
Robust benchmarking in noisy environments
Jiahao Chen, Jarrett Revels and Alan Edelman

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139–4307
Email: {jiahao,jrevels,edelman}@csail.mit.edu

Abstract—We propose a benchmarking strategy that is robust
in the presence of timer error, OS jitter and other environmental
fluctuations, and is insensitive to the highly nonideal statistics
produced by timing measurements. We construct a model that
explains how these strongly nonideal statistics can arise from
environmental fluctuations, and also justifies our proposed strat-
egy. We implement this strategy in the BenchmarkTools Julia
package, where it is used in production continuous integration
(CI) pipelines for developing the Julia language and its ecosystem.

I. INTRODUCTION

Authors of high performance applications rely on bench-
mark suites to detect and avoid program regressions. However,
many developers often run benchmarks and interpret their
results in an ad hoc manner with little statistical rigor. This
ad hoc interpretation wastes development time and can lead
to misguided decisions that worsen performance.

In this paper, we consider the problem of designing a
language- and platform-agnostic benchmarking methodology
that is suitable for continuous integration (CI) pipelines and
manual user workflows. Our methodology especially focuses
on the accommodation of benchmarks whose expected exe-
cutions times are short enough that timing measurements are
vulnerable to error due to insufficient system timer accuracy
(generally on the order of microseconds or shorter).

A. Accounting for performance variations

Modern hardware and operating systems introduce many
confounding factors that complicate a developer’s ability to
reason about variations in user space application perfor-
mance [1].1 Consecutive timing measurements can fluctuate,
possibly in a correlated manner, in ways which depend on a
myriad of factors such as environment temperature, workload,
power availability, and network traffic, and operating system
(OS) configuration.

There is a large body of research on system quiescence
aiming to identify and control for individual sources of varia-
tion in program run time measurements, each of which must
be ameliorated in its own way. Many factors stem from OS
behavior, including CPU frequency scaling [2], address space
layout randomization (ASLR) [3], virtual memory manage-
ment [4], [5], differences between CPU privilege levels [6],
context switches due to interrupt handling [7], activity from

1A summary of these factors can be found in the BenchmarkTools
documentation in the docs/linuxtips.md file.

(a) Benchmark 1: Unimodal
with skew and large outliers (b) Benchmark 2: Bimodal

(c) Benchmark 3: Drift (d) Benchmark 4: Bimodal
with drift

Fig. 1: Variability in the mean benchmark time across mul-
tiple trials, showing that the mean has non-i.i.d., non-normal
behavior in four different benchmarks. Each point represents a
mean time computed from trial of 10,000 measurements. The
horizontal axis is the index of the trial, while the vertical axis
is time.

system daemons and cluster managers [8], and suboptimal
process- and thread-level scheduling [9]. Even seemingly
irrelevant configuration parameters like the size of the OS
environment can confound experimental reproducibility by
altering the alignment of data in memory [10]. Other sources
of variation come from specific language features or imple-
mentation details. For example, linkers for many languages are
free to choose the binary layout of the library or executable
arbitrarily, resulting in non-deterministic memory layouts [11].
This problem is exacerbated in languages like C++, whose
compilers introduce arbitrary name mangling of symbols [12].
Overzealous compiler optimizations can also adversely affect
the accuracy of hardware counters [6], or in extreme cases
eliminate key parts of the benchmark as dead code. Yet another
example is garbage collector performance, which is influenced
from system parameters such as heap size [13].

https://github.com/JuliaCI/BenchmarkTools.jl
https://github.com/JuliaCI/BenchmarkTools.jl/blob/4db27210d43abf2c55226366f3a749afe1d64951/doc/linuxtips.md


B. Statistics of timing measurements are not i.i.d.

The existence of many sources of performance variation
result in timing measurements that are not necessarily in-
dependent and identically distributed (i.i.d.). As a result,
many textbook statistical approaches fail due to reliance on
the central limit theorem, which does not generally hold in
the non-i.i.d. regime. In particular, empirical program timing
distributions are also often heavy-tailed, and hence contain
many outliers that distort measures of central tendency like
the mean, and are not captured in others like the median.

The violation of the central limit theorem can be seen
empirically in many Julia benchmarks. For example, Figure 1
shows that none of the four illustrative benchmarks considered
in this paper exhibit normality in the sample mean. Instead,
we see that the mean demonstrates skewed density and outliers
in the first benchmark, bimodality in the second and fourth
benchmarks, and upward drift in the third and fourth bench-
marks.

Many other authors have also noted the lack of textbook
statistical behavior in timing measurements [14]–[17]. Au-
thors have also noted the poor stastistical power of standard
techniques such as F -tests or Student t-tests for benchmark
timings [10], [15], [17]–[19]. Parametric outlier detection
techniques, such as the 3-sigma rule used in benchmarking
software like AndroBench [20], can also fail when applied to
non-i.i.d. timing measurements.

There is a lack of consensus over how non-ideal timing
measurements should be treated. Some authors propose au-
tomated outlier removal and analyzing the remaining bulk
distribution [20]; however, these methods run the risk of funda-
mentally distorting the true empirical distribution for the sake
of normal analysis. Other authors have proposed purposely
introducing randomness in the form of custom OS kernels
[21], [22], custom compilers providing reproducible [11] or
consistently randomized [23] binary layouts, or low-variability
garbage collectors [24]. Unfortunately, these methods are
specific to a single programming language, implementation,
and/or platform. Furthermore, these methods often require ad-
ministrative privileges and drastic modifications to the bench-
marking environment, which are impractical to demand from
ordinary users.

C. Existing benchmarking methodologies

While it is impossible to eliminate performance variation
entirely [17], [25], benchmarking methodologies that attempt
to account for both measurement error and external sources of
variation do exist. For example, the Haskell microbenchmark-
ing package criterion [26] attempts to thwart error due to
timer inaccuracy by growing the number of benchmark execu-
tions per timing measurement as more timing measurements
are obtained. After all measurements are taken, a summary
estimate of the benchmark run time is obtained by examining
the derivative of the ordinary least squares regression line
at the point of a single evaluation point. There are three
disadvantages to this approach. First, the least squares fit is
sensitive to outliers [27] (though criterion does warn the user

if outliers are detected). Second, measurements made earlier in
this experiment are highly vulnerable to timer error, since few
benchmark repetitions are used. These early measurements can
skew the regression, and hence also skew the final run time
estimate. Third, measurements made later in the experiment
can repeat the benchmark more times than are necessary
to overcome timer error, constituting an inefficient use of
experiment time.

Another approach focuses on eliminating “warm-up”, as-
suming that first few runs of a benchmark are dominated
by transient background events that eventually vanish and
the timing measurements eventually become i.i.d. [19]. Their
approach is largely platform-agnostic, recognizes the pitfalls of
inter-measurement correlations, and acknowledges that merely
increasing the number of benchmark repetitions is not always
a sufficient strategy to yield i.i.d. samples. However, the
assumption (based on common folklore) that benchmarks
exhibit warm-up is often false, as is clear from Fig. 1 and
elsewhere [17]: even Ref. [19] itself resorts to ad hoc judgment
to work around the lack of a distinct warm-up phase. There is
also no reason to believe that even if warm-up were observed,
that the post-warm-up timings will be i.i.d. Furthermore, the
authors do not report if their statistical tools generate cor-
rect confidence intervals. The moment-corrected formulae de-
scribed are accurate only for near-normal distributions, which
is unlikely to hold for the kinds of distributions we observed in
real world statistics. Additionally, the methodology requires a
manual calibration experiment to be run for each benchmark,
compiler, and platform combination. As a result, this method is
is difficult to automate on the scale of Julia’s standard library
benchmark suite, which contains over 1300 benchmarks, and
is frequently expanded to improve performance test coverage.

Below, we describe our methodology to benchmarking for
detecting performance regressions, and how it is justified from
a microscopic model for variations in timing measurements. To
the best of our knowledge, our work is the first benchmarking
methodology that can be fully automated, is robust in its
assumption of non-i.i.d. timing measurement statistics, and
makes efficient use of a limited time budget.

II. TERMS AND DEFINITIONS

• P0, P , Q0, and Q denote benchmarkable programs,
each defined by a tape (sequence) of instructions.

• I
[i]
P is the ith instruction in the tape defining program P .

Instructions are indexed in bracketed superscripts, ·[i].
• D

[i]
P is the delay instruction associated with I [i]P . Delay

instructions are defined in Sec. III.
• Ti is a timing measurement, namely the amount of

time taken to perform ni executions of a benchmark-
able program. This quantity is directly measurable in an
experiment.

• t is a theoretical execution time. tP0 is the minimum
time required to perform a single execution of P0 on a
given computer.



• Estimated quantities are denoted with a hat, ·̂. For
example, t̂P0 is an estimate of the theoretical execution
time tP0 .

• A benchmark experiment is a recipe for obtaining mul-
tiple timing measurements for a benchmarkable program.
Experiments can be executed to obtain trials. The ith trial
of an experiment is a collection of timing measurements
T
{i}
1 , . . . T

{i}
j , . . . T

{i}
k . Trial indices are always written

using embraced superscripts, ·{i}.
• τ denotes time quantities that are external to the bench-

markable program:
– τbudget is the time budget for an experiment.
– τacc is the accuracy of the system timer, i.e. an upper

bound on the maximal error in using the system timer
to time an experiment.

– τprec is the precision of the system timer, namely
the smallest nonzero time interval measurable by the
timer.

• x
(i)[j]
P τ (i) is the time delay due to the ith delay factor

for delay instruction D[j]. Specifically, τ (i) is the factor’s
time scale and x(i)[j]P is the factor’s trigger coefficient,
as introduced Sec. III. Delay factors are indexed with
parenthesized superscripts, ·(i).

• ε is the measurement error due to timer inaccuracy.
• Em = Tm

nm
− tP0 is the total contribution of all delay

factors found in measurement m, plus the measurement
error ε.

• X
(i)
P is the total trigger count of the ith delay factor

during the execution of program P .
• ν is an oracle function that, when evaluated at an

execution time t, estimates an appropriate n necessary
to overcome measurement error due to τacc and τprec. The
oracle function is described in detail in Sec. IV-C.

III. A MODEL FOR BENCHMARK TIMING DISTRIBUTIONS

We now present a statistical description of benchmark
programs’ behavior when they are run in serial. Our model
deliberately avoids the problematic assumption that timing
measurments are i.i.d. We will use this model later to justify
the design of a new automated experimental procedure.

A. User benchmarks run with uncontrollable delays

Let P0 be a deterministic benchmark program which con-
sists of an instruction tape consisting of k instructions:

P0 =
[
I [1], I [2], . . . I [k]

]
. (1)

Let τ [i] be the run time of instruction I [i]. Then, the total run
time of P0 can be written tP0 =

∑N
i=1 τ

[i].
While a computer may be directed to execute P0, it may

not necessarily run the program’s instructions as they are
originally provided, since the environment in which P0 runs
is vulnerable to the factors described earlier in Sec. I-A. Cru-
cially, these factors only delay the completion of the original

instructions, rather than speed them up.2 Therefore, we call
them delay factors; they can be modeled as extra instructions
which, when interleaved with the original instructions, do not
change the semantics of P0, but still add to the program’s total
run time. Thus, we can define a new program P which consists
of P0’s original instructions interleaved with additional delay
instructions D[i]:

P =
[
I [1], D[1], I [2], D[2], . . . I [k], D[k]

]
. (2)

The run time of P can then be written

tP = tP0
+
∑
i

τ
[i]
D , (3)

where τ
[i]
D is the execution time of D[i]. Since τ

[i]
D ≥ 0, it

follows that tP ≥ tP0 .
The run time of each delay instruction, τ [i]D , can be further

decomposed into the runtime contributions of individual delay
factors. Let us imagine that each delay factor j can either
contribute or not contribute to D[i]. Assuming that each delay
factor triggers inside D[i] with constant probability p[i](j) of
taking a fixed time τ (j), we can then write:

τ
[i]
D =

∑
i

x
[i](j)
P τ (j), (4)

where x[i](j)P is a Bernoulli random variable with success prob-
ability p[i](j). We denote the total number of times the ith delay
factor was triggered during the execution of P as the trigger
count X(i)

P =
∑
j x

[i](j)
P . Since the trigger count is a sum

of independent Bernoulli random variables with nonidentical
success probabilities, X(j)

P is itself a random variable that
follows a Poisson binomial distribution parameterized by the
success probabilities

[
p(1)[j], . . . p(k)[j]

]
. Our final expression

for tP in terms of these quantities is then:

tP = tP0
+

k∑
i=1

τ
[i]
D

= tP0
+

k∑
i=1

∑
j

x
[i](j)
P τ (j)

= tP0 +
∑
j

X
(j)
P τ (j). (5)

In summary, our model treats tP as a random variable whose
distribution depends on the trigger probabilities p[i](j), which
are determined by the combined behavior of the delay factors
and the initial benchmark program P0.

B. Repeated benchmark execution is often necessary but not
always sufficient

As mentioned in Sec. I-C, experiments which measure
program performance usually incorporate multiple benchmark

2While there are a very few external factors which might speed up program
execution, such as frequency scaling [2], they can be easily accounted for
by ensuring that power consumption profiles are always set for maximal
performance. We therefore assume that these factors have been accounted
for.



executions to obtain more accurate measurements. We now
apply our model to show that multiple executions are necessary
to eliminate error due to timer inaccuracy, but are insufficient
to obviate delay factors.

Represent n executions of the program P0 comprised of k
instructions as a single execution of a program Q0, which is
the result of concatenating n copies of P0:

Q0 = [P0, P0, . . . P0]

=
[
I
[1]
P , . . . I

[k]
P , I

[1]
P , . . . I

[k]
P , I

[1]
P , . . . I

[k]
P

]
=
[
I
[1]
Q , I

[2]
Q , . . . I

[nk]
Q

]
, (6)

with I [i]P = I
[i+ck]
Q for c ∈ {0, . . . n− 1}. The subscripts on I

denote the program which contains that instruction, with the
0 subsubscript dropped for brevity.

Now interleave delay instructions as before to obtain the
program Q that is actually executed. Q is not simply n
repetitions of P , since the delay instructions in Q are not
simply copies of the delay instructions in P . An observed
timing measurement T of a single execution of Q can be
decomposed as:

T = tQ + ε

= tQ0
+
∑
j

X
(j)
Q τ (j) + ε

= n tP0
+
∑
j

nk∑
i=1

x
[i](j)
Q τ (j) + ε, (7)

where ε is the error due to timer inaccuracy (whose magnitude
must by definition be smaller than τacc).

We may try to determine tP0 from the experimental time
as T/n, which is also the gradient of a linear model for T
against n when the intercept is zero. However, our model gives
instead:

T

n
= tP0

+

∑
j

∑nk
i=1 x

[i](j)
Q τ (j) + ε

n
. (8)

All the terms on the right hand side other than tP0 constitute
the error E in our measurement. For large n, the term ε/n
arising from timer inaccuracy becomes negligible, but the
behavior of the other term depends on the specific structure of
the delay factors. In the best case, each delay factor triggers
o(n) times, so that T/n → tP0 as desired. However, in
the worst case, every factor triggers on every instruction,
x
[i](j)
Q = 1, and the large n behavior of T/n does not reduce

to the true run time tP0
, but rather:

lim
n→∞

T

n
= tP0

+ k
∑
j

τ (j). (9)

(9) is a key result of our model: one cannot always reliably
eliminate bias due to external variations simply by executing
the benchmark many times. Whether or not increasing n can
render the delay factor term negligible depends entirely on
the distribution of trigger counts X(j)

Q , which are difficult or
impossible to control (see Sec. I-A). Therefore, we can only

expect that T/n at large n gives us at best an overestimate of
the true run time tP0 .

IV. AN AUTOMATED PROCEDURE FOR CONFIGURING
PERFORMANCE EXPERIMENTS

In this section, we present an experimental procedure for
automatically selecting useful values of n for a given bench-
mark program, which can be justified from our model of serial
benchmark execution above. Our procedure estimates a value
for n which primarily minimizes error in timing measurements
and secondarily maximizes the number of measurements ob-
tainable within a given time budget.

A. An algorithm for estimating the optimal n value

Given P0 and a total time budget τbudget, we use the
automatable procedure in Alg. 1 for guessing the minimum
value of n required to amortize measurement error due to timer
inaccuracy. The algorithm makes use of an oracle function ν,
which is discussed in greater detail below in Sec. IV-C.

Algorithm 1: Estimating n, the optimal number of bench-
mark repetitions required to minimize timer error and
maximize the number of data points obtainable within a
time budget.
Input: P0, τacc, τprec, an oracle function ν : t→ n
Output: n

1 Let j = τacc/τprec.
2 For i ∈ {1, . . . j}, measure the amount of time it takes to

perform i executions of P0, resulting in a collection of
timing measurements T1, . . . Tj .

3 Estimate tP0
as t̂P0

= min(T1

1 , . . .
Tj

j ).
4 Evaluate ν(t̂P0

) to obtain n. Details of ν are given in
Sec. IV-C

The upper bound j in Alg. 1 is the ratio of timer accuracy to
timer precision. If each timing measurement consists of more
than j repetitions, then the contribution of timer inaccuracy to
the total error is less than τacc/j = τprec, and so is too small to
measure. Thus, there is no reason to pick n > j. In practice,
τacc need only be an overestimate for the timer accuracy, which
would raise the n determined, but is still an acceptable result.

Alg. 1 need only be applied once per benchmark, since the
estimated n can be cached for use in subsequent experiments
on the same machine. Thus, we consider this algorithm an
automated preprocessing step that does not count against
our time budget τbudget. In this regard, our approach differs
significantly from other approaches like criterion, which re-
determines n every time a benchmark is run.

B. Justifying the minimum estimator

We will now justify Alg. 1’s use of the minimum to
estimate tP0

, as opposed to the more common median or mean.
Consider the total error term for a given timing measurement
Em =

(∑
iX

(i)
Q τ (i) + ε

)
m
/nm, such that Ti/ni = tP0

+Ei.
The minimum estimator applied to our timing measurements
can then be written as:



0 250 500
executions per measurement

t̂min

75

150
ti

m
e
 (

n
s)

Fig. 2: Plots of T/n vs. n produced by repeated experiments,
each consisting of running Alg. 1 on the branchsum bench-
mark. While each experiment can produce wildly oscillatory
curves, the minimum across all the curves at each n is much
smoother and asymptotically tends toward the same constant
value.

t̂P0
= min(

T1
1
, . . .

Tj
j
)

= tP0
+ min(E1, . . . Ej). (10)

Thus, t̂P0
is the estimate of tP0

which minimizes the error
terms appearing in our sample.

In the limit where the delay factor time scales are greater
than τacc, the total error terms will always be positive, such
that choosing the smallest timing measurement will choose the
sample with the smallest magnitude of error. If the delay factor
time scales are less than τacc, choosing the smallest timing
measurement might choose a sample which underestimates tP0

due to negative timer error. In this case, Alg. 1 will simply pick
a larger n than is strictly necessary, which is still acceptable.

Figs. 3 and 4 provide further justification for the minimum
over other common estimators like the median, mean, or
trimmed mean. Recall from Section III that the error terms
Ei are sampled from a sum of scaled random variables fol-
lowing nonidentical Poisson binomial distributions. As such,
these terms can and do exhibit multimodal behavior. While
estimators like the median and trimmed mean are known to
be robust to outliers [27], Fig. 3 demonstrates that they still
capture bimodality of the distributions plotted in Fig. 4. Thus,
these estimators are undesirable for choosing n, since the result
could vary drastically between different executions of Alg. 1,
depending on which of the estimator’s modes was captured in
the sample, and hence affect reproducibility. In contrast, the
distribution of the minimum across all experimental trials is
unimodal in all cases we have observed. Thus for our purposes,
the minimum is a unimodal, robust estimator for the location
parameter of a given benchmark’s timing distribution.

C. The oracle function

Our heuristic takes as input an oracle function ν(t) that
maps expected run times to an optimal number of executions

0 20 40 60 80 100
Trial Index i

170

180

190

200

210

220

ti
m

e
 (

n
s)

Fig. 3: The behavior of different location parameters across
multiple trials of the sumindex benchmark: mean (green filled
circles), trimmed mean of the 5th—95th percentiles (brown
filled squares), median (black crosses), and minimum (blue
filled triangles).

175 180 185 190 195 200
time (ns)

0.00

0.05

0.10

0.15

0.20

p
ro

b
a
b
ili

ty
 d

e
n
si

ty
 (

n
s−

1
)

Fig. 4: Kernel density estimates (KDEs) of the probability
density functions (pdfs) across 100 trials of the sumindex

benchmark. Each curve is a KDE formed from a trial of
10,000 consecutively gathered timing measurements. Note that
the data form two distinct clusters. A cursory investigation did
not reveal any inter-trial correlations that revealed a predictable
preference for which cluster would be observed.



500 1000
time (ns)

0

500

1000
e
x
e
cu

ti
o
n
s 

p
e
r 

m
e
a
su

re
m

e
n
t

Fig. 5: Two possible oracle functions for ν(t) at τacc ≈ 1000ns,
τprec ≈ 1ns. The solid blue curve is an example of an
empirically tuned lookup table, while the dotted black curve is
Y (t) from Eq 11 with parameters a = 0.009/τprec and b = 0.5.

per measurement. While Alg. 1 does not directly describe ν(t),
appropriate choices for this function should have the following
properties:

• ν(t) has a discrete range {1, . . . , j}.
• ν(t) is monotonically decreasing, so that the longer the

run time, the fewer repetitions per measurement.
• dν

dt |t≈τprec ≈ 0, so that there is only weak dependence
on the timer precision parameter, which may not be
accurately known.

• dν
dt |t≈τacc ≈ 0, so that there is only weak dependence
on the timer accuracy parameter, which may not be
accurately known.

• ν(τprec) ≈ j, so that benchmarks that take a short time to
run are not repeated more times than necessary to mitigate
timer inaccuracy.

• ν(t ≥ τacc) ≈ 1, so that benchmarks that take a long time
to run need not be repeated.

There are many functions that satisfy these criteria. One
useful example takes the form of the generalized logistic
function:

Y (t) =

⌊
1 +

j − 1

1 + ea(t−bτacc)

⌋
(11)

where reasonable values of a and b are approximately 0.005 <
aτprec < 0.02 and 0.4 < b < 0.6.

In practice, we have found that better results can be achieved
by first approximating Y (t) with a lookup table, then modify-
ing the lookup table based on empirical observations. This was
accomplished by examining many benchmarks with a variety
of known run times at different time scales, seeking for each
run time the smallest n value at which the minimum estimate
appears to converge to a lower bound (e.g. around n = 250
for the benchmark in Fig. 2). Fig. 5 plots both (11) and an
empirically obtained lookup table as potential oracle functions.

V. IMPLEMENTATION IN JULIA

The experimental methodology in this paper is imple-
mented in the BenchmarkTools Julia package3. In addi-
tion to the BaseBenchmarks4 and Nanosoldier5 packages,
the BenchmarkTools package implements the on-demand CI
benchmarking service used by core Julia developers to com-
pare the performance of proposed language changes with
respect to over 1300 benchmarks. Since this CI benchmarking
service began in early 2016, it has caught and prevented the
introduction of dozens of serious performance regressions into
Julia’s standard library (defining a serious regression as a 30%
or greater increase in a benchmark’s minimum execution time).

The benchmarks referenced in this paper are Julia bench-
marks written and executed using BenchmarkTools. A brief
description of each benchmark is offered below:
• The sumindex(a, inds) benchmark sums over all a[i]

for all i in inds. This test stresses memory layout via
element retrieval.

• The pushall!(a, b) benchmark pushes elements from
b into a one by one, additionally generating a random
number at each iteration (the random number does not
affect the output). This test stresses both random number
generation and periodic reallocation that occurs as part
of Julia’s dynamic array resizing algorithm.

• The branchsum(n) benchmark loops from 1 to n. If
the loop variable is even, a counter is decremented.
Otherwise, an inner loop is triggered which runs from
1 to n, in which another parity test is performed on the
inner loop variable to determine whether to increment
or decrement the counter. This test stresses periodically
costly branching within loop iterations.

• The manyallocs(n) allocates an array of n elements,
where each element is itself an array. The inner array
length is determined by a random number from 1 to n,
which is regenerated when each new array is constructed.
However, the random number generator is reseeded be-
fore each generation so that the program is deterministic.
This test stresses random number generation and the
frequent allocation of arrays of differing length.

The mock benchmark suite referenced in this paper is hosted
on GitHub at https://github.com/jiahao/paper-benchmark.

VI. CONCLUSION

The complexities of modern hardware and software en-
vironments produce variations in benchmark timings, with
highly nonideal statistics that complicate the detection of
performance regressions. Timing measurements taken from
real Julia benchmarks confirm the observations of many other
authors showing highly nonideal, even multimodal behavior,
exhibited by even the simplest benchmark codes.

Virtually all timing variations are delays caused by flushing
cache lines, task switching to background OS processes, or

3https://github.com/JuliaCI/BenchmarkTools.jl
4https://github.com/JuliaCI/BaseBenchmarks.jl
5https://github.com/JuliaCI/Nanosoldier.jl

https://github.com/jiahao/paper-benchmark
https://github.com/JuliaCI/BenchmarkTools.jl
https://github.com/JuliaCI/BaseBenchmarks.jl
https://github.com/JuliaCI/Nanosoldier.jl


similar events. The simple observation that variations never
reduce the run time led us to consider a straightforward anal-
ysis based on a simple model for delays in a serial instruction
pipeline. Our results suggest that the minimum, rather than the
mean or median, is the most suitable run time estimator for
determining the optimal number of executions per measure-
ment for a given benchmark. Our model also revealed some
behaviors that challenge conventional wisdom: simply running
a benchmark for longer, or repeating its execution many times,
can render the effects of external variation negligible, even as
the error due to timer inaccuracy is amortized.

Alg. 1 presents an automatable heuristic for selecting the
minimum number of executions of a benchmark per measure-
ment required to defeat timer error. This strategy has been
implemented in the BenchmarkTools Julia package, which is
employed daily and on demand as part Julia’s continuous
integration (CI) pipeline to evaluate the performance effects
of proposed changes to Julia’s standard library in a fully
automatic fashion. BenchmarkTools can also be used to test
the performance of user-authored Julia packages.

ACKNOWLEDGMENT

We thank the many Julia developers, in particular Andreas
Noack (MIT), Steven G. Johnson (MIT) and John M. White
(Facebook), for many insightful discussions.

This research was supported in part by the U.S. Army
Research Office under contract W911NF-13-D-0001, the Intel
Science and Technology Center for Big Data, and DARPA
XDATA.

REFERENCES

[1] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantita-
tive Approach, 5th ed., ser. The Morgan Kaufmann Series in Computer
Architecture and Design. San Francisco, CA: Morgan Kaufmann, 2011.

[2] Red Hat Enterprise Linux 6 Performance Tuning Guide, Red Hat, Inc,
2016.

[3] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh,
“On the effectiveness of address-space randomization,” in CCS ’04
Proceedings of the 11th ACM Conference on Computer and Commu-
nications Security. New York: ACM, 2004, pp. 298–307.

[4] Y. Oyama, S. Ishiguro, J. Murakami, S. Sasaki, R. Matsumiya, and
O. Tatabe, “Reduction of operating system jitter caused by page re-
claim,” in ROSS ’14 Proceedings of the 4th International Workshop on
Runtime and Operating Systems for Supercomputers, no. 9. New York:
ACM, 2014.

[5] ——, “Experimental analysis of operating system jitter caused by page
reclaim,” The Journal of Supercomputing, vol. 72, no. 5, pp. 1946–1972,
may 2016.

[6] D. Zaparanuks, M. Jovic, and M. Hauswirth, “Accuracy of performance
counter measurements,” in ISPASS 2009. IEEE International Symposium
on Performance Analysis of Systems and Software, 2009, pp. 23–32.

[7] D. Tsafrir, “The context-switch overhead inflicted by hardware interrupts
(and the enigma of do-nothing loops),” in ExpCS ’07 Proceedings of the
2007 Workshop on Experimental Computer Science, no. 4. New York:
ACM, 2007.

[8] F. Petrini, D. J. Kerbyson, and S. Pakin, “The case of the missing
supercomputer performance: Achieving optimal performance on the
8,192 processors of ASCI Q,” in SC’03 Proceedings of the ACM/IEEE
Conference on Supercomputing. IEEE, 2003, pp. 55–71.

[9] J.-P. Lozi, B. Lepers, J. Funston, F. Gaud, V. Quéma, and A. Fedorova.,
“The Linux scheduler: a decade of wasted cores,” in To appear in
EuroSys ’16 Proceedings of the Eleventh European Conference on
Computer Systems. New York: ACM, 2016.

[10] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney, “Producing
wrong data without doing anything obviously wrong!” in ASPLOS
XIV Proceedings of the 14th international conference on Architectural
support for programming languages and operating systems. New York:
ACM, 2009, pp. 265–276.

[11] A. Georges, L. Eeckhout, and D. Buytaert, “Java performance evaluation
through rigorous replay compilation,” in OOPSLA ’08 Proceedings of
the 23rd ACM SIGPLAN conference on Object-oriented programming
systems languages and applications. New York: ACM, sep 2008, pp.
367–384.

[12] T. Kalibera, L. Bulej, and P. Tůma, “Benchmark precision and random
initial stat,” in SPECTS 2005 Proceedings of the 2005 International
Symposium on Performance Evaluation of Computer and Telecommuni-
cations Systems. SCS, 2005, pp. 853–862.

[13] S. M. Blackburn, P. Cheng, and K. S. McKinley, “Myths and reali-
ties: The performance impact of garbage collection,” in SIGMETRICS
’04/Performance ’04 - Proceedings of the Joint International Conference
on Measurement and Modeling of Computer Systems. New York: ACM,
2004, pp. 25–36.

[14] J. Y. Gil, K. Lenz, and Y. Shimron, “A microbenchmark case study
and lessons learned,” in Proceedings of the Compilation of the Co-
located Workshops on DSM’11, TMC’11, AGERE! 2011, AOOPES’11,
NEAT’11, & VMIL’11, ser. SPLASH ’11 Workshops. New York: ACM,
2011, pp. 297–308.

[15] T. Chen, Q. Guo, O. Temam, Y. Wu, Y. Bao, Z. Xu, and Y. Chen,
“Statistical performance comparisons of computers,” IEEE Transactions
on Computers, vol. 64, no. 5, pp. 1442–1455, may 2015.

[16] A. Rehn, J. Holdsworth, and I. Lee, “Automated outlier removal for
mobile microbenchmarking datasets,” in ISKE 2015 - 10th International
Conference on Intelligent Systems and Knowledge Engineering. IEEE,
2015, pp. 578–585.

[17] E. Barrett, C. F. Bolz, R. Killick, V. Knight, S. Mount,
and L. Tratt, “Virtual machine warmup blows hot and
cold,” arXiv:1602.00602 [cs.PL], 2016. [Online]. Available:
http://soft-dev.org/pubs/files/warmup/

[18] S. J. Lilja, Measuring computer performance: a practitioner’s guide.
Cambridge, UK: Cambridge University Press, 2000.

[19] T. Kalibera and R. Jones, “Rigorous benchmarking in reasonable time,”
in ISMM ’13 Proceedings of the 2013 international symposium on
memory management, 2013, pp. 63–74.

[20] J.-M. Kim and J.-S. Kim, “Androbench: Benchmarking the storage
performance of android-based mobile devices,” in Frontiers in Computer
Education. Springer, 2012, pp. 667–674.

[21] R. Liu, K. Klues, S. Bird, S. Hofmeyr, K. Asanović, and J. Kubiatowicz,
“Tessellation: Space-time partitioning in a manycore client OS,” in
HotPar ’09 First USENIX Workshop on Hot Topics in Parallelism, 2009.

[22] H. Akkan, M. Lang, and L. M. Liebrock, “Stepping towards noiseless
Linux environment,” in ROSS ’12 Proceedings of the 2nd International
Workshop on Runtime and Operating Systems for Supercomputers, no. 7.
New York: ACM, 2012.

[23] C. Curtsinger and E. D. Berger, “STABILIZER: Statistically sound
performance evaluation,” in ASPLOS ’13 Proceedings of the eighteenth
international conference on Architectural support for programming
languages and operating systems. New York: ACM, mar 2013,
pp. 219–228. [Online]. Available: http://plasma.cs.umass.edu/emery/
stabilizer.html

[24] X. Huang, S. M. Blackburn, K. S. McKinley, J. E. B. Moss, Z. Wang,
and P. Cheng, “The garbage collection advantage: improving program
locality,” in OOPSLA ’04 Proceedings of the 19th annual ACM SIG-
PLAN conference on Object-oriented programming, systems, languages,
and applications. New York: ACM, 2004, pp. 69–80.

[25] J. P. S. Alcocer and A. Bergel, “Tracking down performance variation
against source code evolution,” in DLS 2015 Proceedings of the 11th
Symposium on Dynamic Languages. New York: ACM, 2015, pp. 129–
139.

[26] B. O’Sullivan. Haskell Hackage: The criterion package. [Online].
Available: http://hackage.haskell.org/package/criterion

[27] R. Maronna, D. Martin, and V. Yohai, Robust Statistics: Theory and
Methods. John Wiley & Sons, Chichester. ISBN, 2006.

http://soft-dev.org/pubs/files/warmup/
http://plasma.cs.umass.edu/emery/stabilizer.html
http://plasma.cs.umass.edu/emery/stabilizer.html
http://hackage.haskell.org/package/criterion

	Introduction
	Accounting for performance variations
	Statistics of timing measurements are not i.i.d.
	Existing benchmarking methodologies

	Terms and definitions
	A model for benchmark timing distributions
	User benchmarks run with uncontrollable delays
	Repeated benchmark execution is often necessary but not always sufficient

	An automated procedure for configuring performance experiments
	An algorithm for estimating the optimal n value
	Justifying the minimum estimator
	The oracle function

	Implementation in Julia
	Conclusion
	References

