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EIGENVALUE DISTRIBUTIONS OF BETA-WISHART MATRICES∗
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Abstract. We derive explicit expressions for the distributions of the extreme eigenvalues of the
Beta-Wishart random matrices in terms of the hypergeometric function of a matrix argument. These
results generalize the classical results for the real (β = 1), complex (β = 2), and quaternion (β = 4)
Wishart matrices to any β > 0.
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1. Introduction. Recently, the classical real (β = 1), complex (β = 2), and
quaternion (β = 4) Wishart random matrix ensembles were generalized to any β > 0
by what is now called the Beta–Wishart ensemble [2, 9]. In this paper we derive the
explicit distributions for the extreme eigenvalues and the trace of this ensemble as
series of Jack functions and, in particular, in terms of the hypergeometric function of
matrix argument. These results generalize the classical expressions for the real and
complex cases as series of zonal polynomials [17] and Schur functions [18], respectively.

This paper is motivated by the importance of the real and complex Wishart
matrices (and in particular their eigenvalue distributions) in multivariate statistical
analysis. We refer to the classical text by Muirhead [17], as well as [8, 10, 18].
Recently, it is becoming increasingly apparent that the classical matrix ensembles
(and perhaps all of random matrix theory) generalizes from the Dyson’s three-fold
way (β = 1, 2, 4) [5] to any β > 0 [6]. Recent examples include the Beta-Hermite [3],
Beta–Laguerre [3], Beta–Jacobi [4, 7, 12, 14], and Beta–Wishart ensembles [2, 9].

Our new results are particularly convenient for practical evaluation using our
algorithms for the hypergeometric function of matrix argument [13], see section 5.

2. Definitions and background. Since the eigenvalue distributions will be
expressed as series of multivariate symmetric polynomials, we start with the relevant
definitions.

For an integer k ≥ 0 we say that κ = (κ1, κ2, . . .) is a partition of k (denoted
κ ` k) if κ1 ≥ κ2 ≥ · · · ≥ 0 are integers such that |κ| ≡ κ1 + κ2 + · · · = k. Partitions
with t equal parts are denoted as (a)t = (a, a, . . . , a). For two partitions λ and κ we
write λ ⊆ κ to indicate that λi ≤ κi for all i.
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For a partition κ = (κ1, κ2, . . . , κm) and β > 0, the Generalized Pochhammer
symbol of parameter β is defined as

(2.1) (a)(β)

κ ≡
m∏
i=1

κi∏
j=1

(
a− (i− 1)β

2
+ j − 1

)
.

The multivariate Gamma function of parameter β is defined as

(2.2) Γ(β)

m (c) = π
m(m−1)β

4

m∏
i=1

Γ

(
c− (i− 1)β

2

)
for <(c) >

(m− 1)β

2
.

For an m×m matrix X, the Jack functions C(β)
κ (X) are symmetric homogeneous

polynomials in the eigenvalues x1, x2, . . . , xm of X. The C(β)
κ ’s are indexed by parti-

tions κ and form an orthogonal basis of the space multivariate symmetric polynomials.
We refer to Stanley [19], Macdonald [16], and Forrester [8] for details and assume the
reader has some familiarity with these functions.

For integers p ≥ 0 and q ≥ 0, and an m×m complex symmetric matrices X, Y ,
the hypergeometric function of a matrix argument is defined as

(2.3) pF
(β)

q (a; b;X,Y ) ≡
∞∑
k=0

∑
κ`k

1

k!
· (a1)(β)

κ · · · (ap)(β)
κ

(b1)(β)
κ · · · (bq)(β)

κ
· C

(β)
κ (X)C(β)

κ (Y )

C(β)
κ (I)

,

where (a) = (a1, a2, . . . , ap) and b = (b1, b2, . . . , bq). For one matrix argument X,

pF
(β)

q (a; b;X) ≡ pF
(β)

q (a; b;X, I)

Following [2], an m×m Beta–Wishart matrix with n (n ≥ m) degrees of freedom
and covariance matrix Σ (denoted A ∼ W (β)

m (n,Σ)) has joint eigenvalue density

(2.4)
|Σ|−

nβ
2

K(β)
m (nβ2 )

m∏
i=1

λ
(n−m+1)β

2 −1
i

∏
j<k

|λk − λj |β · 0F
(β)

0 (−β2 Λ,Σ−1),

where Λ = diag(λ1, λ2, . . . , λm) are the eigenvalues of A, |Σ| ≡ det Σ, and

(2.5) K(β)

m (a) ≡ m!

π
m(m−1)β

2

·
(

2

β

)ma
·

Γ(β)
m (a)Γ(β)

m

(
mβ
2

)(
Γ
(
β
2

))m .

3. Identities involving pF
(β)
q . We present several identities, including a new

one, which we need in the next section.
First, we incorporate the Vandermonde determinant into a new measure µ to

prevent it from appearing in all the integrals that follow:

dµ(X) ≡
∏
i<j

|xi − xj |βdX.

Also, define

T (β)

m (a, b) ≡ Γ(β)
m (b)

Γ(β)
m (a)Γ(β)

m (b− a)
;

c(β)m ≡
m!

π
m(m−1)β

4

m∏
i=1

Γ( iβ2 )

Γ(β2 )
;

p ≡ m− 1

2
β + 1.(3.1)
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Then, for a nonnegative integer r,

0F
(β)

0 (X, I + Y ) = etrX0F
(β)

0 (X,Y );(3.2)

1F
(β)

0 (−r;X) = |I −X|r;(3.3)

2F
(β)

1 (a, b; c;X) = 2F
(β)

1

(
c− a, b; c;−X(I −X)−1

)
· |I −X|−b;(3.4)

2F
(β)

1 (a,−r; c;X) =
Γ(β)
m (c)Γ(β)

m (c− a+ r)

Γ(β)
m (c− a)Γ(β)

m (c+ r)
(3.5)

× 2F
(β)

1

(
a,−r; a− r + 1 + m−1

2 β − c; I −X
)
;

1F
(β)

1 (a; b;Y ) =
T (β)
m (a, b)

c(β)m

∫
[0,1]m

0F
(β)

0 (X,Y )|X|a−p|I −X|b−a−pdµ(X);(3.6)

1F
(β)

0 (a;Y ) =
1

c(β)m Γ(β)
m (a)

∫
Rm+

e−tr (X)
0F

(β)

0 (X,Y )|X|a−pdµ(X);(3.7)

C(β)

κ (Y −1) =
|Y |a+p

c(β)m Γ(β)
m (a+ p) · (a+ p)(β)

κ
(3.8)

×
∫
R+
m

0F
(β)

0 (−X,Y )|X|aC(β)

κ (X)dµ(X);

2F
(β)

0 (p,−r;X) =
Γ(β)
m (p+ r)

Γ(β)
m (p)

| −X|r
mr∑
k=0

∑
κ`k, κ1≤r

C(β)
κ (−X−1)

k!
.(3.9)

The identities (3.2) and (3.8) were conjectured by Macdonald [15] and proven by
Forrester and Baker [1, section 6].

The identities (3.3), (3.4), and (3.5) are due to Forrester: see (13.4) and Propo-
sitions 13.1.6 and 13.1.7 in [8], respectively. Note that (3.3) was established for ar-
guments X whose eigenvalues are in [0, 1]. When r ≥ 0 is an integer, however, (3.3)
is true for any X—we have polynomials on both sides,1 which must be identical
everywhere.

The integrals (3.6) and (3.7) are due to Macdonald [15, (6.20), (6.21)]. For com-
pleteness, we repeat his argument here.

The integral (3.6) follows directly from Kadell’s extension of Selberg’s integral
[11, Theorem 1]

(3.10)

∫
[0,1]m

C(β)
κ (X)

C(β)
κ (I)

|X|a−p|I −X|b−a−pdµ(X) =
c(β)m

T (β)
m (a, b)

· (a)(β)
κ

(b)(β)
κ

by multiplying both sides by 1
|κ|!C

(β)
κ (Y ) and summing over all κ.

To deduce (3.7), we change variables yi = Nxi, i = 1, 2, . . . ,m, in (3.10), where
N ≡ b− p, to obtain∫

[0,N ]m

C(β)
κ (Y )

C(β)
κ (I)

|Y |a−p
m∏
i=1

∣∣1− yi
N

∣∣Ndµ(Y ) = Nma+|κ| · c(β)m
T (β)
m (a,N + p)

· (a)(β)
κ

(N + p)(β)
κ

= Γ(β)

m (a)c(β)m (a)(β)

κ

Γ(β)
m (N + p− a)Nma+|κ|

Γ(β)
m (N + p)(N + p)(β)

κ
.

1In the series for 1F
(β)

0 on the left, if κ has any part greater than r or has more than m parts,

then (−r)(β)κ = 0 or C
(β)
κ (X) = 0, respectively. Either way the κ term in the series is 0.
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We take limits as N → ∞. The identity Γ(z + 1) = zΓ(z) along with the definition
(2.2) imply

(3.11) lim
N→∞

Γ(β)
m (N + p− a)

Γ(β)
m (N + p)

Nma = 1.

From (2.1), limN→∞N−|κ|(N + p)(β)
κ = 1. Also, limN→∞

∣∣1− yi
N

∣∣N = e−yi for i =
1, 2, . . . ,m, and therefore∫

[0,∞]m

C(β)
κ (Y )

C(β)
κ (I)

|Y |a−pe−tr Y dµ(Y ) = Γ(β)

m (a)c(β)m · (a)(β)

κ .

Multiplying both sides by 1
|κ|!C

(β)
κ (X) and summing over all κ, we get (3.7).

Finally, (3.9) is a new result which we now prove.
Theorem 3.1. The identity (3.9) holds for any nonnegative integer r.
Proof. We combine (3.4), 2F

(β)

1 (p,−r; c; I −X) = 2F
(β)

1 (c− p,−r; c; I −X−1)|X|r
with (3.5) to get

Γ(β)
m (c− p+ r)

Γ(β)
m (c− p)

· 2F
(β)

1 (p,−r; p− r + 1 + (m−1)β
2 − c;X)

=
Γ(β)
m (p+ r)

Γ(β)
m (p)

· 2F
(β)

1 (c− p,−r;−p− r + 1 + (m−1)β
2 ;X−1) · |X|r.

We replace X by −cX, use the fact that p = (m−1)β
2 + 1, and move a cmr factor to

the left to get:

(3.12)
Γ(β)
m (c− p+ r)

Γ(β)
m (c− a) · cmr

· 2F
(β)

1 (p,−r;−r − c;−cX)

=
Γ(β)
m (p+ r)

Γ(β)
m (p)

· 2F
(β)

1 (c− p,−r;−r;− 1
cX
−1) · | −X|r.

We take limits on both sides as c→∞. From [8, (13.5)]

lim
c→∞ 2F

(β)

1 (p,−r;−r − c;−cX) = 2F
(β)

0 (p,−r;X);

lim
c→∞ 2F

(β)

1 (c− p,−r;−r;− 1
cX
−1) =

mr∑
k=0

∑
κ`k, κ1≤r

C(β)
κ (−X−1)

k!
.

Combining this with (3.11) above, we obtain (3.9).

4. The distributions of the extreme eigenvalues and trace. We start with
the extreme eigenvalues.

Theorem 4.1. Let p = m−1
2 β + 1 and let t ≡ n−m+1

2 β − 1 be a nonnegative
integer. For the extreme eigenvalues of a Wishart matrix A ∼ W (β)

m (n,Σ) we have:

P (λmax(A) < x) =
Γ(β)
m (p)

Γ(β)
m

(
n
2β + p

) ∣∣xβ
2 Σ−1

∣∣nβ2
1F

(β)

1

(
nβ
2 ; nβ2 + p;−xβ2 Σ−1

)
(4.1)

P (λmin(A) < x) = 1− etr (− xβ2 Σ−1)
mt∑
k=0

∑
κ`k, κ1≤t

C(β)
κ (xβ2 Σ−1)

k!
.(4.2)
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Proof. We follow the ideas in Muirhead [17].
For the first part, the condition λmax < x is equivalent to λi ∈ [0, x], i =

1, 2, . . . , n. To obtain the desired distribution, we integrate the joint density (2.4)
over [0, x]n, make a change of variables L = xZ, then use dL = xmdZ and (3.6) to
obtain

P (λmax < x) =

∫
[0,x]m

|Σ|−
nβ
2

K(β)
m (nβ2 )

m∏
i=1

λ
n−m+1

2 β−1
i 0F

(β)

0 (−β2L,Σ
−1)dµ(L)

= x
mnβ

2
|Σ|−

nβ
2

K(β)
m (nβ2 )

∫
[0,1]m

m∏
i=1

z
n−m+1

2 β−1
i · 0F

(β)

0 (Z,−xβ2 Σ−1)dµ(Z)

=
|xΣ−1|

nβ
2

K(β)
m (nβ2 )

· c(β)m ·
Γ(β)
m (nβ2 )Γ(β)

m (p)

Γ(β)
m (n2β + p) 1F

(β)

1

(
nβ
2 ; n+m−1

2 β + 1;−xβ2 Σ−1
)
,

with c(β)m defined in (3.1). We use (2.2) and (2.5) to simplify

1

K(β)
m (nβ2 )

· c(β)m Γ(β)

m

(
nβ
2

)
=

π
m(m−1)β

4(
2
β

)mnβ
2

Γ(β)
m

(
mβ
2

)
m∏
i=1

Γ
(
iβ
2

)
=

(
β

2

)mnβ
2

,

implying (4.1).
For the second part, the change of variables is L = x(I + Z) with dL = xmdZ:

P (λmin > x)

=
|Σ|−

nβ
2

K(β)
m (nβ2 )

∫
[x,∞]m

m∏
i=1

λti · 0F
(β)

0 (−β2L,Σ
−1)dµ(L)

= x
mnβ

2
|Σ|−

nβ
2

K(β)
m (nβ2 )

∫
Rm+
|I + Z|t · 0F

(β)

0 (I + Z,−xβ2 Σ−1)dµ(Z)(4.3)

= etr (− xβ2 Σ−1) |xΣ−1|n2 β

K(β)
m (n2β)

∫
Rm+

∑
κ⊆(mt)

(−t)(β)
κ C(β)

κ (−Z)

|κ|! 0F
(β)

0 (Z,−xβ2 Σ−1)dµ(Z),(4.4)

where we used (3.2) and (3.3) to go from (4.3) to (4.4). Next, from (3.8),

P (λmin > x)

= etr (− x2 βΣ−1) |xΣ−1|n2 β

K(β)
m (n2β)

(4.5)

×
∑

κ⊆(mt)

(−1)|κ|(−t)(β)
κ

|κ|!

∫
Rm+

C(β)

κ (Z) · 0F
(β)

0 (−Z, x2βΣ−1)dµ(Z)

= etr (− x2 βΣ−1) |xΣ−1|n2 β

K(β)
m (n2β)

∑
κ⊆(mt)

(−t)(β)
κ

|κ|!
C(β)

κ (− 2
xβΣ)|x2βΣ−1|−pc(β)m Γ(β)

m (p)(p)κ(4.6)

= etr (− x2 βΣ−1)
∣∣∣xβ2 Σ−1

∣∣∣t Γ(β)
m (p)

Γ(β)
m (nβ2 )

∑
κ⊆(mt)

(−t)(β)
κ (p)κ
|κ|!

C(β)

κ (− 2
xβΣ),(4.7)

which along with (3.9) implies (4.2).
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Note that the sum in (4.2) is 0F
(β)

0 (xaΣ−1), truncated for partitions κ ⊆ (m)t, and
is thus particularly convenient to evaluate using our algorithms [13].

The following theorem generalizes Theorem 8.3.4 in Muirhead [17] to all β > 0.
Theorem 4.2. If A ∼ W (β)

m (n,Σ), then the density of the trace of A is

(4.8)
∣∣x

2βΣ−1
∣∣n2 βe− xβ2λ ∞∑

k=0

1

Γ(nm2 β + k)
· β2λ
(
xβ
2λ

)k−1∑
κ`k

(
n
2β
)(β)
κ
· 1

k!
·C(β)

κ (I −λΣ−1),

where λ is arbitrary.
Proof. We follow, Muirhead’s argument, which carries over to any β > 0.
From (2.4), the moment generating function of trA is:

φ(t) = E[etr (tL)]

=
|Σ|−n2 β

K(β)
m (n2β)

∫
Rm+

e−tr (−tL)
m∏
i=1

λ
n−m+1

2 β−1
i

∏
j<k

|λk − λj |β0F
(β)

0 (−tL, β2tΣ
−1)dL

We make a change of variables L→ −tL and use (3.7) to obtain

φ(t) = |Σ|−n2 β · (−t)−mn2 β

c′m(β)Γ(β)
m (n2β)K(β)

m (n2β) 1F
(β)

0 (n2β; β2tΣ
−1)

= | − t 2
βΣ|−n2 β · |I − β

2tΣ
−1|−n2 β

=
∣∣I − 2t

β Σ
∣∣−n2 β .

For 0 < λ <∞ write

φ(t) =
∣∣I − 2t

β Σ
∣∣−n2 β

=
(
1− 2t

β λ
)−mn2 β |λ−1Σ|−n2 β

∣∣∣∣∣I − 1

1− 2t
β λ

(I − λΣ−1)

∣∣∣∣∣
−n2 β

=
(
1− 2t

β λ
)−mn2 β |λ−1Σ|−n2 β · 1F

(β)

0

(
n

2
β;

1

1− 2t
β λ

(I − λΣ−1)

)

=
(
1− 2t

β λ
)−mn2 β |λ−1Σ|−n2 β

∞∑
k=0

(
1− 2tλ

β

)−k∑
κ`k

1

k!

(
n
2β
)(β)
κ
C(β)

κ (I − λΣ−1),(4.9)

where t and λ are such that ‖I − λΣ−1‖ <
∣∣1− 2tλ

β

∣∣, so that the 1F
(β)

0 function above
converges.

Since
(
1 − 2tλ

β )−r is the moment-generating function of the gamma distribution

with parameters r and 2λ
β and density function

g
r,

2λ
β

(u) =
e−

uβ
2λ ur−1(

2λ
β

)r
Γ(r)

(u > 0),

the moment-generating function (4.9) can be inverted term by term to obtain (4.8)—
the density function of the trace of A, where λ is arbitrary and, as in Muirhead [17,

p. 341], can be chosen as λ = 2λ′λ′′

λ′+λ′′ , where λ′ and λ′′ are the largest and the smallest
eigenvalues of Σ, respectively.
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Fig. 5.1. The empirical distributions from 20,000 replications of the largest and smallest
eigenvalues, respectively, of a 3 × 3 Beta–Wishart matrix with 5 degrees of freedom, β = 4/3,
Σ = diag(1.3, 1, 0.7), plotted against the theoretical predictions (4.1) and (4.2).

5. Numerical experiments. The theoretical distributions of the extreme eigen-
values of the Beta–Wishart ensemble are particularly conveniently evaluated using our
algorithm for computing the hypergeometric function of a matrix argument [13]. We
performed extensive numerical tests of the theoretical eigenvalue distributions in this
paper against the empirically predicted ones by the Beta–Wishart model from our
recent paper [2]. The results were always a match. In Figure 5.1 we report one of our
experiments in which we plotted the largest and the smallest eigenvalues of the same
Beta–Wishart ensemble. More experiments are reported in [2].

Acknowledgments. We acknowledge the great insights that we have gathered
into the subject of hypergeometric functions with matrix argument from Ian Mac-
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