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Abstract

Formulas are derived for the probability density function and the prob-
ability distribution function of the largest canonical angle between two
p-dimensional subspaces of R

n chosen from the uniform distribution on
the Grassmann manifold (which is the unique distribution invariant by
orthogonal transformations of R

n). The formulas involve the gamma
function and the hypergeometric function of a matrix argument.
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1 Introduction

Several numerical algorithms on Grassmann manifolds (i.e., sets of fixed-dimensional subspaces of
a Euclidean space) display a convergence property of the following type: if the distance dist(Y,S)
between the initial point (i.e., subspace) Y and the solution point S is smaller than some given
number δ, then the sequence of iterates generated by the algorithm is guaranteed to converge to
the solution S. An example is Newton’s method on Riemannian manifolds (Grassmann manifolds
are particular cases of Riemannian manifolds) for which γ and α theorems [DPM03] provide values
for δ.

Then the question naturally arises to determine the probability that a randomly chosen ini-
tial subspace Y satisfies the distance condition dist(Y,S) < δ. There are several definitions for
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dist(Y,S); see, e.g., [EAS98, p. 337], [QZL04]. The most important one in engineering applications
is arguably the projection 2-norm

distp2(Y,S) = ‖PY − PS‖2,

where PY and PS are the orthogonal projections onto Y and S, respectively, and ‖ · ‖2 denotes
the matrix 2-norm. The projection 2-norm is related to the largest canonical angle. The canonical
angles (or principal angles) θ1, . . . , θp ∈ [0, π/2] between two p-dimensional subspaces Y and S are
defined recursively by

cos(θk) = max
y∈Y

max
s∈S

yT s = yT
k sk

subject to ‖y‖ = ‖s‖ = 1, yT yi = 0, sT si = 0, i = 1, . . . , k − 1. Alternatively, if the columns of Y
and S define orthonormal bases of Y and S, respectively, then the cosines of the canonical angles
are the singular values of Y T S. The relation between the projection 2-norm and the canonical
angles is that

distp2(Y,S) = sin(θp(Y,S)),

where θp(Y,S) is the largest canonical angle between Y and S; see, e.g., [GV96, Drm00] for details.
Geometrically, the largest canonical angle is the distance induced by the Finsler metric defined by
the operator 2-norm [Wei00].

In this paper, we give a formula for the probability distribution function Pr(θp(S,Y) < θ̂),

θ̂ ∈ [0, π/2], where S and Y are chosen from the uniform distribution on the Grassmann mani-
fold Grass(p, n) of p-planes in R

n (the uniform distribution on Grass(p, n) is the distribution with
probability measure invariant under the transformations of Grass(p, n) induced by orthogonal trans-
formations of R

n; see [Jam54, §4.6]). We also derive a formula for the probability density function
of θp(S,Y). The formulas, given in Theorem 1, involve the gamma function (which extends the
factorial over the reals) and the hypergeometric function of a matrix argument. Their derivation
strongly relies on the material in Muirhead [Mui82].

It is direct, using the formulas of this paper, to obtain the probability distributions of dis-
tances based on the largest principal angle, like the projection 2-norm and the chordal 2-norm
(see [EAS98]). An open problem is to obtain an expression for the probability distribution of the
geodesic distance between two random subspaces, where the geodesic distance is given by the Eu-

clidean norm of the vector of canonical angles, i.e., d =
√

∑

θ2
i (see, e.g., [EAS98] or [AMS04,

Section 3.8]).

2 Joint distribution of the canonical angles

Let Y and S be two independent observations from the uniform distribution on Grass(p, n), with
n ≥ 2p. Let θ1 ≤ . . . ≤ θp be the canonical angles (see, e.g., [GV96]) between Y and S. In this
section, we give an expression for the joint probability density function (p.d.f.) of the θ’s.

To this end we can assume that S is fixed to

S = span (S) , S =

[

Ip

0(n−p)×p

]

and that

Y = span (Y ) , Y =

[

A
B

]

,
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where A ∈ R
n1×p with n1 = p and B ∈ R

n2×p with n2 = n − p are independent identically
distributed Gaussian matrices.1 This is because the Gaussian distribution is invariant under the
orthogonal group of transformations; we refer to [Jam54, §6.2 and §7] for details.

To obtain the canonical angles between Y and S, first orthonormalize Y to obtain

Ŷ =

[

A
B

]

(AT A + BT B)−1/2.

Then the cosines of the canonical angles between Y and S are the singular values of ST Ŷ =
A(AT A+BT B)−1/2. Consequently, the values cos2 θi are the eigenvalues λ1 ≥ . . . ≥ λp of the matrix
(AT A+BT B)−1/2AT A(AT A+BT B)−1/2 or equivalently of (AT A+BT B)−1AT A. If AT A+BT B =
T T T is a Cholesky decomposition (i.e., T is upper triangular with positive diagonal elements), then
the λ’s are the eigenvalues of the matrix U = T−T AT AT−1. The matrix U has the multivariate beta
distribution Betap(

1
2n1,

1
2n2) [Mui82, Def. 3.3.2]. The joint p.d.f. of the λ’s is thus given by [Mui82,

Th. 3.3.4]

dens (λ1, . . . , λp) = cp,n1,n2

∏

i<j

|λi − λj |
p

∏

i=1

λa
i (1 − λi)

b (1 ≥ λ1 ≥ . . . ≥ λp ≥ 0), (1)

where a = 1
2(n1 − p − 1) = −1/2, b = 1

2(n2 − p − 1), and

cp,n1,n2 =
πp2/2

Γp(p/2)
· Γp((n1 + n2)/2)

Γp(n1/2)Γp(n2/2)
. (2)

Observe that the determinant of the Jacobian of the change of variables between λ and θ is
∏p

i=1 2 sin θi cos θi, to obtain

dens (θ1, . . . , θp) = 2cp,n1,n2

∏

i<j

| cos2 θi − cos2 θj |β
p

∏

i=1

cos2a+1 θi sin
2b+1 θi. (3)

Note as an aside that tan θi, i = 1, . . . , p, can also be expressed as the singular values of BA−1

(see, e.g., [AMSV02, Th. 3.1]). Hence tan−2 θi is the ith largest eigenvalue of (AT A)(BT B)−1.
These eigenvalues are distributed as the latent roots in MANOVA [Mui82, Cor. 10.4.3], which
again yields (3). Formulas for the p.d.f. of the largest latent root in MANOVA, which corresponds
to the smallest θ, are given in [Mui82, Section 10.6.4] for the case where 1

2(n−2p−1) is an integer.
In this paper, we are interested in the probability distribution function of the largest canonical
angle, which corresponds to the smallest latent root in MANOVA.

3 Distribution of the largest canonical angle

In this section, we derive formulas for the p.d.f. and the probability distribution function of the
largest canonical angle θp between S and the random subspace Y. The formulas are given in
Theorem 1.

1We define a Gaussian matrix (over R) to be a random matrix whose elements are generated by independent,
normally distributed Gaussian random processes.
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Let x = λp. We first calculate dens (x), the p.d.f. of x. We start from

dens (x)dx =

∫

{λ:1≥λ1≥...≥λp≥0,λp∈(x,x+dx)}
dens (λ1, . . . , λp)dλ1 . . . dλp,

which yields

dens (x) =

∫

1≥λ1≥...≥λp−1≥x
dens (λ1, . . . , λp−1, x)dλ1 . . . dλp−1

= cp,n1,n2x
a(1 − x)b

∫

1≥λ1≥...≥λp−1≥x

∏

i<j<p

|λi − λj |
p−1
∏

i=1

|λi − x|λa
i (1 − λi)

bdλ1 . . . dλp−1.

(4)

The change of variables λi = (1 − x)ti + x gives

dens (x) = cp,n1,n2x
a(1 − x)b(1 − x)(p−1)(p−2)/2(1 − x)p−1xa(p−1)(1 − x)b(p−1)(1 − x)p−1

×
∫

1≥t1≥...≥tp−1≥0

∏

i<j<p

|ti − tj |
p−1
∏

i=1

ti
(

1 + 1−x
x ti

)a
(1 − ti)

bdt1 . . . dtp−1. (5)

Then

dens (x) = cp,n1,n2x
a(1 − x)b(1 − x)(p−1)(p−2)/2(1 − x)p−1xa(p−1)(1 − x)b(p−1)(1 − x)p−1

× 2p−1

V (Op−1)

∫

0<Y <Ip−1

det(Y )
(

det
(

I + 1−x
x IY

))a
(det (I − Y ))b dY, (6)

where V (Oq) =
∫

Oq
QT dQ = 2qπq2/2

Γq( q
2
)

is the volume of the orthogonal group Oq [Mui82, p. 71].

Equation (6) comes from (5) because dY =
∏ |ti − tj |dT (QT dQ), where Y = QTQT is an eigende-

composition with eigenvalues sorted in nonincreasing order, and Q cancels out everywhere in the
integrand. The factor 2p−1 appears because the eigendecomposition is defined up to the choice of
the direction of the eigenvectors.

Combining [Mui82, Th. 7.4.2] and [Mui82, Th. 7.4.3] yields the identity
∫

0<Y <Iq

det(I − XY )−f (det Y )e−(q+1)/2 det(I − Y )g−e−(q+1)/2dY

=
Γq(e)Γq(g − e)

Γq(g)
det(I − X)−f

2F1

(

g − e, f ; g;−X(I − X)−1
)

(7)

where q is the size of X, valid for

Re(X) < I, Re(e) > 1
2(q − 1), Re(g − e) > 1

2(q − 1). (8)

We make q = p − 1, −f = a, e − (q + 1)/2 = 1, g − e − (q + 1)/2 = b and X = −(1 − x)/x Ip−1.
From this we find f = 1/2, e = 1+p/2 and g = (n+1)/2. Conditions (8) yield x > 0 and p < n+1

2 ,
and (6) becomes

dens (x) =
π

p2

2

Γp(
p
2)

· Γp(
n
2 )

Γp(
p
2)Γp(

n−p
2 )

· Γp−1(
p−1
2 )

π
(p−1)2

2

· Γp−1(1 + p
2)Γp−1(

n−p−1
2 )

Γp−1(
n+1

2 )

× x
−1
2 (1 − x)

p(n−p)−2
2 2F1(

n−p−1
2 , 1

2 ; n+1
2 ; (1 − x)Ip−1). (9)
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Now remember that x = cos2 θp. The (one-dimensional) Jacobian of this change of variables is
2 sin θp cos θp and we obtain

dens (θp) = 2
π

p2

2

Γp(
p
2)

· Γp(
n
2 )

Γp(
p
2)Γp(

n−p
2 )

· Γp−1(
p−1
2 )

π
(p−1)2

2

· Γp−1(1 + p
2)Γp−1(

n−p−1
2 )

Γp−1(
n+1

2 )

× (sin θp)
p(n−p)−1

2F1(
n−p−1

2 , 1
2 ; n+1

2 ; sin2 θpIp−1) (10)

for θp ∈ [0, π
2 ) and p < n+1

2 . Formula (10) can be simplified using the formula for the multivariate
Γ function [Mui82, p. 62]

Γm(y) = πm(m−1)/4
m
∏

i=1

Γ
(

y − i−1
2

)

= πm(m−1)/4
m
∏

i=1

Γ
(

y − m
2 + i

2

)

, Re(y) >
1

2
(m − 1),

along with the identities Γ(1
2) =

√
π and Γ(m + 1) = mΓ(m). This yields the following result.

Theorem 1 The probability density function of the largest canonical angle θp between two subspaces
chosen from the uniform distribution on the Grassmann manifold of p-planes in R

n (p < n+1
2 )

endowed with its canonical metric, is given for θp ∈ [0, π
2 ) by

dens (θp) = p(n − p)
Γ(p+1

2 )Γ(n−p+1
2 )

Γ(1
2)Γ(n+1

2 )
(sin θp)

p(n−p)−1
2F1(

n−p−1
2 , 1

2 ; n+1
2 ; sin2 θpIp−1), (11)

where Γ(z) =
∫ ∞
0 tz−1e−t dt is the classical gamma function, related to the factorial by Γ(n) = (n−

1)!, and 2F1 is the Gaussian hypergeometric function of matrix argument (see [Mui82, Def. 7.3.1]).
The corresponding probability distribution function is

Pr(θp < θ̂p) =
Γ(p+1

2 )Γ(n−p+1
2 )

Γ(1
2)Γ(n+1

2 )
(sin θ̂p)

p(n−p)
2F1(

n−p
2 , 1

2 ; n+1
2 ; sin2 θ̂pIp). (12)

The probability distribution function (12) is obtained from

Pr(λp > x) =

∫

1≥λ1≥...≥λp>x
dens (λ1, . . . , λp)dλ1 . . . dλp,

using the same techniques as above.

4 The case p = 1

The case p = 1 is much simpler as there is only one canonical angle. Starting from (1), one obtains

dens (x) =
Γ(n

2 )

Γ(1
2)Γ(n−1

2 )
x−1/2(1 − x)(n−3)/2

and since x = cos2 θ

dens (θ) = 2
Γ(n

2 )

Γ(1
2)Γ(n−1

2 )
(sin θ)n−2.

For n = 3, using Γ(3
2) = 1

2

√
π, Γ(1

2) =
√

π and Γ(1) = 1, we obtain

dens (θ) = sin θ.

For n = 2, dens (θ) = 2/π.
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5 Numerical experiments

Formulas in Theorem 1 require an algorithm that evaluates the hyperbolic function 2F1 with matrix
argument. Recently, new algorithms were proposed that efficiently approximate the hypergeomet-
ric function of matrix argument through its expansion as a series of Jack functions [KE05], and
MATLAB [Mat92] implementations of these algorithms were made available. In numerical experi-
ments, we used the MATLAB script mghi—dedicated to special case when the matrix argument is
a multiple of the identity—to evaluate formulas (11) and (12).

For the purpose of checking the results given by the formulas evaluated with the MATLAB
script, comparisons were made with the probability functions estimated from samples of p-dimensional
subspaces of R

n. The subspaces were selected as span(X), with n × p matrix X chosen from a
Gaussian distribution. The principal angles between span(X) and the fixed subspace span(In×p)
were computed using the MATLAB expression asin(svd(X(p+1:n,:))). As an illustration, the
case n = 7, p = 3 is shown on Figure 1. An excellent agreement is observed between the computed
probability functions and the ones estimated from the sample.
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Figure 1: The solid curves correspond to the probability density function (11)—left-hand plot—
and the probability distribution function (12)—right-hand plot—evaluated using mhgi for the case
n = 7, p = 3. The histogram and the stars show approximations evaluated from a sample of 105

three-dimensional subspaces in R
7 selected from the uniform distribution on the Grassmannian.
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