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Abstract. We provide a solution to the β-Jacobi matrix model problem

posed by Dumitriu and the first author. The random matrix distribution
introduced here, called a matrix model, is related to the model of Killip
and Nenciu, but the development is quite different. We start by in-
troducing a new matrix decomposition and an algorithm for computing
this decomposition. Then we run the algorithm on a Haar-distributed
random matrix to produce the β-Jacobi matrix model.

The Jacobi ensemble on R
n, parameterized by β > 0, a > −1, and

b > −1, is the probability distribution whose density is proportional

to
Q

i
λ

β
2

(a+1)−1

i (1 − λi)
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(b+1)−1 Q

i<j
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β . The matrix model
introduced in this article is a probability distribution on structured or-
thogonal matrices. If J is a random matrix drawn from this distribution,
then a CS decomposition can be taken,

J =

»

U1

U2

– »

C S

−S C

– »

V1

V2

–T

,

in which C and S are diagonal matrices with entries in [0, 1]. J is
designed so that the diagonal entries of C, squared, follow the law of
the Jacobi ensemble.

When β = 1 (resp., β = 2), the matrix model is derived by running
a numerically-inspired algorithm on a Haar-distributed random matrix
from the orthogonal (resp., unitary) group. Hence, the matrix model
generalizes certain features of the orthogonal and unitary groups beyond
β = 1 and β = 2 to general β > 0.

Observing a connection between Haar measure on the orthogonal
(resp., unitary) group and pairs of real (resp., complex) Gaussian matri-
ces, we find a direct connection between multivariate analysis of variance
(MANOVA) and the new matrix model.

1. Introduction

The three classical ensembles of random matrix theory are Hermite, La-
guerre, and Jacobi, with the following densities:
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Ensemble Joint density (up to a constant factor)

Hermite e−
β

2

P

i λ2
i
∏

i<j |λi − λj |β

Laguerre e−
β

2

P

i λi
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i λ
β

2
(a+1)−1

i

∏

i<j |λi − λj |β

Jacobi
∏

i λ
β

2
(a+1)−1

i (1 − λi)
β

2
(b+1)−1∏

i<j |λi − λj|β

Traditionally, the Hermite ensemble is modeled by the eigenvalues of a
symmetric matrix with Gaussian entries, and the Laguerre ensemble is mod-
eled by the singular values of a matrix with Gaussian entries. This article
begins by showing that the Jacobi ensemble arises from a CS decomposition
problem. Specifically, the β = 1 Jacobi ensemble arises from the CS de-
composition of a Haar-distributed orthogonal matrix, and the β = 2 Jacobi
ensemble arises from the CS decomposition of a Haar-distributed unitary
matrix. This observation completes the following table, and enables the
development of a new “general β” random matrix model.

Ensemble Random linear algebra problem
Hermite eigenvalue decomposition
Laguerre singular value decomposition
Jacobi CS decomposition

For several decades, random matrix theory concentrated on three values of
β in the ensemble densities. The β = 1 ensembles were shown to arise from
real random matrices, the β = 2 ensembles from complex random matrices,
and the β = 4 ensembles from quaternion random matrices, according to
Dyson’s “threefold way” [3]. In recent years, the development of a general
β theory, extending beyond β = 1, 2, 4 to all β > 0, has gained momentum.
One of the fundamental problems in developing a general β theory is to
find a random matrix distribution that “models” the desired ensemble in
some fashion. Dumitriu and Edelman solved the matrix model problems for
the Hermite and Laguerre ensembles [1]. In the Hermite case, for example,
they provided a random symmetric tridiagonal matrix for each β whose
eigenvalues follow the law of the Hermite ensemble. Dumitriu and Edelman
posed the development of a β-Jacobi matrix model as an open problem,
which has been considered in [6, 7].

The major contribution of this article is the introduction of a β-Jacobi
matrix model, displayed in Figure 1. This matrix model is a distribution
on structured orthogonal matrices, parameterized by β > 0, a > −1, and
b > −1. Its CS decomposition has entries from the Jacobi ensemble with
the same parameters. The matrix model can be sampled in Matlab using
Listing 1 in Appendix A, and its CS values can be computed with Listing
2.

The development of the model is in the spirit of [1], utilizing an algo-
rithm inspired by bidiagonalization and tridiagonalization algorithms from
numerical linear algebra.
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β > 0, a, b > −1

Θ = (θn, . . . , θ1) ∈ [0, π
2 ]n Φ = (φn−1, . . . , φ1) ∈ [0, π

2 ]n−1

ci = cos θi c′i = cosφi

si = sin θi s′i = sin φi

c2
i ∼ beta(β

2 (a + i), β
2 (b + i)) (c′i)

2 ∼ beta(β
2 i, β

2 (a + b + 1 + i))

Figure 1. The β-Jacobi matrix model. beta(c, d) denotes a

beta-distributed random variable, with p.d.f. Γ(c+d)
Γ(c)Γ(d)x

c−1(1−
x)d−1. The angles θ1, . . . , θn, φ1, . . . , φn−1 are independent.
See Definition 1.8 for details.

The use of the CS decomposition breaks from previous work, which has
focused on eigenvalues. Notable among the existing work is that of Killip and
Nenciu [6], which provides a random matrix model whose eigenvalues follow
the law of the Jacobi ensemble. In fact, the model of Killip and Nenciu can
be obtained from ours via the transformation 2(I − 2ΩBT

11B11Ω), in which
I is the n-by-n identity matrix, B11 is the upper-left n-by-n block of our
model (Figure 1), and Ω is a diagonal matrix with alternating ±1’s along
the diagonal. Our matrix model, based on the CS decomposition, has the
following advantages:

• Our matrix model is a random orthogonal matrix, generalizing cer-
tain features of the orthogonal and unitary groups to general β.

• CS decomposition is used in place of eigenvalue decomposition, which
is natural considering that the Jacobi ensemble is a distribution on
[0, 1]n rather than all of R

n. (CS values lie in [0, 1] by definition.)



4 ALAN EDELMAN AND BRIAN D. SUTTON

• The matrix model has both left and right CS vectors, rather than
just eigenvectors.

• The development of the matrix model is illuminating, based on a
numerically-inspired algorithm.

• There is an immediate connection to multivariate analysis of variance
(MANOVA), based on the similarity between CS decomposition and
generalized singular value decomposition.

More details on the β-Jacobi matrix model, notably asymptotics for large
matrix sizes, can be found in the Ph. D. thesis of the second author [11].

1.1. Background. The Jacobi ensemble, a distribution on n-vectors whose
p.d.f. is proportional to

n
∏

i=1

λ
β
2
(a+1)−1

i (1 − λi)
β

2
(b+1)−1

∏

i<j

|λi − λj |β,

in which β, a, and b are assignable parameters, has been studied extensively,
motivated by applications in both physics and statistics.

In statistical mechanics, the ensemble arises in the context of log gases.
A log gas is a system of charged particles on the real line that are subject to
a logarithmic interaction potential as well as Brownian-like fluctuations. If
the particles are constrained to the interval [0, 1] and are also subject to the
external potential

∑n
i=1(

a+1
2 − 1

β ) log λi +
∑n

i=1(
b+1
2 − 1

β ) log(1 − λi), then

the long term stationary distribution of the system of charges is the Jacobi
ensemble [2, 4, 13].

In statistics, the ensemble arises in the context of MANOVA, starting
from a pair of independent Gaussian matrices N1, N2. If N1 and N2 have
independent real entries, then their generalized singular values, squared,
follow the law of the Jacobi ensemble with β = 1. If they have independent
complex entries, then their generalized singular values (squared) follow the
law of the Jacobi ensemble with β = 2. Now we define the generalized
singular value decomposition (GSVD) and make these statements precise.

Definition 1.1 (GSVD). Let A be (n+a)-by-n and B be (n+ b)-by-n with
complex entries. Then there exist matrices R, U1, U2, V , C, and S such
that

(1)

[

A
B

]

=

[

U1

U2

]









C
0

−S
0









V ∗R,

in which R is n-by-n upper triangular, U1 is (n+a)-by-(n+a) unitary, U2 is
(n+b)-by-(n+b) unitary, V is n-by-n unitary, and C and S are nonnegative
diagonal, satisfying C2 + S2 = I. The diagonal entries of C are known as
the generalized singular values of the pair A,B, and the factorization in (1)
is a generalized singular value decomposition (GSVD).
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There are a few observations worth mentioning. First, this definition does
not define the GSVD uniquely. (C and S are unique up to reordering, but
the other matrices have extra freedom when some of the generalized singular
values occur multiply.) Second, if A and B have real entries, then R, U1, U2,
and V may be taken to have real entries as well. Third, many authors refer
to the cotangents ck

sk
, k = 1, . . . , n, instead of the cosines ck, as generalized

singular values.
One way to construct a GSVD, which may not be the most numerically

accurate, is to first compute a QR decomposition of
[

A
B

]

, and then to com-
pute SVD’s for the top and bottom blocks of Q. See [12] for details.

The Jacobi ensemble can be seen in the generalized singular values of
a pair of Gaussian matrices. A real standard Gaussian random variable

has p.d.f. 1√
2π

e−x2/2. A complex standard Gaussian random variable is

distributed as 1√
2
(G1 +

√
−1G2), in which G1 and G2 are independent real

standard Gaussians.

Proposition 1.2. Let N1 and N2 be independent random matrices. Sup-
pose that N1 is (n + a)-by-n and N2 is (n + b)-by-n, each with i.i.d. real
(resp., complex) standard Gaussian entries. Then the generalized singular
values, squared, of the pair N1, N2 follow the law of the Jacobi ensemble with
parameters a, b, for β = 1 (resp., β = 2).

Proof. The generalized singular values, squared, are equal to the eigenvalues
of N∗

1 N1(N
∗
1 N1 + N∗

2 N2)
−1, which behave as the Jacobi ensemble [8]. To

see this, note that N∗
1 N1(N

∗
1 N1 + N∗

2 N2)
−1 = N∗

1 N1

([

N1
N2

]∗ [
N1
N2

])−1
, so if

the CSD of
[

N1
N2

]

is

[

N1

N2

]

=

[

U1

U2

]









C
0

−S
0









V ∗R,

then N∗
1 N1(N

∗
1 N1 + N∗

2 N2)
−1 = (R∗V )C2(R∗V )−1. �

The preceding proposition provides matrix models for the Jacobi ensemble
in the cases β = 1 and β = 2, for integral a and b. The primary contri-
bution of this article is a general β matrix model, which also removes the
quantization on a and b.

1.2. Results. We show that the β = 1, 2 Jacobi ensembles arise from Haar
measure on compact matrix groups, through the CS decomposition (CSD).
This viewpoint is central to the development of the general β-Jacobi matrix
model. The CS decomposition is perhaps less familiar than the eigenvalue
and singular value decompositions (SVDs), but it has the same flavor. A
proof of the following proposition can be found in [10].
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Proposition 1.3. Let X be an m-by-m unitary matrix, and let p, q be
nonnegative integers such that p ≥ q and p + q ≤ m. Then there exist
unitary matrices U1, U2, V1, and V2, of sizes p-by-p, (m − p)-by-(m − p),
q-by-q, and (m − q)-by-(m − q), respectively, such that

(2) X =

[

U1

U2

]









C S
Ip−q

−S C
Im−p−q









[

V1

V2

]∗
,

with C and S q-by-q nonnegative diagonal. The relationship C2 + S2 = I is
guaranteed.

Definition 1.4 (CSD). Assume that in the factorization (2), the diagonal
entries of C are distinct. Then the factorization is made unique by imposing
that the diagonal entries of C are increasing and that the last nonzero entry
in each column of V1 ⊕ V2 is real positive. This factorization is known as
the CS decomposition of X (with partition size p-by-q), and the entries of
C will be called the (p-by-q) CS values of X.

This form of CSD is similar to the “Davis-Kahan-Stewart direct rotation
form” of [10].

There is a deep connection between CSD and GSVD. Specifically, if a

unitary X is partitioned into X =
[

X11 X12
X21 X22

]

, with X11 of size p-by-q, then

the generalized singular values of the pair X11,X21 equal the p-by-q CS
values of X. This fact is evident from the definitions. The connection
between CSD and GSVD allows us to see the Jacobi ensemble in the CSD
of a Haar-distributed orthogonal or unitary matrix.

Theorem 1.5. Let n be a positive integer, let a and b be nonnegative in-
tegers, and define m = 2n + a + b. Let X be an m-by-m Haar-distributed
orthogonal matrix, and take the CS decomposition of X with partition size
(n + a)-by-n. Then the CS values of X, squared, follow the law of the β = 1
Jacobi ensemble with parameters a, b. If, instead, X is a Haar-distributed
unitary matrix, then the CS values, squared, obey the law of the β = 2 Jacobi
ensemble.

Proof. Let
[

A
B

]

be an m-by-n matrix of independent standard Gaussian
entries, with A (n + a)-by-n and B (n + b)-by-n. We claim that the CS
values of X share the same distribution with the generalized singular values
of the pair A,B. Upon showing this, the proof will follow by Proposition
1.2.

With probability 1, the generalized singular values are distinct, so we can
take a QR decomposition,

[

A
B

]

= QR, with R invertible. Next, randomize
signs, QR = (QD)(D∗R), using a diagonal matrix D with i.i.d. entries
chosen uniformly from either {−1, 1} (if X is real orthogonal) or the unit
circle (if X is complex unitary). It is well known that QD shares the same
distribution with the first n columns of X. Therefore, the CS values of X



THE BETA-JACOBI MATRIX MODEL 7

share the same distribution with the singular values of the first n+a rows of
QD. But these singular values equal the generalized singular values of the
pair A,B. (Note that

[

A
B

]

= (QD)(D∗R), generalized singular values are
invariant under right multiplication by an invertible matrix, and the first
n + a and last n + b rows of QD must have the same right singular vector
matrix since (QD)∗(QD) = I.) �

Now we introduce the β-Jacobi matrix model, valid for all β > 0 and
a, b > −1. The model is a distribution on orthogonal matrices with a special
structure.

Definition 1.6. Given Θ = (θn, . . . , θ1) and Φ = (φn−1, . . . , φ1), we de-
fine four n-by-n bidiagonal matrices, B11(Θ,Φ), B12(Θ,Φ), B21(Θ,Φ), and
B22(Θ,Φ), as follows.
[

B11(Θ,Φ) B12(Θ,Φ)
B21(Θ,Φ) B22(Θ,Φ)

]

=

=































cn −snc′n−1 sns′n−1
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′
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. . . cn−1c
′
n−1 sn−1s

′
n−2

. . . −s2c
′
1

. . .
. . .

c1s
′
1 c1c

′
1 s1

−sn −cnc′n−1 cns′n−1

−sn−1s
′
n−1

. . . −sn−1c
′
n−1 cn−1s

′
n−2

. . . −c2c
′
1

. . .
. . .

−s1s
′
1 −s1c

′
1 c1































,

(3)

in which ci = cos θi, si = sin θi, c′i = cos φi, s′i = sin φi.

To clarify, the (n−1, n−1) entry of B12(Θ,Φ) is s2s
′
1, and the (n−1, n−1)

entry of B22(Θ,Φ) is c2s
′
1. Also, if n = 1, then the matrices are

[

B11((θ1), ()) B12((θ1), ())
B21((θ1), ()) B22((θ1), ())

]

=

[

c1 s1

−s1 c1

]

.

Lemma 1.7. For any real Θ, Φ, the matrix

[

B11(Θ,Φ) B12(Θ,Φ)
B21(Θ,Φ) B22(Θ,Φ)

]

is

orthogonal.

The proof is left to the reader.
The β-Jacobi matrix model can now be defined. It is a random matrix

of the form (3), defined by placing a distribution on Θ,Φ. Hence, by the
lemma, the β-Jacobi matrix model is a random orthogonal matrix.

Definition 1.8 (β-Jacobi matrix model). The 2n-by-2n β-Jacobi matrix

model Jβ
a,b is the random matrix distribution defined as follows.

Jβ
a,b ∼

[

B11(Θ,Φ) B12(Θ,Φ)
B21(Θ,Φ) B22(Θ,Φ)

]

,
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in which Θ = (θn, . . . , θ1) and Φ = (φn−1, . . . , φ1) are independently dis-
tributed as follows, with all angles between 0 and π

2 .

cos2 θi ∼ beta
(

β
2 (a + i), β

2 (b + i)
)

, i = n, n − 1, . . . , 1,

cos2 φi ∼ beta
(

β
2 i, β

2 (a + b + 1 + i)
)

, i = n − 1, n − 2 . . . , 1.

beta(c, d) refers to the beta distribution with parameters c and d, whose

p.d.f. is Γ(c+d)
Γ(c)Γ(d)x

c−1(1 − x)d−1 for 0 < x < 1. This matrix model is first de-

rived in the real and complex cases (β = 1, 2) by applying unitary transfor-
mations to a Haar-distributed matrix from the orthogonal or unitary group.
These unitary transformations are structured to preserve CS values. In fact,
they are direct sums of Householder reflectors, chosen by an algorithm rem-
iniscent of familiar algorithms from numerical analysis; see Section 2. This
algorithmic approach is used in Section 3 to prove the following theorem in
the special cases β = 1, 2 with a and b integers.

Theorem. Let β be any positive real number, let n be a positive integer, and
let a, b > −1. Take the n-by-n CS decomposition of the 2n-by-2n β-Jacobi

matrix model Jβ
a,b,

Jβ
a,b =

[

U1

U2

] [

C S
−S C

] [

V1

V2

]T

.

Then the diagonal entries of C, squared, follow the law of the Jacobi ensem-
ble with parameters β, a, b.

The theorem is first proved in the classical cases β = 1, 2 as Corollary 3.7
and then proved in full generality in Section 4.

The article concludes with Corollary 5.1, restated here, relating our work
to MANOVA.

Corollary. Partitioning the 2n-by-2n β-Jacobi matrix model into n-by-n

blocks, Jβ
a,b =

[

B11 B12
B21 B22

]

, the generalized singular values, squared, of the pair

B11, B21 follow the law of the Jacobi ensemble with the same parameters.

As far as generalized singular values are concerned, the pair B11, B21

behaves in the same way as a pair of Gaussian matrices.

2. Bidiagonalization

2.1. Bidiagonal block form. The β-Jacobi matrix model is a random ma-
trix in bidiagonal block form, satisfying a certain sign pattern. Throughout
this article, + in a sign pattern denotes a nonnegative entry, − denotes a
nonpositive entry, × denotes an unconstrained entry, and blanks denote zero
entries.

Definition 2.1. Let A be a real m-by-m matrix, and let p ≥ q be non-
negative integers such that p + q ≤ m. A is in bidiagonal block form with
partition size p-by-q if A has the sign pattern in Figure 2.
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2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

+ − +

+ − + +

+
.. . + +

.. .
. . .

. . .

. . .
. . .

− − +
− − − +

−
. . . − +

.. .
. . .

. . .

+
+

+

. . .

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

The rows are partitioned into blocks of sizes p, q, and (m − p − q), and the

columns are partitioned into blocks of sizes q, p, and (m − p − q).

Figure 2. Bidiagonal block form.

Bidiagonal block form is most interesting in the context of unitary matri-
ces. We shall see an analogy:

Finite computation Infinite computation
tridiagonal form eigenvalue decomposition
bidiagonal form singular value decomposition
bidiagonal block form CS decomposition

An anonymous referee alerted us to [14], in which bidiagonal block form
arises from running a Lanczos-type iteration on a unitary matrix. In our
work, an original algorithm based on Householder reflectors plays a vital
role.

The following proposition is not used in this paper, so its proof is omitted.

Proposition 2.2. If Y is an m-by-m orthogonal matrix in bidiagonal block
form with partition size p-by-q, then there exist unique Θ = (θq, . . . , θ1) and
Φ = (φq−1, . . . , φ1), with entries between 0 and π

2 , such that

(4) Y =









B11(Θ,Φ) B12(Θ,Φ)
Ip−q

B21(Θ,Φ) B22(Θ,Φ)
Im−p−q









.

The following theorem is proved in Subsection 2.3.

Theorem 2.3. Given m-by-m unitary X and p ≥ q ≥ 0 with p + q ≤ m,
there exist matrices U , Y , and V such that

(1) U∗XV = Y.
(2) U is unitary and block diagonal, with blocks of sizes p-by-p and (m−

p)-by-(m − p).
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X
(unitary)

=

=

2

6

6

6

6

6

6

4

× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×

3

7

7

7

7

7

7

5

→

2

6

6

6

6

6

6

4

+++++++++ × × × × ×
000000000 × × × × ×
000000000 × × × × ×
−−−−−−−−− × × × × ×
000000000 × × × × ×
000000000 × × × × ×

3

7

7

7

7

7

7

5

→

2

6

6

6

6

6

6

4

+ −−−−−−−−− 000000000 +++++++++ 000000000 000000000
0 × × × × ×
0 × × × × ×
− −−−−−−−−− 000000000 +++++++++ 000000000 000000000
0 × × × × ×
0 × × × × ×

3

7

7

7

7

7

7

5

Y (0) Y (1) Y (2)

→

2

6

6

6

6

6

6

4

+ − 0 + 0 0
0 +++++++++ × +++++++++ × ×
0 000000000 × 000000000 × ×
− − 0 + 0 0
0 −−−−−−−−− × −−−−−−−−− × ×
0 000000000 × 000000000 × ×

3

7

7

7

7

7

7

5

→

2

6

6

6

6

6

6

4

+ − 0 + 0 0
0 + −−−−−−−−− + +++++++++ 000000000
0 0 × 0 × ×
− − 0 + 0 0
0 − −−−−−−−−− − +++++++++ 000000000
0 0 × 0 × ×

3

7

7

7

7

7

7

5

→

2

6

6

6

6

6

6

4

+ − 0 + 0 0
0 + − + + 0
0 0 +++++++++ 0 +++++++++ ×
− − 0 + 0 0
0 − − − + 0
0 0 −−−−−−−−− 0 −−−−−−−−− ×

3

7

7

7

7

7

7

5

Y (3) Y (4) Y (5)

→

2

6

6

6

6

6

6

4

+ − 0 + 0 0
0 + − + + 0
0 0 + 0 + +++++++++

− − 0 + 0 0
0 − − − + 0
0 0 − 0 − +++++++++

3

7

7

7

7

7

7

5

= Y
(orthogonal, bidiagonal block form)

Y (6)

Figure 3. An example run of the algorithm. In this example,
m = 6, p = 3, and q = 3. When p + q < m, a postprocessing step

is required.

(3) V is unitary and block diagonal, with blocks of sizes q-by-q and (m−
q)-by-(m − q).

(4) Y is an orthogonal matrix in bidiagonal block form with partition
size p-by-q.

(5) X and Y share the same p-by-q CS values.

2.2. The algorithm. We present an algorithm that transforms any uni-
tary matrix into a matrix in bidiagonal block form. The transformation is
accomplished using block diagonal unitary matrices, to preserve CS values.
The algorithm serves as a constructive proof of Theorem 2.3.

The behavior of the algorithm is suggested graphically in Figure 3. In the
first step, a pair of Householder reflectors works on column 1. The other
columns are modified, but they are not directly observed. In the next step,
a pair of Householder reflectors works on rows 1 and p + 1. The algorithm
continues, working on columns 2 and q + 1, then rows 2 and p + 2, then
columns 3 and q + 2, then rows 3 and p + 3, and so on.

The algorithm is defined in Figure 4. Submatrices of Y are specified
using subscripts and Matlab-style indices. The ⊕ operator constructs block
diagonal matrices. house(z) represents a Householder reflector that maps z
to the first column of an identity matrix. (If z is a “vector of length zero,”
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then house(z) is a “0-by-0 matrix.”) cos−1 and sin−1 have range [0, π
2 ] for

our purposes.

2.3. Analysis of the algorithm. This section considers the correctness of
the algorithm. Suppose that the algorithm is run on an m-by-m unitary
matrix X with partition size p-by-q, with outputs Θ = (θq, . . . , θ1) and
Φ = (φq−1, . . . , φ1), and let

J =









B11(Θ,Φ) B12(Θ,Φ)
Ip−q

B21(Θ,Φ) B22(Θ,Φ)
Im−p−q









.

Also, let

P2k−1 =

[

Iq,k

Im−q,k−1

] [

Iq,k

Im−q,k−1

]T

, k = 1, . . . , q,

and

P2k =

[

Ip,k

Im−p,k

] [

Ip,k

Im−p,k

]T

, k = 1, . . . , q,

and, for k = 1, . . . , q, let J (2k−1) = JP2k−1 and J (2k) = P2kJ . Note that
J (2k−1) depends only on θq, . . . , θq+1−k and φq−1, . . . , φq+1−k, and therefore
is determined halfway through the kth iteration of the algorithm. Also,
J (2k) depends only on θq, . . . , θq+1−k and φq−1, . . . , φq−k, and therefore is
determined by the end of the kth iteration.

The proof of correctness rests on five assertions. The code in Figure 4
indicates natural stages at which to check the assertions.

Assertion 1. This assertion concerns the entries of Y suggested by the
squares in the following matrix:

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

+ − +
+ − + +

� × · · · × � × × · · · ×
� × · · · × � × × · · · ×
..
.

..

.
. . .

..

.
..
.

..

.
..
.

. . .
..
.

� × · · · × � × × · · · ×
− − +

− − − +
� × · · · × � × × · · · ×
� × · · · × � × × · · · ×
..
.

..

.
. . .

..

.
..
.

..

.
..
.

. . .
..
.

� × · · · × � × × · · · ×

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

.

Let r = q + 1 − k. For the k = 1 case,
[

Y
(0)
1:p,1

Y
(0)
p+1:m,1

]

=

[

zq

−wq

]

.
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Algorithm bdb

Input: X (m-by-m unitary) and p ≥ q ≥ 0 s.t. p + q ≤ m
Output: Y (bidiagonal block form) and θq, . . . , θ1, φq−1, . . . , φ1

Y := Y (0) := X

for k = 1 : q

r := q + 1 − k

zr :=

{

Y1:p,1 if k = 1

s′rYk:p,k + c′rYk:p,q−1+k if k > 1

wr :=

{

−Yp+1:m,1 if k = 1

−s′rYp+k:m,k − c′rYp+k:m,q−1+k if k > 1

θr :=

{

cos−1 ‖zr‖ if ‖zr‖ < 1√
2

sin−1 ‖wr‖ if ‖zr‖ ≥ 1√
2

assert(#1)

Uk := (Ik−1 ⊕ house(zr) ⊕ Ik−1 ⊕ house(wr))
∗

Y := Y (2k−1) := U∗
kY

assert(#2)

r := q − k

(z′r)
∗ :=

{

−sr+1Yk,k+1:q − cr+1Yp+k,k+1:q if k < q

() if k = q

(w′
r)

∗ := sr+1Yk,q+k:m + cr+1Yp+k,q+k:m

if k < q then φr :=

{

cos−1 ‖z′r‖ if ‖z′r‖ < 1√
2

sin−1 ‖w′
r‖ if ‖z′r‖ ≥ 1√

2

assert(#3)

Vk := (Ik ⊕ house(z′r) ⊕ Ik−1 ⊕ house(w′
r))

∗

Y := Y (2k) := Y Vk

assert(#4)

end

Vq+1 := I2q ⊕ (Y[1+q:p p+q+1:m],2q+1:m)∗

Y := Y Vq+1

assert(#5)

Figure 4. The algorithm for transforming a unitary matrix into
bidiagonal block form while preserving CS values. A more intuitive

definition for θr is tan θr = ‖wr‖
‖zr‖ , and a more intuitive definition

for φr is tan φr =
‖w′

r‖
‖z′

r‖
. (It will be shown that ‖zr‖2 + ‖wr‖2 =

‖z′r‖2 + ‖w′
r‖2 = 1.) The definitions for θr and φr used in the

algorithm are chosen for numerical stability.
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When k > 1,
[

Y
(2k−2)
k:p,k

Y
(2k−2)
p+k:m,k

]

= s′r

[

zr

−wr

]

and

[

Y
(2k−2)
k:p,q−1+k

Y
(2k−2)
p+k:m,q−1+k

]

= c′r

[

zr

−wr

]

.

For all k = 1, . . . , q, (z∗r , w∗
r )

∗ has unit norm, ‖zr‖ = cr, and ‖wr‖ = sr.

Assertion 2. This assertion says that halfway through the kth iteration,
certain rows and columns have attained their final values.

Y (2k−1)P2k−1 = J (2k−1), k = 1, . . . , q,

P2k−2Y
(2k−1) = J (2k−2), k = 2, . . . , q.

Assertion 3. This assertion concerns the entries of Y suggested by the
squares in the following matrix:

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

+ − +
+ − + +

+ � · · · � + � � · · · �

× · · · × × × · · · ×
...

. . .
...

...
...

. . .
...

× · · · × × × · · · ×
− − +

− − − +
− � · · · � − � � · · · �

× · · · × × × · · · ×
...

. . .
...

...
...

. . .
...

× · · · × × × · · · ×

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

.

Let r = q − k. When k < q,
[

Y
(2k−1)
k,k+1:q Y

(2k−1)
k,q+k:m

]

= sr+1

[

−(z′r)
∗ (w′

r)
∗ ] ,

[

Y
(2k−1)
p+k,k+1:q Y

(2k−1)
p+k,q+k:m

]

= cr+1

[

−(z′r)
∗ (w′

r)
∗ ] ,

and when k = q,
[

Y
(2q−1)
q,2q:m

]

= s1

[

(w′
0)

∗ ] ,
[

Y
(2q−1)
p+q,2q:m

]

= c1

[

(w′
0)

∗ ] .

When k < q, ((z′r)
∗, (w′

r)
∗)∗ has unit norm, ‖z′r‖ = c′r, and ‖w′

r‖ = s′r. When
k = q, ‖w′

r‖ = 1.

Assertion 4. This assertion says that by the end of the kth iteration, certain
rows and columns have attained their final values.

P2kY
(2k) = J (2k), k = 1, . . . , q,

Y (2k)P2k−1 = J (2k−1), k = 1, . . . , q.
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Assertion 5. The final matrix Y is in bidiagonal block form, defined by the
angles θq, . . . , θ1 and φq−1, . . . , φ1. In other words, Y = J .

Lemma 2.4. The assertions in Algorithm bdb (Figure 4) hold.

The proof can be found in Appendix B.

Proof of Theorem 2.3. The algorithm produces matrices Y , U = U1 · · · · ·Uq,
and V = V1 · · · · · VqVq+1 that deliver the five conclusions of the theorem.
Conclusions (1), (2), and (3) are obvious from the design of the algorithm,
and (5) follows immediately from (1), (2), and (3). (4) is a consequence of
Assertion 5. �

3. Real and complex random matrices

The β-Jacobi matrix model is first obtained in the real and complex cases
by running the algorithm on a Haar-distributed random matrix X. Recall
that the CS values of the random matrix X follow the law of the Jacobi
ensemble. The algorithm produces a random orthogonal matrix Y in bidi-
agonal block form, with the same CS values as X. Hence, the CS values
of Y follow the Jacobi ensemble as well. We show that the distribution
of Y is the β-Jacobi matrix model. This proves that the CS values of the
β-Jacobi matrix model follow the law of the Jacobi ensemble, as desired, in
the classical real and complex cases.

Let n be a positive integer, let a and b be nonnegative integers, and define
m = 2n + a + b. Let G be either O(m) or U(m), i.e., either the orthogonal
group or the unitary group of m-by-m matrices, and let X be a random
matrix from G whose distribution is Haar measure. Running the algorithm
on X with partition size (n + a)-by-n produces a sequence of intermediate

matrices Y (1), Y (2), . . . , Y (2n). Each Y (i) is itself a random matrix, and we
are interested in its distribution.

We shall show that the distribution of Y (i) is defined by invariance prop-
erties. Let V0 = U0 = G, and for i = 1, 2, . . . , 2n, let Vi = {V ∈ G : J (i)V =

J (i)} and Ui = {U ∈ G : U∗J (i) = J (i)}. (J (i) is defined in Subsection 2.3.)

Claim: The distribution of Y (i) is uniquely determined by

(1) Y (2k−1)P2k−1 = J (2k−1) if i = 2k − 1 is odd, or P2kY (2k) = J (2k) if
i = 2k is even, and

(2) the distribution of Y (i) is both Vi- and Ui-invariant,

in which Vi-invariance means that Y (i)V
d
= Y (i) for all V ∈ Vi and Ui-

invariance means that U∗Y (i) d
= Y (i) for all U ∈ Ui.

According to the following lemma, V2k−1 and U2k are simple to describe.
U2k−1 and V2k are more complicated.

Lemma 3.1. For k = 1, . . . , n, V2k−1 consists of all matrices V ∈ G that
preserve columns 1, . . . , k and n + 1, . . . , n − 1 + k of an arbitrary matrix
upon right-multiplication, i.e., all matrices V such that P2k−1V = P2k−1.
U2k consists of all matrices U ∈ G such that UP2k = P2k.



THE BETA-JACOBI MATRIX MODEL 15

Proof. If P2k−1V = P2k−1, then J (2k−1)V = JP2k−1V = JP2k−1 = J (2k−1),
so V ∈ V2k−1. Conversely, if V ∈ V2k−1, i.e., J (2k−1)V = J (2k−1), then
JP2k−1V = JP2k−1, which implies P2k−1V = P2k−1, since J is invertible (in

fact, orthogonal). If U∗P2k = P2k, then U∗J (2k) = U∗P2kJ = P2kJ = J (2k),

so U ∈ U2k. Conversely, if U ∈ U2k, i.e., U∗J (2k) = J (2k), then U∗P2kJ =
P2kJ , which implies U∗P2k = P2k. �

Lemma 3.2. For k = 1, . . . , n, V2k−2 ⊃ V2k−1 and U2k−1 ⊃ U2k.

Proof. By the previous lemma, V2k−1 consists of all matrices V such that
P2k−1V = P2k−1, i.e., all matrices V that fix columns 1, . . . , k and n +
1, . . . , n−1+k of an arbitrary matrix upon right-multiplication. Because the
only nonzero columns of J (2k−2) are necessarily these columns, J (2k−2)V =
J (2k−2), so V2k−2 ⊃ V2k−1. On the other hand, U2k consists of all matrices
U such that U∗P2k = P2k. Because of the zero-nonzero pattern of J (2k−1),
U∗J (2k−1) = J (2k−1), and therefore U2k−1 ⊃ U2k. �

Lemma 3.3. Suppose that A is a random matrix whose distribution satisfies

(1) APi = J (i) if i is odd, or

(2) PiA = J (i) if i is even.

Then the distribution of A is Ui-invariant if and only if it is Vi-invariant.

Proof. We prove only the case when i is odd. The case when i is even is
very similar.

A can be broken into two terms, A = APi + A(I −Pi) = J (i) + A(I −Pi).

Let Û and V̂ be m-by-(m − i) matrices whose columns form orthonormal
bases for the orthogonal complements of the column space and row space,
respectively, of J (i). Claim: the following statements are equivalent.

(1) A(I − Pi)
d
= ÛQV̂ ∗, in which Q is a Haar-distributed (m − i)-by-

(m − i) random matrix.
(2) A is Ui-invariant.
(3) A is Vi-invariant.

The proofs of (1)⇔(2) and (1)⇔(3) are straightforward. �

Lemma 3.4. The distribution of Y (i) is Ui- and Vi-invariant, for i =
0, 1, 2, . . . , 2n.

Proof. The proof uses induction. C(M) will denote the column space of any
given matrix M , and R(M) will denote the row space. W⊥ will denote the
orthogonal complement of any given subspace W ⊂ R

m.
Base case: Y (0) = X is Haar-distributed by definition, and U0 = V0 = G.
Induction step: Assume that the distribution of Y (i−1) is Ui−1-invariant

and Vi−1-invariant. By Lemma 3.3, it suffices to prove that the distribution
of Y (i) is either Ui-invariant or Vi-invariant. When i = 2k − 1 is odd, we
show that the distribution is V2k−1-invariant, and when i = 2k is even, we
show that the distribution is U2k-invariant.
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Suppose that i = 2k − 1. By induction, the distribution of Y (2k−2) is
V2k−2-invariant, and since V2k−2 ⊃ V2k−1, it is also V2k−1-invariant. Hence,
columns k+1, . . . , n and n+k, . . . ,m of Y (2k−2) form a random orthonormal
basis for C(Y (2k−2)P2k−1)

⊥. Applying the Householder reflectors to trans-
form Y (2k−2) into Y (2k−1) changes the distribution of columns k + 1, . . . , n
and n+k, . . . ,m from a random orthonormal basis for C(Y (2k−2)P2k−1)

⊥ to

a random orthonormal basis for C(Y (2k−1)P2k−1)
⊥. Still, the distribution of

Y (2k−1) is V2k−1-invariant.
Now suppose that i = 2k. By induction, the distribution of Y (2k−1) is

U2k−1-invariant, and since U2k−1 ⊃ U2k, it is also U2k-invariant. Hence, rows
k+1, . . . , n+a and n+a+k+1, . . . ,m of Y (2k−1) form a random orthonormal
basis for R(P2kY (2k−1))⊥. Applying the Householder reflectors to transform

Y (2k−1) into Y (2k) changes the distribution of rows k + 1, . . . , n + a and
n + a + k + 1, . . . ,m from a random orthonormal basis for R(P2kY

(2k−1))⊥

to a random orthonormal basis for R(P2kY (2k))⊥. Still, the distribution of

Y (2k) is U2k-invariant. �

Lemma 3.5. If q is a random vector, uniformly distributed on the real
(c + d − 1)-sphere, then the squared norm of the vector formed from the
leading c entries from q has distribution beta(c/2, d/2). If, instead, q is
uniformly distributed on the complex (c + d − 1)-sphere, then the squared
norm is beta(c, d).

Theorem 3.6. Let n be a positive integer, let a and b be nonnegative inte-
gers, and define m = 2n + a + b. Suppose that X follows Haar measure on
G (either O(m) or U(m)), and run the algorithm on X using partition size
(n+a)-by-n. Then the output Y is a random orthogonal matrix in bidiagonal
block form,

Y =









B11 B12

Ia

B21 B22

Ib









,

distributed in such a way that
[

B11 B12

B21 B22

]

d
= Jβ

a,b.

In words, the distribution of
[

B11 B12
B21 B22

]

is the 2n-by-2n β-Jacobi matrix model

with parameters a and b, where β = 1 if G = O(m), or β = 2 if G = U(m).

Proof. In light of Lemma 2.4, the only thing left to prove is that the angles
θn, . . . , θ1 and φn−1, . . . , φ1 have the claimed distributions.

First assume that G = O(m). Because the distribution of Y (2k−2) is
U2k−2-invariant, the unit norm vector (z∗n+1−k, w

∗
n+1−k)

∗ is uniformly dis-
tributed on the real ((n + a − k + 1) + (n + b − k + 1) − 1)-sphere. Hence,

cos2 θn+1−k = ‖zn+1−k‖2 ∼ beta
(

1
2(a + n + 1 − k), 1

2(b + n + 1 − k)
)

.



THE BETA-JACOBI MATRIX MODEL 17

Because the distribution of Y (2k−1) is V2k−1-invariant, the unit norm vector
((z′n−k)

∗, (w′
n−k)

∗)∗is uniformly distributed on the real ((n − k) + (n + a +
b − k + 1) − 1)-sphere. Hence,

cos2 φn−k = ‖z′n−k‖2 ∼ beta(1
2 (n − k), 1

2(a + b + n + 1 − k)).

Furthermore, all of the angles are independent, because the distribution of
(I−P2k−2)Y

(2k−2) is independent from θn, . . . , θn+2−k and φn−1, . . . , φn+1−k,
and the distribution of Y (2k−1)(I−P2k−1) is independent from θn, . . . , θn+1−k

and φn−1, . . . , φn+1−k.
When G = U(m), the proof is exactly the same, except that (1) complex

spheres replace real spheres, and (2) β = 2 replaces β = 1 in

cos2 θn+1−k ∼ beta
(

β
2 (a + n + 1 − k), β

2 (b + n + 1 − k)
)

,

cos2 φn−k ∼ beta
(

β
2 (n − k), β

2 (a + b + 1 + n − k)
)

.

�

Combined with Theorem 1.5, this proves the main theorem in the classical
cases:

Corollary 3.7. When β = 1 or β = 2 and a and b are integers, the CS
values of the β-Jacobi matrix model follow the law of the Jacobi ensemble
with the same parameters.

4. General β matrix models: Beyond real and complex

The main theorem has been proved in the classical real and complex cases.
It remains to consider all β > 0 and a, b > −1.

Theorem 4.1. Let β be any positive real number, let n be a positive integer,
and let a, b > −1. Take the CS decomposition of the 2n-by-2n β-Jacobi

matrix model Jβ
a,b, using partition size n-by-n,

Jβ
a,b =

[

U1

U2

] [

C S
−S C

] [

V1

V2

]∗
.

The diagonal entries of C, squared, follow the law of the β-Jacobi ensemble
with parameters a, b. Also, the first row of V1, up to sign, is distributed as
a vector of i.i.d. χβ random variables, normalized to unit length.

The proof is at the end of this section.
The β-Jacobi matrix model is a distribution on 2n-by-2n orthogonal ma-

trices, but the CS values are completely determined by the upper-left n-by-n
block. In fact, the CS values are precisely the singular values of this matrix.
Their distribution will be obtained by changing variables.

Given Θ = (θn, . . . , θ1) and Φ = (φn−1, . . . , φ1), let ci = cos θi, si = sin θi,
c′i = cos φi, and s′i = sin φi. Also, let σ1 > · · · > σn be the singular
values of B11(Θ,Φ), and, for i = 1, . . . , n − 1, let vi be the first entry of



18 ALAN EDELMAN AND BRIAN D. SUTTON

the right singular vector of B11(Θ,Φ) corresponding to σi, constrained to be
nonnegative.

Lemma 4.2. The 2n − 1 parameters σ1, . . . , σn, v1, . . . , vn−1 defined above

uniquely determine a matrix of the form

[

B11(Θ,Φ) B12(Θ,Φ)
B21(Θ,Φ) B22(Θ,Φ)

]

. The

Jacobian for the change of variables between (cn, . . . , c1, c
′
n−1, . . . , c

′
1) and

(σ1, . . . , σn, v1, . . . , vn−1) can be expressed as

n
∏

i=1

(

c
β(i−1)+1
i s

β(i−1)
i dci

)

n−1
∏

i=1

(

(c′i)
βi−1(s′i)

β(i−1)+2dc′i
)

=





∏

i<j

(σ2
i − σ2

j )
β

n
∏

i=1

σidσi





(

n−1
∏

i=1

vβ−1
i dvi

)

for any β > 0.

Proof. σ2
1, . . . , σ

2
n are the eigenvalues, and v1, . . . , vn−1 are the first n−1 en-

tries of the first row of the eigenvector matrix, of a uniquely determined
positive definite tridiagonal matrix T . (See Lemma 2.5 of [1].) There
is a unique Cholesky factorization T = BTB with B upper bidiagonal
with the sign pattern required by a B11(Θ,Φ) matrix. The 2n − 1 angles
θn, . . . , θ1, φn−1, . . . , φ1 are uniquely determined by the entries of B. Once
the angles are determined, the 2n-by-2n matrix in bidiagonal block form is
determined. (Note that cn, . . . , c1, c

′
n−1, . . . , c

′
1 may not uniquely determine

σ1, . . . , σn, v1, . . . , vn−1 if there is a repeated singular value, but this occurs
on a set of measure zero, so the change of variables is still sensible.)

Denote the entries of B11(Θ,Φ) by

B11(Θ,Φ) =















xn −yn−1

xn−1 −yn−2

xn−2
. . .
. . . −y1

x1















.

It follows from Lemmas 2.7, 2.9, and 2.11 of [1] that





∏

i<j

(σ2
i − σ2

j )
β

n
∏

i=1

σi

n
∏

i=1

dσi





(

n
∏

i=1

vβ−1
i

n−1
∏

i=1

dvi

)

=

(

n
∏

i=1

x
β(i−1)+1
i

n
∏

i=1

dxi

)(

n−1
∏

i=1

yβi−1
i

n−1
∏

i=1

dyi

)

.
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The Jacobian matrix ∂(xn,...,x1,yn−1,...,y1)
∂(cn,...,c1,c′n,...,c′1)

is

























0 . . . 0
diag(1, s′n−1, . . . , s

′
1)

diag(−cn−1
c′n−1

s′n−1
, . . . ,−c1

c′1
s′1

)

0

diag(−cn

sn
c′n−1, . . . ,

−c2
s2

c′1)
... diag(sn, . . . , sn−1)

0

























.

Using the Schur complement formula for the determinant [5], we find that
the Jacobian is the product of the determinant of the top-left block with
the determinant of a lower triangular matrix whose diagonal is given by the
bottom-right block. Hence,

n
∏

i=1

dxi

n−1
∏

i=1

dyi =

n
∏

i=2

sidci

n−1
∏

i=1

s′idc′i.

Changing variables again using this Jacobian and evaluating xi, yi gives
(

n
∏

i=1

x
β(i−1)+1
i

n
∏

i=1

dxi

)(

n−1
∏

i=1

yβi−1
i

n−1
∏

i=1

dyi

)

=
n
∏

i=1

c
β(i−1)+1
i

n
∏

i=1

s
β(i−1)
i

n−1
∏

i=1

(c′i)
βi−1

n−1
∏

i=1

(s′i)
β(i−1)+2

n
∏

i=1

dci

n−1
∏

i=1

dc′i.

�

Proof of Theorem 4.1. The differential for the β-Jacobi matrix model is

dJ = const ×
n
∏

i=1

(

c
β(a+i)−1
i s

β(b+i)−2
i dci

)

n−1
∏

i=1

(

(c′i)
βi−1(s′i)

β(a+b+1+i)−2dc′i
)

.

Changing variables using the lemma gives

dJ = const ×
n
∏

i=1

c
β(a+1)−2
i

n
∏

i=1

s
β(b+1)−2
i

n−1
∏

i=1

(s′i)
β(a+b+2)−4×

×





∏

i<j

(σ2
i − σ2

j )
β

n
∏

i=1

σidσi





(

n−1
∏

i=1

vβ−1
i dvi

)

= const ×
n
∏

i=1

x
β(a+1)−2
i

n
∏

i=1

w
β(b+1)−2
i





∏

i<j

(σ2
i − σ2

j )
β

n
∏

i=1

σidσi





(

n−1
∏

i=1

vβ−1
i dvi

)

,

in which xn, . . . , x1 are the diagonal entries of B11 and wn, . . . , w1 are the
diagonal entries of B21. Now notice that

∏n
i=1 xi is the determinant of B11,
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that
∏n

i=1 wi is the determinant of B21, and that BT
21B21 = I − BT

11B11, so
that

dJ = const × det(BT
11B11)

β

2
(a+1)−1 det(I − BT

11B11)
β

2
(b+1)−1×

×





∏

i<j

(σ2
i − σ2

j )
β

n
∏

i=1

σidσi





(

n−1
∏

i=1

vβ−1
i dvi

)

= const ×





n
∏

i=1

λ
β

2
(a+1)−1

i (1 − λi)
β
2
(b+1)−1

∏

i<j

(λi − λj)
β
∏

dλi





(

n−1
∏

i=1

vβ−1
i

n−1
∏

i=1

dvi

)

,

in which λi = σ2
i . �

5. Multivariate analysis of variance

Pairs of Gaussian matrices are often important in multivariate analysis of
variance (MANOVA). The following corollary may be useful in this context.

Corollary 5.1. Let n be a positive integer, and let a and b be nonnegative
integers. Suppose that N1 ((n + a)-by-n) and N2 ((n + b)-by-n) are inde-
pendent random matrices, each with i.i.d. real standard Gaussian entries.
Partitioning the β-Jacobi matrix model with β = 1 into n-by-n blocks,

J1
a,b =

[

B11 B12

B21 B22

]

,

we find

gsvd(N1, N2)
d
= gsvd(B11, B21),

in which gsvd(·, ·) gives generalized singular values in decreasing order.

The analogous result holds in the complex case. Specifically, if Ñ1 and Ñ2

have complex Gaussian entries and the β-Jacobi matrix model with β = 2 is
partitioned as

J2
a,b =

[

B̃11 B̃12

B̃21 B̃22

]

,

then

gsvd(Ñ1, Ñ2)
d
= gsvd(B̃11, B̃21).

Proof. The same argument works in the real and complex cases. Because the

columns of Jβ
a,b are orthonormal, the generalized singular values of B11, B21

are just the CS values of Jβ
a,b (see [9]), whose squares follow the Jacobi law.

The proof follows by Proposition 1.2. �

Appendix A. Matlab code for sampling the β-Jacobi matrix

model

Listing 1. Matlab code for sampling the 2n-by-2n β-Jacobi matrix model.
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%JACOBIMATRIXMODEL Sample the beta-Jacobi matrix model.

% J = JACOBIMATRIXMODEL(BETA,N,A,B) is a 2N-by-2N random matrix whose

% CS values, squared, follow the law of the BETA-Jacobi ensemble with

% parameters A and B. (The partition size in the CS decomposition is

% N-by-N.)

%

% This function requires the Statistics Toolbox.

%

% Alan Edelman and Brian Sutton

function J=jacobimatrixmodel(beta,n,a,b)

if beta==inf

c=sqrt((a+(1:n))./(a+b+2*(1:n)))’;

s=sqrt((b+(1:n))./(a+b+2*(1:n)))’;

cprime=sqrt((1:n-1)./(a+b+1+2*(1:n-1)))’;

sprime=sqrt((a+b+1+(1:n-1))./(a+b+1+2*(1:n-1)))’;

else

csq=betarnd(beta/2*(a+(1:n)),beta/2*(b+(1:n)))’;

c=sqrt(csq)

s=sqrt(1-csq);

cprimesq=betarnd(beta/2*(1:n-1),beta/2*(a+b+1+(1:n-1)))’;

cprime=sqrt(cprimesq);

sprime=sqrt(1-cprimesq);

end

if n==1

J=[ c s ; -s c ];return;

end

d0=c(end:-1:1).*[1;sprime(end:-1:1)];

d1=-s(end:-1:2).*cprime(end:-1:1);

B11=spdiags([d0 [nan;d1]],[0 1],n,n);

d0=s(end:-1:1).*[sprime(end:-1:1);1];

dm1=c(end-1:-1:1).*cprime(end:-1:1);

B12=spdiags([[dm1;nan] d0],[-1 0],n,n);

d0=-s(end:-1:1).*[1;sprime(end:-1:1)];

d1=-c(end:-1:2).*cprime(end:-1:1);

B21=spdiags([d0 [nan;d1]],[0 1],n,n);

d0=c(end:-1:1).*[sprime(end:-1:1);1];

dm1=-s(end-1:-1:1).*cprime(end:-1:1);

B22=spdiags([[dm1;nan] d0],[-1 0],n,n);

J=[ B11 B12; B21 B22 ];

Listing 2. Matlab code for sampling the n-by-1 β-Jacobi ensemble. The
implementation first samples the β-Jacobi matrix model and then computes
the CS values, squared. Note that only the top-left section of the matrix
is required for computing the CS values, but the entire matrix would be
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required to compute the left and right CS vectors. (CS vectors are analogous
to singular vectors).

%JACOBIENSEMBLE Sample the beta-Jacobi ensemble.

% LAMBDA = JACOBIENSEMBLE(BETA,N,A,B) is a random N-by-1 vector that

% follows the law of the BETA-Jacobi ensemble with parameters A and B.

%

% The implementation first samples the BETA-Jacobi matrix model, and

% then computes the squares of the CS values of the matrix model.

%

% This function requires the Statistics Toolbox.

%

% Alan Edelman and Brian Sutton

function lambda=jacobiensemble(beta,n,a,b)

% The CS values of J are the singular values of its top-left block,

% and the squares of the CS values follow the law of the beta-Jacobi

% ensemble.

J=jacobimatrixmodel(beta,n,a,b);

topleftblock=J(1:n,1:n);

lambda=svd(full(topleftblock)).^2;

Appendix B. Proof of the algorithm’s correctness

Proof of Lemma 2.4. Assertion 1 (k = 1): zq = Y
(0)
1:p,1 and wq = −Y

(0)
p+1:m,1

by definition. The definition of θq and the equation ‖zq‖2+‖wq‖2 = 1 (which

is true because the first column of the unitary matrix Y (0) has unit norm)
guarantees that ‖zq‖ = cq and ‖wq‖ = sq.

Assertion 2 (k = 1): U1 is chosen so that Y
(1)
1:p,1 = ‖Y (0)

1:p,1‖Ip,1 and

Y
(1)
p+1:m,1 = −‖Y (0)

p+1:m,1‖Im−p,1. By Assertion 1, we have ‖Y (0)
1:p,1‖ = ‖zq‖ = cq

and ‖Y (0)
p+1:m,1‖ = ‖wq‖ = sq. Hence, the first column of Y (1) is

(cq, 0, . . . , 0,−sq, 0, . . . , 0)
T ,

so Y (1)P1 = J (1).
Assertion 3 (k = 1): Assume q > 1. The case q = 1 is left to the reader.

The key observation to prove is that Y
(1)
1,2:m, Y

(1)
p+1,2:m, and (−(z′q−1)

∗, (w′
q−1)

∗) =

sqY
(1)
1,2:m + cqY

(1)
p+1,2:m all have the same direction, with the last having unit

norm. By Assertion 2, Y (1)P1 = J (1), so the first row of Y (1) is (cq, Y
(1)
1,2:m)

and the (p + 1)th row is (−sq, Y
(1)
p+1,2:m). Because each of these rows has

unit norm, ‖Y (1)
1,2:m‖ must equal sq and ‖Y (1)

p+1,2:m‖ must equal cq. Because

the two rows are orthogonal, 〈Y (1)
1,2:m, Y

(1)
p+1,2:m〉 must equal cqsq. Therefore,

〈Y (1)
1,2:m, Y

(1)
p+1,2:m〉 = ‖Y (1)

1,2:m‖‖Y (1)
p+1,2:m‖, i.e., Y

(1)
1,2:m and Y

(1)
p+1,2:m have the

same direction. It follows that the unit norm vector sqY
(1)
1,2:m + cqY

(1)
p+1,2:m =

(−(z′q−1)
∗, (w′

q−1)
∗) also has the same direction. Therefore, ‖z′q−1‖2+‖w′

q−1‖2 =
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1, and from this fact, it is clear that ‖z′q−1‖ =
‖Y (1)

1,2:q‖
‖Y (1)

1,2:m‖
=

‖Y (1)
p+1,2:q‖

‖Y (1)
p+1,2:m‖

= c′q−1

and ‖w′
q−1‖ =

‖Y (1)
1,q+1:m‖

‖Y (1)
1,2:m‖

=
‖Y (1)

p+1,q+1:m‖
‖Y (1)

p+1,2:m‖
= s′q−1. Finally, −(z′q−1)

∗ and

Y
(1)
1,2:q have the same direction and ‖Y (1)

1,2:q‖ = ‖Y (1)
1,2:m‖‖z′q−1‖ = sq‖z′q−1‖, so

Y
(1)
1,2:q = −sq(z

′
q−1)

∗. Analogous arguments show that Y
(1)
p+1,2:q = −cq(z

′
q−1)

∗,

Y
(1)
1,q+1:m = sq(w

′
q−1)

∗, and Y
(1)
p+1,q+1:m = cq(w

′
q−1)

∗.
Assertion 4 (k = 1): V1 is chosen (1) to leave the first column of Y un-

changed, i.e., to ensure Y (2)P1 = Y (1)P1 = J (1), and (2) to make Y
(2)
1,2:q =

−‖Y (1)
1,2:q‖I1,q−1, Y

(2)
p+1,2:q = −‖Y (1)

p+1,2:q‖I1,q−1, Y
(2)
1,q+1:m = ‖Y (1)

1,q+1:m‖I1,m−q,

and Y
(2)
p+1,q+1:m = ‖Y (1)

p+1,q+1:m‖I1,m−q. By Assertion 3, we have ‖Y (1)
1,2:q‖ =

sq‖z′q−1‖ = sqc
′
q−1, ‖Y

(1)
p+1,2:q‖ = cq‖z′q−1‖ = cqc

′
q−1, ‖Y

(1)
1,q+1:m‖ = sq‖w′

q−1‖ =

sqs
′
q−1, and ‖Y (1)

p+1,q+1:m‖ = cq‖w′
q−1‖ = cqs

′
q−1. Hence, rows 1 and p + 1 of

Y (2) are

(cq,−sqc
′
q−1, 0, . . . , 0, sqs

′
q−1, 0, 0, . . . , 0)

and

(−sq,−cqc
′
q−1, 0, . . . , 0, cqs

′
q−1, 0, 0, . . . , 0),

respectively, so P2Y
(2) = J (2).

Assertion 1 (k = 2, . . . , q): The key observation to prove is that Y
(2k−2)
[k:p p+k:m],k,

Y
(2k−2)
[k:p p+k:m],q−1+k, and (z∗r ,−w∗

r)
∗ = s′rY

(2k−2)
[k:p p+k:m],k + c′rY

(2k−2)
[k:p p+k:m],q−1+k all

have the same direction, with the last having unit norm. By Assertion
4, P2k−2Y

(2k−2) = J (2k−2). Because Y (2k−2) is unitary, columns k and

q − 1 + k have unit norm, which guarantees that ‖Y (2k−2)
[k:p p+k:m],k‖ equals s′r

and ‖Y (2k−2)
[k:p p+k:m],q−1+k‖ equals c′r. Because the two columns are orthogonal,

〈Y (2k−2)
[k:p p+k:m],k, Y

(2k−2)
[k+p p+k:m],q−1+k〉 must equal c′rs

′
r. Together, these properties

guarantee that Y
(2k−2)
[k:p p+k:m],k and Y

(2k−2)
[k:p p+k:m],q−1+k have the same direction.

It follows that the unit norm vector s′rY
(2k−2)
[k:p p+k:m],k + c′rY

(2k−2)
[k:p p+k:m],q−1+k =

(z∗r ,−w∗
r)

∗ also has the same direction. Therefore, ‖zr‖2 + ‖wr‖2 = 1, and

from this fact, it is clear that ‖zr‖ =
‖Y (2k−2)

k:p,k
‖

‖Y (2k−2)
[k:p p+k:m],k

‖
=

‖Y (2k−2)
k:p,q−1+k

‖
‖Y (2k−2)

[k:p p+k:m],q−1+k
‖

= cr

and ‖wr‖ =
‖Y (2k−2)

p+k:m,k
‖

‖Y (2k−2)
[k:p p+k:m],k

‖
=

‖Y (2k−2)
p+k:m,q−1+k

‖
‖Y (2k−2)

[k:p p+k:m],q−1+k
‖

= sr. Finally, zr and Y
(2k−2)
k:p,k

have the same direction and ‖Y (2k−2)
k:p,k ‖ = ‖Y (2k−2)

[k:p p+k:m],k‖‖zr‖ = s′r‖zr‖, so

Y
(2k−2)
k:p,k = s′rzr. Analogous arguments prove Y

(2k−2
k:p,q−1+k = c′rzr, Y

(2k−2)
p+k:m,k =

−s′rwr, and Y
(2k−2)
p+k:m,q−1+k = −c′rwr.
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Assertion 2 (k = 2, . . . , q):Uk is chosen (1) to leave rows 1, . . . , k − 1 and

p+1, . . . , p−1+k of Y unchanged, i.e., to ensure P2kY
(2k−1) = P2kY

(2k−2) =

J (2k−2), and (2) to make Y
(2k−1)
k:p,k = ‖Y (2k−2)

k:p,k ‖Ip−k+1,1, Y
(2k−1)
k:p,q−1+k = ‖Y (2k−2)

k:p,q−1+k‖Ip−k+1,1,

Y
(2k−1)
p+k:m,k = ‖Y (2k−2)

p+k:m,k‖Im−(p+k)+1,1, and Y
(2k−1)
p+k:m,q−1+k = ‖Y (2k−2)

p+k:m,q−1+k‖Im−(p+k)+1,1.

By Assertion 1, we have ‖Y (2k−2)
k:p,k ‖ = crs

′
r, ‖Y

(2k−2)
k:p,q−1+k‖ = crc

′
r, ‖Y

(2k−2)
p+k:m,k‖ =

−s′rsr, and ‖Y (2k−2)
p+k:m,q−1+k‖ = −c′rsr. Hence, columns k and q − 1 + k of

Y (2k−1) are

(0, . . . , 0,−sr+1c
′
r, crs

′
r, 0, . . . , 0,−cr+1c

′
r,−srs

′
r, 0, . . . , 0)

T

and

(0, . . . , 0, sr+1s
′
r, crc

′
r, 0, . . . , 0, cr+1s

′
r,−src

′
r, 0, 0, . . . , 0)

T ,

respectively, so Y (2k−1)P2k−1 = J (2k−1).
Assertions 3 and 4 (k = 2, . . . , q): The proofs of Assertions 3 and 4 for

k = 2, . . . , q − 1 are nearly identical to the proofs for k = 1, and are left to
the reader. The case k = q requires somewhat more care, but this case is
also left to the reader.

Assertion 5. Because Assertion 4 holds for k = q, we know P2qY
(2q) =

J (2q) = P2qJ . In fact, Y (2q) has the following form:

Y (2q) =





























B11(Θ,Φ) B12(Θ,Φ)
∗ · · · ∗ ∗ · · · ∗
...

. . .
...

...
. . .

...
∗ · · · ∗ ∗ · · · ∗

B21(Θ,Φ) B22(Θ,Φ)
∗ · · · ∗ ∗ · · · ∗
...

. . .
...

...
. . .

...
∗ · · · ∗ ∗ · · · ∗





























.

(Rows 1 through q and p+1 through p+q are as indicated because P2qY
(2q) =

P2qJ . The remaining entries in columns 1 through 2q must equal zero in
order for those columns to have unit norm, since the first 2q columns of P2qJ

are already orthonormal.) Because Y (2q) is unitary, the submatrix that has

not yet been considered, Y
(2q)
[q+1:p p+q+1:m],2q:m, must be unitary itself. Mul-

tiplying by its Hermitian adjoint—the last step in the algorithm—produces
the desired sparsity pattern, proving Assertion 5. �
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