hn

)
L2(γ0,1;R)

= 0,

and so ψ, and therefore ϕ, vanish (a.e.,λR). Hence, we now know that if
H̃n = Hn√

n!
is the normalized nth Hermite polynomial, then {H̃n : n ≥ 0}

is an orthonormal basis in L2(γ0,1;R) consisting of eigenfunctions for the
Ornstein–Uhlenbeck operator.

Define the operators {Pt : t > 0} as in (2.3.2), and recall that ∂tPϕ =
LPtϕ. In addition, using the semigroup property, check that LPtϕ = PtLϕ
for ϕ ∈ C2(R;C) whose second derivative has at most polynomial growth.
Thus, by (2.3.17), ∂tPtHn = −n2PtHn, and so PtHn = e−

nt
2 Hn. Now let

ϕ ∈ L2(γ0,1;R) be given. Then

ϕ =

∞∑
n=0

(ϕ,Hn)L2(γ0,1;R)

n!
Hn,

where the convergence is in L2(γ0,1;R), and so, since Pt is self-adjoint on
L2(γ0,1;R),

Ptϕ =

∞∑
n=0

e−
nt
2 (ϕ,Hn)L2(γ0,1;R)

n!
Hn for ϕ ∈ L2(γ0,1;R), (2.3.19)

where the convergence is in L2(γ0,1;R).

2.3.3 Hermite Functions

For n ≥ 0, the nth unnormalized Hermite function hn is given by hn(x) =

e−
x2

2 Hn(2
1
2x). Using (2.3.16), one can check that

(x− ∂)hn = 2
1
2hn+1, (x+ ∂)hn = 2

1
2nhn−1;

and
(
hn, hm

)
L2(λR;R)

= π
1
2n!δm,n,

(2.3.20)

and therefore that

Hhn = −
(
n+ 1

2

)
hn where H = 1

2

(
∂2 − x2

)
. (2.3.21)

Mathematicians call H the Hermite operator, and phycists call it the one
dimensional harmonic oscillator Hamiltonian. Clearly, the hn’s are mutually
orthogonal elements of S (R;R). To check that they form a basis in L2(λR;C),

let ϕ ∈ L2(λR;C), set ψ(x) = π−
1
2 e−

x2

4 ϕ(2−
1
2x), and check that

(ϕ, hn)L2(λR;C) = (ψ,Hn)L2(γ0,1;C).
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Hence ϕ = 0 if ϕ is orthogonal to {hn : n ≥ 0}, and so {hn : n ≥ 0} is an
orthogonal basis in L2(λR;R) consisting of eigenfunctions for H.

Lemma 2.3.2 For each n ≥ 0, ĥn = in(2π)
1
2hn.

Proof. First note that ĥ0 = (2π)
1
2h0. Next, assume that ĥn = in(2π)

1
2hn,

and conclude that

2
1
2 ĥn+1(ξ) =

∫
eiξxxhn(x) dx−

∫
eiξxh′n(x) dx = −i∂ξĥn(ξ) + iξĥn(ξ)

= in+1(2π)
1
2

(
ξ − ∂ξ)hn(ξ) = in+12

1
2 (2π)

1
2hn+1(ξ).

ut

After multiplying both sides of (2.3.21) by 2hn and integrating, we know
that

‖xhn‖2L2(λR;R) + ‖h′n‖2L2(λR;R) = (2n+ 1)‖hn‖2L2(λR;R) = (2n+ 1)π
1
2n!,

and thedrefore ∫
(1 + x2)hn(x)2 dx ≤ 2(n+ 1)π

1
2n!.

As a consequence of this and Schwarz’s inequality,

‖hn‖L1(λR;R) =

∫
(1 + x2)−

1
2 (1 + x2)

1
2 |hn(x)| dx ≤ π 1

2

(
2(n+ 1)π

1
2n!
) 1

2 ,

and so
‖hn‖L1(λR;R) ≤ 2

1
2π

3
4 (n+ 1)

1
2 (n!)

1
2 .

At the same time, by Lemma 2.3.2, we have that

‖hn‖u = (2π)−
1
2 ‖ĥn‖u ≤ (2π)−

1
2 ‖hn‖L1(λR;R).

Starting from this and using the fact coming from (2.3.20) that h′n =

2
1
2

(
nhn−1 − hn+1

)
, one sees that

‖hn‖u ≤ π
1
4

(
(n+ 1)!

) 1
2 and ‖h′n‖u ≤ 2−

1
2π

1
4 (2n+ 1)

(
n!
) 1

2 , (2.3.22)

from which it follows that

|Hn(x)| ≤ π 1
4

(
(n+ 1)!

) 1
2 e

x2

4 and |H ′n(x)| ≤ π 1
4n
(
n!
) 1

2 e
x2

2 . (2.3.23)

Define the operator Qt for t > 0 and ϕ ∈ L2(λR;R) by

Qtϕ =
e−

t
2

π
1
2

∞∑
n=0

e−nt
(ϕ, hn)L2(λR;R)

n!
hn, (2.3.24)
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and so
Qthn = e−(n+ 1

2 )thn. (2.3.25)

Using the properties of {hn : n ≥ 0} in (2.3.20), one can check that {Qt :
t > 0} is a semigroup of self-adjoint operators and that ‖Qtϕ‖L2(λR;R) ≤
e−

t
2 ‖ϕ‖L2(λR;R). In addition, if ϕ ∈ S (R;C), then (2.3.21) says that

∂tQtϕ =
e−

t
2

π
1
2

∞∑
n=0

e−nt
(ϕ,Hhn)L2(λR;R)

n!
hn.

and so
∂tQtϕ = QtHϕ for ϕ ∈ S (R;C). (2.3.26)

Recall that for ϕ ∈ Cb(R;R),∫
p(t, x, y)ϕ(y) dy =

∞∑
n=0

e−
nt
2

(ϕ,Hn)L2(γ0,1;R)

n!
Hn(x)

where p(t, x, y) =
(
2π(1− e−t)

)− 1
2 exp

(
− (y − e− t2x)2

2(1− e−t)

)
.

Using the estimate (2.3.23), observe that, for each ε > 0, the series

∞∑
n=0

e−
nt
2
Hn(x)Hn(y)

n!

is absolutely convergent uniformly for t ≥ ε and (x, y) in compacts. Thus

(1− e−t)− 1
2 exp

(
− (y − e− t2x)2

2(1− e−t)

)
=

∞∑
n=0

e−
nt
2
Hn(x)Hn(y)

n!
e−

y2

2 ,

and so,

(1− e−t)− 1
2 exp

(
−e
−ty2 − 2e−

t
2xy + e−ty2

2(1− e−t)

)
=

∞∑
n=0

e−
nt
2
Hn(x)Hn(y)

n!
.

Equivalently, if, for θ ∈ {z : <z ∈ (−1, 1)},

M(θ, x, y) =
(
2π(1− θ2)

)− 1
2 exp

(
− (θx)2 − 2θxy + (θy)2

2(1− θ2)

)
,

then

M(θ, x, y) =

∞∑
n=0

θn
Hn(x)Hn(y)

n!
, (2.3.27)
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first for θ ∈ (0, 1) and then, by analytic continuation, for θ ∈ C with <θ ∈
(−1, 1).

The function M(θ, x, y) is called the Mehler kernel, and (2.3.27) is one of
the many formulas in which it appears. Another formula in which it plays a
role is in connection with the semigroup {Qt : t > 0}. Namely, notice that
the estimate (2.3.22) guarantees that, each ε > 0, the series

∞∑
n=0

e−nt
hn(x)hn(y)

n!

absolutely uniformly for t ≥ ε and (x, y) ∈ R2. Moreover,

∞∑
n=0

e−nt
hn(x)hn(y)

n!
= M

(
e−t, 2

1
2x, 2

1
2 y
)
e−

x2+y2

2

= (1− e−2t)−
1
2 exp

(
− (1 + et)x2 − 2e−txy + (1 + et)y2

1− e−2t

)
.

Hence, for ϕ ∈ L1(λR;C),

Qtϕ(x) =

∫
q(t, x, y)ϕ(y) dy where q(t, x, y) equals(

e−t

π(1− e−2t)

) 1
2

exp

(
− (1 + et)x2 − 2e−txy + (1 + et)y2

2(1− e−2t)

)
= (2π sinh t)−

1
2 exp

(
− (cosh t)x2 − 2xy + (cosh t)y2

2 sinh t

)
.

(2.3.28)

Finally, notice that this expression for Qt shows that Qt maps L1(λR;R) into
S (R;C) and therefore that, by (2.3.26), ∂sQsQtϕ = QsHQtϕ. After s↘ 0,
this means that

∂tQtϕ = HQtϕ for ϕ ∈ L1(λR;R). (2.3.29)

2.4 Gaussian Families

If X and Y are square integrable random variables on a probability space
(Ω,F ,P), then the covariance cov(X,Y ) of X and Y is the number

E
[(
X − E[X]

)(
Y − E[Y ]

)]
= E[XY ]− E[X]E[Y ].

IfX1, . . . , Xn ∈ L2(P,R), then the covariance cov(X1, . . . , Xn) of {X1, . . . , Xn}
is the n× n-matrix whose (k, `)th entry is cov(Xk, X`).

Lemma 2.4.1 Given random variable X1, . . . , Xn ∈ L2(P;R), set
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X = (X1, . . . , Xn)> and A = cov(X1, . . . , Xn).

If E[Xk] = 0 for all 1 ≤ k ≤ n, then the span span
(
{X1, . . . , Xn}

)
of

{X1, . . . , Xn} in L2(P;R) equals span
({

(ξ,X)Rn : ξ ⊥ Null(A)
})

.

Proof. Let Π denote orthogonal projection onto Null(A). Then

X = (I −Π)X +ΠX and E
[
|ΠX|2

]
= Trace(ΠAΠ) = 0.

Hence, X = (I −Π)X (a.s,P). ut
Given a probability space (Ω,F ,P), a Gaussian family is a subspace G of

L2(P;R) each of whose elements is Gaussian. A Gaussian family is said to be
centered if all its elements have mean value 0. By Lemma 2.1.1, the L2-closure
of a Gaussian family is again a Gaussian family.

If G is a Gaussian family, define the function mG : G −→ R by mG(X) =
E[X] and the function CG : G2 −→ R by CG(X,Y ) = cov(X,Y ). The func-
tions mG and CG are known as the mean and covariance of G.

2.4.1 A Few Basic Facts

Set γ0,I = γN0,1. Given b ∈ RN and a non-negative, symmetric linear operator

A on RN , take γb,A to be the distribution of b+A
1
2x under γ0,I . When A is

non-degenerate, it is easy to check that γb,A � λRN and

dγb,A
dλRN

(x) = gb,A(x)

≡
(
(2π)Ndet(A)

)− 1
2 exp

(
−
(
x− b, A−1(x− b)

)
RN

2

)
.

(2.4.1)

In keeping with the notation used in the real valued case, I will write X ∈
N(b, A) to mean that X is an RN -valued random variable whose distrubution
is γb,A.

Remark: When N = 2 and A =

1 θ

θ 1

 for some θ ∈ (−1, 1), a remark that

statisticians have found useful is the relation between g0,A and the Mehler
kernel. Namely,

g0,A(x1, x2) = (2π)−1M(θ, x1, x2)e−
x21+x22

2 ,

and so
dγ0,A

dγ0,I
(x) =

∞∑
n=0

θn
Hn(x1)Hn(x2)

n!
.
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Lemma 2.4.2 γb,A is the one and only µ ∈ M1(RN ) with the property that{
(x, ξ)RN : ξ ∈ RN} is a Gaussian family G under µ such that

mG
(
(x, ξ)RN

)
= (b, ξ)RN and CG

(
(x, ξ)RN , (x, ξ)RN

)
= (ξ, Aξ)RN for all ξ ∈ RN .

In addition,1∫
e(ζ,y)RN , γb,A(dy) = exp

(
(b, ζ)RN +

(ζ,Aζ)RN

2

)
for ζ ∈ CN , (2.4.2)

and, if α < ‖A‖−1
op , then∫

eα|x|
2

γ0,A(dx) =
(
det(I − αA)

)− 1
2 . (2.4.3)

Proof. To prove (2.4.2), begin with the case when b = 0 and A = I, and
therefore, since γ0,I = γN0,1, that the desired result follows from (2.1.1). To

handle the general case, write X as b + A
1
2Y , where Y ∈ N(0, I) and check

that

E
[
e(ζ,b+A

1
2 Y )RN

]
= e(ζ,b)RN E

[
e(A

1
2 ζ,Y )RN

]
= exp

(
(ζ, b)RN +

(A
1
2 ζ,A

1
2 ζ)RN

2

)
.

From (2.4.2) we know that

γ̂b,A(ξ) = exp

(
i(b, ξ)RN −

(ξ, Aξ)RN

2

)
(2.4.4)

and that any µ ∈ M1(RN ) with the stated properties will have the same
characteristic function as γb,A.

To prove (2.4.3), let a1, . . . , an be the eigenvalues of A, and observe that,
by (2.1.2)∫
eα|x|

2

γ0,A(dx) =

N∏
k=1

∫
R
eαakx

2
k γ0,1(dx) =

N∏
k=1

(1−αak)−
1
2 =

(
det(I−αA)

)− 1
2

ut

An alternative formulation of the first statement in Lemma 2.4.2 is that
the joint distribution of {X1, . . . , Xn} is γb,A with b = mG(X1, . . . , Xb) and
A = CG(X1, . . . , Xn).

The following result is arguably the most important property of Gaussian
families.

1 Even though some of the the vectors involved are complex, the inner product here is the

Euclidean one, not the Hermitian one.
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Theorem 2.4.3 Let G is a centered Gaussian family on the probability space
(Ω,F ,P). For any subset ∅ 6= S ( G, set FS = σ(S), the smallest σ-algebra
with respect to which all the elements of S are measurable, and take S⊥ to
be the perpendicular complement in L2(P;R) of S Then FS is independent of
FS⊥∩G.

Proof. What we must show is that if {X1, . . . , Xm} ⊆ S and {Y1, . . . , Yn} ⊆
S⊥ ∩ G, then the distribution of (X1, . . . , Xm, Y1, . . . , Yn)> is the product of
the distribution of (X1, . . . , Xm)> with the distribution of (Y1, . . . , Yn)>. To
this end, set A = cov(X1, . . . , Xm), B = cov(Y1, . . . , Yn), and observe that

C ≡ cov(X1, . . . , Xm, Y1, . . . , Yn) =

A 0

0 B

 .

Hence, since γ0,A, γ0,B , and γ0,C are, respectively, the distributions of
(X1, . . . , Xm)>, (Y1, . . . , Yn)>, and (X1, . . . , Xm, Y1, . . . , Yn)>,

γ̂0,C

ξ
η

 = exp

(
− (ξ, Aξ)Rm + (η,Bη)Rn

2

)

= γ̂0,A(ξ)γ̂0,B(η) = ̂γ0,A × γ0,B

ξ
η


for all ξ ∈ Rm and η ∈ Rn, from which it follows that γ0,C = γ0,A× γ0,B . ut

2.4.2 A Concentration Property of Gaussian Measures

In this subsection I will show that if a Gaussian measure gives positive mea-
sure to a set then it is nearly concentrated on a neighborhood of that set.
The driving force behind the analysis here is the following beautiful result of
B. Maurey and G. Pisier.

Theorem 2.4.4 Let A be a strictly positive definite, symmetric transfor-
mation on RN , and let X be a N(0, A)-random variable on (Ω,F ,P). If
f : RN −→ R is a continuous function satisfying

|f(y)− f(x)| ≤ λ
∣∣A− 1

2 (y − x)
∣∣ for x, y ∈ RN ,

then

E
[
et(f(X)−E[f(X)])

]
≤ eλ

2π2t2

8 for t ∈ R.

Proof. First observe that, by replacing f by λ−1
(
f−E

[
f(X)

])
, we can reduce

to the case when λ = 1 and E
[
f(X)

]
= 0 Thus we will proceed under these
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assumptions. In addition, without loss in generality, we will assume that there
is a second N(0, A)-random variable Y which is independent of X.

Next note that, after applying a standard mollification procedure, we may
assume that f is smooth and |A 1

2∇f | ≤ 1 everywhere.

Now let f be a smooth function satisfying E
[
f(X)

]
= 0 and |A 1

2∇f | ≤ 1
everywhere, Then, by Jensen’s inequality applied to the convex function x 
e−x,

E
[
e−tf(Y )

]
≥ e−tE

P[f(Y )] = 1,

and so
E
[
et(f(X)−f(Y ))

]
= E

[
etf(X)

]
E
[
e−tf(Y )

]
≥ E

[
etf(X)

]
. (∗)

Next, for θ ∈ R, set X(θ) = X cos θ+ Y sin θ and Y (θ) = −X sin θ+ Y cos θ.
Using characteristic functions, it is easy to check that, for each θ, X(θ) and
Y (θ) are again mutually independent, N(0, A)-random variables. Further-
more, by the Fundamental Theorem of Calculus,

f(X)− f(Y ) =

∫ π
2

0

(
∇f
(
X(θ)

)
, Y (θ)

)
RN dθ,

and so, by Jensen’s inequality,

et(f(X)−f(Y )) = e
t
∫ π

2
0

(
∇f(X(θ)),Y (θ)

)
RN

dθ ≤ 2

π

∫ π
2

0

e
πt
2

(
∇f(X(θ)),Y (θ)

)
RN dθ.

Hence, by Fubini’s Theorem and (∗),

E
[
etf(X)

]
≤ 2

π

∫ π
2

0

E
[
e
πt
2

(
∇f(X(θ)),Y (θ)

)
RN
]
dθ.

Finally, because Y (θ) is independent of X(θ), (2.4.2) implies that

E
[
e
πt
2

(
∇f(X(θ)),Y (θ)

)
RN
]

= E

[
exp

(
π2t2

∣∣A 1
2∇f

(
X(θ)

)∣∣2
8

)]
≤ eπ

2t2

8 .

ut

As a more or less immediate consequence of Theorem 2.4.4, we have that

P
(
f(X)− EP[f(X)] ≥ R

)
≤ e−

2R2

π2λ2

P
(
|f(X)− EP[f(X)]| ≥ R

)
≤ 2e−

2R2

π2λ2

for R > 0. (2.4.5)

Indeed, by Markov’s inequality,

P
(
f(X)− EP[f(X)] ≥ R

)
≤ e−tR+λ2π2t2

8 for all t ≥ 0,
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and so the first of these follows when one takes t = 4R
λ2π2 . Further, given the

first estimate, the second follows when the first one is applied to both f and
−f and the two are added.

Perhaps the most interesting aspect of these results is their dimension
independence. That is, in any dimension, the distribution of a uniformly
Lipschitz continuous function of a Gaussian random variable satisfies tail
estimates that are remarkably like those of an R-valued Gaussian random
variable. To appreciate the significance of this dimensional independence,
consider f(x) = |x|. Then

λ2 = ‖A‖op ≡ sup
{(
e,Ae

)
RN : e ∈ SN−1

}
,

and so the second estimate in (2.4.5) says that

P
(∣∣|X| − E[|X|]

∣∣ ≥ R) ≤ 2e
− 2R2

π2‖A‖op

Hence, since

Var(|X|) = E
[(
|X| − E[|X|]

)2]
= 2

∫ ∞
0

RP
(∣∣|X| − EP[|X|]

∣∣ ≥ R) dR
we see that Var(|X|) ≤ π2‖A‖op

2 . That is, independent of dimension, the vari-
ance of the length of an RN -valued, N(0, A)-random variable is dominated by
a universal constant times the operator norm of A. What makes this conclu-
sion somewhat surprising is that EP[|X|2] = Trace(A). Thus, for instance, if
A = I, then EP[|X|2] = N is tending to infinity as N →∞ and yet, because

‖I‖op = 1, Var(|X|) is bounded by π2

2 , independent of N . A closely related
application shows that

P
(
|X| ≥ R

)
≤ e−

R2

2π2‖A‖op if R ≥ 2
√

Trace(A).

To check this, note that R ≥ 2
√

Trace(A) =⇒ EP[|X|] ≤ R
2 , and therefore,

by the first part of (2.4.5),

P
(
|X| ≥ R

)
≤ P

(
|X| − EP[|X|] ≥ R

2

)
≤ e−

R2

2π2‖A‖op .

The preceding estimates say that the rate at which P
(
|X| ≥ R

)
decays

for R ≥ 2
√

Trace(A) is very fast and depends on ‖A‖op but not on N .
Equivalently, the distribution of X is very nearly concentrated on a ball
of radius R > 2

√
Trace(A). The following theorem gives a more general

statement of this Gaussian concentration phenomenon.

Theorem 2.4.5 If X is an RN -valued, N(0, A)-random variable and Γ ∈
BRN , then
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P
(
X ∈ Γ

)
∧ P
(
X /∈ Γ (R)

)
≤ e−

R2

2π2‖A‖op for R ≥ 0,

where Γ (R) = {x ∈ RN : |x−Γ | ≤ R}. Hence, if ε ∈ (0, 1) and P(X ∈ Γ ) ≥ ε,
then

P
(
X /∈ Γ (R)

)
≤ e−

R2

2π2‖A‖op for R > π
√

2‖A‖op log 1
ε .

Proof. Set f(x) = |x− Γ |. If E[f(X)] ≤ R
2 , then, by (2.4.5),

P
(
X /∈ Γ (R)

)
≤ P

(
f(X)− EP[f(X)] ≥ R

2

)
≤ e−

R2

2π2‖A‖op .

If EP[f(X)] ≥ R
2 , then, by (2.4.5) applied to −f ,

P(X ∈ Γ ) ≤ P
(
E[f(X)]− f(X) ≥ R

2

)
≤ e−

R2

2π2‖A‖op .

Hence, the first assertion is proved.

To prove the second assertion, let R > π
√

2‖A‖op log 1
ε be given. Then,

because P(X ∈ Γ ) ≥ ε > e
− R2

2π2‖A‖op , P
(
X /∈ Γ (R)

)
≤ e−

R2

2π2‖A‖op . ut

As a consequence of Theorem 2.4.5, one sees that if P(X ∈ Γ ) ≥ ε, then,

with large probability, X lies within a distance on the order of
√
‖A‖op log 1

ε

from Γ . In other words, once one knows that γ0,A(Γ ) ≥ ε, one knows that
most of the mass of γ0,A is concentrated relatively nearby Γ , and the extent
of this concentration depends only on ‖A‖op and not on dimension.

2.4.3 The Gaussian Isoperimetric Inequality

The goal in this subsection is to prove a result that can be thought of as
a isoperimetric inequality for Gaussian measures and can be used to derive
concentration results closely related to those in the proceding subsection. To

describe this result, let p(τ) = (2π)−
1
2 e−

τ2

2 be the standard Gauss kernel on
R, and take Φ(x) =

∫ x
−∞ p(τ) dτ to be the error function. Then the result

states that, for Γ ∈ BRN and t ≥ 0,

γ0,I

(
Γ (t)

)
≥ Φ

(
Φ−1

(
γ0,I(Γ )

)
+ t
)
,

where Γ (t) = {x ∈ RN : |x− Γ | ≤ t}.
(2.4.6)

The sense in which (2.4.6) is an isoperimetric inequality is that for a half-
space H = {x : (x, e)RN ≤ a} with e ∈ SN−1 and a ∈ R, γ0,I

(
H(t)

)
=

Φ(a+ t). Thus, if a = Φ−1
(
γ0,I(Γ )

)
, then γ0,I(H) = γ0,I(Γ ) and γ0,I

(
Γ (t)

)
≥
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γ0,I

(
H(t)

)
. In other words, among the sets B ∈ BRN with γ0,I(B) = γ0,I(Γ ),

all the ones for which the growth of t γ0,I

(
B(t)

)
is slowest are half-spaces.

The first derivations, given independently by C. Borell and by B. Tsirelson
& V. Sudakov, of (2.4.6) were based on Lévy’s isoperimetric inequality for
spheres combined with the observation (originally made by F. Mehler and
rediscovered by E. Borel) that γN0,1 is the weak limit as n→∞ of the marginal
distribution the first N -coordinates under the normalized surface measure on
the n-sphere of radius n

1
2 . The derivation that follows was given by S. Bobkov.

It too requires realizing γ0,I as a weak limit, but this time of measures based
on sums of Bernoulli random variables rather than the surface measure on
spheres.

The first step is to rewrite (2.4.6) as

Φ−1
(
γ0,I(Γ

(t))
)
− Φ−1

(
γ0,I(Γ )

)
≥ t. (2.4.7)

It is clear that (2.4.7) is equivalent to (2.4.6) and that it will hold for all Γ ∈
BRN if it holds for closed ones. In addition, since Φ−1(1) =∞ and Φ−1(0) =
−∞, we may and will assume that 0 < γ0,I(Γ ) ≤ γ0,I(Γ

(t)) < 1. Now consider
the right-continous, non-decreasing function F (t) = Φ−1

(
γ0,I(Γ

(t))
)

for t ∈
[0, T ), where T = sup{t ≥ 0 : γ0,I(Γ

(t)) < 1}. Lebesgue’s Differentiation
Theorem says that

f(t) = lim
τ↘0

F (t+ τ)− F (t)

τ
exists for λR-a.e. t ∈ [0, T )

and that F (t) − F (0) ≥
∫ t

0
f(τ) dτ . Hence, (2.4.7) will follow once we show

that f ≥ 1 (a.e.,λR) on [0, T ). Next observe that (Φ−1)′ = 1
Ψ , where Ψ =

p ◦ Φ−1, and therefore

lim
τ↘0

F (t+ τ)− F (t)

τ
=

1

Ψ
(
γ0,I(Γ (t))

) lim
τ↘0

γ0,I

(
Γ (t+τ)

)
− γ0,I

(
Γ (t)

)
τ

,

which means that it suffices to show that

lim
τ↘0

γ0,I

(
Γ (t+τ)

)
− γ0,I

(
Γ (t)

)
τ

≥ Ψ
(
γ0,I(Γ

(t))
)
.

In fact, because Γ (t+τ) = (Γ (t))(τ), we need only prove that

lim
τ↘0

γ0,I

(
Γ (τ)

)
− γ0,I

(
Γ
)

τ
≥ Ψ

(
γ0,I(Γ )

)
. (2.4.8)

The second step is to show that (2.4.8) will follow once we know that for
all ϕ ∈ C2

b

(
RN ; [0, 1]

)
,

Ψ
(
〈ϕ, γ0,I〉

)
≤ 〈Ψ ◦ ϕ, γ0,I〉+ 〈|∇ϕ|, γ0,I〉. (2.4.9)
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To see this, let ε ∈
(
0, 1

2 ) be given, and define

ητ (x) = 1− |x− Γ
(ε)|

(1− 2ε)τ
∧ 1.

Then ητ is a [0, 1]-valued, Lipschitz continuous function with Lipschitz con-

stant equal to
(
(1− 2ε)τ

)−1
and satisfying

ητ (x) =

{
1 if |x− Γ | ≤ ετ
0 if |x− Γ | ≥ (1− ε)τ.

.

Now choose ρ ∈ C∞b
(
RN ; [0,∞)

)
so that ρ = 0 off BRN (0, ετ) and

∫
ρ dλRN =

1, and define ϕτ = ρ ∗ ητ . Then ϕτ ∈ C∞
(
RN ; [0, 1]

)
, |∇ϕτ | ≤

(
(1− 2ε)τ

)−1
,

and

ϕτ (x) =

{
1 for x ∈ Γ
0 for x /∈ Γ (τ).

Hence, limτ↘0 ϕτ (x) = 1Γ (x), and therefore limτ↘0 Ψ ◦ ϕτ (x) = 0 for each
x ∈ RN . Further, since ϕτ achieves its minimum value off of Γ (τ) and its

maximum on Γ , |∇ϕτ | ≤
1
Γ (τ)−1Γ
(1−2ε)τ , and so, by (2.4.9),

Ψ
(
γ0,1(Γ )

)
= lim
τ↘0

Ψ
(
〈ϕτ , γ0,I〉

)
≤ lim
τ↘0
〈|∇ϕτ |, γ0,I〉 ≤ (1− 2ε)−1 lim

τ↘0

γ0,I(Γ
(τ))− γ0,I(Γ )

τ
.

Thus (2.4.8) follows after one lets ε↘ 0.
For reasons that will become clear shortly, we will prove (2.4.9) by proving

the slightly stronger inequality

Ψ
(
〈ϕ, γ0,I〉

)
≤
∫
RN

[
(Ψ ◦ ϕ)2 + |∇ϕ|2

] 1
2 dγ0,I . (2.4.10)

This inequality looks somewhat like a Poincaré inequality, and, like a Poincaré
inequality, it is preserved under products. To see this, assume that it holds
for 1 ≤ N ≤ M , and let ϕ ∈ C2

b

(
RM+1; [0, 1]

)
be given. Writing γ0,I for

RM+1 as the product of γ0,I for RM and γ0,1,∫
RM+1

[
(Ψ ◦ ϕ)2 + |∇ϕ|2

] 1
2 dγ0,I

=

∫
R

(∫
RM

[(
Ψ ◦ ϕ(x, y)

)2
+ |∇xϕ(x, y)|2 + |∂yϕ(x, y)|2

] 1
2 γ0,I(dx)

)
γ0,1(dy).

Because the triangle inequality implies that (a, b) ∈ R2 7−→ (a2 + b2)
1
2 ∈

[0,∞) is convex, Jensen’s inequality implies that
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RM

[(
Ψ ◦ ϕ(x, y)

)2
+ |∇xϕ(x, y)|2 + |∂yϕ(x, y)|2

] 1
2 γ0,I(dx)

≥

[(∫
RM

[
Ψ ◦ ϕ(x, y)2 + |∇xϕ(x, y)|2

] 1
2 γ0,I(dx)

)2

+

(∫
RM
|∂yϕ(x, y)| γ0,I(dx)

)2
] 1

2

≥
[
Ψ ◦ ψ(y)2 + |ψ′(y)|2

] 1
2 ,

where ψ(y) =
∫
RM ϕ(x, y) γ0,I(dx). Since∫

R

[(
Ψ ◦ ψ(y)

)2
+ |ψ′(y)|2

] 1
2 γ0,1(dy) ≥ Ψ

(
〈ψ, γ0,1〉

)
= Ψ

(
〈ϕ, γ0,I〉

)
,

we now know that (2.4.10) holds for all N ≥ 1 if it does when N = 1. Thus
what we need to show is that

Ψ
(
〈ϕ, γ0,1〉

)
≤
∫
R

[(
Ψ ◦ ϕ

)2
+ |ϕ′|2

] 1
2 dγ0,1 (2.4.11)

for ϕ ∈ C2
b

(
R; [0, 1]

)
.

In some ways, the next step is the most interesting. What we are going
to show is that (2.4.11) follows from a discrete analog of itself. Namely, let
β be the symmetric Bernoulli measure on {−1, 1} (i.e., β({±1}) = 1

2 ), and,

given a function f : {−1, 1} −→ [0, 1], define Df(±1) = ± f(1)−f(−1)
2 . Then

the analog of (2.4.11) in this setting is

Ψ
(
〈f, β〉

)
≤
∫
{−1,1}

[(
Ψ ◦ f

)2
+ |Df |2

] 1
2 dβ. (2.4.12)

To understand why (2.4.12) implies (2.4.11), observe that, by exactly to same
argument as we used above, (2.4.12) is self-replicating under products. Thus,

if P = βZ+

on Ω = {−1, 1}Z+

and S̃n(ω) = n−
1
2

∑n
m=1 ω(m), then, for any

n ≥ 1,

Ψ
(
E[ϕ ◦ S̃n]

)
≤ E

((Ψ ◦ ϕ ◦ S̃n)2 +

n∑
m=1

|Dmϕ ◦ S̃n|2
) 1

2

 ,
where

Dmϕ ◦ S̃n(ω) =
ϕ
(
S̃n(ω)

)
− ϕ

(
S̃n
(
ω)− 2n−

1
2ω(m)

)
2

.

Since ∣∣Dmϕ
(
S̃n(ω)

)
+ n−

1
2ω(m)ϕ′

(
S̃n(ω)

)∣∣ ≤ ‖ϕ′′‖u
n

and therefore
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n∑

m=1

(
Dmϕ ◦ S̃n(ω)

)2 − (ϕ′ ◦ S̃n(ω)
)2∣∣∣∣∣ ≤ C

n
1
2

for some C < ∞, an application of Central Limit Theorem completes the
proof that (2.4.11) follows from (2.4.12).

What remains to be done is give a proof of (2.4.12), an intricate but
relatively elementary exercise in calculous. Given f : {−1, 1} −→ [0, 1], set

c = 〈f, β〉 = f(1)+f(−1)
2 and ξ = f(1)−f(−1)

2 . Then (2.4.12) becomes

Ψ(c) ≤
(
Ψ(c+ ξ)2 + ξ2

) 1
2 +

(
Ψ(c− ξ)2 + ξ2

) 1
2

2
. (∗)

To verify (∗), we will make frequent use of the calculations in the following
lemma.

Lemma 2.4.6 For any θ ∈ [0, 1], Φ−1(1−θ) = −Φ−1(θ) and Ψ(1−θ) = Ψ(θ).
Moreover, for c ∈

[
0, 1

2

]
and ξ ∈ [0, c], Ψ(c+ ξ) ≥ Ψ(c− ξ) and |Ψ ′(c+ ξ)| ≤

Ψ ′(c− ξ). Finally,

(Ψ2)′′ = 2
(
(Ψ ′)2 − 1

)
and

(
(Ψ ′)2

)′′
= 2

(Ψ ′)2 + 1

Ψ2
on (0, 1).

Proof. Once one checks that Ψ ′ = −Φ−1, the calculations of derivatives are
simple applications of the product and chain rules.

Because

1− Φ(t) = 1− γ0,1

(
(−∞, t]

)
= γ0,1

(
(t,∞)

)
= γ0,1

(
(−∞,−t)

)
= Φ(−t),

Φ−1(1− θ) = −Φ−1(θ), from which it follows that Ψ(1− θ) = Ψ(θ).
Next observe that Ψ is non-decreasing on

[
0, 1

2

]
. Now let c ∈

[
0, 1

2 ] and
ξ ∈ [0, c] be given. Then 0 ≤ c − ξ ≤ 1 − c − ξ ≤ 1

2 , and so Ψ(c + ξ) =
Ψ(1 − c − ξ) ≥ Ψ(c − ξ). Similarly, because Ψ ′ is non-negative and non-
increasing on

[
0, 1

2 ], |Ψ ′(c+ ξ)| ≤ Ψ ′(c− ξ). ut

Returning to (∗), first note that there is nothing to do if c ∈ {0, 1} and
second that it suffices to handle ξ > 0. Further, since Ψ(1 − θ) = Ψ(θ) and
therefore (∗) holds for f if it does for 1 − f , we may and will assume that
c ∈

(
0, 1

2 ] and ξ ∈ (0, c]. Now set u(ξ) = Ψ(c+ ξ)2 + ξ2, and, after rewriting
(∗) in terms of u and squaring both sides, check that it is equivalent first to

4u(0)−
(
u(ξ) + u(−ξ)

)
≤ 2
(
u(ξ)u(−ξ)

) 1
2 ,

and then to

16u(0)2 +
(
u(ξ)− u(−ξ)

)2 ≤ 8u(0)
(
u(ξ) + u(−ξ)

)
.

Thus, if v(ξ) = u(ξ)− u(0), then (∗) is equivalent to
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Ψ(c+ ξ)2 − Ψ(c− ξ)2

)2 ≤ 8Ψ(c)2
(
v(ξ) + v(−ξ)

)
. (∗∗)

Using the calculations in Lemma 2.4.6, one sees that v′′ = 2(Ψ ′)2 and
therefore that

v′′(ξ) + v′′(−ξ) = 2
(
Ψ ′(c+ ξ)2 + Ψ ′(c− ξ)2

)
.

Since, by Lemma 2.4.6, (Ψ ′)2 is convex, the right hand side of the preceding
dominates 4Ψ ′(c)2, and so, because v(ξ) + v(−ξ) vanishes to first order at
ξ = 0, v(ξ) + v(−ξ) ≥ 2Ψ ′(c)2ξ2. Therefore (∗∗) will hold if(

Ψ(c+ ξ)2 − Ψ(c− ξ)2
)2 ≤ 16Ψ(c)2Ψ ′(c)2ξ2.

Because, again by Lemma 2.4.6, Ψ(c+ ξ) ≥ Ψ(c− ξ) and Ψ ′(c) ≥ 0, what we
need to show is that

Ψ(c+ ξ)2 − Ψ(c− ξ)2

ξ
≤ 4Ψ(c)Ψ ′(c) = 2(Ψ2)′(c).

But, from Lemma 2.4.6, we know that

(Ψ2)′′(c+ ξ)− (Ψ2)′′(c− ξ) = 2
(
Ψ ′(c+ ξ)2 − Ψ ′(c− ξ)2

)
≤ 0,

which means that ξ  Ψ(c+ ξ)2 − Ψ(c− ξ)2 is concave and therefore that

Ψ(c+ ξ)2 − Ψ(c− ξ)2

2ξ
≤ (Ψ2)′(c).

As with the Maurey–Pisier estimate, the most important feature of (2.4.6)
is its dimension independence. For instance it says that, independent of di-
mension,

γ0,I(Γ ) ≥ 1

2
=⇒ γ0,I

(
RN \ Γ (t)

)
≤ 1− Φ(t) ≤ e− t

2

2 .

To see how it can be used to prove estimates like the one in (2.4.5), consider
a Lipschitz continuous function f : RN −→ R with Lipschitz constant λ, let
m be a median of f under γ0,I , and set Γ±(t) = {±(f − m) ≤ λt}. Then

γ0,I

(
Γ±(0)

)
≥ 1

2 ,
(
Γ±(0)

)(t) ⊆ Γ±(t), and so

γ0,I

(
Γ±(t)

)
≥ Φ(t).

Therefore

γ0,I

(
{|f −m| > λt}

)
≤ 2
(
1− Φ(t)

)
≤ 2e−

t2

2 . (2.4.13)

Finally, suppose that g : R −→ [0,∞) is a continuous function with the
property that g(s) ≤ g(t) if 0 ≤ s ≤ t or 0 ≥ s ≥ t. Then, starting from
(2.4.13), one can show that
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RN

g
(
f(x)−m

)
γ0,I(dx) ≤

∫
R
g(λt) γ0,1(dt). (2.4.14)

Indeed, it suffices to check this when g is continuously differentiable and
g(0) = 0, in which case∫

RN
g
(
f(x)−m

)
γ0,I(dx) =

∫ ∞
0

g′(t)γ0,I

(
{x : f(x)−m ≥ t}

)
dt

+

∫ ∞
0

g′(−t)γ0,I

(
{x : f(x)−m ≤ −t}

)
dt

≤
∫ ∞

0

g′(t)
(
1− Φ(λ−1t)

)
dt+

∫ ∞
0

g′(−t)
(
1− Φ(λ−1t)

)
dt

= λ

∫ ∞
0

g′(λt)
(
1− Φ(t)

)
dt+ λ

∫ ∞
0

g′(−λt)
(
1− Φ(t)

)
dt

=

∫
R
g(λt) γ0,1(dt).

In particular∫
exp

(
α|f(x)−m|2

2λ2

)
γ0,I(dx) ≤ 1

(1− α)
1
2

for α ∈ [0, 1).

2.5 Constructing Gaussian Families

Let I be a non-empty index set, and let (Ω,F ,P) be a probability space.
Given a subset {X(ξ) : ξ ∈ I} of L2(P;R), set

c(ξ, η) = cov
(
X(ξ), X(η)

)
≡ E

[(
X(ξ)− E[X(ξ)]

)(
X(η)− E[X(η)]

)]
= E

[
X(ξ)X(η)

]
− E

[
X(ξ)

]
E
[
X(η)

]
.

The function c is called the covariance function for {X(ξ) : ξ ∈ I}.
There are three obvious properties that such a covariance function pos-

sesses. Namely, it is R-valued, symmetric (i.e., c(ξ, η) = c(η, ξ)), and non-
negative definite in the sense that, for all n ≥ 1, {ξ1, . . . , ξn} ⊆ I, and
{s1, . . . , sn} ⊆ R, ∑

1≤k,`≤n

c(ξk, ξ`)sks` ≥ 0. (2.5.1)

To check the last property, simply observe that

∑
1≤k,`≤n

c(ξk, ξ`)sks` = var

(
n∑
k=1

skX(tk)

)
≥ 0.



48 2 Gaussian Measures and Families

Given a symmetric function c : I2 −→ R satisfying (2.5.1), the goal in this
subsection is to show it is the covariance function for a family of centered
Gaussian random variables. That is, we will show that there exists a probabil-
ity space (Ω,F ,P) on which there is a collection {X(ξ) : ξ ∈ I} of centered
random variables with the property that the span of {X(ξ) : ξ ∈ I} is a
Gaussian family such that, for all n ≥ 1 and {s1, . . . , sn} ⊆ R,

∑n
j=1 sjX(ξj)

is a centered Gaussian random variable with variance∑
1≤j,k≤n

c(ξj , ξk)sjsk.

Such a family is called a Gaussian process with covariance c.
In order to show this, we will use a famous theorem of A. Kolmogorov

known as Kolmogorov’s Consistency Theorem. To state his result, for each
ξ ∈ I, let (Eξ, ρξ) be a complete, separable metric space. Given ∅ 6= S ⊆ I,
set ΩS =

∏
ξ∈S Eξ, and take Ω = ΩI . Thinking of ΩS as the set of all

functions ωS : S −→
⋃
ξ∈S Eξ such that ωS(ξ) ∈ Eξ for each ξ ∈ S, define

πS : Ω −→ ΩS so that πSω = ω � S. If ∅ 6= F ⊂⊂ I (i.e., F is a non-empty,
finite subset of I), give ΩF the product topology, and set AF = {π−1

F Γ : Γ ∈
BΩF }. Finally, take F = σ(A), where

A =
⋃{
AF : ∅ 6= F ⊂⊂ I

}
,

and note that A is an algebra of subsets of Ω.
If, for each ∅ 6= F ⊂⊂ I, µF ∈M1(ΩF ), the family {µF : ∅ 6= F ⊂⊂ I} is

said to be consistent, if

µF1(Γ ) = µF2

({
ωF2 ∈ ΩF2 : ωF2 � F1 ∈ Γ

})
for all ∅ 6= F1 ⊂ F2 ⊂⊂ I and Γ ∈ BΩF1

.

Theorem 2.5.1 Referring to the preceding, if {µF : ∅ 6= F ⊂⊂ I} is a
consistent family, then there is a unique probability measure P on (Ω,F)
such that, for all ∅ 6= F ⊂⊂ I and Γ ∈ BΩF ,

P
(
{ω : ω � F ∈ Γ}

)
= µF (Γ ).

Proof. Uniqueness is trivial in any case, and, when I is finite, there is nothing
to do. Next, suppose that I is countable, in which case we may assume that
I = Z+ and define

ρ(ω, ω′) =

∞∑
m=1

2−j
ρj
(
ω(m), ω′(m)

)
1 + ρj

(
ω(m), ω′(m)

)
for ω, ω′ ∈ Ω. One can easily check that ρ is a complete, separable metric
for Ω and that ρ-convergence of {ωk : k ≥ 1} in Ω is equivalent to ρm-
convergence of {ωk(m) : k ≥ 1} in Em for each m ≥ 1. In particular, the
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σ-algebra F described above coincides with the Borel field BΩ determined by
ρ.

Set Fn = {1, . . . , n}, Ωn = ΩFn , πn = πFn , An = AFn , and µn = µFn for
n ≥ 1. From the consistency hypothesis, we know that for 1 ≤ m < n and
Γ ∈ BΩm ,

µm(Γ ) = µn
(
{ωFn : ωFn � Fm ∈ Γ}

)
.

Next, for each m ≥ 1, choose an element em ∈ Em, and define Φn : Ωn −→ Ω
so that

Φn(ωFn)(m) =

{
ωFn(m) if 1 ≤ m ≤ n
em if m > n.

Clearly, Φn is continuous, and πn ◦Φn is the identity map on Ωn. Now define
Pn ∈M1(Ω) to be (Φn)∗µn. Then

Pn
(
{ω : ω � Fn ∈ Γ}

)
= µn(Γ )

for Γ ∈ BΩn . What we need show is that there exists a P ∈M1(Ω) such that
P � An = Pn � An for all n ≥ 1, and to do so it suffices that show that there is
a P ∈ M1(Ω) to which {Pn : n ≥ 1} converges in the sense that 〈ϕ,Pn〉 −→
〈ϕ,P〉 for all ϕ ∈ Cb(Ω;R). That there can be at most one P is obvious, and
so, by Prohorov’s Theorem (cf. Lemma 1.1.7), it suffices to prove that, for
each ε > 0, there is a compact set K ⊆ Ω such that infn≥1 Pn(K) ≥ 1 − ε.
To this end, let ε > 0 be given, and, using Ulam’s Lemma, choose a compact
K1 3 e1 in E1 such that µ1

(
K1) ≥ 1 − ε

2 , and, for n ≥ 2, choose a compact

Kn 3 en in En so that µn
(
Ωn−1×Kn

)
≥ 1− ε

2n . A standard diagonalization
argument shows that K = {ω : ω(n) ∈ Kn for n ≥ 1} is a compact subset
of Ω. In addition, if An = {ω : ω(m) /∈ Km for some 1 ≤ m ≤ n}, then
An ↗ Ω \K. Finally, P1(A1) = µ1(E1 \K1) ≤ ε

2 , and, for each n ≥ 2,

Pn(An) ≤
n∑

m=1

Pn
(
{ω : ω(m) /∈ Km}

)
= µ1(E1 \K1) +

n∑
m=2

Pm
(
{ω : ω(m) /∈ Km}

)
= µ1(E1 \K1) +

n∑
m=1

µm
(
Ωm−1 × (Em \Km)

)
≤ ε

n∑
m=1

2−m ≤ ε.

Therefore, for any 1 ≤ m ≤ n, Pn(Am) = Pm(Am) ≤ ε. At the same time,
if 1 ≤ n < m, then, because ej ∈ Ej for all j ≥ 1, Φ−1

n (Am) = Φ−1
n (An)

and therefore that Pn(Am) = Pn(An) ≤ ε. It follows that Pn(Ω \ K) =
limm↗∞ Pn(Am) ≤ ε for all n ≥ 1, which means that P exists.

It remains to treat the case when I is uncountable. For each countable
subset S ⊂ I, let PS be the measure just constructed on ΩS . Then, by
uniqueness, if S1 ⊆ S2,
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PS2

(
{ωS2 : ωS2 � S1 ∈ A}

)
= PS1(A)

for A ∈ BΩS . Hence we can define a finitely additive function P on the algebra
A by setting P(π−1

S A) = PS(A) for A ∈ BΩS . Furthermore, if {Ak : k ≥ 1} ⊆
A and Ak ↘ ∅, then we can choose a countable S ⊆ I such that {πSAk :
k ≥ 1} ⊆ BΩS , and clearly πSAk ↘ ∅. Hence, P(Ak) = PS

(
πSAk

)
↘ 0,

and therefore, by the Daniell Extention Theorem, P admits an extention to
F = σ(A) as a probability measure. ut

Corollary 2.5.2 Let I be a non-empty set and c : I2 −→ R a symmetric
function satisfying (2.5.1). Then there is a probability space (Ω,F ,P) on
which there is a collection of random variables {X(ξ) : ξ ∈ I} whose span is
a centered Gaussian family for which c is the covariance function.

Proof. Take Ω = RI , the space of all maps ω : I −→ R, and define the
σ-algebra F accordingly. Given a ∅ 6= F ⊂⊂ I, take µF to be the centered
Gaussian measure on RF with covariance matrix AF =

((
c(ξj , ξk)

))
ξj ,ξk∈F

.

Then it is easy to check that
{
µF : ∅ 6= F ⊂⊂ I

}
is a consistent fam-

ily. Now apply Theorem 2.5.1 to produce a probability measure on (Ω,F)
with the property that, for all n ≥ 1 and ξ1, . . . , ξn ∈ I, the distribution

of
(
ω(ξ1), . . . , ω(ξn)

)>
is µ{ξ1,...,ξn}, and conclude that {ω(ξ) : ξ ∈ I} are

random variables with the required property. ut

Exercise 2.5.1 Show that if c1 and c2 are covariance functions on I2, then
c1c2 is also a covariance function there.

Hint: Construct a probability space on which there are mutually independent
families {X1(ξ) : ξ ∈ I} and {X2(ξ) : ξ ∈ I} of centered random variables,
the first with covariance function c1 and the second with covariance function
c2. Alternatively, see if you can find a more direct proof.

2.5.1 Continuity Considerations

Unless I is countable, there is an inherent weakness in the conclusion of
Theorem 2.5.1. To understand this weakness, consider the case in which I =
R and, for all ξ ∈ R, Eξ is the same separable Banach space E. In this case,
Ω is the set of all maps ω : R −→ E and F is the sigma algebra generated
for the maps ω  ω(ξ). Thus, the only events to which the measure P can
assign a probability are those which depend on the values of ω at a countable
number of times. In particular, because, for any sequence {ξm : m ≥ 1} ⊆ R
and every ω ∈ C(R;R) there is a discontinuous ω′ ∈ Ω that equals ω at all
the ξn’s, the only Γ ∈ F contained in C(R;E) is empty. Hence, C(R;E) has
inner P-measure 0, and therefore, unless C(R;E) has P-outer measure 0, it
cannot be P-measurable.
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When presented with an uncountable collection {X(ξ) : ξ ∈ I} of random
variables on a probability space (Ω,F .P), one way to overcome the kind of
problem raised above is to ask whether there is another family {X̃(ξ) : ξ ∈ I}
which has the same distribution as {X(ξ) : ξ ∈ I} and has the desired
property. With this in mind, one says that {X̃(ξ) : ξ ∈ I} is a version
of {X(ξ) : ξ ∈ I} if X̃(ξ) = X(ξ) (a.s.,P) for each ξ ∈ I. Clearly, any
version of {X(ξ) : ξ ∈ I} will have the same distribution as {X(ξ) : ξ ∈ I}.
To see how this idea applies to questions like continuity, again consider the
setting described at the end of the preceding paragraph, and suppose that
there exists a version {ω̃(ξ) : ξ ∈ R} of {ω(ξ) : ξR} with the property
that ξ  ω̃(ξ) is always continuous. Then even though the inner P-measure
of {X( · ) is continuous} is 0, its outer P-measure is 1. To see this, suppose
Γ ∈ σ

(
{ω(ξm) : m ≥ 1}

)
contains C(R;E), and set A = {ω : ω(ξm) =

ω̃m(ξm) for all m ≥ 1}. Then, P(A) = 1 and, because {ω̃ : ω ∈ Ω} ⊆ A and
therefore A ⊆ Γ , P(Γ ) = 1.

We will now apply the preceding considerations to the Gaussian processes
constructed in Corollary 2.5.2. Suppose that I is a metric space and that
c is a covariance function on E2. If there is a choice of random variables
X(ξ), ξ ∈ E, that are continuous with respect to ξ and form a centered
Gaussian process for which c is the covariance function, then c must be a
continuous function on E2. Indeed, suppose (ξn, ηn) −→ (ξ, η) in E2. Then,
by Lemma 2.1.1, X(ξn) −→ X(ξ) and X(ηn) −→ X(η) in L2(P;R), and so

c(ξn, ηn)−c(ξ, η) = E
[(
X(ξn)−X(ξ)

)
X(ηn)

]
+E
[
X(ξ)

(
X(ηn)−X(η)

)]
−→ 0.

However, the converse statement is false. That is, just because c is continuous
on E2, does not mean that there is a Gaussian process {X(ξ) : ξ ∈ E} on
some probability space (Ω,F ,P) with c as its covariance function with the
property that ξ ∈ E  X(ξ, ω) is a continuous function for every ω ∈ Ω. In
fact, even when E = R, the condition on c that guarantees the existence of a
continuous process is very technical.2 Nonetheless, the following theorem of
Kolmogorov enables us to prove that if E = RN and, for some β ∈ (0, 1],{

c(ξ, ξ) + c(η, η)− 2c(ξ, η)

|η − ξ|β
: |η| ∨ |ξ| ≤ R

}
<∞ for all R > 0, (2.5.2)

then a continuous choice exists.
In the proof of the following theorem, we use the fact that if Q is a closed

cube in RN and, for each vertex v of Q, av is an element of a vector space
E, then there is a unique function f : Q −→ E, known as the multilinear
extention of v av, such that f(v) = av for each vertex v and f is an affine
function of each coordinate. For example, if Q = [0, 1]2, then

2 It’s sufficiency was proved by Richard Dudley, and its necessity was proved later by
Michel Talagrand.
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f(ξ1, ξ2) = (1−ξ1)(1−ξ2)a(0,0) +(1−ξ1)ξ2a(0,1) +ξ1(1−ξ2)a(1,0) +ξ1ξ2a(1,1).

The general case can be proved by translation, scaling, and induction on N .

Theorem 2.5.3 Suppose that, for some cube Q = [a, b]N ⊆ RN , {X(ξ) :
ξ ∈ Q} is a family of random variables taking values in a Banach space E,
and assume that, for some p ∈ [1,∞), C <∞, and r ∈ (0, 1],

E
[
‖X(η)−X(ξ)‖pE

] 1
p ≤ C|η − ξ|

N
p +r for all ξ, η ∈ Q.

Then there exists a version {X̃(ξ) : ξ ∈ Q} of {X(ξ) : ξ ∈ Q} such that
ξ ∈ Q 7−→ X̃(ξ)(ω) ∈ E is continuous for all ω ∈ Ω. In fact, for each
α ∈ [0, r), there is a K <∞, depending only on N , p, r, and α, such that

E

 sup
ξ,η∈[0,R]N

ξ 6=η

(
‖X̃(η)− X̃(ξ)‖E
|η − ξ|α

)p
1
p

≤ KC(b− a)
N
p +r−α.

Proof. Given ξ ∈ RN , define ‖ξ‖∞ = max1≤j≤N |ξj |.
First note that, by an elementary translation and rescaling argument, it

suffices to treat the case when Q = [0, 1]N .
Given n ≥ 0, set

Mn = max
k,m∈NN∩[0,2n]N

‖m−k‖∞=1

∥∥X(m2−n)−X
(
k2−n

)∥∥
E

≤

 ∑
k,m∈NN∩[0,2n]N

‖m−k‖∞=1

∥∥X(m2−n)−X
(
k2−n

)∥∥p
E


1
p

,

and observe that

E
[
Mp
n

] 1
p≤

 ∑
k,m∈NN∩[0,2n]N

‖m−k‖∞=1

E
[∥∥X(m2−n)−X

(
k2−n

)∥∥p
E

]


1
p

≤C2−nr+
N
p .

Let n ≥ 0 be given, and take Xn( · ) to be the function that equals X( · )
at the vertices of and is multilinear on each cube m2−n + [0, 2−n]N . Because
Xn+1(ξ)−Xn(ξ) is a multilinear function on m2−n−1 + [0, 2−n−1]N ,
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sup
ξ∈[0,1]N

‖Xn+1(ξ)−Xn(ξ)‖E

= max
m∈NN∩[0,2n+1]N

‖Xn+1(m2−n−1)−Xn(m2−n−1)‖E .

Since Xn+1(m2−n−1) = X(m2−n−1) and either Xn(m2−n−1) = X(m2−n−1)
or

Xn(m2−n−1) =
∑

k∈NN∩[0,2n+1]
‖k−m‖∞=1

θm,kX(k2−n−1),

where the θm,k’s are non-negative and sum to 1, it follows that

sup
ξ∈[0,1]N

‖Xn+1(ξ)−Xn(ξ)‖E ≤Mn+1

and therefore that

E

[
sup

ξ∈[0,1]N
‖Xn+1(ξ)−Xn(ξ)‖pE

] 1
p

≤ C2−nr+
N
p .

Hence, for 0 ≤ n < n′,

E

[
sup
n′>n

sup
ξ∈[0,1]N

‖Xn′(ξ)−Xn(ξ)‖pE

] 1
p

≤ C2−nr+
N
p

1− 2−r
,

and so {Xn : n ≥ 0} converges in C
(
[0, 1]N ;E

)
both P-almost surely and in

Lp
(
P;C([0, 1]N ;E)

)
. Therefore there exists a measurable map X̃ : [0, 1]N ×

Ω −→ E such that ξ  X̃(ξ, ω) is continuous for each ω ∈ Ω and

E

[
sup

ξ∈[0,1]N
‖X̃(ξ)−Xn(ξ)‖pE

] 1
p

≤ C2−nr+
N
p

1− 2−r
.

Furthermore, X̃(ξ) = X(ξ) (a.s.,P) if ξ = m2−n for some n ≥ 0 and m ∈
NN ∩ [0, 2n]N , and therefore, since ξ  X̃(ξ) is continuous and

E
[
‖X(m2−n)−X(ξ)‖pE

] 1
p ≤ C2−n(Np +r)

if mj2
−n ≤ ξj < (mj + 1)2−n for 1 ≤ j ≤ N,

it follows that X(ξ) = X̃(ξ) (a.s.,P) for each ξ ∈ [0, 1]N .
To prove the final estimate, suppose that 2−n−1 < |η − ξ| ≤ 2−n. Then

‖Xn(η)−Xn(ξ)‖E ≤ N
1
2 2n|ξ − η|Mn,

and so, P-almost surely,
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‖X̃(η)− X̃(ξ)‖E ≤ 2 sup
β∈[0,1]N

‖X̃(β)−Xn(β)‖E +N
1
2 2n|ξ − η|Mn.

Hence, by the preceding,

E

 sup
ξ,η∈[0,1]N

2−n−1<|η−ξ|≤2−n

(
‖X̃(η)− X̃(ξ)‖E
|η − ξ|α

)p
1
p

≤ C

(
2
N
p +1

1− 2−r
+ 2

N
p N

1
2

)
2−n(r−α),

and therefore

E


 sup
ξ,η∈[0,1]N

η 6=ξ

‖X̃(η)− X̃(ξ)‖E
|η − ξ|α


p

1
p

≤ KC,

where K = 2
N
p

(
2r

2r−1 + 4N
1
2 + 1

p

)
(1− 2−(r−α))−1. ut

Corollary 2.5.4 Assume that there is a p ∈ [1,∞), β > N
p , and C < ∞

such that

E
[
‖X̃(η)− X̃(ξ)‖pE

] 1
p ≤ C|η − ξ|β for all ξ, η ∈ RN .

Then, for each γ > β,

lim
|ξ|→∞

‖X̃(ξ)− X̃(0)‖E
|ξ|γ

= 0 (a.s.,P) and in Lp(P;E).

Proof. Take α = 0 in Theorem 2.5.3. Then, because

sup
2n−1≤‖ξ‖∞≤2n

‖X̃(ξ)− X̃(0)‖E
|ξ|γ

≤ 2−(n−1)γ sup
2n−1‖ξ‖∞≤2n

‖X̃(ξ)− X̃(0)‖E ,

E

[(
sup

2n−1≤‖ξ‖∞≤2n

‖X̃(ξ)− X̃(0)‖E
|ξ|γ

)p] 1
p

≤ 2−γ(n−1)E

[
sup

2n−1≤‖ξ‖∞≤2n
‖X̃(ξ)− X̃(0)‖pE

] 1
p

≤ 2β+γKC2(β−γ)n,

and so
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E

[(
sup

‖ξ‖∞≥2m−1

‖X̃(ξ)− X̃(0)‖E
|ξ|γ

)p] 1
p

≤ 2β+γKC

1− 2β−γ
2(β−γ)m.

ut

Corollary 2.5.5 Suppose that c is a covariance function on RN × RN that
satisfies (2.5.2). Then, there exists a probability space (Ω,F ,P) on which
there is a Gaussian process {X(ξ) : ξ ∈ RN} with covariance function c such
that X( · , ω) ∈ C(RN ;R) for each ω ∈ Ω. Moreover, for each α < β

2 , X( · , ω)
is Hölder continuous of order α on compact sets. Finally, if there is a C <∞
such that

c(η, η) + c(ξ, ξ)− 2c(ξ, η) ≤ C|η − ξ|β for all ξ, η ∈ RN ,

then, for each α > β
2 , |X(ξ,ω)|

|ξ|α −→ 0 as |ξ| → ∞.

Proof. Let {X(ξ) : ξ ∈ RN} be a Gaussian process with covariance function
c. Then, for each R > 0,

E
[
|X(η)−X(ξ)|2

]
= c(η, η) + c(ξ, ξ)− 2c(ξ, η) ≤ CR|η − ξ|β

for some CR <∞ and all ξ, η ∈ [−R,R]N ,

and so, for any p ∈ [1,∞),

E
[
|X(η)−X(ξ)|p

] 1
p ≤ KpCR|η − ξ|

β
2 ,

where Kp
p =

∫
|x|p γ0,1(dx). Now let 0 ≤ α < β

2 be given, choose 0 < r <
β
2 − α, and determine p ∈ [1,∞) by N

p = β
2 − r. Then

E
[
|X(η)−X(ξ)|p

] 1
p ≤ KpCR|η − ξ|

N
p +r,

and so the continuity assertion follows from Theorem 2.5.3. Similarly, when
CR can be chosen independent of R, the concluding growth estimate follows
from Corollary 2.5.4. ut

2.5.2 Some Examples

By far the most renowned Gaussian process parameterized by the real num-
bers is the one constructed originally by N. Wiener and usually called Brow-
nian motion. The covariance function for this process is

w(s, t) =

{
|s| ∧ |t| if st > 0

0 if st ≤ 0.
. (2.5.3)
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To check that w is a covariance function, it suffices to check that its restriction
to [0,∞)2 is and to observe that

s ∧ t =

∫ ∞
0

1[0,∞)(s− u)1[0,∞)(t− u) du for s, t ≥ 0,

and therefore that

n∑
j,k=1

sj ∧ skαjαk =

∫ ∞
0

 n∑
j=1

1[0,∞)(sj − u)

2

du ≥ 0

for all choices of s1, . . . , sn ∈ [0,∞) and α1, . . . , αn ∈ R.

Theorem 2.5.6 There exists a probability space (Ω,F ,P) on which there
is a centered Gaussian process {B(t) : t ∈ R} with covariance function w
and having the property that, for each ω ∈ Ω, B( · , ω) a Hölder continuous
function of every order 0 ≤ α < 1

2 , and

lim
|t|→∞

|B(t, ω)|
|t|β

= 0 for every β >
1

2
.

Proof. Simply observe that w(t, t) + w(s, s) − 2w(s, t) = |t − s|, and apply
Corollary 2.5.5. ut

From now on, I will say that a collection {X(t) : t ∈ R} of random
variables on a probability space (Ω,F ,P) is a Brownian motion if it is a
centered Gaussian process with covariance w and X( · , ω) is continuous for P-
almost every ω ∈ Ω. Clearly, P-almost all of the paths X( · , ω) will possesses
all the properties described in Theorem 2.5.6. Observe that if {X(t) : t ∈ R}
is a Brownian motion, then σ

(
{X(t) : t ≥ 0}

)
is independent of σ

(
{X(−t) :

t ≥ 0}
)
.

Wiener constructed this process to provide a mathematically rigorous
foundation for A. Einstein’s model of a physical phenomenon, first reported
by a botanist named Brown, on which he was basing his kinetic theory of
gases. However, at least for mathematicians, its renown does not derive from
its connection to Einstein or the frequency of its appearance in models of
physical, engineering, and even financial phenomena, but to the sometimes
startling properties it possesses. The following provides a few elementary
examples of these exotic properties.

Theorem 2.5.7 Let {B(t) : t ∈ R} be a Brownian motion on (Ω,F ,P).

(i) σ
(
{B(−t) : t ≥ 0}

)
is independent of σ

(
{B(t) : t ≥ 0}

)
, for each

s ∈ [0,∞), B(s) is independent of {B(t2) − B(t1) : s ≤ t1 ≤ t2}, and, for
any n ≥ 1 and t0 < · · · < tn, {B(tm)− B(tm−1) : 1 ≤ m ≤ n} are mutually
independent, N(0, tm − tm−1)-random variables.
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(ii) Both {−B(t) : t ∈ R} and {B(−t) : t ∈ R} are Brownian motions,

and, for any α > 0, {α− 1
2B(αt) : t ∈ R} is again a Brownian motion. In

addition, for any T ∈ R, {B(t+ T )−B(T ) : t ∈ R} is a Brownian motion.

(iii) Set B̃(0) = 0 and B̃(t) = |t|B
(

1
t

)
for t 6= 0. Then {B̃(t) : t ∈ R} is

a Brownian motion.

(vi) Define

Vn(t) =

b2ntc−1∑
m=0

(
B
(
(m+ 1)2−n

)
−B

(
m2−n

))2

for t > 0.

Then,
lim
n→∞

sup
s∈[0,t]

|Vn(s)− s| = 0 (a.s.,P) for all t > 0.

In particular, P-almost no path B( · ) has locally bounded variation or is locally
Hölder continuous of any order larger than 1

2 .

Proof. By Theorem 2.4.3, to verify (i) it suffices to observe that E
[
B(t)B(−t)

]
=

0 for all t ∈ R, E
[(
B(t2) − B(t1)

)
B(s)

]
= 0 if 0 ≤ s ≤ t1 ≤ t2, and

E
[(
B(t2)−B(t1)

)(
B(t4)−B(t3)

)]
= 0 for t1 < t2 < t3 < t4.

Since all the processes described in (ii) are centered Gaussian processes
with continuous paths, all that one needs to do is check that w is their co-
variance function. Similarly, the collection in (iii) is a centered Gaussian pro-
cess with covariance function w, and so it suffices to check that its paths
are P-almost surely continuous, which comes down to showing that they

are continuous at 0. But we know that lim|t|→∞
B(t)
t = 0 (a.s.,P), and so

limt→0 |t|B
(

1
t

)
= 0 (a.s.,P).

Turning to (iv), define ∆m,n = B
(
(m + 1)2−n

)
− B

(
m2−n

)
for m ≥ 0.

Clearly, ∆m,n ∈ N(0, 2−n), and, by (i), for each n ≥ 0, the ∆m,n’s are
mutually independent. Now set Ym,n = ∆2

m,n−2−n and Sn(m) =
∑m
k=0 Yk,n.

Then, for each n ≥ 0, the Ym,n’s are mutually independent random variable
with mean 0 and variance 2 · 4−n, and

|Vn(t)− t| ≤ |Vn(t)− 2−nb2ntc|+ 2−n = |Sn(b2ntc − 1)|+ 2−n.

Thus it suffices to show that sup
{
|Sn(m)| : 0 ≤ m ≤ 2nt} −→ 0. But, by

Kolmogorov’s inequality,

P
(

sup
0≤m≤2nt

|Sn(m)| ≥ ε
)
≤ ε−2E

[
Sn
(
b2ntc

)2] ≤ ε−221−nt,

and so the proof of the first part of (iv) is complete. To prove the rest, use (ii)
to see that it suffices to consider the paths restricted to [0, 1]. Next observe
that if ϕ : [0, 1] −→ R is Hölder continuous of order α > 1

2 , then
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2n−1∑
m=0

(
ϕ
(
(m+ 1)2−n

)
− ϕ

(
m2−n

))2

≤ ‖ϕ‖Cα([0,1];R)2
n(1−2α) −→ 0.

Also, if ϕ is continuous and of bounded variation and ρ is the modulus of
continuity for ϕ, then

2n−1∑
m=0

(
ϕ
(
(m+ 1)2−n

)
− ϕ

(
m2−n

))2

≤ ‖ϕ‖varρ(2−n) −→ 0.

Hence, P-almost no Brownian path can have either of these properties. ut

Given a collection {X(t) : t ∈ R} of random variables, set Fs = σ
(
{X(τ) :

τ ∈ (−∞, s]}
)

for s ∈ R. Then {X(t) : t ∈ R} is a Markov process if, for all

s < t, the conditional distribution of X(t) given σ
(
{X(s)}

)
is the same as

that of X(t) given Fs. If {X(t) : t ∈ R} is a Markov process and, for s < t,
x ∈ R P (s, x; t, · ) ∈M1(R) is a measurable map (i.e., x P (s, x; t, Γ ) is
measurable for all Γ ∈ BR) such that

E
[
{X(t) ∈ Γ}

∣∣Fs] = P
(
s,X(s); t, Γ

)
for Γ ∈ BR,

then P (s, x; t, · ) is called the transition probability function for {X(t) : t ∈
R}. Finally, {X(t) : t ∈ R} is said to be a homogeneous Markov process if
it has a transition probability function that, as a function of s < t, depends
only on t− s. That is, P (s, x; t, · ) = P (t− s, x, · ) ≡ P (0, x; t− s, · ).

An important fact about a Brownian motion {B(t) : t ∈ R} is that
{B(t+) : t ∈ R} is a Markov process. Indeed, if Fs = σ

(
{B(τ+) : τ ∈

(−∞, s]}
)
, then, for all s < t and bounded measurable ϕ : R −→ R,

E
[
ϕ
(
B(t+)

) ∣∣Fs] =

∫
ϕ
(
B(s+) + y

)
γ0,t+−s+(dy)

since, by (i) in Theorem 2.5.7, B(t+) − B(s+) is independent of Fs and is
a centered Gaussian with variance t+ − s+. Therefore {B(t+) : t ∈ R} is a
homogeneous Markov process with transition probability γx,t+−s+ .

Lemma 2.5.8 Let {X(t) : t ∈ R} be a Gaussian process with covariance
function c. If {X(t) : t ∈ R} is a Markov process, then

c(r, t)c(s, s) = c(r, s)c(s, t) for all r ≤ s < t. (2.5.4)

Conversely, if c satisfies (2.5.4) and t ∈ R  c(t, t) ∈ R is continuous,
then {X(t) : t ∈ R} is a Markov process with transition probability function
P (s, x; t, · ) = γb(s,t)x,a(s,t), where

b(s, t) =

{
c(s,t)
c(s,s) if c(s, s) > 0

0 if c(s, s) = 0,
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a(s, t) =

{
c(t, t)− c(s,t)2

c(s,s) if c(s, s) > 0

c(t, t) if c(s, s) = 0,

and γb,0 = δb.

Proof. First suppose that {X(t) : t ∈ R} is a Markov process. Given s < t,
either c(s, s) = 0, in which case c(r, s) = 0 and therefore (2.5.4) holds, or

c(s, s) > 0, in which case X(t) − c(s,t)
c(s,s)X(s) is independent of X(s) and

therefore E
[
X(t)

∣∣Fs] = c(s,t)
c(s,s)X(s), which means that

c(r, t) = E
[
X(t)X(r)

]
=
c(s, t)

c(s, s)
E
[
X(s)X(r)

]
=
c(r, s)c(s, t)

c(s, s)
.

Conversely, assume t  c(t, t) is continuous and that (2.5.4) holds. If
r ≤ s < t and c(s, s) > 0, then

E
[(
X(t)− b(s, t)X(s)

)
X(r)

]
= c(r, t)− c(s, t)c(r, s)

c(s, s)
= 0,

and so X(t)− b(s, t)X(s) is a centered Gaussian with variance a(s, t) that is
independent of Fs.

What remains is to handle the case when c(s, s) = 0 for some s ∈ R.
To this end, let t ∈ R be given. There is no problem if either c(t, t) = 0 or
c(s, s) > 0 for all s ≤ t. Now set s0 = sup{s ≤ t : c(s, s) = 0}, and assume
that s0 > −∞. By continuity, c(s0, s0) = 0, and so we are done if s0 = t. If
s0 < t, then we have to show that c(t, r) = 0 for all r < s0. But r < s0 =⇒
c(t, r)c(r, r) = c(r, s0)c(s0, t) = 0, which, since c(r, r) = 0 =⇒ c(r, t) = 0, is
possible only if c(r, t) = 0. ut

2.5.3 Stationary Gaussian Processes

A stochastic process {X(ξ) : ξ ∈ V }, where V is a vector space, is said to be
stationary if, for all η ∈ V , the distribution of {X(ξ+η) : ξ ∈ V } is the same
as that of {X(ξ) : ξ ∈ V }. For a centered Gaussian process, it is easy to show
that stationarity is equivalent to its covariance function c being translation
invariant. That is c(ξ, η) = c(0, η − ξ) for all ξ, η ∈ V .

When V = RN , c is translation invariance if and only if there is an R-
valued, non-negative definite function f such that c(ξ, η) = f(η − ξ), which
means that f

f(0) must be a characteristic function for a symmetric probability

measure if c is continuous. Thus we have a ready source of translation invari-
ant covariance functions. Notice that, by Corollary 2.5.5, a centered Gaussian
process with covariance function f(η − ξ) will admit a continuous version if
f is Hölder continuous of some positive order at 0.
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Theorem 2.5.9 Suppose that f : R −→ R is a continuous, non-negative
definite function and that {X(t) : t ∈ R} is a continuous, centered Gaussian
process with covariance function f(t − s) on (Ω,F ,P). If f(t) −→ 0 as t →
∞, then {X(t) : t ∈ R} is ergodic. Equivalently, for any bounded, Borel
measurable ϕ : R −→ R,

lim
T↗∞

1

T

∫ T

0

ϕ
(
X(t)

)
dt = E

[
ϕ
(
X(0)

)]
=

∫
ϕ(y) γ0,f(0)(dy) (a.s.,P).

Proof. Without loss in generality, we will assume that Ω = C(R;R) and
F = σ

(
{ω(t) : t ∈ R}

)
.

For each s ∈ R, define the time-shift map Ts : Ω −→ Ω by Tsω(t) =
ω(s+ t). Clearly each Ts is a F-measurable, P-measure preserving map, and
Ts ◦ Tt = Tt+s for all s, t ∈ R.

By the Individual Ergodic Theorem, what we have to show is that if A ∈ F
is time shift invariant (i.e., A = T−1

t A for all t ≥ 0), then P(A) ∈ {0, 1}. For
that purpose, we will show that, for any A ∈ F ,

P
(
A ∩ T−1

t A
)
−→ P(A)2 as t→∞, (∗)

from which it is clear that P(A) = P(A)2 if A is time-shift invariant.
Let A be the collection of all subsets having the form{

ω :
(
ω(t1), . . . , ω(tn)

)> ∈ Γ}
for some n ≥ 1, t1 < · · · < tn, and Γ ∈ BRn , and let C be the set of A ∈ F for
which (∗) holds. Clearly A is an algebra which generates F and C is closed
under complementation. Thus, if we can show that C ⊇ A and is closed under
non-decreasing limits, then we will know that C = F .

To prove that A ⊆ C, let A =
{
ω :

(
ω(t1), . . . ω(tn)

)> ∈ Γ
}

, where

t1 < · · · < tn. By Lemma 2.4.1, we may assume that the matrix B =
((
f(tj−

tk)
))

1≤j,k≤n is non-degenerate. Next, for t > tn − t1, define C(t) =
((
f(tj −

tk − t)
))

1≤j,k≤n and

B(t) =

 B C(t)

C(t)> B

 .

Then γ0,B(t) is the joint distribution of(
ω(t1), . . . ω(tn)

)>
and

(
ω(t1 + t), . . . ω(tn + t)

)>
,

and so P(A ∩ T−1
t A) = γ0,B(t)(Γ × Γ ). Since

B(t) −→

B 0

0 B

 as t→∞
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and B is non-degenerate, γ0,B(t) converges in variation to γ2
0,B , which means

that P(A ∩ T−1
t A) −→ γ0,B(Γ )2 = P(A)2.

Finally, suppose that {An : n ≥ 1} ⊆ C and that An ↗ A. Then

0 ≤ P
(
A∩T−1

t A
)
−P
(
An∩T−1

t An
)
≤ P(A\An)+P

(
T−1An\T−1

t An
)

= 2P(A\An).

Hence, if (∗) holds for each An, then it also holds for A. ut

We now have two examples of the influence that properties of f have on
the properties of the associated Gaussian process: continuity properties of f
are reflected in continuity properties of the paths, and decay properties of
f at infinity influence long term properties, in particular ergodicity, of the
process.

Periodicity provides a more dramatic example. To wit, take f(t) =
cos(2πt). Of course one can use Corollary 2.5.5 to construct an associated
Gaussian process, but there is a more revealing way to do so. Namely, take
Ω = R2 and P = γ0,I , and define

X(t, ξ) = ξ1 cos(2πt) + ξ2 sin(2πt) for t ∈ R and ξ ∈ Ω.

Clearly {X(t) : t ∈ R} is a centered Gaussian process under P. Moreover,

E
[
X(s)X(t)

]
= cos(2πs) cos(2πt) + sin(2πs) sin(2πt) = cos

(
2π(t− s)

)
.

Thus cos
(
2π(t− s)

)
is the covariance function for {X(t) : t ∈ R}.

As J. Doob noticed, there are very few R-valued characteristic functions
f : R −→ R for which the corresponding covariance function satisfies (2.5.4).
Indeed, if (2.5.4) holds, f(ξ + η) = f(ξ)f(η) for all ξ, η ≥ 0. Thus, if g(ξ) =
sgn(ξ) log f(ξ), then g(ξ + η) = g(ξ) + g(η) for all ξ, η ∈ R, and so, by
Theorem 2.2.4, f(ξ) = e−α|ξ| for some α ≥ 0. As a consequence, if {X(t) :

t ∈ R} is the centered Gaussian process with covariance function e−
|t|
2 , then

any other stationary centered Gaussian process that is Markov will have the
same distribution as

{
aX(bt) : t ∈ R} for some a, b ≥ 0. Because they were

introduced by Ornstein and Uhlenbeck, these are called stationary Ornstein–
Uhlenbeck processes.

There is an interesting way to construct a stationary Ornstein–Uhlenbeck
process from a Brownian motion. Namely, let {B(t) : t ∈ R} be a Brownian
motion on a probability space (Ω,F ,P) that supports a random variable
X0 ∈ N(0, 1) that is independent of {B(t) : t ∈ R}, and define

X(t) = e−
|t|
2

(
X0 +B

(
sgn(t)(e|t| − 1)

))
. (2.5.5)

It is not hard to check that {X(t) : t ∈ R} is an stationary Ornstein–

Uhlenbeck process with covariance function e−
|t|
2 . For aficionados of Brow-

nian motion, this representation facilitates computations. For example, it

makes clear that, for s < t, X(t) − e−
t−s
2 X(s) is independent of Fs =
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σ
(
{X(τ) : τ ≤ s} and has distribution γ0,1−e−t . Hence, {X(t) : t ∈ R}

is a homogeneous Markov process, and the function p(t, x, y) that appeared
in (2.3.2) is the density of its transition probability function.

Exercise 2.5.2

(i) Assume that f ∈ C2(R;R) is a characteristic function whose second
derivative is Hölder continuous of some positive order. Set I = {(s, t) ∈ R2 :
st = 0}, and define

c
(
(s, 0); (t, 0)

)
= f(t− s), c

(
(s, 0); (0, t)

)
= c
(
(0, t); (s, 0)

)
= f ′(t− s),

and c
(
(0, s); (0, t)

)
= −f ′′(t− s).

Show that c is a covariance function on I and that there is a continuous
centered Gaussian process {Z(s, t) : (s, t) ∈ I} for which c is the covariance
function. Next, set X(t) = Z(t, 0) and Y (t) = Z(0, t), and show that {X(t) :
t ∈ R} is a centered Gaussian process with covariance function f(t − s),
that {Y (t) : t ∈ R} is a centered Gaussian process with covariance function
−f ′′(t− s), and that, almost surely,

X(t)−X(s) =

∫ t

s

Y (τ) dτ for all s < t.

Equivalently, X( · ) ∈ C1(R;R) and Y ( · ) = Ẋ( · ) almost surely.

(ii) Show that if f is an R-valued characteristic function that is periodic
and {X(t) : t ∈ R} is a continuous, centered Gaussian process for which f(t−
s) is the covariance function, show that almost surely X( · ) is periodic with
same period as f . In addition, if f ∈ C2(R;R) and f ′′ is Hölder continuous
of some positive order, show that X(t) is independent of Ẋ(t) for each t ∈ R.

(iii) Let {B(t) : t ∈ R} be a Brownian motion. Using the representation
of an Ornstein–Uhlenbeck process in terms of a Brownian motion, show that,
for each α > 0,

lim
|t|→∞

|B(t)|
|t| 12 (log |t|)α

= 0

almost surely. This improves our earlier result but is still far short of the
result coming from the law of the iterated logarithm (cf. § 3.5.2) which says
that

lim
|t|→∞

|B(t)|√
2t log(log t)

= 1.

(iv) Let {B(t) : t ∈ R} be a Brownian motion, and define

B0(t) = B(t)− ψ(t)B(1), where ψ(t) = (t ∧ 1)+.

Show that B(1) is independent of σ
(
{B0(t) : t ∈ R}

)
. Next, given a non-

negative, σ
(
{B(t) : t ∈ R}

)
-measurable function F , set F̄ (y) = E

[
F ◦ (B +
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ψy)
]

for y ∈ R, and show that

E
[
F ◦B, B(1) ∈ Γ

]
=

∫
Γ

F̄ (y) γ0,1(dy)

for Γ ∈ BR. Conclude that

E
[
F ◦B

∣∣σ({B(1)}
)]

= F̄
(
B(1)

)
.

In particular, the distribution of {B0(t) : t ∈ R}
)

is that of a Brownian
motion conditioned to be at 0 at time t = 1. For this reason, {B0(t) : t ∈ R}
is sometimes called a pinned Brownian motion.

(v) Referring to (iv), show that {B0(t) : t ≥ 0} is a Markov process.
Further, if P (s, x; t, · ) is its transition probability function, show that

P (s, x; t, · ) = γ 1−t
1−sx,

(1−t)(t−s)
1−s

for 0 < s < t < 1.

(vi) Let {X(t) : t ∈ R} be an Ornstein–Uhlenbeck process with coveriance

function e−
|t|
2 , and set Fs = σ

(
{X(τ) : τ ∈ (−∞, s]}

)
for s ∈ R. If Hn is the

nth Hermite polynomial, show that, for each n ∈ N,(
e
n|t|
2 Hn

(
X(t)

)
,Fs,P

)
is a martingale.

(vii) Let {B(t) : t ∈ R} be a Brownian motion and set Fs = σ
(
{B(τ+) :

τ ∈ (−∞, s]}
)

for s ∈ R. Show that,(
exp

(
ξB(t+)− t+ξ2

2

)
,Fs,P

)
is a martingale for each ξ ∈ R. Next, for each n ∈ N, check that (t, x)  
t
n
2Hn

(
t−

1
2x
)

is a polynomial in (t, x) ∈ R2 and that(
(t+)

n
2Hn

(
(t+)−

1
2B(t+)

)
,Fs,P

)
is a martingale.

Hint: Use (2.3.18).





Chapter 3

Gaussian Measures on a Banach Space

3.1 Motivation

The theories of Gaussian measures and Hilbert spaces are inextricably re-
lated, and the contents of this chapter is to explain and explore that rela-
tionship.

To understand the relationship, it is best to begin in the finite dimen-
sional setting. Let H be an N -dimensional Hilbert space. A Borel prob-
ability measure W on H is said to the standard Gauss measure there if
{( · , h)H : h ∈ H} is a centered Gaussian family under W with covariance
function (g, h)H . To see that such a W exists, let {hm : 1 ≤ m ≤ N} be

an orthonormal basis in H, define Φ : RN −→ H by Φ(x) =
∑N
m=1 xmhm,

and take W = Φ∗γ
N
0,1. To see that there is only one such W , note that Φ

is invertible and that Φ−1(h) =
(
(h, h1)H , . . . , (h, hN )H

)>
, and check that

(Φ−1)∗W = γN0,1. Alternatively, set λH = Φ∗λRN , check that λH is the unique
translation invariant Borel measure on H that assigns measure 1 to the unit
cube {h ∈ H : (h, hm)H ∈ [0, 1] for 1 ≤ m ≤ N}, and show that

W(dh) = (2π)−
N
2 e−

‖h‖2H
2 λH(dh).

Given a finite dimensional Banach space B, let 〈x, ξ〉 denote the action of
ξ ∈ B∗ on x ∈ B, and say that aW ∈M1(B) is a centered Gaussian measure
on B if {〈 · , ξ〉 : ξ ∈ B∗} is a centered Gaussian family under W. Assuming
that, in addition,W is non-degenerate in the sense that var

(
〈 · , ξ〉

)
> 0 if ξ 6=

0, there is a unique Hilbert structure on B such thatW is the standard Gauss
measure for B with that Hilbert stucture. Namely, let c be the covariance
function for {〈 · , ξ〉 : ξ ∈ B∗}, and observe that c is a bilinear, symmetric
form on B∗ such that c(ξ, ξ) > 0 unless ξ = 0. Thus, for each ξ ∈ B∗ there
is a unique Aξ ∈ B such that 〈Aξ, η〉 = c(ξ, η) for all η ∈ B∗, and the map
A : B∗ −→ B is linear isomorphism. Now define (x, y)H = 〈x,A−1y〉 for
x, y ∈ B. Clearly (x, y)  (x, y)H is bilinear. In addition, if x = Aξ and

65
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y = Aη, then (x, y)H = 〈Aξ, η〉 = c(ξ, η), from which it follows that ( · , ·· )H
is an inner product on B. Finally, if y1, y2 ∈ B, then∫

(x, y1)H(x, y2)HW(dx) =

∫
〈x,A−1y1〉〈x,A−1y2〉W(dx)

= c
(
A−1y1, A

−1y2

)
= (y1, y2)H .

Hence, W is the standard Gaussian measure for the Hilbert space B with
inner product ( · , ··)H .

The situation is much more complicated when B is infinite dimensional,
and all the complications stem from the fact that there is no standard Gauss
measure on an infinite dimensional Hilbert space. Indeed, suppose that W
were the standard Gauss measure on the infinite dimensional Hilbert space
H, and let {hm : m ≥ 0} be an orthonormal sequence in H. Set Xm(x) =
(x, hm)H , and observe that {Xm : m ≥ 0} would be a sequence of mutually
independent N(0, 1) random variables under W. Thus∫

exp

(
−
∞∑
m=0

Xm(x)2

)
W(dx) = lim

n→∞

(∫
e−t

2

γ0,1(dt)

)n
= lim
n→∞

3−
n
2 = 0,

which leads to the contradiction that ‖x‖2H ≥
∑∞
m=0Xm(x)2 = ∞ for W-

almost every x ∈ H. When H is separable, and therefore dim(H) is countable,
there is a more intuitive reason why W cannot exist. Namely, if W existed,
then one would guess that

W(dh) =
1

Z
e−
‖h‖2H

2 λH(dh), (3.1.1)

where Z = (2π)
dim(H)

2 and λH is the translation invariant Borel measure on H
with gives measure 1 to the unit cube {h ∈ H : (h, hm)H ∈ [0, 1] for m ∈ N},
where {hm : m ≥ 0} is an orthonormal basis in H. However, even though R.
Feynman was able to make remarkable computations using it, the formula
in (3.1.1) defies mathematical rationalization: the measure λH does not exist
and Z =∞.

It was to overcome the problems caused by the preceding non-existence
result that I. Sigal and L. Gross [6] developed the theory to which this chapter
is devoted.

3.2 Some Background

Besides standard results about Hilbert and Banach spaces, I will need a few
less familiar ones. Throughout, the Banach spaces here will be over R, and I
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will use B∗ to denote the dual of B and 〈x, ξ〉 to denote the action of ξ ∈ B∗
on x ∈ B.

Lemma 3.2.1 If B is a separable Banach space, then, for each R > 0, the
weak* topology on BB∗(0, R) is compact and is metrizable. Hence the weak*
topology on any bounded subset of B∗ is second countable (i.e., is generated
by a countable neighborhood basis).

Proof. It suffices to show that the weak* topology on BB∗(0, 1) is metrizable
and compact. To this end, choose a sequence {xn : n ≥ 1} ⊆ BB(0, 1) of
linearly independent elements whose span S is dense in B, and define

ρ(ξ, ν) =

∞∑
n=1

2−n|〈xn, η − ξ〉| for ξ, η ∈ BB∗(0, 1).

Let {ξk : k ≥ 1} ⊆ BB∗(0, 1) be given. Clearly, ρ is a metric, and ρ(ξk, ξ) −→
0 if {ξk : k ≥ 1} is weak* convergent to ξ. Conversely, if ρ(ξk, ξ)) −→ 0, then
limk→∞〈xn, ξk〉 −→ 〈xn, ξ〉 for each n ≥ 1 and therefore 〈x, ξk〉 −→ 〈x, ξ〉
for all x ∈ S. Since S is dense in B and ‖ξk‖B∗ ≤ 1 for all k ≥ 1, it follows
that {ξk : k ≥ 1} is weak* convergent to ξ. Thus ρ is a metric for the weak*
topology on BB∗(0, 1).

To prove compactness, use a diagonalization procedure to extract a subse-
quence {ξkj : j ≥ 1} such that am = limj→∞〈xm, ξkj 〉 exists for each m ≥ 1,
and set, for x ∈ S, f(x) =

∑n
m=1 αmam if x =

∑n
m=1 αmxm. Because the

xm’s are linearly independent, f is a well defined linear function on S. Fur-
thermore, f(x) = limj→∞〈x, ξkj 〉 and therefore |f(x)| ≤ ‖x‖B for x ∈ S.

Hence there is a ξ ∈ BB∗(0, 1) such that

lim
j→∞
〈x, ξkj 〉 = f(x) = 〈x, ξ〉

for x ∈ S, and, because S is dense in B, this means that ξkj −→ ξ in the
weak* topology. ut

Given a Borel probability measure µ on a Banach space B, define its
characteristic function µ̂ : B∗ −→ C by

µ̂(ξ) =

∫
ei〈x,ξ〉 µ(dx).

Lemma 3.2.2 If B is a separable Banach space, then BB is the smallest
σ-algebra with respect to which x ∈ B  〈x, ξ〉 ∈ R is measurable for all
ξ ∈ B∗. In particular, if µ, ν ∈M1(E), then µ = ν if and only if µ̂ = ν̂.

Proof. Clearly x ∈ B  〈x, ξ〉 ∈ R is BB measurable for all ξ ∈ B∗. To prove
that sets in BB are measurable with respect to the σ-algebra generated by
these maps, it suffices to show that ‖ · ‖B is measurable with respect to them.
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For that purpose, choose a sequence {ξn : n ≥ 1} ⊆ B∗ which is weak* dense
in BB∗(0, 1), and check that ‖x‖B = supn≥1〈x, ξn〉.

Given the preceding, we know that µ = ν on BB if, for all ξ1, . . . , ξn ∈ B∗,
the distribution of the map x ∈ B  

(
〈x, ξ1〉, · · · , 〈x, ξn〉

)> ∈ Rn is the same
under µ as it is under ν, and, by Lemma 1.1.1, this will be true if and only
if ν̂ = µ̂. ut

I will also be making use of Bochner’s theory of integration for Banach
space valued functions. What follows is a brief outline of his theory.

Let B be a separable, real Banach space and (Ω,F ,P) a probability space.
A function X : Ω −→ B is said to be simple if X is F-measurable and X
takes only finitely many values, in which case its expected value with respect
to P is the element of B given by

E[X] =

∫
Ω

X(ω)P(dω) ≡
∑
x∈B

xP(X = x).

Notice that an equivalent description of E[X] is as the unique element of B
with the property that

〈E[X], ξ
〉

= E
[
〈X, ξ〉

]
for all ξ ∈ B∗,

and therefore that the mapping taking simple X to E[X] is linear. Next,
observe that, by the same argrument as was used in the proof of Lemma 3.2.2,
ω ∈ Ω  ‖X(ω)‖B ∈ R is F-measurable if X : Ω −→ B is F-measurable,
and say that X is integrable if ‖X‖B is. The space of B-valued integrable
functions will be denoted by L1(P;B), and, as usual, we will identify elements
of L1(P;B) that differ on a set of P-measure 0 and will take ‖X‖L1(P;B) =

E
[
‖X‖B

]
.

Bochner’s definition of the integral of an B-valued, integrable X is com-
pleted in the following theorem.

Theorem 3.2.3 If X : Ω −→ B is integrable, then there is a unique element
E[X] ∈ B satisfying 〈E[X], ξ〉 = E[〈X, ξ〉] for all ξ ∈ B∗. In particular, the
mapping X ∈ L1(P;B) 7−→ E[X] ∈ B is linear and satisfies∥∥E[X]

∥∥
B
≤ E

[
‖X‖B

]
. (3.2.1)

Finally, if X ∈ L1(P;B), then there is a sequence {Xn : n ≥ 1} of B-valued,
simple functions with the property that ‖Xn −X‖L1(P;B) −→ 0.

Proof. Clearly uniqueness, linearity, and (3.2.1) all follow immediately from
the given characterization of E[X]. Thus, what remains is to prove exis-
tence and the final approximation assertion. In fact, once the approxima-
tion assertion is proved, then existence will follow immediately from the
observation that, by (3.2.1), E[X] can be taken equal to limn→∞ E[Xn] if
‖X −Xn‖L1(P;B) −→ 0.
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To prove the approximation assertion, begin with the case when M =
supω∈Ω ‖X(ω)‖B < ∞. Choose a dense sequence {x` : ` ≥ 1} in B, and set
A0,n = ∅ and

A`,n =
{
ω : ‖X(ω)− x`‖E < 1

n

}
for `, n ≥ 1.

Then, for each n ∈ Z+ there exists an Ln ∈ Z+ with the property that

P

(
Ω \

Ln⋃
`=1

A`,n

)
<

1

n
.

Hence, if Xn : Ω −→ B is defined so that

Xn(ω) = x` when 1 ≤ ` ≤ Ln and ω ∈ A`,n \
`−1⋃
k=0

Ak,n

and Xn(ω) = 0 when ω /∈
⋃Ln

1 A`,n, then Xn is simple and

E
[
‖X −Xn‖B

]
≤ M + 1

n
.

In order to handle the general case, let X ∈ L1(P;B) and n ∈ Z be given.
We can then find a sequence rn ↗∞ with the property that∫

Ω(rn){

‖X(ω)‖B µ(dω) ≤ 1

2n
,

where Ω(r) =
{
ω : ‖X(ω)‖B ≤ r

}
for r ≥ 1. Since, rP

(
Ω(r)

)
≤ E

[
‖X‖B

]
,

we can apply the preceding to the restrictions of P and X to Ω(rn) and
thereby find a simple Xn : Ω(rn) −→ B with the property

E
[
‖X −Xn‖B , Ω(rn)

]
≤ 1

2n
.

Hence, after taking Xn = 0 off of Ω(rn), we arrive at a simple Xn for which
E
[
‖X −Xn‖B

]
≤ 1

n . ut

Once one has the results in Theorem 3.2.3, with little or no change in
the arguments, one can prove for integrals of Banach space valued functions
all the standard results for R-valued ones that don’t rely of special proper-
ties of R. In particular, one can introduce the Lebesgue spaces Lp(µ;B) for

p ∈ [1,∞) with norm ‖X‖Lp(µ;B) = E
[
‖X‖pB

] 1
p and can show that they are

separable Banach spaces.
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Having developed Bochner’s integral for Banach space valued random vari-
ables, I will now introduce the corresponding notion of conditional expecta-
tion values.

Theorem 3.2.4 Let (Ω,F ,P) be a probability space, B a separable Banach
space, and X ∈ L1(P;B). Then

P
(
X 6= 0

)
= 0 ⇐⇒ E

[
X, A

]
= 0 for all A ∈ F .

Next, if Σ is a sub-σ-algebra of F , then there is a P-almost everywhere unique
Σ-measurable XΣ ∈ L1(P;B) such that

E
[
XΣ , A

]
= E

[
X, A

]
for every A ∈ Σ. (3.2.2)

In particular, if Y is a second element of L1(P;B), then, for all α, β ∈ R,(
αX + βY

)
Σ

= αXΣ + βYΣ (a.s.,P).

Finally, ∥∥XΣ

∥∥
B
≤ E

[
‖X‖B

∣∣Σ] (a.s.,P). (3.2.3)

Proof. Clearly, it is only necessary to prove the “⇐=” part of the first asser-
tion. Thus, suppose that P(X 6= 0) > 0. Then, because B is separable and
therefore BB∗(0, 1) with the weak* topology is also separable, there exists an
ε > 0 and a ξ ∈ BB∗(0, 1) with the property that µ

(
〈X, ξ〉 ≥ ε

)
> 0, from

which it follows that there is an A ∈ F for which〈
E
[
X, A

]
, ξ
〉

= E
[
〈X, ξ〉, A

]
6= 0.

Turning to the uniqueness and other properties of XΣ , it is obvious that
uniqueness follows immediately from the preceding and that linearity follows
from uniqueness. As for (3.2.3), notice that if ξ ∈ B∗ and ‖ξ‖B∗ ≤ 1, then

E
[
〈XΣ , ξ〉, A

]
= E

[
〈X, ξ〉, A

]
≤ E

[
‖X‖B , A

]
= E

[
E
[
‖X‖B

∣∣Σ], A]
for every A ∈ Σ. Hence, by the theory of conditional expectation for R-
valued random variables, 〈XΣ , ξ〉 ≤

(
‖X‖B

)
Σ

(a.s.,P) for each element ξ
from the unit ball in B∗; and so, because BB∗(0, 1) with the weak* topology
is separable, (3.2.3) follows.

Finally, to prove the existence of XΣ , suppose that X is simple, let R
denote its range, and note that

XΣ ≡
∑
x∈R

xP
(
X = x

∣∣Σ)
has the required properties. In order to handle general X ∈ L1(P;E), use the
approximation result in Theorem 3.2.3 to find a sequence {Xn : n ≥ 1} of
simple functions that tend to X in L1(P;E). Then, since



3.2 Some Background 71

(Xn)Σ − (Xm)Σ =
(
Xn −Xm

)
Σ

(a.s.,P)

and therefore, by (3.2.3),

E
[
‖(Xn)Σ − (Xm)Σ

∥∥
B

]
≤ E

[
‖Xn −Xm‖B

]
,

we know that there exists a Σ-measurable XΣ ∈ L1(P;E) to which the
sequence

{
(Xn)Σ : n ≥ 1

}
converges in L1(P;R); and clearly XΣ has the

required properties. ut

In the future, I will call XΣ the conditional expectation of X given Σ
and will use E[X |Σ] to denote it. The following are essentially immediate
consequences of uniqueness:

E
[
Y X

∣∣Σ] = Y E
[
X
∣∣Σ] (a.s.,P) for bounded Σ-measurable Y,

and
E
[
X
∣∣T ] = E

[
E
[
X
∣∣Σ]∣∣∣T ] (a.s,P)

whenever T is a sub-σ-algebra of Σ.
Once one knows how to take the conditional expectation of Banach space

valued random variables, one should investigate what can be said about Ba-
nach space valued martingales. That is, given a non-decreasing sequence
{Fn : n ≥ 0} of sub-σ-algebras and an adapted sequence {Xn : n ≥
0} ⊆ L1(P;B) (i.e., Xn is Fn measurable for each n) with the property that
Xn = E[Xn+1|Fn] for all n ≥ 0, the triple (Xn,Fn,P) is called a martingale,
and one should wonder how many of the properties of R-valued martingales it
has. As the following theorem demonstrates, many of the results for R-valued
martingales have easily proved analogs for Banach space valued ones. An ex-
ception is Doob’s Martingale Convergence, which does not hold in general.

Theorem 3.2.5 Let B be a separable Banach space and
(
Xn,Fn,P

)
a B-

valued martingale. Then
(
‖Xn‖B ,Fn,P

)
is a non-negative submartingale and

therefore, for each N ∈ Z+ and all R ∈ (0,∞),

P
(

sup
0≤n≤N

‖Xn‖B ≥ R
)
≤ 1

R
E
[
‖XN‖B , sup

0≤n≤N
‖Xn‖B ≥ R

]
. (3.2.4)

In particular, for each p ∈ (1,∞),

E
[
sup
n∈N
‖Xn‖pB

] 1
p

≤ p

p− 1
sup
n∈N

E
[
‖Xn‖pB

] 1
p . (3.2.5)

Finally, if F = σ
(⋃

n≥0 Fn
)

, X ∈ L1(P;B), and Xn = E[X | Fn], then

‖Xn −X‖B −→ 0 (a.s.,P) and in L1(P;R).
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Proof. The fact that
(
‖Xn‖B ,Fn, µ

)
is a submartingale is an easy application

of the inequality in (3.2.3); and, given this fact, the inequalities in (3.2.4) and
(3.2.5) follows from the result in the R-valued case.

Let X ∈ L1(P;B) be given, and set Xn = E[X|Fn], n ∈ N. Because of
(3.2.4), we know that the set of X for which Xn −→ X (a.s.,P) is a closed
subset of L1(P;B). Moreover, if X is simple, then the P-almost everywhere
convergence of Xn to X follows easily from the R-valued result. Hence, we
now know that Xn −→ X (a.s,µ) for each X ∈ L1(µ;B). To prove that the
convergence is taking place in L1(P;B), note that, by Fatou’s Lemma,

‖X‖L1(P;B) ≤ lim
n→∞

‖Xn‖L1(P;B),

whereas (3.2.3) guarantees that

‖X‖L1(P;B) ≥ lim
n→∞

‖Xn‖L1(P;B).

Hence, because ∣∣∣‖Xn‖B − ‖X‖B − ‖Xn −X‖B
∣∣∣ ≤ 2‖X‖B ,

the convergence in L1(P;B) is an application of Lebesgue’s Dominated Con-
vergence Theorem. ut

3.2.1 Fernique’s Theorem

A Borel probability measure W on separable Banach space B is said to a
centered Gaussian measure if {〈 · , ξ〉 : ξ ∈ B∗} is a centered Gaussian family
under W. Equivalently, if

c(ξ, η) =

∫
〈x, ξ〉〈x, η〉 for ξ, η ∈ B∗,

then c is the covariance function for this family and Ŵ(ξ) = e−
c(ξ,ξ)

2 for
ξ ∈ B∗.

The engine that drives much of what follows is the following remarkable
result of X. Fernique. See Corollary 3.3.13 for a sharper statement.

Theorem 3.2.6 Let W be a centered Gaussian measure on the separable
Banach space B. If

R = inf
{
r : P(‖x‖B ≥ r) ≤ 1

10

}
,

then
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e
‖x‖2B
18R2 W(dx) ≤ K ≡ e 1

2 +

∞∑
n=0

(e
3

)2n

. (3.2.6)

Proof. Set P =W2 on Ω = B2, and define X1

(
x1, x2) = x1 and X2

(
x1, x2) =

x2. Then X1 and X2 are independent B-valued random variables under P.
Furthermore, if Y1 = x1+x2

2
1
2

and Y2 = x1−x2

2
1
2

, then, for all ξ1, ξ2 ∈ B∗,

EP[ei〈Y1,ξ1〉ei〈Y2,ξ2〉
]

= Ŵ
(
2−

1
2 (ξ1 + ξ2)

)
Ŵ
(
2−

1
2 (ξ1 − ξ2)

)
= exp

(
−c(ξ1 + ξ2, ξ1 + ξ2)

4
− c(ξ1 − ξ2, ξ1 − ξ2)

4

)
= e−

c(ξ1,ξ1)
2 e−

c(ξ2,ξ2)
2

= EP[ei〈X1,ξ1〉ei〈X2,ξ2〉
]
,

and so, by Lemma 3.2.2, (Y1, Y2) has the same distribution under P as
(X1, X2).

Let 0 < s ≤ t be given, and use the preceding to justify

P
(
‖X1‖B ≤ s

)
P
(
‖X1‖B ≥ t

)
= P

(
‖X1‖B ≤ s & ‖X2‖B ≥ t

)
= P

(
‖X1 −X2‖B ≤ 2

1
2 s & ‖X1 +X2‖B ≥ 2

1
2 t
)

≤ P
(∣∣‖X1‖B − ‖X2‖B

∣∣ ≤ 2
1
2 s & ‖X1‖E + ‖X2‖B ≥ 2

1
2 t
)

≤ P
(
‖X1‖B ∧ ‖X2‖B ≥ 2−

1
2 (t− s)

)
= P

(
‖X1‖B ≥ 2−

1
2 (t− s)

)2
.

Now suppose that P
(
‖X1‖B ≤ R

)
≥ 9

10 , and define {tn : n ≥ 0} by t0 = R

and tn = R+ 2
1
2 tn−1 for n ≥ 1. Then

P
(
‖X1‖B ≤ R

)
P
(
‖X1‖B ≥ tn

)
≤ P

(
‖X1‖B ≥ tn−1

)2
and therefore

P
(
‖X1‖B ≥ tn

)
P
(
‖X1‖B ≤ R

) ≤ (P
(
‖X1‖B ≥ tn−1

)
P
(
‖X1‖B ≤ R

) )2

for n ≥ 1. Working by induction, one gets from this that

P
(
‖X1‖B ≥ tn

)
P
(
‖X1‖B ≤ R

) ≤ (P
(
‖X1‖B ≥ R

)
P
(
‖X1‖B ≤ R

))2n

and therefore, since tn = 2
n+1
2 −1

2
1
2−1

R ≤ 3 · 2n+1
2 R, that P

(
‖X1‖B ≥ 3 · 2n2R

)
≤

3−2n . Hence,
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EP
[
e
‖X1‖

2
E

18R2

]
≤ e 1

2P
(
‖X1‖B ≤ 3R

)
+

∞∑
n=0

e2nP
(
3 · 2n2R ≤ ‖X1‖B ≤ 3 · 2

n+1
2 R

)
≤ e 1

2 +

∞∑
n=0

(e
3

)2n

= K.

ut

A B-valued random variable X on a probability space (Ω,F ,P) is said
to be a centered Gaussian random variable if, for all ξ ∈ B∗, 〈X, ξ〉 is a
centered Gaussian random variable, which is equivalent to saying that X∗P
is a centered Gaussian measure on B.

It should be obvious that Theorem 3.2.6 provides the following vast gen-
eralization of the estimate (2.4.3) in Lemma 2.4.2.

Corollary 3.2.7 Let X be a B-valued, centered Gaussian random variable
on (Ω,F ,P). Then

P
(
‖X‖B ≥ R) ≤ 1

10
=⇒ E

[
eα‖X‖

2
B
]
≤ K,

where α = (18R2)−1 and K is the one in Theorem 3.2.6. Hence, if {Xn : n ≥
1} is a sequence of B-valued centered Gaussian random variable on (Ω,F ,P)
that converge in probability to a random variable X, then X is a centered
Gaussian random variable and E

[
‖Xn −X‖pB

]
−→ 0 for all p ∈ [1,∞).

Proof. The second assertion follows immediately from the first. To prove the
first, simply set W = X∗P and apply Theorem 3.2.6. ut

Exercise 3.2.1

(i) Let {xn : n ≥ 0} be a sequence in the separable Banach space B
with the property that

∑∞
n=0 ‖xn‖B < ∞. Show that

∑∞
n=0 |ξn|‖xn‖B < ∞

for γN0,1-almost every ξ ∈ RN, and define X : RN −→ B so that X(ξ) =∑∞
n=0 ξnxn if

∑∞
n=0 |ξn|‖xn‖B <∞ and X(ξ) = 0 otherwise. Show that the

distribution µ of X is a centered, Gaussian measure on B. In addition, show
that µ is non-degenerate if and only if the span of {xn : n ≥ 0} is dense in
B.

(ii) Here an application of Fernique’s Theorem and part (i) to functional
analysis. Let E and F be a pair of separable Banach spaces and ψ a Borel
measurable, linear map from E to F . Given a centered, Gaussian E-valued
random variableX, use Lemma 2.2.3 to see that ψ◦X is an F -valued, centered
Gaussian random variable, and apply Fernique’s Theorem to conclude that
ψ ◦X is a square integrable and has mean value 0. Next, suppose that ψ were
not continuous, and choose {xn : n ≥ 0} ⊆ E and {ηn : n ≥ 0} ⊆ F ∗ so
that ‖xn‖E = 1 = ‖ηn‖F∗ and 〈ψ(xn), ηn〉 ≥ (n + 1)3. Using part (i), show
that there exist centered, Gaussian F -valued random variables {Xn : n ≥
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0} ∪ {X}, such that Xn(ξ) = (n + 1)−2ynxn and X(y) =
∑∞
n=0Xn(y) for

γN0,1-almost every y ∈ RN. Check that∫
‖ψ ◦X(y)‖2F γN0,1(dy) ≥

∫
〈ψ ◦X(y), ηn〉2 γN0,1(dy)

≥
∫
〈ψ ◦Xn(y), ηn〉2 γN0,1(dy) ≥ (n+ 1),

and thereby arrive at the contradiction that ψ ◦ X /∈ L2(γN0,1;F ). Conclude
that every Borel measurable, linear map from E to F is continuous.

3.2.2 Gaussian Measures on a Hilbert Space

Let H be a separable Hilbert space. If W is a centered Gaussian measure on
H, then {( · , h)H : h ∈ H} is a Gaussian family under W whose covariance
function c is a non-negative definite, symmetric bilinear function on H2.
Moreover, by Theorem 3.2.6, C ≡

∫
‖x‖2HW(dx) <∞, and therefore

c(h, h) =

∫
(x, h)2

HW(dx) ≤ C‖h‖2H ,

Hence there exists a non-negative definite, symmetric operator A : H −→ H
such that c(g, h) = (g,Ah)H for all g, h ∈ H. In particular, if {hn : n ≥ 1} is
an orthonormal basis in H, then

Trace(A) =

∞∑
n=1

(hn, Ahn) =

∞∑
n=1

∫
(x, hn)2

HW(dx) =

∫
‖x‖2HW(dx) = C <∞,

which means that A is a symmetric trace class operator.
Conversely, if A is a symmetric, non-negative definite trace class operator

on H, then there is a W ∈ M1(H) under which {( · , h)H : h ∈ H} is a
Gaussian family with covariance function c(g, h) = (g,Ah)H . To see this,
let {hn : n ≥ 0} be an orthonormal basis in H consisting of eigenfunctions
for A, and set αn = (hn, Ahn)H , the eigenvalue corresponding to hn. Next,
let {Xn : n ≥ 0} be a sequence of mutually independent N(0, 1) random
variables on a probability space (Ω,F ,P), and define

Sn =

n∑
k=0

α
1
2

kXkhk for n ≥ 0.

Then, for m < n,
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E
[
‖Sn − Sm‖2H

]
=

n∑
k=m+1

αk ≤
∑
k>m

αk,

and so there exists an S : Ω −→ H such that

E
[
‖S − Sm‖2H

]
≤
∑
k>m

αk.

Furthermore, for each h ∈ H, (S, h)H under P is a centered Gaussian random
variable with variance

∞∑
k=0

αm(h, hk)2
H = (h,Ah)H .

Finally, take W = S∗P.
Combined with the preceding, we have now proved the following theorem.

Theorem 3.2.8 Let A be a bounded, symmetric, non-negative definite oper-
ator of the separable Hilbert space H. Then there exists a W ∈M1(H) under
which {( · , h)H : h ∈ H} is a centered Gaussian process with covariance
function (g,Ah)H if and only if A is trace class.

3.3 Abstract Wiener Spaces

Let B be an infinite dimensional, separable Banach space and W ∈ M1(B)
a non-degenerate centered Gaussian measure with covariance c (i.e., the co-
variance function for the Gaussian family {〈 · , ξ〉 : ξ ∈ B∗}). Even though,
as explained in § 3.1, we know that there is no Hilbert structure on B for
which W is the standard Gauss measure, one can hope that there is a struc-
ture which provides some of the same advantages, and Gross’s notion of an
abstract Wiener space is one such structure. The following lemma is needed
in order to explain Gross’s idea.

Lemma 3.3.1 Let B be a separable, real Banach space, and suppose that
H ⊆ B is a real Hilbert space that is continuously embedded as a dense
subspace of B.

(i) For each ξ ∈ B∗ there is a unique hξ ∈ H with the property that(
h, hξ

)
H

= 〈h, ξ〉 for all h ∈ H. Moreover, the map ξ ∈ B∗ 7−→ hξ ∈ H is
linear, continuous, one-to-one, and onto a dense subspace of H. In fact, for
any weak* dense subset S∗ of B∗, {hξ : ξ ∈ S∗} is dense in H.

(ii) If x ∈ B, then x ∈ H if and only if there is a K < ∞ such that
|〈x, ξ〉| ≤ K‖hξ‖H for all ξ ∈ B∗. Moreover, for each h ∈ H, ‖h‖H =
sup{〈h, ξ〉 : ξ ∈ B∗ & ‖hξ‖H ≤ 1}.
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(iii) If L∗ is a weak* dense subspace of B∗, then there exists a sequence
{ξn : n ≥ 0} ⊆ L∗ such that {hξn : n ≥ 0} is an orthonormal basis for
H. Moreover, if x ∈ B, then x ∈ H if and only if

∑∞
n=0〈x, ξn〉2 < ∞. In

particular, if ‖x‖H ≡ ∞ when x ∈ B \ H, then ‖ · ‖H : B −→ [0,∞] is a
lower semi-continuous function and so BH ⊆ BB. Finally,

(
h, h′

)
H

=

∞∑
n=0

〈h, ξn〉〈h′, ξn〉 for all h, h′ ∈ H.

Proof. Because H is continuously embedded in B, there exists a C <∞ such
that ‖h‖B ≤ C‖h‖H . Thus, if ξ ∈ B∗ and f(h) = 〈h, ξ〉, then f is linear and
|f(h)| ≤ ‖h‖B‖ξ‖B∗ ≤ C‖ξ‖B∗‖h‖H , and so, by the Riesz Representation
Theorem for Hilbert spaces, there exists a unique hξ ∈ H such that f(h) =(
h, hξ

)
H

. In fact, ‖hξ‖H ≤ C‖ξ‖B∗ , and uniqueness can be used to check that
ξ  hξ is linear. To see that ξ  hξ is one-to-one, it suffices to show that
ξ = 0 if hξ = 0. But if hξ = 0, then 〈h, ξ〉 = 0 for all h ∈ H, and therefore,
because H is dense in B, ξ = 0. Finally, to complete the proof of (i), let S∗

be a weak* dense subset of B∗, and suppose that {hξ : ξ ∈ S∗} were not
dense in H. Then there would exist an h ∈ H \ {0} with the property that
〈h, ξ〉 =

(
h, hξ

)
H

= 0 for all ξ ∈ S∗. But, since S∗ is weak* dense in B∗, this
would lead to the contradiction that h = 0.

Obviously, if h ∈ H, then |〈h, ξ〉| = |(h, hξ)H | ≤ ‖h‖H‖hξ‖H for ξ ∈ B∗.
Conversely, if x ∈ B and |〈x, ξ〉| ≤ K‖hξ‖H for some K <∞ and all ξ ∈ B∗,
set f(hξ) = 〈x, ξ〉 for ξ ∈ B∗. Then, because ξ  hξ is one-to-one, f is a
well-defined, linear functional on {hξ : ξ ∈ B∗}. Moreover, |f(ξ)| ≤ K‖hξ‖H ,
and therefore, since {hξ : ξ ∈ B∗} is dense in H, f admits a unique extension
as a continuous, linear functional on H. Hence, by Riesz’s theorem, there is
an h ∈ H such that

〈x, ξ〉 = f(hξ) =
(
h, hξ

)
H

= 〈h, ξ〉, ξ ∈ B∗,

which means that x = h ∈ H. In addition, if h ∈ H, then ‖h‖H = sup{〈h, ξ〉 :
‖hξ‖H ≤ 1} follows from the density of {hξ : ξ ∈ B∗} in H, and this
completes the proof of (ii).

Turning to (iii), note that, because B∗ with the weak* topology is second
countable , the weak* topology on L∗ is also second countable. Thus, we can
find a sequence in L∗ that is weak* dense in B∗, and then extract a subse-
quence of linearly independent elements whose span S∗ is weak* dense in B∗.
Starting with this subsequence, apply the Grahm–Schmidt orthogonalization
procedure to produce a sequence {ξn : n ≥ 0} whose span is S∗ and for
which {hξn : n ≥ 0} is orthonormal in H. Because the span of {hξn : n ≥ 0}
is equal to {hξ : ξ ∈ S∗}, which, by what we proved earlier, is dense in H,
{hξn : n ≥ 0} is an orthonormal basis in H. Knowing this, it is immediate
that
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(
h, h′

)
H

=

∞∑
n=0

(
h, hξn

)
H

(
h′, hξn

)
H

=

∞∑
n=0

〈h, ξn〉〈h′, ξn〉.

In particular, ‖h‖2H =
∑∞
n=0〈h, ξn〉2. Finally, if x ∈ B and

∑∞
n=0〈x, ξn〉2 <

∞, set g =
∑∞
m=0〈x, ξn〉hξn . Then g ∈ H and 〈x − g, ξ〉 = 0 for all ξ ∈ S∗.

Hence, since S∗ is weak* dense in B∗, x = g ∈ H. Finally, because x  ∑∞
m=0〈x, ξm〉2 is lower semi-continuous, ‖ · ‖H is also. ut

Given a separable Hilbert space H which is dense and continuously embed-
ded in a separable Banach space B, and a W ∈M1(B), the triple (H,B,W)
is called an abstract Wiener space if

Ŵ(ξ) = exp

(
−‖hξ‖

2
H

2

)
for all ξ ∈ B∗. (3.3.1)

Equivalently, (H,B,W) is an abstract Wiener space if and only ifW ∈M1(B)
and {〈 · , ξ〉 : ξ ∈ B∗} is a centered Gaussian family under W for which
cov(ξ, η) = (hξ, hη)H .

As the following theorem shows, this notion applies to any centered
Gaussian W on a Banach B that is non-degenerate in the sense that∫
〈x, ξ〉2W(dx) > 0 for all ξ ∈ B∗ \ {0}.

Theorem 3.3.2 If B is a separable Banach space and W ∈ M1(B), then
W is a non-degenerate, centered Gaussian measure if and only if there is
separable Hilbert space for which (H,B,W) is an abstract Wiener space, in
which case there is only one such H. Conversely, if H is a separable Hilbert
space, then there is a separable Banach space and a W ∈ M1(B) for which
(H,B,W) is an abstract Wiener space.

Proof. Keep in mind that ifW is a centered Gaussian measure on B, then, by
Theorem 3.2.6, ‖x‖2B ∈ L1(W;R). Hence, for any ξ ∈ B∗, 〈x, ξ〉 ∈ L2(W;R)
and x〈x, ξ〉 ∈ L1(W;B).

Suppose that (H,B,W) is an abstract Wiener space. Obviously, W is
a centered Gaussian measure. To check that W is non-degenerate, let ξ ∈
B∗ \ {0} and observe that∫

〈x, ξ〉2W(dx) = ‖hξ‖2H > 0.

Next, to see that H is uniquely determined, note that, for any ξ, η ∈ B∗,

〈hξ, η〉 = (hη, hξ)H =

∫
〈x, η〉〈x, ξ〉W(dx) =

〈∫
x〈x, ξ〉W(x), η

〉
,

and so

hξ =

∫
x〈x, ξ〉W(dx). (∗)

Since {hξ : ξ ∈ H} is dense in H, this proves that H is uniquely determined.
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Now assume that W is a centered Gaussian measure on B. Given ξ ∈ B∗,
define hξ by (∗), and define the inner product ( · , ··)H by

(hη, hξ)H =

∫
〈x, η〉〈x, ξ〉W(dx) for η ∈ B∗.

Because W is non-degenerate, ‖hξ‖2H ≡ (hξ, hξ)H = 0 =⇒ ξ = 0 =⇒
hξ = 0. Hence ( · , ··)H is a non-degenerate inner product. Now let H be the
completion of {hξ : ξ ∈ B∗} with respect to ‖ · ‖H . Equivalently, let L to be
the closure in L2(W;R) of {〈 · , ξ〉 : ξ ∈ B∗}, and take

H =

{∫
xψ(x)W(dx) : ψ ∈ L

}
.

It is clear that 〈h, ξ〉 = (h, hξ)H , first when h = hη for some η ∈ B∗ and then,
by continuity, for all h ∈ H. In particular, for any ξ ∈ B∗ with ‖ξ‖B∗ = 1,

〈h, ξ〉 ≤ ‖h‖H‖hξ‖H = ‖h‖H
(∫
〈x, ξ〉2W(dx)

) 1
2

≤ C‖h‖H

where C =

(∫
‖x‖2BW(dx)

) 1
2

,

and so ‖h‖B ≤ C‖h‖H . From this it follows that H is continuously embedded

in B as a subspace. In addition, because ‖hξ‖2H =
∫
〈x, ξ〉2W(dx), Ŵ(ξ) =

exp
(
−‖hξ‖

2
H

2

)
. Finally, to see that H is dense in B, suppose that it were not.

Then, by the Hahn–Banach Theorem, there would be a ξ ∈ B∗ \ {0} such
that 〈h, ξ〉 = 0 for all h ∈ H. But this would mean that ‖hξ‖2H = 〈hξ, ξ〉 = 0,
which contradicts ξ 6= 0. Thus, we have shown that (H,B,W) is an abstract
Wiener space.

Next let H be a separable Hilbert space. Choose an orthonormal basis
{hn : n ≥ 0} and, for α > 1, define

‖h‖B(−α) =

( ∞∑
n=0

(n+ 1)−α(h, hn)2
H

) 1
2

∈ [0,∞].

and let B(−α) be the completion of H with respect to ‖ · ‖B(−α) . Clearly B(−α)

is a separable Hilbert space with inner product

(
x, y
)
B(−α) =

∞∑
n=0

(n+ 1)−α
(
x, hn

)
H

(
y, hn

)
H
,

and H is dense in it. Further, if h
(−α)
n = (n+ 1)

α
2 hn, then {h(−α)

n : n ≥ 0} is
an orthonormal basis in B(−α). Now define A : B(−α) −→ B(−α) by
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Ax =

∞∑
n=0

(n+ 1)−
α
2

(
x, h(−α)

n

)
B(−α)hn.

Then
∞∑
m=0

(
h(−α)
m , Ah(−α)

m

)
B(−α) =

∞∑
m=0

(n+ 1)−α <∞,

and so A is a trace class operator on B(−α). Hence, by Theorem 3.2.8, there
exists a non-degenerate, centered Gaussian measure W ∈ M1(B(−α)) for
which

(x, y) ∈ B(−α) ×B(−α) 7−→ (y,Ax)B(−α) ∈ R

is the covariance function. Moreover, if x ∈ B(−α) and hx = Ax, then hx ∈ H,
and (h, hx)H =

(
h, x

)
B(−α) for all h ∈ H. Finally,

‖hx‖2H =

∞∑
n=0

(n+ 1)−α
(
x, h(−α)

n

)2
B(−α) =

(
x,Ax

)
B(−α) ,

and so Ŵ(ξ) = exp
(
−‖hx‖

2
H

2

)
. ut

As is evident from the proof of the second part of Theorem 3.3.2, there
are many choices of the Banach space for a given Hilbert space even though
there is only one Hilbert space for a given Banach space. Thus, when think-
ing in terms of abstract Wiener spaces, the canonical object is the Hilbert
space. Metaphorically speaking, the Hilbert space is the skeleton, whereas
the Banach space is simply a flesh coating that provides a comfy place for
the measure to live, and there are a multitude of ways in which the same
skeleton can be coated. A challenging problem is that of determining when
one can find a better coating than the one produced in the preceding proof.

Related to the construction of abstract Wiener spaces for a given Hilbert
space is the following. When H = RN , then there is a unique symmetric,
positive definite transformation on RN such (g, h)H = (g,Ah)RN , and the
(H,RN ,W) with W = γ0,A−1 is an abstract Wiener space. In particular,
one can construct all these abstract Wiener spaces from the standard one,
the one corresponding to I using the transformation A−

1
2 , and one should

suspect that there is a general principle of which this is a special case. The
following theorem provides such a principle.

Theorem 3.3.3 Let (H,B,W) be an abstract Wiener space and F an iso-
metric, isomorphism from H to the Hilbert space G. If C is a separable Ba-
nach space in which G is continuously embedded as a dense subspace and for
which there exists an extension of F as a continuous, linear map F̃ from B
to C, then (G,C, F̃∗W) is an abstract Wiener space. In particular, one can
take C to be the completion of G with respect to the norm ‖ · ‖C on G given
by ‖g‖C = ‖F−1g‖H and F̃ to be the continuous extention of F as a map
from B onto C.
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Proof. Let F̃> : C∗ −→ B∗ be the adjoint map for F̃ . If η ∈ C∗, then, for all
g ∈ G, (

g, gη
)
G

= 〈g, η〉 = 〈F−1g, F̃>η〉
=
(
F−1g, hF̃>η

)
B

=
(
g, FhF̃>η

)
G
,

and so gη = FhF̃>η. Hence,

̂̃F∗W(η) =

∫
ei〈F̃ x,η〉W(dx) = Ŵ

(
F̃>η

)
= exp

(
−
‖hF̃>η‖2H

2

)
= exp

(
−‖gη‖

2
G

2

)
,

which completes the proof that
(
G,C, F̃∗W

)
is an abstract Wiener space.

Turning to the concluding assertion, it is clear that ‖ · ‖C is a norm on G,
and the completion C of G with respect to it is a separable Banach space in
which G is continuously embedded as a dense subspace. Moreover, F has a
unique extension F̃ as an isometric, isomorphism from B onto C. ut

Theorem 3.3.3 is the abstract Wiener space analog of the classical isomor-
phism theorem for separable Hilbert space of the same dimension. Namely,
it says that all abstract Wiener spaces corresponding to Hilbert spaces of the
same dimension are, from a sufficiently abstract perspective, the same. Of
course, just as in practice it is foolish to think of all Hilbert spaces of the
same dimension as being the same, one should not think that the associated
abstract Wiener spaces are all the same.

3.3.1 The Cameron–Martin Subspace and Formula

Given a centered, non-degenerate Gaussian measure W on B, the Hilbert
space H for which (H,B,W) is an abstract Wiener space is called its
Cameron–Martin subspace.

It is important to understand the relationship between the Cameron–
Martin subspace forW and the covariance function c for the Gaussian family
{〈 · , ξ〉 : ξ ∈ B∗}. Indeed, since 〈hξ, η〉 = (hη, hξ)H = c(ξ, η) for ξ, η ∈ B∗,
the map ξ  hξ is the map A : B∗ −→ B described in § 3.1, and therefore
H is the completion of {Aξ : ξ ∈ B∗} with respect to the Hilbert norm√
c(ξ, ξ). When B is finite dimensional, {Aξ : ξ ∈ B∗} = B, and therefore

H = B, but, as is shown below, this is far from the case when B is infinite
dimensional.

Theorem 3.3.4 If (H,B,W) is an abstract Wiener space, then the map
ξ ∈ B∗ 7−→ hξ ∈ H is continuous from the weak* topology on B∗ into the
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strong topology on H. In particular, for each R > 0, {hξ : ξ ∈ BB∗(0, R)}
is a compact subset of H, BH(0, R) is a compact subset of B, H ∈ BB, and,
when H is infinite dimensional, W(H) = 0. Finally, there is a unique linear,
isometric map I : H −→ L2(W;R) such that I(hξ) = 〈 · , ξ〉 for all ξ ∈ B∗,
and {I(h) : h ∈ H} is a Gaussian family in L2(W;R) for which ( · , ··)H is
the covariance function.

Proof. To prove the initial assertion, suppose that {ξk : k ≥ 1} ⊆ B∗ is
weak* convergent to ξ. Then 〈x, ξk〉 −→ 〈x, ξ〉 for all x ∈ B, and therefore,
by Lemma 2.1.1, 〈 · , ξk〉 −→ 〈 · , ξ〉 in L2(W;R). Hence

‖hξk − hξ‖2H =
∥∥〈 · , ξk〉 − 〈 · , ξ〉∥∥2

L2(W;R)
−→ 0.

Given the first assertion, the compactness of {hξ : ξ ∈ BB∗(0, R)} in H

follows from the compactness of BB∗(0, R) in the weak* topology. To see that
BH(0, R) is compact in B, first note that BH(0, R) is compact in the weak
topology on H. Therefore, all that we have to show is that the embedding
map h ∈ BH(0, R) 7−→ h ∈ B is continuous from the weak topology on H
into the strong topology on B. Thus, suppose that hk −→ h weakly in H.
Because

{
hξ : ξ ∈ BB∗(0, 1)

}
is compact in H, for each ε > 0 there exist an

n ∈ Z+ and {ξ1, . . . , ξn} ⊆ BB∗(0, 1) such that

{hξ : ξ ∈ BB∗(0, 1)} ⊆
n⋃
1

BH(hξm , ε).

Now choose ` so that max1≤m≤n |〈hk − h, ξm〉| < ε for all k ≥ `. Then, for

any ξ ∈ BB∗(0, 1) and all k ≥ `,

|〈hk − h, ξ〉| ≤ ε+ min
1≤m≤n

∣∣(hk − h, hξ − hξm)H ∣∣ ≤ (2R+ 1)ε,

which proves that ‖hk − h‖H ≤ (2R+ 1)ε for all k ≥ `.
Because H = {x ∈ B : ‖x‖H < ∞} and ‖ · ‖H is lower semi-continuous

on B, H ∈ BB . To see that W(H) = 0 when H is infinite dimensional,
choose {ξn : n ≥ 0} as (iii) of Lemma3.3.1, and set Xn(x) = 〈x, ξn〉. Then
{Xn : n ≥ 0} is an infinite sequence of mutually independent N(0, 1)-random
variables, and so, since

H =

{
x ∈ B :

∞∑
n=0

X2
n <∞

}
and

∫
exp

(
−
∞∑
n=0

X2
n

)
W(dx) = 0,

W(H) = 0.
Turning to the map I, define I(hξ) = 〈 · , ξ〉. Then, for each ξ, I(hξ) is a

centered Gaussian with variance ‖hξ‖2H , and so I is a linear isometry from
{hξ : ξ ∈ B∗} into L2(W;R). Hence, since {hξ : ξ ∈ B∗} is dense in H,
I admits a unique extension as a linear isometry from H into L2(W;R).
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Moreover, as the L2(W;R)-limit of centered Gaussians, I(h) is a centered
Gaussian with variance ‖h‖2H for each h ∈ H. ut

The map I in Theorem 3.3.4 was introduced for the classical Wiener space
by R.E.A.C. Paley and Wiener, and so I will call it the Paley–Wiener map. To
appreciate its importance here, observe that {hξ : ξ ∈ B∗} is the subspace
of those g ∈ H with the property that h ∈ H 7−→ (h, g)H ∈ R admits
a continuous extension to B. Even though, when dim(H) = ∞, no such
continuous extension exists for general g ∈ H, I(g) can be thought of as
an extension of h  (h, g)H , albeit one that is defined only up to a W-null
set. Of course, one has to be careful when using this interpretation, since,
when H is infinite dimensional, I(g)(x) for a given x ∈ E is not well-defined
simultaneously for all g ∈ H. Nonetheless, by adopting it, one gets further
evidence for the idea that W wants to be the standard Gaussian measure on
H. Namely, because ∫

eiI(h) dW = e−
‖h‖2H

2 , h ∈ H,

if W lived on H, then it would certainly be the standard Gauss measure
there.

The Paley–Wiener map also provides strong support for the idea that it is
the Hilbert space H that is the canonical component in the triple (H,B,W).
Indeed suppose that (H,B1,W1) and (H,B2,W2) are both abstract Wiener
spaces. Because there may be no obvious correspondence between elements
of B∗1 and B∗2 , in general there will be no obvious relationship between the
Gaussian families {〈 · , ξ1〉 : ξ1 ∈ B∗1} and {〈 · , ξ1〉 : ξ2 ∈ B∗2}, and so it will be
hard to understand the connection between the measuresW1 andW2 in terms
of their Fourier transforms. On the other hand, if I1 and I2 are the Paley–
Wiener maps for (H,B1,W1) and (H,B2,W2), then the Gaussian family
{I1(h) : h ∈ H} will have the same distribution under W1 as {I2 : h ∈ H}
has under W2. In particular, if ξ1 ∈ B∗1 then the W2-random variable that
should be associated with 〈 · , ξ1〉 is I2(hξ1), which need not equal 〈 · , ξ2〉 for
any ξ2 ∈ B∗2 .

Among the most important applications of the Paley–Wiener map is the
following theorem about the behavior of Gaussian measures under transla-
tion. That is, if y ∈ B and Ty : B −→ B is given by Ty(x) = x + y, we
will be looking at the measure (Ty)∗W and its relationship to W. Using the
reasoning suggested above, the result is easy to guess. Namely, if W really
lived on H and were given by a Feynman-type representation (cf. § 3.1)

W(dh) =
1

Z
e−
‖h‖2H

2 λH(dh),

then (Tg)∗W should have the Feynman representation
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1

Z
e−
‖h−g‖2H

2 λH(dh),

which could be rewritten as[
(Tg)∗W

]
(dh) = exp

[(
h, g
)
H
− 1

2‖g‖
2
H

]
W(dh).

Hence, if we are correct to interpret I(g) as ( · , g)H , we are led to guess that,
at least for g ∈ H,[

(Tg)∗W(dx)
]
(dx) = Rg(x)W(dx), where Rg = exp

[
I(g)− 1

2‖g‖
2
H

]
. (3.3.2)

That (3.3.2) is correct was proved for the classical Wiener space by R.
Cameron and T. Martin, and for this reason it is called the Cameron–Martin
formula. In fact, one has the following result, the second half of which is due
to I. Segal.

Theorem 3.3.5 If (H,B,W) is an abstract Wiener space, then, for each
g ∈ H, (Tg)∗W � W and the Rg in (3.3.2) is the corresponding Radon–
Nikodym derivative. Conversely, if y ∈ B \H, then (Ty)∗W is singular with
respect to W.

Proof. Let g ∈ H, and set µ = (Tg)∗W. Then

µ̂(ξ) =

∫
ei〈x+g,ξ〉W(dx) = exp

(
i〈g, ξ〉 − 1

2‖hξ‖
2
H

)
. (∗)

Now define ν by the right-hand side of (3.3.2). Clearly ν ∈M1(E). Thus, we
will have proved the first part of this theorem once we show that ν̂ is given
by the right-hand side of (∗). To this end, observe that, for any h1, h2 ∈ H,∫

eα1I(h1)+α2I(h2) dW = exp

(
α2

1

2
‖h1‖2H + α1α2

(
h1, h2

)
H

+
α2

2

2
‖h2‖2H

)
for all α1, α2 ∈ C. Indeed, this is obvious when α1 and α2 are pure imaginary,
and, since both sides are entire functions of (α1, α2) ∈ C2, it follows in general
by analytic continuation. In particular, by taking h1 = g, α1 = 1, h2 = hξ,
and α2 = i, it is easy to check that the right-hand side of (∗) is equal to ν̂(ξ).

To prove the second assertion, begin by recalling from Lemma 3.3.1 that
for any y ∈ B, y ∈ H if and only if there is a K <∞ with the property that
|〈y, ξ〉| ≤ K for all ξ ∈ B∗ with ‖hξ‖H = 1. Now suppose that (Ty)∗W 6⊥ W,
and let R be the Radon–Nikodym derivative of its absolutely continuous
part. Given ξ ∈ B∗ with ‖hξ‖H = 1, let Fξ be the σ-algebra generated by
x  〈x, ξ〉, and check that (Ty)∗W � Fξ � W � Fξ with Radon–Nikodym
derivative

Y (x) = exp

(
〈y, ξ〉〈x, ξ〉 − 〈y, ξ〉

2

2

)
.

Hence,



3.3 Abstract Wiener Spaces 85

Y ≥ EW
[
R
∣∣Fξ] ≥ EW

[
R

1
2

∣∣Fξ]2,
and so

exp

(
−〈y, ξ〉

2

8

)
= 〈Y 1

2 ,W〉 ≥ α ≡ 〈R 1
2 ,W〉 ∈ (0, 1].

Since this means that 〈y, ξ〉2 ≤ 8 log 1
α , y ∈ H, we have shown that (Ty)∗W ⊥

W unless y ∈ H. ut

To appreciate that Gaussian measures are as translation invariant as any
probability measures on an infinite dimensional space, one should know about
the theorem of V. Sudakov below.

Recall that a subset of a metric space is said to be meager if it can be
written as the countable union of nowhere dense (i.e., with empty interior)
closed sets. If the metric space is complete, then the Baire Category Theorem
says that meager subsets are nowhere dense.

Lemma 3.3.6 If {Kn : n ≥} is a sequence of compact subsets of an infinite
dimensional Banach space E, then the interior of

⋃∞
n=1Kn is empty.

Proof. By the Baire Category Theorem, all that we have to show is that
compact subsets of E are nowhere dense. Thus, suppose that K ⊆ E is
compact. To show that its interior is empty, it suffices to prove that K−K =
{y − x : x, y ∈ K} contains no neighborhood of 0. Indeed, if we knew that
and if BE(x, r) ⊆ K for some x ∈ E and r > 0, then we would have the
contradiction that BE(0, r) ⊆ BE(x, r) − B(x, r) ⊆ K − K. Thus, suppose
that r > 0 is given, and choose x1, . . . , xn ∈ E so that K ⊆

⋃n
m=1BE

(
xm,

r
4

)
.

By the Hahn–Banach Theorem, there exists a ξ ∈ E∗ such that ‖ξ‖E∗ = 1
and 〈xm, ξ〉 = 0 for 1 ≤ m ≤ n. Now choose y ∈ BE(0, r) so that 〈y, ξ〉 ≥ 3r

4 .
Then, 〈x, ξ〉 ≤ r

4 and 〈x + y, ξ〉 ≥ r
2 for all x ∈ K. Hence x + y /∈ K for any

x ∈ K, and so y ∈ BE(0, r) \ (K −K). ut

Theorem 3.3.7 If µ is a Borel probability measure on an infinite dimen-
sional, separable Banach space E, then the set of x ∈ E for which (Tx)∗µ 6⊥ µ
is contained in a meager set S, and therefore the set of x ∈ E for which
(Tx)∗ ⊥ µ is dense in E.

Proof. Using Ulam’s Lemma (cf. Lemma 9.1.7 in [10]), for each n ≥ 1 choose
a compact Km ⊆ E for which µ(Kn) ≥ 1 − 1

n , and set Γ =
⋃∞
n=1Kn and

Γ̃ = Γ − Γ =
⋃∞
m,n=1(Km − Kn). Clearly x ∈ Γ̃ ⇐⇒ −x ∈ Γ̃ and

µ(Γ ) = 1, and, by Lemma 3.3.6, the interior of Γ̃ is empty, which means its
complement is dense. Finally, if −x /∈ Γ̃ , then (−x + Γ ) ∩ Γ = ∅, and so
(Tx)∗µ(Γ ) = µ(−x+ Γ ) = 0, which means that (Tx)∗µ ⊥ µ. ut

In view of Sudakov’s result, one sees that centered Gaussian measures
provide as good a substitute for Lebesgue measure as one can hope to find:
not only does one know the directions in which the are quasi-invariant under
translation, one has a simple formula for the associated Radon–Nikodym
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derivatives. In particular, (3.3.5) provides the basis for an integration by
parts formula that plays a central in the development of the Sobolev type
theory used in what is called Malliavin’s calculus. The integration by parts
formula is based on the observation that if h ∈ H, then, for any non-negative,
Borel measurable functions f and g

EW
[
(f ◦ Th)g

]
= EW

[
Rhf(g ◦ T−h)

]
. (∗)

Hence, if f ∈ L2(W;R) and g ∈ Lp(W;R) for some p > 2, then (f ◦ Th)g ∈
L1(W;R) and (∗) again holds. Now choose {ξj : j ≥ 1} ⊆ B∗ so that
{hj : j ≥ 1} is an orthonormal basis in H when hj = hξj , and let P be the
set of functions ϕ of the form ϕ(x) = p

(
〈x, ξ1〉, . . . , 〈x, ξN 〉

)
for some N ≥ 1

and real polynomial p on RN . Then, for any f ∈ L2(W;R) and ψ ∈ P,

d

dt
EW
[
(f ◦ Tth)ϕ

]
=

d

dt
EW
[
Rthf(ϕ ◦ T−th)

]
= EW

[
Rthf

(
(∂>h ψ) ◦ Tth

)]
,

where ∂>h ψ(x) = 〈x, h〉ψ(x)− ∂hψ and

∂hψ =
d

ds
ψ(x+ sh)

∣∣
s=0

=

N∑
j=1

(h, hj)H∂jp
(
〈x, ξ1〉, . . . , 〈x, ξN 〉

)
,

∂jp being the partial derivative of p with respect to the j coordinate. In
particular, when t = 0, we have

d

dt
EW
[
(f ◦ Tth)ψ

]∣∣∣
t=0

= EW
[
f∂>h ψ

]
,

and so, if ϕ ∈ P,
EW
[
∂hϕψ

]
= EW

[
ϕ∂>h ψ

]
. (∗∗)

The equation in (∗∗) is the basic result, but there is a better way to

formulate it. Namely, for ϕ ∈ P, define ∇ϕ =
∑N
j=1 ∂hjϕhj . Next, let PH

be the set of Ψ : B −→ H of the form Ψ =
∑N
j=1 ψjhj for some N ≥ 1 and

{ψj : 1 ≤ j ≤ N} ⊆ P, and define

∇>Ψ(x) =
N∑
j=1

(
〈x, ξj〉ψj(x)− ∂hjψj(x)

)
.

Then, after applying (∗∗) to each term in
(
∇ϕ, Ψ

)
H

, one sees that(
∇ϕ, Ψ

)
L2(W;H)

=
(
ϕ∇>Ψ

)
L2(W;R)

. (3.3.3)

This equation allows us to extend the definition of ∇ well beyond P. Namely,
it shows that ∇ on P is a closeable operator. That is, the closure of its graph
in L2(W;R) × L2(W;H) is the graph of an operator. To see this, suppose
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that ϕk −→ f in L2(W;R) and that ∇ϕk −→ F in L2(W;H). What we have
to check is that F is uniquely determined by f . But, by (3.3.3),(

F, Ψ
)
L2(W;H)

= lim
k→∞

(
∇ϕk, Ψ

)
L2(W;H)

= lim
k→∞

(
ϕk,∇>Ψ

)
L2(W;R)

=
(
f,∇>Ψ

)
L2(W;R)

,

which, since (cf. part (viii) of Exercise 3.7.1) P is dense in L2(W;R) and
therefore PH is dense in L2(W;H), means that F is determined by f . Hence,
if W 2

1 (W;R) is the set of f ∈ L2(W;R) for which there is an F ∈ L2(W;H)
such that (f, F ) is in the closure of the graph of ∇ on P, then we can extend
∇ to W 2

1 (W;R) by taking ∇f = F .
In the language of operator theory, the preceding can be summarized by

saying that, because the domain of ∇> is dense, it has a well defined adjoint
(∇>)>. Further, (3.3.3) says that P is contained in the domain of (∇>)> and
that (∇>)>ϕ = ∇ϕ. Thus, since the graph of an adjoint is always closed and
the graph of ∇ is contained in that of (∇>)>, the closure of the graph of ∇
is the graph of an operator, namely it is graph of the restriction of (∇>)> to
W 2

1 (W;R). What remains open is the question whether W 2
1 (W;R) is equal

to the domain of (∇>)>. The reason why this is an important question is
that, in applications, checking whether a function is in the domain of (∇>)>

is often much easier than showing directly that it is in W 2
1 (W;R). Indeed,

f ∈ L2(W;R) will be in the domain of (∇>)> if and only if there is a C <∞
such that ∣∣(f,∇>Ψ)

L2(W;R)

∣∣ ≤ C‖Ψ‖L2(W;H) for Ψ ∈ PH.

A proof that W 2
1 (W;R) is in fact equal to the domain of (∇>)> is outlined

in part (viii) of Exercise 3.3.1.

3.3.2 Some Examples of Abstract Wiener Spaces

The Gauss measures discussed in § 3.2.2 provide a ready source of examples.
Given a positive definite, symmtric trace class operator A on a separable
Hilbert space B, let W be the centered Gaussian measure on B with co-
variance (x,Ay)B . Using the reasoning in § 3.1, one sees that B itself with
the inner product (x, y)H = (x,A−1y)B is the Cameron–Martin subspace
for W. When B is infinite dimensional, A−1 will be an unbounded opera-
tor and its domain {Ax : x ∈ B} will not be complete with respect to the
Hilbert norm ‖ · ‖H . To see what its completion is, choose an orthonormal
basis {em : m ≥ 0} for B, where em is an eigenvectors for A with eigenvalue
αm. Then (x,A−1y)B =

∑∞
m=0 α

−1
m (x, em)2

B , and so the ‖ · ‖H -completion of
{Ax : x ∈ B} is the Hilbert space
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H =

{
h ∈ B :

∞∑
m=0

α−1
m (h, em)2

B <∞

}

with inner product

(g, h)H =

∞∑
m=0

α−1
m (g, em)B(h, em)B .

It should now be evident that (B,H,W) is an abstract Wiener space.
Although the construction described in Theorem 3.2.8 always works, it is

far too crude to yield a refined result of the sort proved by N. Wiener when
he constructed Brownian motion. To formulate Wiener’s result in terms of
an abstract Wiener spaces, take Ω0 to be the space of all paths ω : R −→ R
with the properties that ω(0) = 0 and lim|t|→∞

|ω(t)|
|t| = 0. Then Ω0 becomes

a separable Banach space when one takes ‖ω‖Ω0
= supt∈R

|ω(t)|
1+|t| , and, using

Riesz’s Representation Theorem, it is easy to identify Ω∗0 with the space of
signed Borel measures µ on R for which µ({0}) = 0 and ‖µ‖Ω∗0 ≡

∫
(1 +

|t|) |µ|(dt) < ∞, where |µ| denotes the variation measure for µ (i.e., if µ =
µ+ − µ− is the Hahn decomposition of µ, then |µ| = µ+ + µ−).

It was shown in Theorem 2.5.7 that almost all Brownian paths are in Ω0,
and so their distribution induces a centered Gaussian measure W0 on Ω0.
The most intuitive way to guess the Cameron–Martin subspace for W0 is to
think about its Feynman type representation. Namely, we are looking for a
separable Hilbert space H ⊆ Ω0 with the property that, for any n ≥ 1, the
W0-distribution of

{
h
(
m
n

)
: −n2 ≤ m ≤ n2

}
is

(2π)−n
2

exp

−1

2

n2∑
m=−n2+1

n
(
−
(
h
(
m
n

)
− h
(
m−1
n

)2 ∏
−n2≤m≤n2

m 6=0

dh
(
m
n

)
.

Ignoring everything except the exponential in the density, and rewriting the
sum in the exponent as

− 1

n

n2∑
m=−n2+1

(
h
(
m
n

)
− h
(
m−1
n

)
1
n

)2

,

one is led to the Feynman representation

W0(dh) =
1

Z
exp

(
−1

2

∫
R
ḣ(t)2 dt

)
λH(dh).

With this in mind, take H1
0 (R;R) to be the set of absolutely continuous

h ∈ Ω0 whose derivative is in L2(λR;R), and turn H1
0 (R;R) into a separable

Hilbert space with ‖h‖H1
0 (R;R) = ‖ḣ‖L2(λR;R). Using a standard mollification



3.3 Abstract Wiener Spaces 89

procedure, one sees that H1
0 (R;R) is dense in Ω0. Furthermore, |h(t)| ≤

|t| 12 ‖h‖H1
0 (R;R), and so ‖h‖Ω0

≤ ‖h‖H1
0 (R;R), which means that H1

0 (R;R) is
continuously embedded in Ω0.

Theorem 3.3.8 If W0 ∈M1(Ω0) is the distribution of a Brownian motion,
then

(
H1

0 (R;R), Ω0,W0) is an abstract Wiener space.

Proof. {ω(t) : t ∈ R} is centered Gaussian process with covariance w(s, t) =
1[0,∞)(st)|s| ∧ |t| under W0. Thus, if µ ∈ Ω∗0 and one uses the formula

〈ω, µ〉 = lim
n→∞

n∑
m=−n

ω
(
m
n

)
µ
((

m
n ,

m+1
n

))
,

it is easy to check that ω  〈ω, µ〉 is a centered Gaussian random variable
with variance

∫∫
w(s, t)µ(ds)µ(dt), and therefore {〈 · , µ〉 : µ ∈ Ω∗0} is a

centered Gaussian family with covariance function

c(µ, ν) =

∫∫
w(s, t)µ(ds)µ(dt).

Next, for µ ∈ Ω∗0 , let hµ be the function given by hµ(t) =
∫
w(s, t)µ(ds).

Because

w(s, t) = 1[0,∞)(st)

∫ ∞
0

1[0,|s|](τ)1[0,|t|](τ) dτ,

one sees that

hµ(t) =

{∫ t
0
µ
(
(τ,∞)

)
dτ if t ≥ 0∫ 0

t
µ
(
(−∞, τ ]

)
dτ if t < 0.

Thus hµ is absolutely continuous, and

ḣµ(t) =

{
µ
(
(t,∞)

)
if t ≥ 0

−µ
(
(−∞, t]

)
if t < 0.

Since |µ|
(
(−t, t){

)
≤ (1 + t)−1‖µ‖Ω∗0 , it follows that hµ ∈ H1

0 (R;R). Further-
more, if h ∈ H1

0 (R;R), then

(h, hµ)H1
0

=

∫ ∞
0

ḣ(τ)µ
(
[τ,∞)

)
dτ −

∫ 0

−∞
ḣ(τ)µ

(
(−∞, τ ]

)
dτ = 〈h, µ〉.

In particular,

‖hµ‖2H1
0 (R;R) = 〈hµ, µ〉 =

∫∫
w(s, t)µ(ds)µ(dt) = c(µ, µ),

and so H1
0 (R;R) is the Cameron–Martin space for W0. ut

One should understand how the preceding result can be interpreted in
terms of the reasoning used for Hilbert spaces. Namely, the analog here of
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the operator A there is the operator A : Ω∗0 −→ Ω0 given by Aµ(t) =∫
w(s, t)µ(dt). Because

∂2
t

∫
w(s, t)ϕ(s) ds = −ϕ(t) for ϕ ∈ C2

c (R;R),

µ is minus the second distributional derivative of hµ = Aµ, and so A−1hµ =
−∂2hµ. Therefore, if H is the Cameron–Martin space for W0, we should
expect that (

h, hµ
)
H

=
(
−∂2h, hµ

)
L2(λR;R)

=
(
ḣ, ḣµ

)
L2(λR;R)

,

at least for h ∈ C2
c (R;R). Starting from this, it is evident why H must be

H1
0 (R;R).
There is an important interpretation of the Payley–Wiener map h ∈

H1
0 (R;R) 7−→ I(h) ∈ L2(W0;R). Namely, for µ ∈ Ω∗0 , 〈ω, µ〉 is the Lebesgue

integral∫
ω(t)µ(dt) = (R)

∫ ∞
0

ω(t) dµ
(
(t,∞)

)
− (R)

∫ 0

−∞
ω(t) dµ

(
(−∞, t)

)
,

where, taking advantage of the facts that ω is continuous and t µ
(
(t,∞)

)
and t µ

(
(−∞, t)

)
are functions of bounded variation, the integrals on the

right are taken in the sense of Riemann–Stieltjes. A fundamental property
(cf. Theorem 1.2.1 in [11]) of Riemann–Stieltjes integration is that if ϕ is
Riemann integrable with respect to ψ on an interval [a, b], then ψ is Riemann
integrable with respect to ϕ and

(R)

∫ b

a

ϕdψ = ϕ(b)ψ(b)− ϕ(a)ψ(a)− (R)

∫ b

a

ψ dϕ.

Hence, since ω(0) = 0 and |µ|
(
(t,∞)

)
∨ |µ|

(
(−∞,−t)

)
≤ ‖µ‖Ω∗0 (1 + t)−1 for

t > 0,

〈ω, µ〉 = (R)

∫ ∞
0

µ
(
(t,∞) dω(t)− (R)

∫ 0

−∞
µ
(
(−∞, t) dω(t). (3.3.4)

This means that I(hµ) is a bonafide Riemann–Stieltjes integral. Even though
I(h) will be neither a Lebesgue or Riemann–Stieltjes for general h ∈ H1

0 (R;R)
and is only defined up to a set of W0-measure 0, it is the limit in L2(W0;R)
of Riemann integrals, and that accounts for the use by many authors for the
term Paley–Wiener integral.

Paley and Wiener did not interpret their integral in terms of abstract
Wiener spaces. Instead, they developed their theory from the observation
that if f ∈ C1

c (R;R), then (R)
∫
f(t) dω(t) is a well defined Riemann inte-

gral which, under W0, is a centered Gaussian random variable with variance
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‖f‖2L2(λR;R). They then used this observation and a mollification procedure

to give meaning to
∫
f(t) dω(t) for general f ∈ L2(λR;R). That is, given

f ∈ L2(λR;R), they chose a sequence {fn : n ≥ 1} ⊆ C1
c (R;R) that con-

verges to f in L2(λR;R) and realized that the integrals (R)
∫
fn(t) dω(t) would

converge in L2(W0;R) to a centered Gaussian random variable, which they
denoted by

∫
f(t) dω(t), with variance ‖f‖2L2(λR;R). From the abstract Wiener

space perspective, what they did is start with µ ∈ Ω∗0 which are absolutely
continuous with respect to λR and have a continuous, compactly supported
Radon–Nikodym derivative and then use the same extention procedure as we
used in the proof of Theorem 3.3.4.

The stationary Gaussian processes discussed in § 2.6.3 are another source of
abstract Wiener spaces. For example, recall the Ornstein–Uhlenbeck process
discussed at the end of that section, only here rescale time and space its

covariance function is 2−1e−|t| instead of e−
|t|
2 . Again the paths of this process

are continuous and have sublinear growth at infinity. Hence its distribution
is a Borel measure on the space Ω of continuous functions ω : R −→ R
satisfying lim|t|→∞

|ω(t)
|t| = 0, which becomes a separable Banach space when

one uses the norm ‖ω‖Ω = supt∈R
|ω(t)
1+|t| . Just as before, Ω∗ can be identified

as the space of signed Borel measures on R for which
∫

(1 + |t|) |µ|(dt) <∞,
only now µ({0}) need not be 0. Using the fact that this Ornstien–Uhlenbeck
process is a homogeneous Markov process with transition probability density

(
π(1− e−2t)

)− 1
2 exp

(
−
(
y − e−tx

)2
1− e−2t

)
,

one can use the Feynman formalism to see that its Cameron–Martin subspace
must consist of absolutely continuous h ∈ Ω for which (h + ḣ) ∈ L2(λR;R).
Since elements of Ω are tempered distributions and therefore have Fourier
transforms, the Fourier transform ĥ of such an h will have the property that
(1 − iξ)ĥ ∈ L2(λR;R) and therefore both h and ḣ are in L2(λR;R) and
‖h + ḣ‖2L2(λR;R) = ‖h‖2L2(λR;R) + ‖ḣ‖2L2(λR;R). This line of reasoning is made
precise in the following theorem.

Theorem 3.3.9 Let U ∈M1(Ω) be the distribution of the Ornstein–Uhlenbeck
process with covariance function 1

2e
−|t|, and let H1(R;R) be the space of ab-

solutely continuous h : R −→ R for which both h and ḣ are in L2(λR;R).
Then H1(R;R) is a separable Hilbert space with norm

‖h‖H1(R;R) =
(
‖h‖2L2(λR;R) + ‖ḣ‖2L2(λR;R)

) 1
2

,

H1(R;R) is dense in Ω, and (H1(R;R), Ω,U) is an abstract Wiener space.

Proof. Everything but the final statement is left as an exercise.
Proceeding as in the proof of Theorem 3.3.8, one sees that
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〈ω, µ〉〈ω, ν〉 U(dω) =

1

2

∫∫
e−|t−s| µ(ds)ν(dt) for µ, ν ∈ Ω∗.

Given µ ∈ Ω∗, define hµ(t) = 1
2

∫
e−|t−s| µ(ds). Then

ḣµ(t) = −1

2

∫
sgn(t− s)e−|t−s| µ(ds),

and so, for h ∈ H1(R;R),

(
ḣ, ḣµ

)
L2(λR;R)

= −1

2

∫ (∫
ḣ(t)sgn(t− s)e−|t−s| dt

)
µ(ds)

=

∫
h(s)µ(ds)−

∫
h(t)hµ(t) dt.

Hence 〈h, µ〉 =
(
h, hµ)H1(R;R). In addition,∫

〈ω, µ〉2 U(dω) =
1

2

∫∫
e−|t−s| µ(ds)µ(dt) = 〈hµ, µ〉 = ‖hµ‖2H1(R;R),

which completes the proof that (H1(R;R), Ω,U) is an abstract Wiener space.
ut

Just as the Cameron–Martin subspace for the distribution of Brownian
motion can be guessed using the ideas in § 3.1, so too Cameron–Martin sub-
space for the distribution of the Ornstein–Uhlenbeck process. The operator
A : Ω∗ −→ Ω here is given by Aµ(t) = 1

2

∫
e−|t−s| µ(ds), and one can easily

check that Aµ − ∂2Aµ = µ in the sense distributions. Using integration by
parts and proceeding in the same way as we did before, one concludes that
Cameron–Martin space for U must be H1(R;R).

There is an interesting connection between stationary Gaussian processes
and Paley–Wiener integrals. Namely, suppose that f ∈ L2(λR;R) is an R-
valued characteristic function. Then (2π)−1f̌ is the density of a even Borel
probability measure on R. Hence f̌ is a non-negative, even λR-integrable

function. Take ψ to be the Fourier transform of
(
(2π)−1f̌

) 1
2 , and observe

that ψ is an even element of L2(R;R) and that f(t) =
∫
ψ(t − s)ψ(s) ds.

Using Paley–Wiener integration, now define

X(t, ω) =

∫
ψ(t− τ) dω(τ) ∈ L2(W0;R) for t ∈ R.

Then ∫
X(s, ω)X(t, ω)W0(dω) =

∫
ψ(t− τ)ψ(s− τ) dτ

=

∫
ψ(t− s− τ)ψ(τ) dτ = f(t− s),
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and so {X(t) : t ∈ R} under W0 is a centered stationary Gaussian process
with covariance f(t−s). This representation of stationary Gaussian processes
is a key ingredient in much of prediction theory.

3.3.3 Wiener Series

In this subsection I will give a modern version of Wiener’s approach to pro-
viding a mathematically satisfactory treatment of Brownian motion.

Theorem 3.3.10 Let H be an infinite dimensional, separable, real Hilbert
space and B a Banach space into which H is continuously embedded as a
dense subspace. If for some orthonormal basis {hm : m ≥ 0} in H the series

∞∑
m=0

ymhm converges in B

for γN0,1-almost every y = (y0, . . . , ym, . . . ) ∈ RN

(3.3.5)

and if S : RN −→ B is given by

S(y) =

{∑∞
m=0 ymhm when the series converges in B

0 otherwise,

then
(
H,B,W

)
with W = S∗γ

N
0,1 is an abstract Wiener space. Conversely, if

(H,B,W) is an abstract Wiener space and {hm : m ≥ 0} is an orthogonal
sequence in H such that, for each m ∈ N, either hm = 0 or ‖hm‖H = 1, then

EW
[

sup
n≥0

∥∥∥∥∥
n∑

m=0

I(hm)hm

∥∥∥∥∥
p

B

]
<∞ for all p ∈ [1,∞), (3.3.6)

and, for W-almost every x ∈ B,
∑∞
m=0[I(hm)](x)hm converges in B to the

W-conditional expectation value of x given σ
(
{I(hm) : m ≥ 0}

)
. Moreover,

∞∑
m=0

[I(hm)](x)hm is W-independent of x−
∞∑
m=0

[I(hm)](x)hm.

Finally, if {hm : m ≥ 0} is an orthonormal basis in H, then, for W-almost
every x ∈ B,

∑∞
m=0[I(hm)](x)hm converges in B to x, and the convergence

is also in Lp(W;B) for every p ∈ [1,∞).

Proof. First assume that (3.3.5) holds for some orthonormal basis, and set
Sn(y) =

∑n
m=0 ymhm and W = S∗γ

N
0,1. Then, because Sn(y) −→ S(y) in B

for γN0,1-almost every y ∈ RN,
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Ŵ(ξ) = lim
n→∞

Eγ
N
0,1

[
ei〈Sn,ξ〉

]
= lim
n→∞

n∏
m=0

e−
1
2 (hξ,hm)2H = e−

1
2‖hξ‖

2
H ,

which proves that (H,B,W) is an abstract Wiener space.
Next suppose that (H,B,W) is an abstract Wiener space and that {hm :

m ≥ 0} is an orthogonal sequence with ‖hm‖H ∈ {0, 1} for each m ≥ 0. For
each n ∈ N, set Fn = σ

(
{I(hm) : 0 ≤ m ≤ n}

)
. Clearly, Fn ⊆ Fn+1 and

F ≡ σ (
⋃∞
n=0 Fn) is the σ-algebra generated by {I(hm) : m ≥ 0}. Moreover,

if Sn =
∑n
m=0 I(hm)hm, then, since {I(hm) : m ≥ 0} is a Gaussian family

and 〈x− Sn(x), ξ〉 is perpendicular in L2(W;R) to I(hm) for all ξ ∈ B∗ and
0 ≤ m ≤ n, x−Sn(x) isW-independent of Fn. Thus Sn = EW [x | Fn], and so,
by Theorem 3.2.5, we know both that (3.3.6) holds and that Sn −→ EW [x | F ]
W-almost surely and in Lp(W;B) for all p ∈ [1,∞). In addition, the W-
independence of Sn(x) from x−Sn(x) implies that the limit quantities possess
the same independence property.

In order to complete the proof at this point, all that we have to do is show
that x = EW [x | F ] W-almost surely when {hm : m ≥ 0} is an orthonormal
basis. Equivalently, we must check that BB is contained in theW-completion

FW of F . To this end, note that, for each h ∈ H, because
∑n
m=0(h, hm)Hhm

converges in H to h,

n∑
m=0

(
h, hm

)
H
I(hm) = I

(
n∑

m=0

(
h, hm

)
H
hm

)
−→ I(h) in L2(W;R).

Hence, I(h) is FW -measurable for every h ∈ H. In particular, this means

that x  〈x, ξ〉 is FW -measurable for every ξ ∈ B∗, and so, since BB is

generated by {〈 · , ξ〉 : ξ ∈ B∗}, BB ⊆ F
W

. ut

It is important to acknowledge that the preceding theorem would not have
made Wiener’s life easier. Indeed, Wiener knew full well that what he had to
do is prove a series of the sort described in the first part of Theorem 3.3.10
converges in the space of continuous paths. Being an expert in harmonic
analysis, he chose an orthonormal basis consisting of trigonometric functions
and used non-trivial results from harmonic analysis to prove the required
convergence.

Corollary 3.3.11 If W is a non-degenerate, centered Gaussian measure on
the separable Banach space B, thenW(G) > 0 for all non-empty open subsets
G ⊆ B.

Proof. Let H be the Cameron–Martin subspace for W on B, and assume
that ‖ · ‖B ≤ ‖ · ‖H .

Since H is dense in B, it suffices to show that W
(
BB(h, r)

)
> 0 for all

h ∈ H and r > 0. In addition, because
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W
(
BB(0, r)

)
=

∫
BB(h,r)

R−h dW ≤ ‖R−h‖L2(W;R)

(
W
(
BB(h, r)

)) 1
2

and

‖R−h‖2L2(W;R) = e−‖h‖
2
H

∫
e−2I(h) dW = e‖h‖

2
H ,

it is enough to prove that W
(
BB(0, r)

)
> 0 for all r > 0. To this end, let

{hn : n ≥ 0} be an orthonormal basis in H, and set Sn =
∑n
m=0 I(hm)hm.

By Theorem 3.3.10, for each r > 0 there is an n such that W
(
‖x − Sn‖B ≤

r
2

)
≥ 1

2 . At the same time, ‖Sn‖2B ≤ ‖Sn‖2H =
∑n
m=0 I(hm)2, and therefore,

since x− Sn is independent of Sn,

W
(
BB(0, r)

)
≥ 1

2γ
n+1
0,1

(
BRn+1

(
t, r2
))

> 0

for all r > 0. ut

3.3.4 Isoperimetric Inequality for Abstract Wiener
Space

By taking advantage of the dimension independence of (2.4.6), we will prove
here the analog of (2.4.6) for abstract Wiener spaces.

Let (H,B,W) be an infinite dimensional, non-degenerate abstract Wiener
space. Given A ∈ BB and t ≥ 0, define

A(t) =
{
x+ h : x ∈ A & h ∈ BH(0, t)

}
.

Equivalently, x ∈ A(t) if and only if there is a y ∈ A such that ‖y− x‖H ≤ t.
Notice that A(t) is significantly smaller than it would have been had we used
‖ · ‖B rather than ‖ · ‖H to define it. Also, observe that, because, by (iii) in
Lemma 3.3.1, ‖ · ‖H is a lower semi-continuous function on B, A(t) is a closed
subset of B and therefore Borel measurable.

Theorem 3.3.12 For any A ∈ BB and t ≥ 0,

Φ−1
(
W(A(t))

)
≥ Φ−1

(
Φ−1

(
W(A)

)
+ t
)
. (3.3.7)

In particular, if A ∈ BB and x ∈ A =⇒ x + h ∈ A for all h ∈ H, then
W(A) ∈ {0, 1}.

Proof. Choose a sequence {ξn : n ≥ 0} ⊆ B∗} so that {hn : n ≥ 0} is an
orthonormal basis in H when hn = hξn . By Theorem 3.3.10, we know that
BB is contained in theW-completion of σ

(
{〈 · , ξn〉 : n ≥ 0}

)
. Thus, since the

set of A for which (3.3.7) holds is closed under monotone limits, it suffices
for us to show that it holds when A ∈ FN ≡ σ

(
{〈 · , ξn〉 : 0 ≤ n ≤ N − 1}

)
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for some N ≥ 1. To this end, define the projection map πN : B −→ RN by

πN (x) =
(
〈x, ξ0〉, . . . , 〈x, ξN−1〉

)>
. Then, A ∈ FN if and only if A = π−1

N (Γ )

for some Γ ∈ BRN , in which case A(t) = π−1
N (Γ (t)), where, as in (2.4.6),

Γ (t) = {y ∈ RN : |y − Γ | ≤ t}. Further, W(A) = γN01(Γ ) and W(A(t)) =
γN0,1(Γ (t)), and so (3.3.7) for A follows from (2.4.6) for Γ .

Given the first part, the second part follows from the fact that, under
the stated condition, A = A(t) for all t > 0, and therefore W(A) > 0 =⇒
W(A) =W(A(t)) ≥ Φ

(
Φ−1

(
W(A)

)
+ t
)
−→ 1 as t→∞. ut

An interesting consequence of (3.3.7) is the fact that if L ∈ BB is a sub-
space of B containing H, then W(L) ∈ {0, 1}. Thus, for example, with prob-
ability 0 or 1, a Brownian path will be in any Banach space of paths that
contains H1

0 (R;R).

Corollary 3.3.13 Let f : B −→ [−∞,∞] be a Borel measurable function
satisfying |f(y) − f(x)| ≤ λ‖y − x‖H for some λ ∈ [0,∞) and all x, y ∈ B.
If |f(x)| < ∞ for W-almost every x ∈ B and m is a median of f under W,
then

W
(
{|f(x)−m| ≥ λt}

)
≤ 2
(
1− Φ(t)

)
≤ 2e−

t2

2 , (3.3.8)

and so, for any g ∈ C
(
R; [0,∞)

)
satisfying f(x) ≤ f(y) for |x| ≤ |y|,∫

B

g
(
|f(x)−m|

)
W(dx) ≤

∫
R
g(λ|t|) γ0,1(dt). (3.3.9)

In particular, if Σ = sup
{
‖h‖B : h ∈ BH(0, 1)

}
and m is the smallest median

of x ‖x‖B under W, then

2
(
1− Φ(Σ−1t)

)
≤ W

(
{x : ‖x‖B ≥ t}

)
≤ 2
(
1− Φ(Σ−1(t−m)+

)
≤ 2e−

(
(t−m)+

)2
2Σ2 ,

(3.3.10)

and so∫
exp

(
α(‖x‖B −m)2

2Σ2

)
W(dx) ≤ 1

(1− α)
1
2

≤
∫

exp

(
α‖x‖2B

2Σ2

)
W(dx)

for α ∈ [0, 1).

Proof. The estimate in (3.3.8) is proved from (3.3.7) in exactly the same way
as the one in (2.4.13) was derived from (2.4.6). To prove the upper bounds
in (3.3.10), simply observe that∣∣‖y‖B − ‖x‖B∣∣ ≤ ‖x− y‖B ≤ Σ‖y − x‖H .

The first step in proving the lower bound in (3.3.10) is to show that

Σ = sup{‖hξ‖H : ‖ξ‖B∗ = 1}. (∗)
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To check this, begin with the observation that

Σ = sup
{
‖h‖−1

H : ‖h‖B = 1
}
.

Now suppose that ξ ∈ B∗ with ‖ξ‖B∗ = 1, and set g =
hξ
‖hξ‖B . Note that, since

‖g‖B = 1, ‖g‖−1
H ≤ Σ. Hence, because 1 ≥ 〈g, ξ〉 =

(
g, hξ

)
H

= ‖g‖H‖hξ‖H ,

‖hξ‖H ≤ ‖g‖−1
H ≤ Σ, and so left hand side of (∗) dominates the right hand

side. To prove the opposite inequality, suppose that h ∈ H with ‖h‖B =
1. By the Hahn–Banach Theorem, there exists a ξ ∈ B∗ with ‖ξ‖B∗ = 1
and 〈h, ξ〉 = 1. In particular, ‖h‖H‖hξ‖H ≥

(
h, hξ

)
H

= 〈h, ξ〉 = 1, and

therefore ‖h‖−1
H ≤ ‖hξ‖H , which, together with the preceding, completes the

verification.
The next step is to show that there exists an ξ ∈ B∗ with ‖ξ‖B∗ = 1 such

that ‖hξ‖H = Σ. To this end, choose {ξk : k ≥ 1} ⊆ B∗ with ‖ξk‖B∗ = 1 so

that ‖hξk‖H −→ Σ. Because BB∗(0, 1) is compact in the weak* topology and,

by Theorem 3.3.4, ξ ∈ BB∗(0, 1) 7−→ hξ ∈ H is continuous from the weak*
topology into the strong topology, we can assume that {ξk : k ≥ 1} is weak*
convergent to some ξ ∈ BB∗(0, 1) and that ‖hξ‖H = Σ, which is possible
only if ‖ξ‖B∗ = 1. Finally, knowing that this ξ exists, note that 〈 · , ξ〉 is a
centered Gaussian under W with variance Σ2. Hence, since ‖x‖B ≥ |〈x, ξ〉|,

W
(
‖x‖B ≥ t

)
≥ W

(
|〈x, ξ〉| ≥ t

)
= γ0,1

(
R\(−Σ−1t, Σ−1t)

)
= 2
(
1−Φ(Σ−1t)

)
.

ut

The assumption in Corollary 3.3.13 that f isW-almost surely finite is vital.
Indeed, otherwise we would get a contradiction by taking f(x) = ‖x‖H .

The estimates in (3.3.10) and its application represent a significant sharp-
ening of Fernique’s result. An asymptotic version of (3.3.10) was proved by
M. Donsker and S.R.S. Varadhan using the result in Theorem 3.4.1 below.
They showed that

lim
R→∞

R−2 logW
(
‖x‖B ≥ R) = − 1

2Σ2
,

and from this they concluded that e
α‖x‖2B
2Σ2 isW-integrable if and only if α < 1.

The proof given here of the lower bound in (3.3.10) is an adaptation of their
argument.
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3.3.5 Rademacher’s Theorem for Abstract Wiener
Space

An important theorem proved by H. Rademacher states that if f : RN −→ R
is a uniformly Lipschitz continuous function, then it has a gradient at λRN -
almost every point. More precisely, there is a Borel measurable function ∇f :
RN −→ RN such that

lim
t↘0

sup
e∈SN−1

f(x+ te)− f(x)− t
(
∇f(x), e

)
RN

t
= 0 for λRN − a.e. x ∈ RN .

In particular, ∇f can be chosen so that
∥∥ |∇f |∥∥

c
is the Lipschitz constant

for f .
The analog for abstract Wiener spaces given below appeared originally in

[3].

Theorem 3.3.14 Let (H,B,W) be an abstract Wiener space and f : B −→
R is Borel measurable function for which there exists a λ < ∞ such that
|f(y) − f(x)| ≤ λ‖y − x‖H for all x, y ∈ B. Then there exists an F ∈
L∞(W;H) and an A ∈ BB such that W(A) = 1 and, for x ∈ A

f(s+ th)− f(x)

t
−
(
F (x), h

)
H
−→ 0 as t→ 0

uniformly for h in compact subsets of H.

Proof. First observe that, by Corollary 3.3.13, f ∈ Lp(W;R) for all p ∈
[1,∞).

Given ξ ∈ B∗ with ‖hξ‖H = 1, define

Γξ =

{
x ∈ B : lim

t↘0

f(x+ thξ)− f(x)

t
exists in R

}
and ∆ξ =

{
(x, s) ∈ B × R : x+ shξ ∈ Γξ

}
.

Since the function t  f(x + thξ) is Lipschitz continuous and therefore ab-
solutely continuous, Lebesgue’s Differentiation Theorem guarantees that, for
each x ∈ B, t  f(x + thξ) is λR-almost everywhere differentiable, and
therefore, for each x ∈ B, γ0,1

(
{s : (x, s) ∈ ∆ξ}

)
= 1. Next observe that

Γξ =
{
x :
(
x− 〈x, ξ〉hξ, 〈x, ξ〉

)
∈ ∆ξ

}
,

and therefore, since x− 〈x, ξ〉hξ is W-independent of 〈x, ξ〉 ∈ N(0, 1),

W(Γξ) =

∫
γ0,1

({
s :
(
x− 〈x, ξ〉, s

)
∈ ∆ξ

})
W(dx) = 1.

Define
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Fξ(x) =

{
limt↘0

f(x+thξ)−f(x)
t if x ∈ Γξ

0 if x /∈ Γξ.

Now choose {ξm : m ≥ 0} ⊆ B∗ so that {hm : m ≥ 0} is an orthonormal
basis for H when hm = hξm , and take D be the set of ξ ∈ span

(
{ξm : m ≥ 0}

)
for which {(hξ, hm)H : m ≥ 0} ⊆ Q. Clearly {hξ : ξ ∈ D} is a dense subset
of H, and since D is countable, Γ ≡

⋂
ξ∈D Γξ has W-measure 1.

Given ξ ∈ D and ψ ∈ P (cf. the notation in § 3.3.1),

(
Fξ, ψ

)
L2(W;R)

= lim
t↘0

∫
f(x+ thξ)− f(x)

t
ψ(x)W(dx)

= lim
t↘0

∫
f(x)

Rthξψ ◦ T−thξ(x)− ψ(x)

t
W(dx)

=

∫
f(x)∂>hξψ(x)W(dx) =

∞∑
m=0

(h, hm)H

∫
f(x)∂>hmψ(x)W(dx).

Since, for each m, by reversing the preceding one has∫
f(x)∂>hmψ(x)W(dx) = lim

t↘0

∫
f(x+ thm)− f(x)

t
ψ(x)W(dx)

=

∫
Fm(x)ψ(x)W(dx),

it follows that

(Fξ, ψ)L2(W;R) =

∞∑
m=0

(hξ, hm)H(Fm, ψ)L2(W;R)

for all ψ ∈ P and therefore that Fξ =
∑∞
m=0(hξ, hm)HFm (a.s.,W) for each

ξ ∈ D.
Let A be the set of x ∈ Γ for which Fξ(x) =

∑∞
m=0(hξ, hm)HFm(x) for all

ξ ∈ D. Then W(A) = 1, and, for x ∈ A,∣∣∣∣∣
∞∑
m=0

(hξ, hm)HFm(x)

∣∣∣∣∣ ≤ λ‖hξ‖H for all ξ ∈ D.

Thus
∑∞
m=0 Fm(x)2 ≤ λ2 for x ∈ A, and so, if we define the Borel measurable

function F : B −→ H by

F (x) =

{∑∞
m=0 Fm(x)hm if x ∈ A

0 if x /∈ A,

then Fξ(x) =
(
F (x), hξ

)
H

for ξ ∈ D and x ∈ A. Finally, for x ∈ A and
h ∈ H, define t ∈ [0, 1] −→ [ρ(x, h)](t) ∈ R so that [ρ(x, h)](0) = 0 and
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[ρ(x, h)](t) =
f(x+ th)− f(x)

t
−
(
F (x), h

)
H

for t ∈ (0, 1] \ {0}.

Then,

sup
t∈(0,1]

∣∣[ρ(x, g)](t)− [ρ(x, h)](t)
∣∣ ≤ 2λ‖g − h‖H for g, h ∈ H,

and, for x ∈ A and ξ ∈ D, ρ(x, hξ) ∈ C
(
[0, 1];R

)
. Therefore h  ρ(x, h) �

(0, 1] is the continuous extention of its restriction to {hξ : ξ ∈ D}, and so
h ∈ H 7−→ ρ(x, h) ∈ C

(
[0, 1];R

)
is a continuous map. Hence, if x ∈ A, then,

as t↘ 0,

f(x+ th)− f(x)

t
−
(
F (x), h

)
H

= [ρ(x, h)](t) −→ 0

uniformly for h’s in compact subsets of H. ut

As a corollary of Theorem 3.3.14, one knows that a function f satisfying
its hypothesis is an element of the space W 2

1 (W;R) described in § 3.3.1 and
that F = ∇f . Indeed, for any ψ ∈ P and m ≥ 0,(

Fm, ψ
)
L2(W;R)

=
(
f, ∂>hmψ

)
L2(W;R)

,

and so (
F, Ψ

)
L2(W;H)

=
(
f,∇>Ψ

)
L2(W;R)

for all Ψ ∈ PH. Hence, f is in the domain of (∇>)> and therefore, by (viii) of
Exercise 3.3.1, it is an element of W 2

1 (W;R). Conversely, one can show that if
f ∈W 2

1 (W;R) and ‖∇f‖L∞(W;H) <∞, then f isW-almost everywhere equal

to a Borel function f̃ satisfying the condition in Rademacher’s Theorem.
Here is an amusing application of Theorem 3.3.14. Given a weak* com-

pact subset K of B∗, set f(x) = maxξ∈K〈x, ξ〉. Obviously, f satisfies the
hypothesis in the theorem. Let A be the set of x with the property that

(
F (x), h

)
H

= lim
t↘0

f(x+ th)− f(x)

t
for all h ∈ H,

and define g : B ×H −→ R by

g(x, h) = max
{
〈h, ξ〉 : ξ ∈ Γx

}
where Γx =

{
ξ ∈ K : 〈x, ξ〉 = f(x)

}
.

If x ∈ A and ξ ∈ Γx, then f(x+th)−f(x)
t ≥ 〈h, ξ〉 for t > 0, and so

(
F (x), h

)
H
≥

〈h, ξ〉 for all h ∈ H. Since this means that
(
F (x), h

)
H

= (h, hξ)H for all
h ∈ H, it follows that hξ = F (x) and therefore that there is precisely one
element of Γx for each x ∈ A. In other words, for each x ∈ A, there is a
unique ξx ∈ K such that 〈x, ξx〉 = max

{
〈x, ξ〉 : ξ ∈ K

}
. When applied to
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Brownian motion, this result says that, on each compact set of times, almost
every Brownian path achieves its maximum value precisely once.

3.3.6 Gross’s Operator Extention Procedure

A major goal of both Segal and Gross was to develop a procedure for extend-
ing operators defined on the Cameron–Martin space to the Banach space in
which it is embedded. This subsection contains a couple of Gross’s fundamen-
tal results in that direction. Throughout, H will be an infinite dimensional,
separable Hilbert space over R.

Lemma 3.3.15 Let (H,B,W) be an abstract Wiener space and {hm : m ≥
0} an orthonormal basis in H. Then, for each h ∈ H,

∑∞
m=0(h, hm)HI(hm)

converges to I(h) W-almost surely and in Lp(W;R) for every p ∈ [1,∞).

Proof. Define the σ-algebras Fn and F as in the proof of Theorem 3.3.10.
Then, by the same argument as was used there, one can identify

∑n
m=0(h, hm)HI(hm)

as EW [I(h) | Fn]. Thus, since FW ⊇ BB , the required convergence statement
is an immediate consequence of Theorem 3.2.5. ut

Theorem 3.3.16 Let (H,B,W) be an abstract Wiener space. For each fi-
nite dimensional subspace L of H there is a W-almost surely unique map
PL : E −→ H such that, for every h ∈ H and W-almost every x ∈ B,(
h, PLx

)
H

= I(ΠLh)(x), where ΠL denotes the orthogonal projection map
from H onto L. In fact, if {g1, . . . , gdim(L)} is an orthonormal basis for L,

then PLx =
∑dim(L)

1 [I(gi)](x)gi, and so PLx ∈ L for W-almost every x ∈ B.
In particular, the distribution of x ∈ B 7−→ PLx ∈ L under W is the same

as that of (y1, . . . , ydim(L)) ∈ Rdim(L) 7−→
∑dim(L)

1 yjgj ∈ L under γ
dim(L)
0,1 .

Finally, x PLx is W-independent of x x− PLx.

Proof. Set ` = dim(L). It suffices to note that

I(ΠLh) = I

(∑̀
k=1

(h, gk)Hgk

)
=
∑̀
k=1

(h, gk)HI(gk) =

(∑̀
k=1

I(gk)gk, h

)
H

for all h ∈ H ut

The definition of an abstract Wiener space that we have been using is
not the same as Gross’s. The difference is that his definition included the
property that is derived in the following theorem.

Theorem 3.3.17 Let (H,B,W) be an abstract Wiener space and {hn : n ≥
0} an orthonormal basis for H. If Ln = span

(
{h0, . . . , hn}

)
, then, for all

ε > 0 there exists an n ∈ N such that EW
[
‖PLx‖2B

]
≤ ε2 whenever L is a

finite dimensional subspace of H that is perpendicular to Ln.
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Proof. Without loss in generality, we will assume that ‖ · ‖B ≤ ‖ · ‖H .
Arguing by contradiction, we will show that if the asserted property did

not hold, then there would exist an orthonormal basis {fn : n ≥ 0} for H
such that

∑∞
0 I(fn)fn fails to converge in L2(W;B).

Suppose that there is an ε > 0 such that for all n ∈ N there exists a finite
dimensional L ⊥ Ln with EW

[
‖PLx‖2B

]
≥ ε2. Under this assumption, define

{nm : m ≥ 0} ⊆ N, {`m : m ≥ 0} ⊆ N, and
{
{f0, . . . , fnm} : m ≥ 0

}
⊆

Lnm inductively by the following prescription. First, take n0 = 0 = `0 and
f0 = h0. Next, knowing nm and {f0, . . . , fnm}, choose a finite dimensional
subspace L ⊥ Lnm so that EW

[
‖PLx‖2B

]
≥ ε2, set `m = dim(L), and let

{gm,1, . . . , gm,`m} be an orthonormal basis for L. For any δ > 0 there exists
an n ≥ nm + `m such that

`m∑
j,k=1

∣∣(ΠLngm,j , ΠLngm,k
)
H
− δj,k

∣∣ ≤ δ.
In particular, if δ ∈ (0, 1), then the elements of {ΠLngm,i : 1 ≤ i ≤ `m} are
linearly independent and the orthonormal set {g̃m,j : 1 ≤ j ≤ `m} obtained
from them via the Gram–Schmidt orthogonalization procedure satisfies

`m∑
j=1

‖g̃m,j −ΠLngm,j‖H ≤ Km

`m∑
j,k=1

∣∣(ΠLngm,j , ΠLngm,k
)
− δi,j

∣∣
for some Km < ∞ which depends only on `m. Moreover, because L ⊥ Lnm ,
g̃m,j ⊥ Lnm for all 1 ≤ j ≤ `m. Hence, we can find an nm+1 ≥ nm +
`m for which span

(
{hn : nm < n ≤ nm+1}

)
admits an orthonormal basis

{fnm+1, . . . , fnm+1
} ⊥ Lnm with the property that

∑`m
1 ‖gm,j − fnm+j‖H ≤

ε
4 .

Clearly {fn : n ≥ 0} is an orthonormal basis for H. On the other hand,

EW
∥∥∥∥∥

nm+`m∑
n=nm+1

I(fn)fn

∥∥∥∥∥
2

B

 1
2

≥ ε− EW
∥∥∥∥∥

`m∑
1

(
I(gm,j)gm,j − I(fnm+j)fnm+j

)∥∥∥∥∥
2

B

 1
2

≥ ε−
`m∑
1

EW
[∥∥I(gm,j)gm,j − I(fnm+j)fnm+j

∥∥2

H

] 1
2 ,

and so, since EW
[∥∥I(gi,m)gm,j − I(fnm+i)fnm+i

∥∥2

H

] 1
2 is dominated by
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EW
[∥∥(I(gm,j)− I(fnm+j)

)
gm,j

∥∥2

H

] 1
2 + EW

[
I(fnm+j)

2
] 1

2 ‖gm,j − fnm+j‖H
≤ 2‖gm,j − fnm+j‖H ,

we have that

EW
∥∥∥∥∥

nm+`m∑
nm+1

I(fn)fn

∥∥∥∥∥
2

B

 1
2

≥ ε

2
for all m ≥ 0,

and this means that
∑∞

0 I(fn)fn cannot be converging in L2(W;B). ut

Besides showing that my definition of an abstract Wiener space is the same
as Gross’s, Theorem 3.3.17 allows us to prove a very convincing statement,
again due to Gross, of just how non-unique is the Banach space for which a
given Hilbert space is the Cameron–Martin subspace.

Corollary 3.3.18 If (H,B,W) is an abstract Wiener space, then there ex-
ists a separable Banach space B0 that is continuously embedded in B as a
measurable subset and has the properties that W(B0) = 1, bounded subsets
of B0 are relatively compact in B, and (H,B0,W � B0

)
is again an abstract

Wiener space.

Proof. Again we will assume that ‖ · ‖E ≤ ‖ · ‖H .
Choose {ξn : n ≥ 0} ⊆ B∗ so that {hn : n ≥ 0} is an orthonormal

basis in H when hn = hξn , and set Ln = span
(
{h0, . . . , hn}

)
. Next, using

Theorem 3.3.17, choose an increasing sequence {nm : m ≥ 0} so that n0 = 0

and EW
[
‖PLx‖2B

] 1
2 ≤ 2−m for m ≥ 1 and finite dimensional L ⊥ Lnm , and

define Q` for ` ≥ 0 on B into H so that

Q0x = 〈x, ξ0〉h0 and Q`x =

n∑̀
n=n`−1+1

〈x, ξn〉hn when ` ≥ 1.

Finally, set Sm = PLnm =
∑m
`=0Q`, and define B0 to be the set of x ∈ B

such that

‖x‖B0 ≡ ‖Q0x‖E +

∞∑
`=1

`2
∥∥Q`x‖B <∞ and ‖Smx− x‖B −→ 0.

To show that ‖ · ‖B0 is a norm on B0 and that B0 with norm ‖ · ‖B0 is a
Banach space, first note that if x ∈ B0, then

‖x‖B = lim
m→∞

‖Smx‖B ≤ ‖Q0x‖B + lim
m→∞

m∑
`=1

‖Q`x‖B ≤ ‖x‖B0
,

and therefore ‖ · ‖B0
is certainly a norm on B0. Next, suppose that the se-

quence {xk : k ≥ 1} ⊆ B0 is a Cauchy sequence with respect to ‖ · ‖B0
. By
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the preceding, we know that {xk : k ≥ 1} is also Cauchy convergent with
respect to ‖ · ‖B , and so there exists an x ∈ B such that xk −→ x in B. We
need to show that x ∈ B0 and that ‖xk − x‖B0

−→ 0. Because {xk : k ≥ 1}
is bounded in B0, it is clear that ‖x‖B0

<∞. In addition, for any m ≥ 0 and
k ≥ 1,

‖x− Smx‖B = lim
`→∞

‖x` − Smx`‖B ≤ lim
`→∞

‖x` − Smx`‖B0

= lim
`→∞

∑
n>m

n2‖Qnx`‖B ≤
∑
n>m

n2‖Qnxk‖B + sup
`>k
‖x` − xk‖B0

.

Thus, by choosing k for a given ε > 0 so that sup`>k ‖x` − xk‖B0
< ε, we

conclude that limm→∞ ‖x− Smx‖B < ε and therefore that Smx −→ x in B.
Hence, x ∈ B0. Finally, to see that xk −→ x in B0, simply note that

‖x− xk‖B0
= ‖Q0(x− xk)‖B +

∞∑
m=1

m2‖Qm(x− xk)‖B

≤ lim
`→∞

(
‖Q0(x` − xk)‖B +

∞∑
m=1

m2‖Qm(x` − xk)‖B

)
≤ sup

`>k
‖x` − xk‖B0

,

which tends to 0 as k →∞.
To show that bounded subsets of B0 are relatively compact in B, it suffices

to show that for any sequence {x` : ` ≥ 1} ⊆ BB0(0, R), then there is an
x ∈ B to which a subsequence converges in B. For this purpose, observe
that, for each m ≥ 0, there is a subsequence {x`k : k ≥ 1} along which
{Smx`k : k ≥ 1} converges in Lnm . Hence, by a diagonalization argument,
{x`k : k ≥ 1} can be chosen so that {Smx`k : k ≥ 1} converges in Lnm for
all m ≥ 0. Since, for 1 ≤ j < k,

‖x`k − x`j‖B ≤ ‖Smx`k − Smx`j‖B +
∑
n>m

‖Qn(x`k − x`j )‖B

≤ ‖Smx`k − Smx`j‖B + 2R
∑
n>m

1

n2
,

it follows that {x`k : k ≥ 1} is Cauchy convergent in B and therefore that it
converges in B.

We must still show that B0 ∈ BB and that
(
H,B0,W � B0

)
is an abstract

Wiener space. To see the first of these, observe that x ∈ B 7−→ ‖x‖B0
∈ [0,∞]

is lower semicontinuous and that {x : ‖Smx−x‖B −→ 0} ∈ BB . In addition,
because, by Theorem 3.3.10, ‖Smx − x‖B −→ 0 for W-almost every x ∈ B,
we will know that W(B0) = 1 once we show thatW

(
‖x‖B0 <∞

)
= 1, which

follows immediately from
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EW
[
‖x‖B0

]
= EW

[
‖Q0x‖B

]
+

∞∑
1

m2EW
[
‖Qmx‖B

]
≤ EW

[
‖Q0x‖B

]
+

∞∑
1

m2EW
[
‖Qmx‖2B

] 1
2

≤ EW
[
‖Q0x‖B

]
+

∞∑
m=1

m22−m <∞.

The next step is to check that H is continuously embedded in B0. Certainly
h ∈ H =⇒ ‖Smh−h‖B ≤ ‖Smh−h‖H −→ 0. Next suppose that h ∈ H \{0}
and that h ⊥ Lnm , and let L be the line in H spanned by h. Then PLx =
‖h‖−2

H [I(h)](x)h, and so, because L ⊥ Lnm ,

1

2m
≥ EW

[
I(h)2

] 1
2
‖h‖B
‖h‖2H

=
‖h‖B
‖h‖H

.

Hence, we now know that h ⊥ Lnm =⇒ ‖h‖B ≤ 2−m‖h‖H . In particular,
‖Qm+1h‖B ≤ 2−m‖Qm+1h‖H ≤ 2−m‖h‖H for all m ≥ 0 and h ∈ H, and so

‖h‖B0
= ‖Q0h‖B +

∞∑
m=1

m2‖Qmh‖B ≤

(
1 + 2

∞∑
m=1

m2

2m

)
‖h‖H = 25‖h‖H .

To complete the proof, we must show that H is dense in B0 and that, for
each ξ ∈ B∗0 , Ŵ(ξ) = e−

1
2‖hξ‖

2
H , where hξ ∈ H is determined by

(
h, hξ

)
H

=
〈h, ξ〉 for h ∈ H. Both these facts rely on the observation that

‖x− Smx‖B0
=
∑
n>m

n2‖Qnx‖B −→ 0 for all x ∈ B0.

Knowing this, the density of H in B0 is obvious. Finally, if ξ ∈ B∗0 , then, by
the preceding and Lemma 3.3.15,

〈x, ξ〉 = lim
m→∞

〈Smx, ξ〉 = lim
m→∞

nm∑
n=0

〈x, ξn〉〈hn, ξ〉

= lim
m→∞

nm∑
n=0

(
hξ, hn

)
H

[
I(hn)

]
(x) =

[
I(hξ)

]
(x)

for W-almost every x ∈ B0. Hence 〈 · , ξ〉 under W is a centered Gaussian
with variance ‖hξ‖2H . ut

Using the ideas in the preceding proof, one can show that, given a separable
Hilbert space H, H itself equals the intersection of all the Banach spaces in
which H is the Cameron–Martin subspace. See [2] for details.
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3.3.7 Orthogonal Invariance

Consider the standard Gauss distribution γ0,I on RN . Obviously, γ0,I is or-
thogonal invariant. That is, if O is an orthogonal transformation of RN ,
then γ0,I is invariant under the transformation TO : RN −→ RN given by
TOx = Ox. On the other hand, none of these transformations can be ergodic,
since any radial function on RN is invariant under TO for every O.

Now think about the analogous situation when RN is replaced by an in-
finite dimensional Hilbert space H and (H,B,W) is an associated abstract
Wiener space. As we are about to show, W is invariant under orthogonal
transformations on H. On the other hand, because ‖x‖H =∞ for W-almost
every x ∈ B, there are no non-trivial radial functions now, a fact that leaves
open the possibility that some orthogonal transformation of H give rise to er-
godic transformations for W. The purpose of this subsection is to investigate
these matters, and I begin with the following formulation of the orthogonal
invariance of W.

Theorem 3.3.19 Let (H,B,W) be an abstract Wiener space and O an or-
thogonal transformation on H. Then there is aW-almost surely unique, Borel
measurable map TO : B −→ B such that I(h)◦TO = I(O>h)W-almost surely
for each h ∈ H. Moreover, W = (TO)∗W.

Proof. To prove uniqueness, note that if T and T ′ both satisfy the defining
property for TO, then, for each ξ ∈ B∗,

〈Tx, ξ〉 = I(hξ)(Tx) = I(O>hξ) = I(hξ)(T
′x) = 〈T ′x, ξ〉

for W-almost every x ∈ B. Hence, since BB∗(0, 1) is separable in the weak*
topology, Tx = T ′x for W-almost every x ∈ B.

To prove existence, choose an orthonormal basis {hm : m ≥ 0} for H,
and let C be the set of x ∈ B for which both

∑∞
m=0[I(hm)](x)hm and∑∞

m=0[I(hm)](x)Ohm converge in B. By Theorem 3.3.10, we know that
W(C) = 1 and that

x TOx ≡

{∑∞
m=0[I(hm)](x)Ohm if x ∈ C

0 if x /∈ C

has distribution W. Hence, all that remains is to check that I(h) ◦ TO =
I(O>h) W-almost surely for each h ∈ H. To this end, let ξ ∈ B∗, and
observe that

[I(hξ)](TOx) = 〈TOx, ξ〉 =

∞∑
m=0

(
hξ,Ohm

)
H

[I(hm)](x)

=

∞∑
m=0

(
O>hξ, hm

)
H

[I(hm)](x)
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for W-almost every x ∈ B. Thus, since, by Lemma 3.3.15, the last of these
series convergences W-almost surely to I(O>hξ), we have that I(hξ) ◦ TO =
I(O>hξ) W-almost surely. To handle general h ∈ H, simply note that both
h ∈ H 7−→ I(h) ◦ TO ∈ L2(W;R) and h ∈ H 7−→ I(O>h) ∈ L2(W;R) are
isometric, and remember that {hξ : ξ ∈ B∗} is dense in H. ut

I discuss next the possibility of TO being ergodic for some orthogonal
transformations O. First notice that TO cannot be ergodic if O has a non-
trivial, finite dimensional invariant subspace L, since if {h1, . . . , hn} were an
orthonormal basis for L, then

∑n
m=1 I(hm)2 would be a non-constant, TO-

invariant function. Thus, the only candidates for ergodicity are O’s that have
no non-trivial, finite dimensional, invariant subspaces. In a more general and
highly abstract context, Segal [7] showed that the existence of a non-trivial,
finite dimensional subspace for O is the only obstruction to TO being ergodic.
Here I will show less.

Theorem 3.3.20 Let (H,B,W) be an abstract Wiener space. If O is an
orthogonal transformation on H with the property that, for every g, h ∈ H,
limn→∞

(
Ong, h

)
H

= 0, then TO is ergodic.

Proof. What we have to show is that any TO-invariant element Φ ∈ L2(W;R)
is W-almost surely constant, and for this purpose it suffices to check that

lim
n→∞

∣∣EW[(Φ ◦ TnO)Φ
]∣∣ = 0 (∗)

for all Φ ∈ L2(W;R) with mean value 0. In fact, if {hm : m ≥ 1} is an
orthonormal basis for H, then it suffices to check (∗) when

Φ(x) = F
(

[I(h1)](x), . . . , [I(hN )](x)
)

for some N ∈ Z+ and bounded, Borel measurable F : RN −→ R. The reason
why it is sufficient to check it for such Φ’s is that, because TO is W-measure
preserving, the set of Φ’s for which (∗) holds is closed in L2(W;R). Hence, if
we start with any Φ ∈ L2(W;R) with mean value 0, we can first approximate
it in L2(W;R) by bounded functions with mean value 0 and then condition
these bounded approximates with respect to σ

(
{I(h1), . . . , I(hN )}

)
to give

them the required form.
Now suppose that Φ = F

(
I(h1), . . . , I(hN )

)
for some N and bounded,

measurable F . Then

EW
[
(Φ ◦ TnO)Φ

]
=

∫∫
RN×RN

F (ξ)F (η) γ0,An(dξ × dη),

where
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An =

 I Bn

B>n I

 with Bn =
(((

hk,Onh`
)
H

))
1≤k,`≤N

and the block structure corresponds to RN ×RN . Finally, by our hypothesis
about O, we can find a subsequence {nm : m ≥ 0} such that limm→∞Bnm =
0, from which it is clear that γ0,Cnm

tends to γ0,I × γ0,I in variation and
therefore

lim
m→∞

EW
[
(Φ ◦ TnmO )Φ

]
= EW [Φ]2 = 0.

ut

Perhaps the best tests for whether an orthogonal transformation satisfies
the hypothesis in Theorem 3.3.20 come from spectral theory. To be more
precise, if Hc and Oc are the space and operator obtained by complexifying
H and O, the Spectral Theorem for normal operators allows one to write

Oc =

∫ 2π

0

eiα dEα,

where {Eα : α ∈ [0, 2π)} is a resolution of the identity in Hc by orthogonal
projection operators. The spectrum of Oc is said to be absolutely continuous
if, for each h ∈ Hc, the non-decreasing function α 

(
Eαh, h

)
Hc

is absolutely

continuous, which, by polarization, means that α 
(
Eαh, h

′)
Hc

is absolutely

continuous for all h, h′ ∈ Hc. The reason for introducing this concept here is
that, by combining the Riemann–Lebesgue Lemma with Theorem 3.3.20, one
can prove that TO is ergodic if the spectrum of Oc is absolutely continuous.
Indeed, given h, h′ ∈ H, let f be the Radon–Nikodym derivative of α  (
Eαh, h

′)
Hc

, and apply the Riemann–Lebesgue Lemma to see that

(
Onh, h′

)
H

=

∫ 2π

0

einαf(α) dα −→ 0 as n→∞.

This conclusion is substantially weaker than one proved by Segal. He proved
that TO will be ergodic if and only if O has no non-trivial eigenfunctions. See
[12] for another proof of this result.

Exercise 3.3.1
(i) Let µ be a Borel probability measure on the separable Banach space E,

set A = {x ∈ E : (Tx)∗µ� µ}, and, for x ∈ A, let Rx be the Radon-Nikodym
derivative of (Tx)∗µ with respect to µ. Show that, for x, y ∈ A =⇒ x+y ∈ A
and Rx+y = Ry ◦ T−xRx. Use this to show that if (H,B,W) be an abstract
Wiener space and g, h ∈ H, then I(g) ◦ Th = I(g) + (g, h)H (a.s.,W).

(ii) Let {X(t) : t ∈ R} be a centered Gaussian process with covaiance
function cos

(
2π(t− s)

)
. Describe the distribution of this process in terms of

an abstract Wiener space.
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(iii) Let (H,B,W) be an abstract Wiener space, and suppose that {ξn :
n ≥ 0} ⊆ B∗ has the property that {hn : n ≥ 0} is an orthonormal sequence
when hh = hξn . Set Sn(x) =

∑n
m=0〈x, ξm〉hm, and show that there exists an

α > 0 such that

E
[
exp

(
α sup
n≥0
|Sn|

)]
<∞.

(iv) Let
(
H1

0 (R;R), Ω0,W0

)
be the abstract Wiener space for Brownian

motion, and let 0 = s0 < s1 < · · · < sn be given. Set L = span
(
{hm : 0 ≤

m ≤ n}
)

where hm(t) = (t ∧ sm)+ for 0 ≤ m ≤ n, and show that

PLω(t) =

n∑
m=1

(
ω(sm)− ω(sm−1)

)(
hm(t)− hm−1(t)

)
sm − sm−1

.

Next, for y ∈ Rn, define

ψ(t, y) =

n∑
m=1

(ym − ym−1)
(
hm(t)− hm−1(t)

)
sm − sm−1

where y0 = 0. Show that if F : Ω0 −→ [0,∞) is BΩ0
-measurable, then, for all

Γ ∈ BRn ,

EW0
[
F,
(
ω(s1), . . . , ω(sn)

)
∈ Γ

]
=

∫
Γ

EW0
[
F
(
PLω + ψ( · , y)

)]
γ0,A(dy),

where A =
((
sk ∧ s`

))
1≤k,`≤n, and conclude that the distribution of PLω is

that of Brownian motion conditioned to return to 0 at times s1 < · · · < sn.

(v) Let
(
Ω,H1(R;R),U

)
be the abstract Wiener space in Theorem 3.3.9.

Given s1 < s2, set L = span
(
{h1, h2}

)
where hk(t) = 1

2e
−|t−sk|, and show

that

PLω(t) = 2ω(s1)h1(t) +
2
(
ω(s2)− 2h1(s2)ω(s1)

)(
h2(t)− 2h1(s2)h1(t)

)
1− 4h1(s2)2

.

Conclude that the distribution of ω−PLω is that of the Ornstein–Uhlenbeck
process conditioned to be at 0 at times s1 and s2.

(vi) Show that if O : H1
0 (R;R) −→ H1

0 (R;R) is an orthogonal transfor-
mation and limn→∞

(
Ong, h

)
H1

0 (R;R)
= 0 for all g, h ∈ H1

0 (R;R) ∩ C∞c (R;R),

then limn→∞
(
Ong, h

)
H1

0 (R;R)
= 0 for all g, h ∈ H1

0 (R;R).

(vii) Given α ∈ (0,∞), define Oα : H1
0 (R;R) −→ H1

0 (R;R) by Oαh(t) =

α−
1
2h(αt), and check that Oα is an orthogonal transformation and that it

extends to Ω0 as the scaling map in (ii) of Theorem 2.5.7. Next, use (vi)
above and Theorem 3.3.20 to show that Oα is ergodic under W0 if α 6= 1.

(viii) Let H be an infinite dimensional, separable Hilbert space and
(H,B,W) an abstract Wiener space. Refering to the discussion at the end



110 3 Gaussian Measures on a Banach Space

of § 3.3.1, choose {ξj : j ≥ 1} ⊆ B∗ so that {hj : j ≥ 1} is an or-
thonormal basis for H when hj = hξj , and define the spaces P, PH and
W 2

1 (W;R) as they were defined there. Show that P are dense in L2(W;R)
and L2(W;H), respectively. Next, recall the operators ∇ : P −→ PH and
∇> : PH −→ P, and note that P and therefore W 2

1 (W;R) are contained in
the domain Dom

(
(∇>)>

)
of the adjoint (∇>)> of ∇>. You are to show that

in fact W 2
1 (W;R) = Dom

(
(∇>)>

)
.

Hint: Here are steps that you might want to take. Given f ∈ Dom
(
(∇>)>

)
,

set F = (∇>)>f . For N ≥ 1, let fN = EW
[
f
∣∣FN] and FN = EW

[
F
∣∣FN ],

where FN = σ
(
{〈 · , ξj〉 : 1 ≤ j ≤ N}

)
, and show that fN ∈ Dom

(
(∇>)>

)
and FN = (∇>)>fN . Since fN −→ f in L2(W;R) and FN −→ F in L2(W;H)
as N → ∞, conclude that it suffices to prove the result when H = B = RN
and W = γN0,1. That is, let ∂j on C1(RN ;R) denote partial differential with

respect to the jth coordinate and ∂>j ψ(x) = (xjψ(x) − ∂jψ(x), and define

∇>Ψ =
∑N
j=1 ∂

>
j ψj for Ψ =

(
ψ1, . . . , ψN

)> ∈ C1(RN ;RN ). What one needs

to show is that if (f, F ) ∈ L2
(
γN0,1;R

)
× L2(γN0,1;RN ) satifies(

f,∇>Ψ
)
L2(γ0,1;R)

=
(
F, Ψ

)
L2(γ0,1;RN )

for all Ψ ’s with polynomial coordinates, then there exists a sequence {ϕk :
k ≥ 1} of polynomials on RN such that ϕk −→ f in L2(γN0,1;R) and(
∂1ϕ, . . . , ∂Nϕ

)> −→ F in L2(γN0,1;RN ). Perhaps the best way to do this is to

introduce the functions Hk(x) =
∏N
j=1Hkj (xj) for k = (k1, . . . , kN ) ∈ NN ,

where Hk is the kth Hermite polynomial, set H̃k = (k!)−
1
2 where k! =∏N

j=1 kj !, check that {H̃k : k ∈ NN} is an orthonomal basis in L2(γN0,1;R),
and show that

‖F‖2L2(γN0,1;RN ) =
∑

k∈NN
‖k‖1

(
f, H̃k

)2
L2(γN0,1;R)

,

where ‖k‖1 =
∑N
j=1 kj .

3.4 Asymptotic Properties of Abstract Wiener Spaces

3.4.1 Large Deviaviations in Abstract Wiener Spaces

The goal of this subsection is to derive the following result.

Theorem 3.4.1 Let (H,B,W) be an abstract Wiener space, and, for ε > 0,

denote by Wε the W-distribution of x ε
1
2x. Then, for each Γ ∈ BB,
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− inf
h∈Γ̊

‖h‖2H
2
≤ lim
ε↘0

ε logWε(Γ )

≤ lim
ε↘0

ε logWε(Γ ) ≤ − inf
h∈Γ

‖h‖2H
2

.

(3.4.1)

The original version of Theorem 3.4.1 was proved by M. Schilder for the
classical Wiener measure using a method that does not extend easily to the
general case. The statement that I have given is due to Donsker and Varad-
han, and my proof derives from an approach that was introduced into this
context by Varadhan.

The lower bound is an easy application of the Cameron–Martin formula.
Indeed, all that one has to do is show that if h ∈ H and r > 0, then

lim
ε↘0

ε logWε

(
BB(h, r)

)
≥ −‖h‖

2
H

2
. (∗)

To this end, note that, for any ξ ∈ B∗ and δ > 0,

Wε

(
BB(hξ, δ)

)
=W

(
BB(ε−

1
2hξ, ε

− 1
2 δ)
)

= EW
[
e−ε

− 1
2 〈x,ξ〉− 1

2ε‖hξ‖
2
H , BB(0, ε−

1
2 δ)
]

≥ e−δε
−1‖ξ‖B∗− 1

2ε‖hξ‖
2
HW

(
BB(0, ε−

1
2 δ)
)
,

which means that

BB(hξ, δ) ⊆ BB(h, r) =⇒ lim
ε↘0

ε logWε

(
BB(h, r)

)
≥ −δ‖ξ‖B∗ −

‖hξ‖2H
2

,

and therefore, after letting δ ↘ 0 and remembering that {hξ : x ∈ B∗} is
dense in H, that (∗) holds.

The proof of the upper bound in (3.4.1) is a little more involved. The first
step is to show that it suffices to treat the case when Γ is relatively compact.
To this end, refer to Corollary 3.3.18, and set CR equal to the closure in
B of BB0

(0, R). By Fernique’s Theorem applied to W on B0, we know that

EW
[
eα‖x‖

2
B0

]
≤ K for some α > 0 and K <∞. Hence

Wε

(
B \ CR

)
=W

(
B \ C

ε−
1
2R

)
≤ Ke−αR

2

ε ,

and so, for any Γ ∈ BB and R > 0,

Wε

(
Γ
)
≤ 2Wε(Γ ∩ CR) ∨

(
Ke−α

R2

ε

)
.

Thus, if we can prove the upper bound for relatively compact Γ ’s, then,
because Γ ∩ CR is relatively compact, we will know that, for all R > 0,
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lim
ε↘0

ε logWε(Γ ) ≤ −
[(

inf
h∈Γ

‖h‖2H
2

)
∧
(
αR2

)]
,

from which the general result is immediate.
To prove the upper bound when Γ is relatively compact, we will show

that, for any y ∈ B,

lim
r↘0

lim
ε↘0

ε logWε

(
BB(y, r)

)
≤

{
−‖y‖

2
H

2 if y ∈ H
−∞ if y /∈ H.

(∗∗)

To see that (∗∗) is enough, assume that it is true, and let Γ ∈ BB \ {∅} be
relatively compact. Given β ∈ (0, 1), for each y ∈ Γ choose r(y) > 0 and
ε(y) > 0 so that

Wε

(
BB(y, r(y))

)
≤

{
e−

(1−β)
2ε ‖y‖

2
H if y ∈ H

e−
1
βε if y /∈ H

for all 0 < ε ≤ ε(y). Because Γ is relatively compact, we can find N ∈ Z+ and

{y1, . . . , yN} ⊆ Γ such that Γ ⊆
⋃N

1 BB(yn, rn), where rn = r(yn). Thus, for
sufficiently small ε > 0,

Wε(Γ ) ≤ N exp

(
−
[(

1− β
2ε

inf
h∈Γ
‖h‖2H

)
∧ 1

εβ

])
,

and so

lim
ε↘0

ε logWε(Γ ) ≤ −
[(

1− β
2

inf
h∈Γ
‖h‖2H

)
∧ 1

β

]
.

Now let β ↘ 0.
Finally, to prove (∗∗), observe that

Wε

(
BB(y, r)

)
=W

(
BB( y√

ε
, r√

ε
)
)

= EW
[
e−ε

− 1
2 〈x,ξ〉eε

− 1
2 〈x,ξ〉, BB( y√

ε
, r√

ε
)
]

≤ e−ε
−1(〈y,ξ〉−r‖ξ‖B∗ )EW

[
eε
− 1

2 〈x,ξ〉] = e−ε
−1
(
〈y,ξ〉−

‖hξ‖
2
H

2 −r‖ξ‖B∗
)
,

for all ξ ∈ B∗. Hence,

lim
r↘0

lim
ε↘0

ε logWε

(
BB(y, r)

)
≤ − sup

ξ∈B∗

(
〈y, ξ〉 − 1

2‖hξ‖
2
H

)
.

Note that the preceding supremum is the same as half the supremum of 〈y, ξ〉
over ξ with ‖hξ‖H = 1, which, by Lemma 3.3.1, is equal to

‖y‖2H
2 if y ∈ H

and to ∞ if y /∈ H.
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3.5 Brownian Motion on a Banach Space

This section is devoted to the study of Brownian motion on a Banach space.
To be precise, given a non-degenerate, centered, Gaussian measure W on
a separable Banach space B, what we will show is that there exists an B-
valued stochastic process {B(t) : t ∈ R} with the properties that: B(0) = 0,
t  B(t) is continuous, and, for each ξ ∈ B∗ with ‖hξ‖H = 1, {〈B(t), ξ〉 :
t ∈ R} is an R-valued Brownian motion. Equivalently, for all n ≥ 1 and
t0 < · · · < tn, B(t1)−B(t0), · · · , B(tn)−B(tn−1) are mutually independent
random variables, the mth one of which has distribution (cf. the notation in
Theorem 3.4.1) Wtm−tm−1 .

3.5.1 Abstract Wiener Formulation

Let W on B be as above, use H to denote its Cameron–Martin sub-
space, and take H1

0 (R;H) to be the Hilbert space of absolutely continuous
h : R −→ H such that h(0) = 0 and ‖h‖H1

0 (R;H) = ‖ḣ‖L2(R;H) < ∞. Fi-
nally, let Ω0(B) be the space of continuous ω : R −→ B satisfying ω(0) = 0

and limt→∞
‖ω(t)‖B

t = 0, and turn Ω0(B) into a Banach space with norm
‖ω‖Ω0(B) = supt≥0(1 + t)−1‖ω(t)‖E . Exactly the same line of reasoning used
when B = R applies here and shows that Ω0(B) is a separable Banach space
in which H1

0 (R;H) is continuously embedded as a dense subspace.

Theorem 3.5.1 With H1
0 (R;H) and Ω0(B) as above, there is a unique

W(B)
0 ∈ M1

(
Ω0(B)

)
such that

(
H1

0 (R;H), Ω0(B),W(B)
0

)
is an abstract

Wiener space. Moreover, {ω(t) : t ∈ R} is a B-valued Brownian motion

under W(B)
0 .

We will use an approach based on an analog Theorem 3.3.10. Begin by
choosing an orthonormal basis {gm : m ≥ 0} in H1

0 (R;R), and, for n ≥ 0,
t ∈ R, and y = (y0, . . . , ym, . . . ) ∈ BN, set Sn(t, y) =

∑n
m=0 gm(t)ym.

Lemma 3.5.2 For WN-almost every y ∈ BN, {Sn : n ≥ 1} is relatively
compact in Ω0(B).

Proof. Choose B0 ⊆ B, as in Corollary 3.3.18, so that bounded subsets of B0

are relatively compact in B and
(
H,B0,W � B0

)
is again an abstract Wiener

space. Without loss in generality, assume that ‖ · ‖B ≤ ‖ · ‖B0 . By Fernique’s
Theorem, we know that C ≡ EW

[
‖x‖4B0

]
<∞.

Next, for s ∈ R, define

fs(τ) =

{
|s| ∧ |τ | if sτ ≥ 0

0 if sτ < 0
,
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observe that

Sn(t, y)− Sn(s, y) =

n∑
m=0

(
ft − fs, gm

)
H1

0
ym,

and conclude that the WN-distribution of Sn(t)− Sn(s) is Wεn , where εn =∑n
m=0

(
ft−fs, gm

)2
H1(R)

≤ t−s. Hence, EWN[‖Sn(t)−Sn(s)‖4B0

]
≤ C(t−s)2.

In addition, {‖Sn(t)−Sn(s)‖B0
: n ≥ 1} is a submartingale, and so, by Doob’s

Inequality plus Kolmogorov’s Continuity Criterion, there exists a K < ∞
such that, for each T > 0,

E
[
sup
n≥0

sup
−T≤s<t≤T

‖Sn(t)− Sn(s)‖B0

(t− s) 1
8

]
≤ KT 3

4 . (∗)

From (∗) and Sn(0) = 0, we know that for WN-almost every y ∈ BN,
{Sn( · , y) : n ≥ 0} is uniformly bounded and uniformly equicontinuous on
each interval [−T, T ] with respect to ‖ · ‖B0

. Since this means that, for every
T > 0 and WN-almost every y ∈ BN, {Sn(t, y) : n ≥ 0 & t ∈ [−T, T ]}
is relatively compact in B and {Sn( · , y) � [−T, T ] : n ≥ 0} is uni-
formly ‖ · ‖B-equicontinuous, the Ascoli–Arzela Theorem guarantees that,
WN-almost surely, {Sn( · , y) : n ≥ 0} is relatively compact in C(R;B) with
the topology of uniform convergence on compacts. Thus, what remains to be
shown is that WN-almost surely,

lim
T→∞

sup
n≥0

sup
|t|≥T

‖Sn(t, y)‖B
|t|

= 0.

But,

sup
|t|≥2k

‖Sn(t, y)‖B
|t|

≤
∑
`≥k

sup
2`≤|t|≤2`+1

‖Sn(t, y)‖B
|t|

≤
∑
`≥k

2−
7`
8 sup

0≤|t|≤2`+1

‖Sn(t, y)‖B
|t| 18

,

and therefore, by (∗),

E

[
sup
n≥0

sup
|t|≥2k

‖Sn(t)‖B
|t|

]
≤ 2

3
4K

2
1
8 − 1

2−
k
8 .

ut

In addition to the preceding compactness result, we need the following
simple criterion for checking when a relatively compact sequence in Ω0(B)
converges.
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Lemma 3.5.3 Suppose that {ωn : n ≥ 0} is a relatively compact sequence
in Ω0(B). If limn→∞〈ωn(t), ξ〉 exists for each t in a dense subset of R and ξ
in a weak* dense subset of B∗, then {ωn : n ≥ 0} converges in Ω0(B).

Proof. For a relatively compact sequence to be convergent, it is necessary
and sufficient that every convergent subsequence have the same limit. Thus,
suppose that ω and ω′ are limit points of {ωn : n ≥ 0}. Then, by hypothesis,
〈ω(t), ξ〉 = 〈ω′(t), ξ〉 for t in a dense subset of R and ξ in a weak* dense subset
of B∗. But this means that the same equality holds for all (t, ξ) ∈ R × B∗
and therefore that ω = ω′. ut

Proof of Theorem 3.5.1. In view of Lemmas 3.5.2 and 3.5.3 and the separabil-
ity of BB∗(0, 1) in the weak* topology, we will know that {Sn( · , y) : n ≥ 0}
converges in Ω0(B) for WN-almost every y ∈ BN once we show that, for each
(t, ξ) ∈ [0,∞)×B∗, {〈Sn(t, y), ξ〉 : n ≥ 0} converges in R for WN-almost ev-
ery y ∈ BN. But if ξ ∈ B∗, then 〈Sn(t, y), ξ〉 =

∑n
0 〈ym, ξ〉gm(t), the random

variables y  〈ym, ξ〉gm(t) are mutually independent, centered Gaussians
under WN with variance ‖hξ‖2Hgm(t)2, and

∑∞
0 gm(t)2 = ‖ft‖2H1(R;R) = t.

Thus, by Kolmogorov’s convergence theorem for sums of mutually indepen-
dent, square integrable random variables, we have the required convergence.

Next, define S : [0,∞)×BN −→ B so that

S(t, y) =

{
limn→∞ Sn(t, y) if {Sn( · , y) : n ≥ 0} converges in Ω0(B)

0 otherwise.

Given Ξ ∈ Ω0(B)∗, determine hΞ ∈ H1
0 (R;H) by

(
h, hΞ

)
H1

0 (R;H)
= 〈h,Ξ〉

for all h ∈ H1
0 (R;H). We must show that, under WN, y  〈S( · , y), Ξ〉 is a

centered Gaussian with variance ‖hΞ‖2H1
0 (R;H)

. To this end, define ξm ∈ B∗ so

that B〈x, ξm〉B∗ = Ω0(B)〈gmx,Ξ〉Ω0(B)∗ for x ∈ B, where gmx is the element
of Ω0(B) such that gmx(t) = gm(t)x. Then,

〈S( · , y), Ξ〉 = lim
n→∞

〈Sn( · , y), Ξ〉 = lim
n→∞

n∑
0

〈ym, ξm〉 WN-almost surely.

Hence, 〈S( · , y), Ξ〉 is certainly a centered Gaussian under WN, and, because
we are dealing with Gaussian random variables, almost sure convergence
implies L2-convergence. To compute its variance, choose an orthonormal basis
{hk : k ≥ 0} for H, and note that, for each m ≥ 0,∫

〈ym, ξm〉2WN(dy) = ‖hξm‖2H =

∞∑
k=0

〈gmhk, Ξ〉2.

Thus, since {gmhk : (m, k) ∈ N2} is an orthonormal basis in H1
0 (R;H),
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E
[
〈S( · ), Ξ〉2

]
=

∞∑
m,k=0

〈gmhk, Ξ〉2 =

∞∑
m,k=0

(
gmhk, hΞ

)2
H1

0 (R;H)
= ‖hΞ‖2H1

0 (R;H).

Finally, if W(B)
0 is the WN-distribution of y  S( · , y), then the preceding

shows that
(
H1

0 (B), Ω0(B),W(B)
0

)
is an abstract Wiener space. To see that

{ω(t) : t ∈ R} is a Brownian motion underW(B)
0 , it suffices to show that, for

all s < t and ξ ∈ B∗,

E
[
〈ω(s), ξ〉〈ω(s), ξ〉

]
= w(s, t)‖hξ‖2H ,

where w(s, t) = 1[0,∞)(st)|s| ∧ |t|. To this end, define Ξs ∈ Ω0(B) by

Ω0(B)〈ω,Ξs〉Ω0(B)∗ = B〈ω(s), ξ〉B∗ for ω ∈ Ω0(B).

Then hΞs = fshξ, where fs ∈ H1
0 is defined as in the proof of Lemma 3.5.2.

Hence

E
[
〈ω(s), ξ〉〈ω(s), ξ〉

]
=
(
hΞt , hΞs

)
H1

0 (R;B)
= (ft, fs)H1

0 (R;R)‖hξ‖2H = w(s, t)‖hξ‖2H .

ut

3.5.2 Strassen’s Theorem

This subsection is devoted to a beautiful version of the law of the iterated
logarithm, proved originally by V. Strassen for classical Brownian motion.

The original statement of the law of the iterated logarithm says that if
{Xm : m ≥ 1} is a sequence of independent, identically distributed square in-
tegrable R-valued random variables with mean 0 and variance 1 and S̃n = Sn

Λn
,

where Sn =
∑n
m=1Xm and Λn =

√
2n log(log n ∨ 3), then, with probability

1, the sequence {S̃n : n ≥ 1} is compact and the set of its limit points coin-
cides with the interval [−1, 1]. A. Khinchine was the first to prove such a result
when he did so for Bernoulli random variables. Over time, various people, in-
cluding Kolmogorov, extended the result to more general random variables,
and it was finally proved in full generality by P. Hartman and A. Wintner.
Strassen’s version introduced an innovation that was not anticipated.

Theorem 3.5.4 Given ω ∈ Ω0(B), define ω̃n(t) = ω(nt)
Λn

for n ≥ 1 and

t ∈ R, where Λn =
√

2n log(2)(n ∨ 3). Then, for W(B)
0 -almost every ω, the

sequence {ω̃n : n ≥ 1} is relatively compact in Ω0(B) and its set of limit
points coincides with the closure BH1

0 (R;H)(0, 1) in B of BH(0, 1). Equiva-

lently, for W(B)
0 -almost every ω,
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lim
n→∞

‖ω̃n −BH1
0 (R;H)(0, 1)‖Ω0(B) = 0

and, for each y ∈ BH1
0 (R;H)(0, 1), limn→∞ ‖ω̃n − y‖Ω0(B) = 0.

Proof. Without loss in generality, we will assume that ‖ · ‖B ≤ ‖ · ‖H .
The proof relies on the Brownian scaling invariance property (cf. (v) in

Exercise 3.3.1, which says thatW(B)
0 is invariant under the scaling maps Sα :

Ω0(B) −→ Ω0(B) given by Sαω = α−
1
2ω(α · ) for α > 0 and is easily proved

as a consequence of the fact that these maps are isometric from H1
0 (R;H)

onto itself. In addition, we will use the fact that, for R > 0, r ∈ (0, 1], and
ω ∈ Ω0(B), ‖ω(r · )−BH1

0 (R;H)(0, R)‖Ω0(B) ≤ ‖ω−BH1
0 (R;H)(0, R)‖Ω0(B). To

see this, let h ∈ BH1
0 (R;H)(0, R) be given, and check that h(r · ) is again in

BH(0, R) and that ‖ω(r · )− h(r · )‖Ω0(B) ≤ ‖ω − h‖Ω0(B).

To prove that w̃n tends to BH(0, 1), begin by observing that, for any
β ∈ (1, 2),

lim
n→∞

‖ω̃n −BH(0, 1)‖B ≤ lim
m→∞

max
βm−1≤n≤βm

‖ω̃n −BH(0, 1)‖B .

Taking the preceding comments into account and applying the upper bound
in (3.4.1), one can justify

W(B)
0

(
max

βm−1≤n≤βm

∥∥ω̃n −BH1
0 (R;H)(0, 1)

∥∥
Ω0(B)

≥ δ
)

=W(B)
0

(
max

βm−1≤n≤βm

∥∥∥∥βm2 ω(nβ−m · )
Λn

−BH1
0 (R;H)(0, 1)

∥∥∥∥
Ω0(B)

≥ δ

)

≤ W(B)
0

 max
βm−1≤n≤βm

∥∥∥∥∥ω(nβ−m · )−BH1
0 (R;H)

(
0,
Λbβm−1c

β
m
2

)∥∥∥∥∥
Ω(B)

≥
δΛbβm−1c

β
m
2


≤ W(B)

0

∥∥∥∥∥ω −BH1
0 (R;H)

(
0,
Λbβm−1c

β
m
2

)∥∥∥∥∥
Ω0(B)

≥
δΛbβm−1c

β
m
2


=W(B)

0

(∥∥βm2 Λ−1
bβm−1cω −BH1

0 (R;H)(0, 1)
∥∥
Ω(B)

≥ δ
)

=W(B)

βmΛ−2

bβm−1c

(
‖ω −BH1

0 (R;H)(0, 1)‖Ω0(B) ≥ δ
)

≤ exp

(
−R

2bβm−1c
βm

log(2)bβm−1c
)

for all β ∈ (1, 2) and R < 1 + δ. Now, take R = 1+δ
2 choose β ∈ (1, 2) so that

R2

β > 1, and conclude that

∞∑
m=1

W(B)
0

(
max

βm−1≤n≤βm
‖ω̃n −BH(0, 1)‖Ω0(B) ≥ δ

)
<∞
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and therefore that

W(B)
0

(
lim
n→∞

‖ω̃n −BH(0, 1)‖Ω0(B) ≥ δ
)

= 0.

Because B is separable, to prove that, W(B)
0 -almost surely, limn→∞ ‖ω̃n−

η‖B = 0 for every η ∈ BH1
0 (R;H)(0, 1)

B
, it suffices to prove that limn→∞ ‖ω̃n−

h‖B = 0 (a.s.,W(B)
0 ) for each h ∈ BH1

0 (R;H)(0, 1). In addition, because

lim
T→∞

sup
ω∈A

sup
|t|/∈[T−1,T ]

‖ω(t)‖B
1 + |t|

= 0,

for any relatively compact A ⊆ Ω0(B), and, by the preceding, for W(B)
0 -

almost every ω, the union of {ωn : n ≥ 1} and BH1
0 (R;H)(0, 1) is relatively

compact in Ω0(B), it suffices to prove that

lim
n→∞

sup
t∈[k−1,k]

∥∥(ω̃n(±t)− ω̃n(±k−1)
)
−
(
h(±t)− h(±k−1)

)
‖B

1 + t
= 0 (a.s.,W(B)

0 )

for each h ∈ BH1
0 (R;H)(0, 1) and k ≥ 2. Since, for a fixed k ≥ 2, the random

variables (
ω̃k2m − ω̃k2m(±k−1)

)
� {t : ±t ∈ [k−1, k]}, m ≥ 1,

are W(B)
0 -independent random variables, we can use the Borel–Cantelli

Lemma to reduce the problem to showing that, if

ω̌km(t) =

{
ω̃km(t+ k−1)− ω̃km(k−1) if t ≥ 0

ω̃km(t− k−1)− ω̃km(−k−1) if t < 0,

then
∞∑
m=1

W(B)
0

(
‖ω̌k2m − h‖Ω0(B) ≤ δ

)
=∞

for each δ > 0, k ≥ 2, and h ∈ BH1
0 (R;H)(0, 1). Finally, since (W(B)

0 )(kmΛ−1

k2m
)2

is the W(B)
0 distribution of ω  ω̌k2m , then by the lower bound in (3.4.1)

with R = 1+δ
2 ∈ (0, 1), one sees that

W(B)
0

(
‖ω̌k2m − h‖Ω0(B) ≤ δ

)
≥ e−R

2 log(log km) = (m log k)−R
2

for sufficiently large m. ut

An essentially trivial corollary of Theorem 3.5.4 is the law of the law of
iterated for centered Gaussian random variables with values in a separable
Banach space B. Indeed, if (H,B,W) is an associated abstract Wiener space
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and Sn is the nth partial sum of such random variables, then Sn has the same

distribution as ω(n) under W(B)
0 , and therefore, almost surely,

lim
n→∞

∥∥∥∥SnΛn − {h(1) : h ∈ BH1
0 (R;H)(0, 1)}

∥∥∥∥
B

= 0

and

lim
n→∞

∥∥∥∥SnΛn − h(1)

∥∥∥∥
B

= 0 for all h ∈ BH1
0 (R;H)(0, 1).

Further, by taking h(t) = (1 ∧ t)+g for g ∈ H, one sees that BH(0, 1) =
{h(1) : h ∈ BH1

0 (R;H)(0, 1)}.
The preceding corollary is far less interesting than the one Strassen had

in mind. Namely, by combining his theorem when H = R with a beautiful
idea of A. Skorokhod (cf. Chapter 7 in [9]), he realized that it provides an
elegant proof of the Hartman–Wintner law of the iterated logarithm. What
Skorokhod had shown is that if X is an R-valued random variable with mean
value 0 and variance 1 and if {B(t) : t ∈ R} is a Brownian motion, then
there is a stopping time σ for {B(t) : t ≥ 0} such that B(σ) has the same
distribution as X. For example, if P(X = ±1) = 1

2 , then one can take σ to
be the first time t ≥ 0 that |B(t)| = 1. In any case, the expected value of σ
is 1, and {B(t+ σ)−B(σ) : t ≥ 0} is independent of B(σ) and has the same
distribution as {B(t) : t ≥ 0}. Next, use induction to construct a sequence of
stopping times {ζn : n ≥ 0} so that ζ0 = 0 and, for n ≥ 1, τn = ζn − ζn−1 is
the stopping time σ relative to {B(t)−B(ζn−1) : t ≥ 0}. Then {τn : n ≥ 1} is
a sequence of mutually independent, identically distributed random variables
with mean value 1, and

{
B(ζn)−B(ζn−1) : n ≥ 1

}
is a sequence of mutually

idependent random variables each of which has the same distribution as X.
Therefore proving the law of the iterated logarithm for X comes down to

understanding the bavior of B(ζn)
Λn

as n→∞. To this end, set B̃n(t) = B(nt)
Λn

,

and observe that, by Theorem 3.5.4 applied when H = H1
0 (R;R), {B̃n : n ≥

1} is almost surely relatively compact in Ω0(R), and so, since, by the law of
large numbers, ζnn −→ 1 almost surely,∣∣∣∣B(ζn)

Λn
− B̃n(1)

∣∣∣∣ =
∣∣B̃n(n−1ζn

)
− B̃n(1)

∣∣ −→ 0

almost surely. Finally, we know that {B̃n(1) : n ≥ 1} is almost surely compact
and that its set of limit points is the closure of {h(1) : ‖h‖H1

0 (R;R) ≤ 1} in R
and is therefore the interval [−1, 1].

Exercise 3.5.1 For ω ∈ Ω0(B), define

ω∗(t) =

{
|t|ω

(
1
t

)
if t 6= 0

0 if t = 0.
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(i) Show that ω∗ ∈ Ω0(B) and that ω  ω∗ is an isometric, linear map of
Ω0(B) onto itself. Further show that h∗ ∈ H1

0 (R;B) if h ∈ H1
0 (R;B) and that

h h∗ is an orthognal transformation on H1
0 (R;B). In particular, conclude

that ω∗ has the same distribution under W(B)
0 as ω.

(ii) Set

Xn(t, ω) =
nω
(
t
n

)√
2 log(2)(n ∨ 3)

,

and show that, for W(B)
0 -almost every ω ∈ Ω0(B), {Xn( · , ω) : n ≥ 1} is a

relatively compact sequence for which BH1(B)(0, 1) is the set of limit points.

Hint: Note that

‖Xn( · , ω)− h‖Ω0(B) =
∥∥Xn( · , ω)∗ − h∗)‖Ω0(B)

and that Xn( · , ω) = Λ−1
n |t|ω∗

(
n
t

)
. Conclude that

‖Xn( · , ω)− h‖Ω0(B) =
∥∥ω̃∗n − h∥∥Ω0(B)

.

3.6 One Dimensional Euclidean Fields

In this section we will be studying Hilbert spaces for which the only Banach
spaces that can be used to construct an associated abstract Wiener space
consist of generalized functions (i.e., distributions) because evaluation at a
point cannot be an element of its dual. Such a abstract Wiener spaces describe
what physicists call a field, and when the, like L2(λRN ;R), the Hilbert space
is invariant under the Euclidean group, it is called a Euclidean field.

3.6.1 Some Background

Recall the normalized Hermite functions {h̃n : n ≥ 0} introduced in § 2.3.3
They form an orthonormal basis not only in L2(λR;R), they also form a
basis in L. Schwartz’s test function space S (R;R) of smooth functions ϕ all
of whose derivatives are rapidly decreasing in the sense that

lim
|x|→∞

|x|k
∣∣∂`ϕ(x)

∣∣ = 0 for all k, ` ∈ N.

To be precise, using (cf. § 7.3.4 in [11] for more details) the results in § 2.3.3,
especially (2.3.20) and (2.3.22), one can show that ϕ ∈ S (R;R) if and only
if
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‖ϕ‖S (m)(R;R) ≡

( ∞∑
n=0

(
n+ 1

2

)m(
ϕ, h̃n

)2
L2(λR;R)

)
<∞ for all m ∈ N,

and that S (R;R) becomes a complete, separable metric space when one uses
the metric

ρ(ϕ,ψ) =

∞∑
m=0

2−m
‖ϕ− ψ‖S (m)(R;R)

1 + ‖ϕ− ψ‖S (m)(R;R)

.

As a consequence, the dual space S ∗(R;R) of tempered distributions can
be described as the set of linear functionals u on S (R;R) for which the
sequence

{
〈h̃n, u〉 : n ≥ 0} has at most polynomial growth, and the action of

u ∈ S ∗(R;R) on ϕ ∈ S (R;R) is given by

〈ϕ, u〉 =

∞∑
n=0

(ϕ, h̃h)L2(λR;R)〈h̃n, u〉. (3.6.1)

The preceding leads to a natural decomposition of S ∗(R;R) into subspaces
corresponding to their elements relationship to L2(λR;R). Namely, set λn =
n+ 1

2 , and, for m ≥ 0, define S (−m)(R;R) to be the space of u ∈ S ∗(R;R)
for which

‖u‖S (−m)(R;R) ≡

( ∞∑
n=0

λ−mn 〈h̃n, u〉2
) 1

2

<∞.

Clearly S (−m)(R;R) is a separable Hilbert space with inner product

(
u, v)S (−m)(R;R) =

∞∑
n=0

λ−mn 〈h̃n, u〉〈h̃n, v〉

and, if h
(−m)
n = λ

m
2
n h̃n, then {h(−m)

n : n ≥ 0} is an orthonormal basis for
it. Alternatively, let H be the Hermite operator in (2.3.21), and define the
operators (−H)

m
2 for m ∈ Z by

(−H)
m
2 ϕ =

∞∑
n=0

λ
m
2
n

(
ϕ, h̃n

)
L2(λR;R)

h̃n for ϕ ∈ S (R;R).

These operators are self-adjoint and therefore extend to S ∗(R;R) by defining
(−H)

m
2 u so that

〈ϕ, (−H)
m
2 u〉 = 〈(−H)

m
2 ϕ, u〉.

By (2.3.21), we know that (−H)
m
2 h̃n = λ

m
2
n h̃n, and so it should now be clear

that u ∈ S (−m)(R;R) ⇐⇒ (−H)−
m
2 u ∈ L2(λR;R) and that (−H)

m
2 maps

L2(λR;R) isometrically onto S (−m)(R;R). Finally, if Qt is the operator in
(2.3.24), then, by (2.3.25),

〈h̃n, Qtu〉 = 〈Qth̃n, u〉 = e−λnt〈hn, u〉,
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and so Qt maps S ∗(R;R) into S (R;R) and, as t ↘ 0, Qtu −→ u in
S (−m)(R;R) if u ∈ S (−m)(R;R).

3.6.2 An Abstract Wiener Space for L2(λR;R)

The Hilbert space L2(λR;R) is an example of a Hilbert space that requires the
preceding considerations. Indeed, if B were a Banach space of distributions for
which δ0 was represented by an element of B∗, then there would have to exist
a f0 ∈ L2(λR;R) such that (ϕ, f0)L2(λR;R) = ϕ(0) when ϕ ∈ S (R;R). But
this would mean that |ϕ(0)| ≤ ‖f0‖L2(λR;R)‖ϕ‖L2(λR;R), and so ‖f0‖L2(λR;R)

would be infinite.
Proceeding as in the proof of Theorem 3.3.2, define A : S (−2)(R;R) −→

S (−2)(R;R) by

Au =

∞∑
n=0

λ−1
n

(
h(−2)
n , u

)
S (−2)(R;R)

h̃n,

and observe that

∞∑
n=0

(
h(−2)
n , Ah(−2)

n

)
S (−2)(R;R)

=

∞∑
n=0

λ−2
n <∞.

Hence, by Theorem 3.2.8, there is a centered, Gaussian measure WL ∈
M1

(
S (−2)(R;R)

)
for which

(
u,Av

)
S (−2)(R;R)

is the covariance function.

Moreover, given u ∈ S (−2)(R;R), set fu = Au, note that fu ∈ L2(λR;R),
and check that, for g ∈ L2(λR;R),

(g, u)S (−2)(R;R)〉 =

∞∑
n=0

(
g, h(−2)

n

)
S (−2)(R;R)

(
h(−2)
n , u

)
S (−2)(R;R)

=
(
g, fu

)
L2(λR;R)

and that ‖fu‖2L2(λR;R) =
(
u,Au

)
S (−2)(R;R)

. Therefore we have proved the

following theorem.

Theorem 3.6.1
(
L2(λR;R),S (−2)(R;R),WL

)
is an abstract Wiener space.

There is an interesting connection between this abstract Wiener space and
Brownian motion. Namely, define

B(t) =

{
I
(
1[0,t]

)
for t ≥ 0

−I
(
1[t,0]

)
for t < 0.
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Then {B(t) : t ∈ R} is a centered Gaussian process under WL with the
covariance function w in (2.5.3). Hence there is a continuous version of {B(t) :
t ≥ 0}, and this version will be a Brownian motion.

If elements of S (−2)(R;R) were bonafide functions and we pretended that
I(f)(u) = (f, u)L2(λR;R), then the preceding would be saying that

B(t, u) =

{∫ t
0
u(τ) dτ if t ≥ 0

−
∫ 0

t
u(τ) dτ if t < 0.

That is, “u(t) = Ḃ(t, u)”. To make this mathematically kosher, we have
to formulate it in the language of distribution theory. That is, given v ∈
S ∗(R;R), ∂v is the element of S ∗(R;R) satisfying

〈ϕ, ∂v〉 = −〈ϕ′, v〉 for all ϕ ∈ S (R;R).

To see that u = ∂B( · , u) in this sense, set

ft =

{
1[0,t] if t ≥ 0

−1[t,0] if t < 0

and Bs(t, u) = 〈Qsft, u〉 for s > 0. Then, as s↘ 0,∥∥Bs(t, · )−B(t, · )
∥∥
L2(WL;R)

= ‖Qsft − ft‖L2(λR;R) −→ 0 (∗)

uniformly for t in compacts. At the same time,

〈Qsft, u〉 = lim
σ↘0

(
Qsft, Qσu

)
L2(λR;R)

= lim
σ↘0

(
ft, Qs+σu

)
L2(λR;R)

= lim
σ↘0

(
Qσft, Qsu

)
L2(λR;R)

=
(
ft, us

)
L2(λR;R)

,

where us = Qsu, and so

Bs(t, u) =

{∫ t
0
us(τ) dτ if t ≥ 0

−
∫ 0

t
us(τ) dτ if t < 0.

Hence, for any ϕ ∈ S (R;R),∫
ϕ′(t)Bs(t, u) dt = −

∫
ϕ(t)us(t) dt,

and therefore
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∣∣∣∣2 WL(du)

) 1
2

≤

(∫ ∣∣∣∣∫ ϕ′(t)
(
B(t, u)−Bs(t, u)

)
dt

∣∣∣∣2 WL(du)

) 1
2

+

(∫
〈ϕ, u− us〉2WL(du)

) 1
2

.

By Minkowski’s inequality and (∗), the first term on the right tends to 0
as s ↘ 0, and, because us −→ u in S (−2)(R;R) and ‖us‖S (−2)(R;R) ≤
‖u‖S (−2)(R;R) ∈ L2(WL;R), the second term does also. Finally, because
S (R;R) is separable, having proved that 〈ϕ′, B( · , u)〉 = −〈ϕ, u〉 (a.s.,WL)
for each ϕ ∈ S (R;R), it follows that u = ∂B( · , u) for WL-almost every
u ∈ S (−2)(R;R). As a dividend of these considerations, we see that WL is
supported on a much smaller class of distributions than S (−2)(R;R). Namely,
we now know that WL is supported on the space of tempered distributions
that are the first derivative of functions that are Hölder continuous of every
order less than 1

2 and grow at infinity slower than every power greater than
1
2 .

In the engineering literature, the derivative of Brownian motion is known
as white noise. That is because, if one pretends the Ḃ(t) exists in a classical
sense, then the process {Ḃ(t) : t ∈ R} would be totally uncorrelated Gaussian
process. In fact, its covariance function c(s, t) would be ∞ when s = t and
0 when s 6= t. Hence, for each t ∈ R, Ḃ(t) would be a centered Gaussian
random variable with infinite variance which is independent of {Ḃ(s) : s 6= t}.
Admittedly, this picture is much more intuitively appealing than the more
mathematically correct one given above, but loss of intuition is a price that
mathematicians are accustomed to paying.

The Ornstein–Uhlenbeck process is another process that can be con-
structed starting from (

L2(λR;R),S (−2)(R;R),WL

)
by the procedure we just used to construct Brownian motion. The reason
why the Gaussian process {I(1[0,t]) : t ∈ R} under WL has the distri-

bution of a Brownian motion is that
(
1[0,s],1[0,t]

)
L2(λR;R)

= s ∧ t. Thus,

what is needed to construct an Ornstein–Uhlenbeck process is a family
{ψt : t ∈ R} ⊆ L2(λR;R) for which

(
ψs, ψt

)
L2(λR;R)

= 1
2e
−|t−s|. To find such

a family, remember that e−|t| is the characteristic function of the Cauchy
distribution 1

π(1+ξ2) , and conclude that we can take ψt ∈ L2(λR;R) to be the

function whose Fourier transform is eitξ(1 + ξ2)−
1
2 . Another expression of ψt

is contained in (ii) of Exercise 3.7.1.
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3.7 An Abstract Wiener Space for L2(RN ;R)

As we have seen, the abstract Wiener space for L2(λR;R) already requires
the introduction of distributions, albeit distributions of a mild order.

Although the order of the distributions required goes up with dimension,
only a few new ideas are required. The first step is to introduce the Hermite
functions for RN . Given n = (n1, . . . , nN ) ∈ NN , define

h̃n(x) =

N∏
j=1

h̃nj (xj) for x ∈ RN .

Then {h̃n : n ∈ NN} forms an orthonormal basis in L2(RN ;R). In addition,
for each n

Hh̃n = −λnh̃n where H = 1
2

(
∆−|x|2

)
, λn =

(
‖n‖1+

N

2

)
, and ‖n‖1 =

N∑
j=1

nj .

The first of these is just the standard construction of bases on product spaces
from bases on the factors, and the second is an easy consequence of (2.3.21).
Further, these Hermite functions play the same role in Schwartz’s theory of
tempered distributions on RN as their antecedents do for his theory of tem-
pered distributions on R. That is, the test function space S (RN ;R) consists
of ϕ ∈ L2(λRN ;R) with the property that∑

n∈NN
λmn
(
ϕ, h̃n

)2
L2(λRN ;R)

<∞ for all m ≥ 0,

and the space S ∗(RN ;R) of tempered distributions is the set of linear func-
tionals u on S (RN ;R) with the property that∑

n∈NN
λ−mn 〈h̃n, u〉2 <∞ for some m ≥ 0.

Finally, for each m ≥ 0, one takes S (−m)(RN ;R) to be the separable Hilbert
space u ∈ S ∗(RN ;R) for which

‖u‖S (−m)(RN ;R) =

( ∑
n∈NN

λ−mn 〈h̃n, u〉2
) 1

2

<∞.

Obviously, if h
(−m)
n = λ

m
2
n h̃n, then {h(−m)

n : n ∈ NN} is an orthonormal basis
for S (−m)(RN ;R).

In view of the preceding preparations, it should be clear how to go about
constructing an abstract Wiener space for L2(λRN ;R). Indeed, define A :
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S (−N−1)(RN ;R) −→ S (−N−1)(RN ;R) by

Au =
∑

n∈NN
λ
−N+1

2
n

(
h(−N−1)
n , u

)
S (−N−1)(RN ;R)

h̃n.

Then∑
n∈NN

(
h(−N−1)
n , Ah(−N−1)

n

)
S (−N−1)(RN ;R)

=

∞∑
`=0

λ−N−1
n card

{
n : ‖n‖1 = `

}
≤
(

2

N

)N+1

+

∞∑
`=1

(
`+ N

2

)−N−2
card

{
n : ‖n‖1 ≤ `

}
≤
(

2

N

)N+1

+

∞∑
`=1

N(`+ 1)N(
`+ N

2

)N+2
<∞.

Hence, by Theorem 3.2.8, there is a centered Gaussian measure

WLN ∈M1

(
S (−N−1)(RN ;R)

)
for which

(
v,Au

)
S (−N−1)(RN ;R)

is the covariance function. Next, for a given

u ∈ S (−N−1)(RN ;R), set fu = Au, and check that
(
g, u
)
S (−N−1)(RN ;R)

=

(g, fu)L2(λRN ;R) for g ∈ L2(λRN ;R) and ‖fu‖2L2(λRN ;R) =
(
u,Au

)
S (−N−1)

Therefore
(
L2(λRN ;R),S (−N−1)(RN ;R),WLN

)
is an abstract Wiener space.

When N ≥ 2, there is no true analog of Brownian motion because there
is no way to interpret the Hilbert space H1

0 (RN ;R) as a space of tempered
distributions. One might näıvely guess that it should be a space consisting
of u ∈ S ∗(RN ;R) for which ∇u ∈ L2(λRN ;RN ), but, because, when N ≥ 2
such elements of L2(λRN ;R) are defined only a set of measure 0, the condition
u(0) = 0 makes no sense, one cannot use that condition to determine u
uniquely. See part (i) of Exercise 3.7.1 for more details.

In spite of preceding, there is an approximate analog of Brownian motion,
known as the Brownian sheet, in higher dimensions. To describe it, for t =
(t1, . . . , tN ) ∈ RN define

Φt(x) =

N∏
j=1

(
1[0,t+j ](xj)− 1[t−j ,0)(xj)

)
for x = (x1, . . . , xN ) ∈ RN ,

and set B(t) = I
(
Φt

)
. Then {B(t) : t ∈ RN} is a centered Gaussian family

under WLN with covariance function

EWLN
[
B(s)B(t)

]
=

{∏N
j=1 |sj | ∧ |tj | if sjtj ≥ 0 for all 1 ≤ j ≤ N

0 otherwise.
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As a consequence, one finds that B(t)−B(s) is independent of B(s) if sj ≤ tj
for all 1 ≤ j ≤ N and that there is a C <∞ such that

EWLN
[(
B(t)−B(s)

)2] ≤ CTN−1|t− s| for T ≥ 1 and s, t ∈ [−T, T ]N .

Hence, by Corollary 2.5.5, there is a version of {B(t) : t ∈ RN} which is
Hölder continuous of every order less than 1

2 . Finally, by essentially the same
argument as we used when N = 1, one can show that

∂NB(t, u)

∂t1 · · · ∂tN
= u for WLN -almost every u ∈ S (−N−1)(RN ;R).

3.7.1 The Ornstein–Uhlenbeck Free Field in Higher
Dimensions

As distinguished from H1
0 (R;R), the analog H1(RN ;R) of H1(R;R) is a func-

tion space: one simply has to complete S (RN ;R) with respect to the Hilbert
norm corresponding to the inner product(

g, h
)
H1(RN ;R)

=
(
g, h
)
L2(λRN ;R)

+
(
∇g,∇h

)
L2(λRN ;RN )

.

However, when N ≥ 2, it will be shown that H1(RN ;R) is not the Cameron–
Martin space for a centered Gaussian measure on a Banach space of distri-
butions on which evaluation at a point is given by an element of its dual.
Thus, like the one for L2(RN ;R), a Gaussian measure for which H1(RN ;R)
is the Cameron–Martin space lives on a space of distributions that cannot be
evaluated at a point, and so the associated abstract Wiener space describes
a Euclidean field.

To understand what follows, it is helpful to re-interpret the construction
that we made at the end of § 3.6.2 of the Ornstein–Uhlenbeck process starting
from

(
L2(λR;R),S (−2)(R;R),WL

)
. If ϕ ∈ S (R;R), then (h, ϕ)H1(R;R) =(

h, Lg
)
L2(λR;R)

for h ∈ H1(R;R), where L is the Bessel operator 1 − ∂2.

Clearly L maps S (R;R) continuously into itself, and, in terms of the Fourier

transform, the action of L is given by L̂ϕ = (1 + ξ2)ϕ̂(ξ). Further, if, for

any α ∈ R and ϕ ∈ S (R;R), Lαϕ is given by L̂αϕ(ξ) = (1 + ξ2)αϕ̂(ξ), then
Lα also maps S (R;R) continuously into itself and Lα+β = Lα ◦ Lβ . Since(
ψ,Lαϕ

)
L2(λR;R)

=
(
Lαϕ,ψ

)
L2(λR;R)

for ϕ,ψ ∈ S (R;R), this definition of

Lα on S ∗(R;R) is consistent with the one on S (R;R), and the function ψt
in § 3.6.2 is L−

1
2 δt.

When α ≤ 0, it is easy to check that Lα is a continuous, linear map
of S (−m)(R;R) into itself for every m ∈ N and that L−

1
2 is an isomet-

ric isomorphism of L2(λR;R) onto H1(R;R). In particular, we can apply
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Theorem 3.3.3 to see that
(
H1(R;R), B, (L−

1
2 )∗WL

)
is an abstract Wiener

space when B is the Banach space
{
L−

1
2u : u ∈ S (−2)(R;R)

}
with norm

‖x‖B = ‖L 1
2x‖S (−2)(R;R). As we know, there is a more pleasing choice, namely

the one in Theorem 3.3.9, but the construction used here is too crude to arrive
at that choice.

With the preceding in mind, it should be clear how to construct an
abstract Wiener space whose Cameron–Martin space is H1(RN ;R) from(
L2(λRN ;R),S (−N−1)(RN ;R),WLN

)
. Namely, one first observes that, for

ϕ ∈ S (RN ;R), (h, ϕ)H1(RN ;R) =
(
h, Lϕ

)
L2(λRN ;R)

, where L is the Bessel

operator 1−∆. Proceeding as in the case when N = 1, one uses the Fourier
transform to define the operators Lα for α ∈ R first on S (RN ;R) and then on

S ∗(RN ;R) and checks that L−
1
2 is a bounded linear map of S (−N−1)(RN ;R)

into itself and an isometric isomorphism from L2(λRN ;R) onto H1(RN ;R).

Hence, by Theorem 3.3.3,
(
H1(RN ;R), B, (L−

1
2 )∗WLN

)
is an abstract Wiener

space whenB is the Banach space
{
L−

1
2u : u ∈ S (−N−1)(RN ;R)

}
with norm

‖x‖B = ‖L 1
2x‖S (−N−1)(RN ;R).

The critical difference between the cases N = 1 and N ≥ 2 comes
from the fact that (1 + |ξ|2)−

1
2 is an element of L2(λRN ;R) if and only if

N = 1, and therefore L−
1
2 δx ∈ L2(λRN ;R) if and only if N = 1. Thus, when

N ≥ 2, there are no functions ψx, x ∈ RN , for which
(
ψx, ψy

)
L2(λRN ;R)

=

k(y − x), where k̂(ξ) = (1 + |ξ|2)−1. As a consequence, when N ≥ 2,
there is no centered Gaussian process {X(x) : x ∈ RN} that plays the role
for
(
H1(RN ;R),S (−N−1)(RN ;R),WFN

)
that the Ornstein–Uhlenbeck plays

when N = 1. Alternatively, this difference can be seen in terms of L−1. For
δ0 to be an element of B∗, it is necessary that there exist an h0 ∈ H1(RN ;R)
such that

〈ϕ, δ0〉 = (ϕ, h0)H1(RN ;R) =
(
Lϕ, h0

)
L2(λRN ;R)

= 〈ϕ,Lh0〉

for all ϕ ∈ S (RN ;R). This means that Lh0 = δ0 and therefore ĥ0(ξ) =
(1 + |ξ|2)−1. But (1 + |ξ|2)−1 ∈ L2(λRN ;R) if and only if N ∈ {1, 2} and

∇̂h0(ξ) = (1 + |ξ|2)−1ξ ∈ L2(λRN ;RN ) if and only if N = 1. Thus h0 exists
if and only if N = 1.

3.7.2 Is There any Physics Here?

There are many reasons why the answer is a resounding NO. Physicists want
non-trivial quantum fields, and all we have done is produce Euclidean fields,
and not even particularly interesting ones.

Feynman’s path-intregal formalism provides a way of understanding why
we have not been doing physics. If Feynman were asked to describe the mea-
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sureW in an abstract Wiener space (H,B,W), he would say thatW is given
by the formula in (3.1.1). Of course, unless H is finite dimensional, from a
mathematical standpoint, (3.1.1) is irreparably flawed when H is infinite di-
mensional: as we have seen, the measure W lives on the Banach space B and
does not even see H. Nonetheless, as we saw when we derived (3.3.2), one
can make accurate predictions based on expressions like (3.1.1), and so I will
ignore its flaws in the following.

The Feynman representation of measure WF4 in(
H1(R4;R),S (−5)(R4;R),WF4

)
is

WFN (dh) =
1

Z
exp

(
−
‖h‖2L2(R4;R) + ‖∇h‖2L2(R4;R4)

2

)
λH1(R4;R)(dh).

Although we have given a mathematically satisfactory description of WF4,
that is only the first step in producing a physically satisfactory quantum
field. A basic physical requirement is that a quantum field be invariant under
Lorentz transformations (i.e., ones that preserve the quadratic form −x2

1 +∑4
j=2 x

2
j ) of coordinates, whereas WF4 is invariant under Euclidean (i.e.,

ones that preserve |x|2) transformations of coordinates. The obvious way to
convert a Euclidean invariant field into Lorentz invariant one is to replace x1

by ix1, a step that is easier to describe than it is to carry out.
Besides the issue raised in the preceding paragraph, there is another serious

problem to be confronted even in the Euclidean setting. The problem is that
the free field is a Euclidean model of a system of free particles, particles which
do not interact. The simplest Euclidean model of interacting particles would

be one in which the density exp

(
−
‖h‖2

H1(R4;R)
2

)
is replaced by

exp

(
−
‖h‖2H1(R4;R) + ‖h‖4L4(R4;R)

2

)
,

and the problem is that, although this would make perfectly good sense if
WF4 lived on H1(R4;R), no näıve interpretation is available when one takes
into account of the fact thatWF4 lives on a space of distributions. Indeed, one
knows how to apply lots of linear operations to distributions, but one doen’t
know how to apply non-linear ones to them. Nelson was able to handle this
problem for a two dimensional Euclidean field and showed that it could be
transformed into a Lorentz invariant field. Using different techniques, in a
sequence of articles J. Glimm and A. Jaffe carried out the same program for
three dimensional fields. Seeing as the book [4] that they subsequently wrote
is 535 pages long, I think that I can be forgiven, maybe even thanked, for not
attempting to summarize their work here. As far as I know, to date, nobody
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has succeeded in constructing a non-trivial four dimensional quantum field,
and there are results that indicate that nobody ever will.

Exercise 3.7.1

(i) In connection with the problems with the space H1
0 (RN ;R), let C be

the space of ϕ ∈ C1(R2;R) for which ϕ0(0) = 0 and ∇ϕ ∈ L2(R2;R).
Then H1

0 (R2;R) is the completion of C with respect to the Hilbert norm
‖ϕ‖H1

0 (R2;R) = ‖∇ϕ‖L2(R2;R2). Now define

ψn(x) =


1 if |x| ≥ 1
log(nx)

logn if 1
n ≤ |x| < 1

0 if |x| < 1
n .

Choose a ρ ∈ C∞
(
R2; ; [0,∞)

)
which vanishes off of BR2(0, 1) and has integral

1, set ρn(x) = n2ρ(nx), and take ϕn = ρn ∗ ψn. Clearly, ϕn ∈ C. Show that
ϕn −→ 1 in S ∗(R2;R) and ‖∇ϕn‖L2(R2;R2) −→ 0. Thus, just because the
‖ · ‖H1

0 (R2;R) norms of a sequence in C tends to 0, the sequence need not

converge to 0 in S ∗(R2;R).

(ii) Our representation in § 3.7.1 of powers of the Bessel operator L was as
Fourier multipliers. The goal in here is to describe the distributions of which
the Fourier mulipliers for L−1 and L−

1
2 are the Fourier transform. To do so,

define

rN (λ) = (4π)−
N
2

∫ ∞
0

t
N
2 −2e−λt−

1
t dt for λ > 0,

and set

kN (x) = rN

(
|x|2

4

)
and ψN (x) = rN+1

(
|x|2

4

)
for x ∈ RN \ {0}.

Show that k̂N (ξ) = (1 + |ξ|2)−1 and ψ̂N (ξ) = (1 + |ξ|2)−
1
2 .

Hint: Observe that

rN

(
|x|2

4

)
=

∫ ∞
0

e−tgt(x) dt where gt(x) = (4πt)−
N
2 e−

|x|2
4t .

(iii) Continuing (ii), show that r1(λ) = 2−1e−
√
λ, and use Abelian assym-

totics for Laplace transforms to show that

rN (λ) ∼


log 1

λ if N = 2

2Γ
(
N
2

)
λ1−N

2

N−2 if N ≥ 3

as λ↘ 0.
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