
Star-P: High Productivity Parallel Computing

Ron Choy∗ Alan Edelman∗ John R. Gilbert† Viral Shah† David Cheng∗

June 9, 2004

1 Star-P

Star-P ‡ is an interactive parallel scientific comput-
ing environment. It aims to make parallel program-
ming more accessible. Star-P borrows ideas from
Matlab*P [3], but is a new development. Currently
only a Matlab interface for Star-P is available,
but it is not limited to being a parallel Matlab. It
combines all four parallel Matlab approaches in one
environment, as described in the parallel Matlab

survey [2]: embarrassingly parallel, message pass-
ing, backend support and compilation. It also in-
tegrates several parallel numerical libraries into one
single easy-to-use piece of software.

The focus of Star-P is to improve user productiv-
ity in parallel programming. We believe that Star-

P can dramatically reduce the difficulty of program-
ming parallel computers by reducing the time needed
for development and debugging.

To achieve productivity, it is important that the
user interface is intuitive to the user. For example,
a large class of scientific users are already familiar
with the Matlab language. So it is beneficial to use
Matlab as a parallel programming language. Ad-
ditions to the language are minimal in keeping with
the philosophy to avoid re-learning. Also, as a design
goal, our system does not distinguish between serial

data and parallel data.

C = op(A,B)

print(C)

C will be the same whether A and B are distributed
or not. This will allow the same piece of code to
run sequentially (when all the arguments are serial)
or in parallel (when at least one of the arguments is
distributed).

∗ {cly,edelman,drcheng}@csail.mit.edu
† {gilbert,viral}@cs.ucsb.edu
‡ Some of this text appears in Ron Choy’s upcoming Ph.D. thesis

2 Functionality

Where possible, Star-P leverages existing, estab-
lished parallel numerical libraries to perform numer-
ical computation. This idea is inherited from Mat-

lab*P. Several libraries already exist which provide a
wide range of linear algebra and other routines, and
it would be inefficient to reproduce them. Instead,
Star-P integrates them seamlessly for the user.

3 RT-STAP Benchmarks

The RT-STAP (Real-Time Space-Time Adaptive
Processing) benchmark [1] is a benchmark for real-
time signal processing systems developed by the
MITRE Corporation. In the hard version of the
benchmark which we run, the input to the Matlab

code is a data cube of 22 (channels) x 64 x 480 dou-
bles. The code performs the following three steps:

1. Convert the input data to baseband.

2. Doppler processing.

3. Weight computation and application to find the
range-Doppler matrix.

Upon execution, we noticed that step 1 was the
most time consuming step. This is surprising, since
the weight computation would be expected to have
the highest FLOP count. It turns out that this is due
to the Matlab coding style used in the benchmark
code. Since the point of the benchmark is to measure
the running time of a typical application, we chose to
proceed without modifying the code. The conversion
step in the original Matlab code is a for loop as
follows:

for channum=1:NCHAN

xx = CPI1_INITIAL(:,channum);

CPI1(:,channum) = baseband_convert(xx, ...

SOME_ARGUMENTS);

end

1



0 5 10 15 20 25
0

20

40

60

80

100

120

140

160

180
Time taken by conversion step

Number of processors

T
im

e 
(s

)
Real timing
Perfect Scaling

Figure 1: Scalability of RT STAP

It loops over the input channels and processes them
in an embarrassingly parallel fashion. This makes it a
natural candidate for Star-P’s multi-Matlab mode.
We converted the loop to run in Star-P by changing
the loop into a function call and putting it in an mm-
mode call:

P_CPI1_INITIAL = matlab2pp(CPI1_INITIAL,2);

CPI1 = mm(’convert_loop’, SOME_ARGUMENTS);

CPI1 = CPI1(:,:);

Note that the calls before and after the mm call are
used to transfer data to the server and back. The
time required by these calls is also included in our
timings.
Figure 1 compares timing results for sequential Mat-

lab and Star-P on 2, 11 and 22 processors. The
solid line shows the timings that would be obtained
if the code scales perfectly. The real timings follow
the solid line quite closely except for the 22 proces-
sors case. Going from 11 processors to 22 processors
provides no additional benefits. This is easy to ex-
plain in terms of granularity. As the input data cube
only has 22 channels, with 22 processors, each pro-
cessor has only 1 channel of work, as opposed to 2
channels in the 11 processors case. So there is very
little to gain from using additional processors, and
any benefit is offset by the additional time needed for
communication.

4 Sparse matrix capabilities

Star-P provides basic sparse matrix capabilities [4]
similar to those found in Matlab. Sparse matrix

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80
Performance of the sparse constructor

Number of processors

T
im

e 
(s

)

10,000,000 (4 nnz/row)
1,000,000 (32 nnz/row)

Figure 2: Scalability of sparse (SGI Altix 350)

algorithms are often useful in signal processing and
embedded computing. Sparse matrix operations of-
ten display poor spatial and temporal locality result-
ing in irregular memory access patterns.

A very basic and fundamental sparse matrix op-
eration is the sparse matrix constructor in Matlab

– sparse. It constructs a distributed sparse matrix
from 3 vectors containing the row and column num-
bers and the corresponding non-zeros. The sparse

constructor has fairly general applications in build-
ing and updating tables, histograms, and sparse data
structures in general. It also accumulates and adds
duplicate entries.

Figure 2 shows the performance of sparse on two
matrices: one very large but sparse, with 107 rows
and 4 × 107 non-zero entries; the other smaller and
denser, with 106 rows and 32 × 106 non-zero entries.

References

[1] K. C. Cain, J. A. Torres, and R. T. Williams.
RT STAP: Real time space-time adaptive pro-
cessing benchmark. Technical report, Feb 1997.

[2] R. Choy. Parallel Matlab survey. 2001.
http://theory.lcs.mit.edu /∼cly/survey.html.

[3] P. Husbands and C. Isbell. MATLAB*P: A tool
for interactive supercomputing. SIAM PPSC,
1999.

[4] V. Shah and J. R. Gilbert. Sparse Matrices in
MATLAB*P: Design and Implementation. Sub-

mitted to HiPC 2004.

2




