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Statistical eigen-inference from large Wishart matrices

N. Raj Rao James Mingo Roland Speicher Alan Edelman

Abstract

The asymptotic behavior of the eigenvalues of a sample covariance matrix is described when the
observations are from a zero mean multivariate (real or complex) normal distribution whose covariance
matrix has population eigenvalues of arbitrary multiplicity. In particular, the asymptotic normality of
the fluctuation in the trace of powers of the sample covariance matrix from the limiting quantities is
shown. Concrete algorithms for analytically computing the limiting quantities and the covariance of
the fluctuations are presented. Tests of hypotheses for the population eigenvalues are developed and a
technique for inferring the population eigenvalues (without requiring any assumptions on the population
eigenvectors) is proposed that exploits this asymptotic normality of the trace of powers of the sample
covariance matrix. Numerical simulations demonstrate the robustness of the proposed techniques in
techniques in high-dimensional, (relatively) small sample size settings and the superiority over alternate
procedures found in the literature for the special cases where a direct comparison can be made. The
improved performance is a consequence of the fact that the proposed inference procedures are “global”
(in a sense that we describe) and exploit “global” information thereby overcoming the inherent biases
that cripple classical “local” inference procedures which rely on “local” information.

1. Introduction

Let X = [x1, . . . ,xn] be a p × n data matrix where x1, . . . ,xn, denote n independent measurements,
where for each i, xi has an p-dimensional (real or complex) Gaussian distribution with mean zero, and
positive definite covariance matrix Σ. When the samples are complex, the real and imaginary components
are assumed to be independent, identically distributed zero mean Gaussian vectors with a covariance of Σ/2.
The sample covariance matrix (SCM) when formed from these n samples as

S :=
1

n

n∑

i=1

xixi
′ =

1

n
XX′, (1.1)

has the (central) Wishart distribution [Wishart, 1928]. We focus on inference problems for parameterized
covariance matrices modelled as Σθ = UΛθU ′ where

Λθ =




a1Ip1

a2Ip2

. . .

akIpk


 , (1.2)

where a1 > . . . > ak and
∑k

j=1 pj = p. Defining ti = pi/p, allows us to conveniently express the 2k − 1
dimensional parameter vector as θ = (t1, . . . , tk−1, a1, . . . , ak) with the obvious non-negativity constraints
on the elements.

Models of the form in (1.2) arise as a special case whenever the measurements are of the form

xi = Asi + zi for i = 1, . . . , n (1.3)
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where zi ∼ Np(0,Σz), denotes an p-dimensional (real or complex) Gaussian noise vector with covariance Σz,
si ∼ Nk(0,Σs) denotes a k-dimensional zero mean (real or complex) Gaussian signal vector with covariance
Σs, and A is a p× k unknown non-random matrix. In array processing applications, the j-th column of the
matrix A encodes the parameter vector associated with the j-th signal whose magnitude is described by the
j-the element of si.

Since the signal and noise vectors are independent of each other, the covariance matrix of xi can hence
be decomposed as

Σ = Ψ + Σz (1.4)

where Σz is the covariance of z and Ψ = AΣsA
′ with ′ denoting the conjugate transpose. One way of

obtaining Σ with eigenvalues of the form in (1.2) is when Σz = σ2 I so that the n− k smallest eigenvalues of
Σ are equal to σ2. Then, if the matrix A is of full column rank so and the covariance matrix of the signals
Σs is nonsingular, the p− k smallest eigenvalues of Ψ are equal to zero so that the eigenvalues of Σ will be
of the form in (1.2). Alternately, if the eigenvalues of Ψ and Σz have the identical subspace structure, i.e.,
in (1.2), tΨi = tΣz

i for all i, then whenever the eigenvectors associated with each of the subspaces of Ψ and
Σz align, the eigenvalues of Σ will have the subspace structure in (1.2).

Additionally, from an identifiability point of view, as shall be discussed in Section 6., if the practitioner
has reason to believe that the population eigenvalues can be split into several clusters about ai±

√
p/n, then

the use of the model in (1.2) with a block subspace structure will also be justified.

1.1 Inferring the population eigenvalues from the sample eigenvalues

While inference problems for these models have been documented in texts such as [Muirhead, 1982], the
inadequacies of classical algorithms in high-dimensional, (relatively) small sample size settings have not been
adequately addressed. We highlight some of the prevalent issues in the context of statistical inference and
hypothesis testing.

Anderson’s landmark paper [Anderson, 1963] develops the theory that describes the (large sample) asymp-
totics of the sample eigenvalues (in the real valued case) for such models when the true covariance matrix
has eigenvalues of arbitrary multiplicity. Indeed, for arbitrary covariance Σ, the joint density function of the
eigenvalues l1, . . . , lp of the SCM S when n > p + 1 is shown to be given by

Z̃β
p,n

p∑

i=1

l
β(n−p+1)/2−1
i

p∏

i<j

|li − lj |β
∫

Q

exp

(
−nβ

2
Tr
(
Σ−1QSQ′

))
dQ (1.5)

where l1 > . . . > lp > 0, Z̃β
p,n is a normalization constant, and β = 1 (or 2) when S is real (resp. complex).

In (1.5), Q ∈ O(p) when β = 1 while Q ∈ U(p) when β = 2 where O(p) and U(p) are, respectively, the set
of p × p orthogonal and unitary matrices with Haar measure. Anderson notes that

If the characteristic roots of Σ are different, the deviations . . . from the corresponding population
quantities are asymptotically normally distributed. When some of the roots of Σ are equal, the
asymptotic distribution cannot be described so simply.

Indeed, the difficulty alluded to, arises due to the presence of the integral over orthogonal (or unitary) group
on the right hand side of (1.5). This problem is compounded in situations when some of the eigenvalues of
Σ are equal as is the case for the model considered in (1.2). Nonetheless, Anderson is able to use the (large
sample) asymptotics to derive the maximum likelihood estimate of the population eigenvalues, al, as

âl ≈
1

pl

∑

j∈Nl

λ̂j for l = 1, . . . , k, (1.6)

where λ̂j are the sample eigenvalues (arranged in descending order) and Nl is the set of integers p1 + . . . +
pl−1 + 1, . . . , p1 + . . . + pl. This is a reasonable estimator that works well in practice when n ≫ p. The large
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sample size asymptotics are, however, of limited utility because they ignore the (significant) effect of the
dimensionality of the system on the behavior of the sample eigenvalues.

Consequently, (large sample size) asymptotic predictions, derived under the p fixed, n → ∞ regime do
not account for the additional complexities that arise in situations where the sample size n is large but the
dimensionality p is of comparable order. Furthermore, the estimators developed using the classical large
sample asymptotics invariably become degenerate whenever p < n, so that p − n of the sample eigenvalues
will identically equal to zero. For example, when n = p/2, and there are two distinct population eigenval-
ues each with multiplicity p/2 then the estimate of the smallest eigenvalue using (1.6) will be zero. Other
such scenarios where the population eigenvalue estimates obtained using (1.6) are meaningless are easy to
construct and are practically relevant in many applications such as radar and sonar signal processing [Trees,
2002, Smith, 2005], and many more.

There are, of course, other strategies one may employ for inferring the population eigenvalues. One might
consider a maximum-likelihood technique based on maximizing the log-likelihood function of the observed
data X which is given by (ignoring constants)

l(X|Σ) := −n(trSΣ−1 + log detΣ),

or, equivalently, when Σ = UΛU′, by minimizing the objective function

h(X|U,Λ) = (trSUΛ−1U′ + log detΛ). (1.7)

What should be apparent on inspecting (1.7) is that the maximum-likelihood estimation of the parameters
of Λ of the form in (1.2) requires us to model the population eigenvectors U as well (except when k = 1). If
U were known apriori, then an estimate of al obtained as

âl ≈
1

pl

∑

j∈Nl

(U′SU)j,j for l = 1, . . . , k. (1.8)

Nl is the set of integers p1 + . . . + pl−1 + 1, . . . , p1 + . . . + pl will provide a good estimate. In practical
applications, the population eigenvectors might either be unknown or be misspecified leading to faulty
inference. Hence it is important to have the ability to perform statistically sound, computationally feasible
eigen-inference of the population eigenvalues, i.e., from the sample eigenvalues alone, in a manner that is
robust to high-dimensionality and sample size constraints.

We illustrate the difficulties encountered in high-dimensional settings with an example (summarized in
Figure 1) of a SCM constructed from a covariance matrix modelled as Σ = UΛU′ with p = 80 and sample
size n = 160. Half of the eigenvalues of Λ are of magnitude 3 while the remainder are of magnitude 1. The
sample eigenvalues are significantly blurred, relative to the true eigenvalues as shown in Figure 1(a). Figures
1(b), and 1(d) plot the sample eigenvectors for the case when the true eigenvectors U = I, and an arbitrary
U, respectively. Figures 1(c) and 1(e) plot the diagonal elements (S)j,j . Thus, if the true eigenvector was
indeed U = I then an estimate of the population eigenvalues formed as in (1.8) yields a good estimate; when
U 6= I, however, the estimate is very poor.

1.2 Testing for equality of population eigenvalues

Similar difficulties are encountered in problems of testing as well. In such situations, Anderson proposes
the likelihood ratio criterion for testing the hypothesis

λp1+...+pl−1+1 = λp1+...+pl−1+1,...,p1+...+pl

given by 


∏

j∈Nl

λ̂j/(p−1
k

∑

j∈Nl

λ̂j)
pk





1
2 n

for l = 1, . . . , k, (1.9)
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where λ̂j are the sample eigenvalues (arranged in descending order) and Nl is the set of integers p1 + . . . +
pl−1 + 1, . . . , p1 + . . . + pl. The test in (1.9) suffers from the same deficiency as the population eigenvalue
estimator in (1.6) - it becomes degenerate when p > n. When the population eigenvectors U are known,
(1.9) may be modified by forming the criterion



∏

j∈Nl

(U′SU)j,j/(p−1
k

∑

j∈Nl

(U′SU)j,j)
pk




1
2n

for l = 1, . . . , k, (1.10)

where Nl is the set of integers p1 + . . . + pl−1 + 1, . . . , p1 + . . . + pl. When the eigenvectors are misspecified
the inference provided will be faulty. For the earlier example, Figure 1(e) illustrates this for the case when
it is assumed that the population eigenvectors are I when they are really U 6= I. Testing the hypothesis

Σ = Σ0 , reduces to testing the null hypothesis Σ = I when the transformation x̃i = Σ
−1/2
0 xi is applied.

The robustness of tests for sphericity in high dimensional settings has been extensively discussed in Ledoit
and Wolf [2002] and is the focus of the work in Srivastava [2005, 2006].

1.3 Proposed statistical eigen-inference techniques

In this article our focus is on developing population eigenvalue estimation and testing algorithms for
models of the form in (1.2) that are robust to high-dimensionality, sample size constraints and population
eigenvector misspecification. We are able to develop such computationally feasible algorithms by exploiting
the properties of the eigenvalues of large Wishart matrices. These results, analytically describe the non-
random blurring of the sample eigenvalues, relative to the population eigenvalues, in the p, n(p) → ∞ limit
while compensating for the random fluctuations about the limiting behavior due to finite dimensionality
effects. This allows us to handle the situation where the sample eigenvalues are blurred to the point that
the block subspace structure of the population eigenvalues cannot be visually discerned, as in Figure 1(a),
thereby extending the “signal” detection capability beyond the special cases tackled in Silverstein and Com-
bettes [1992]. The nature of the mathematics being exploited makes them robust to the high-dimensionality
and sample size constraints while the reliance on the sample eigenvalues alone makes them insensitive to
any assumptions on the population eigenvectors. In such situations where the eigenvectors are accurately
modelled, the practitioner may use the proposed methodologies to complement and “robustify” the inference
provided by estimation and testing methodologies that exploit the eigenvector structure.

We consider testing the hypothesis for the equality of the population eigenvalues and statistical inference
about the population eigenvalues. In other words, for some unknown U, if Σ0 = UΛθ0U

′ where Λθ is
modelled as in (1.2), techniques to 1) test if Σ = Σ0, and 2) estimate θ0 are summarized in Table 1.
We note that inference on the population eigenvalues is performed using the entire sample eigen-spectrum
unlike (1.6) and (1.9). This reflects the inherent non-linearities of the sample eigenvalue blurring induced by
high-dimensionality and sample size constraints.

Table 2 compares the bias and mean square error of various techniques of estimating the non-unity
population eigenvalue in Figure 1 when the block structure is known apriori, i.e., when t1 = t2 = 0.5, and
a2 = 1 are known and a := a1 is unknown. The first two columns refer to the procedure in (1.8) where the
correct population eigenvectors U 6= I are used, the third column refers to Anderson’s procedure in (1.6)
while the fourth column refers to the procedure in (1.8) where U = I is used instead of the population
eigenvectors. The last two columns refer to the proposed statistical eigen-inference (SEI) technique in Table
1 with θ := a, v(θ) = TrS − p (0.5 a + 0.5), and Qθ =

(
1/2 a2 + 1/2 a2c + ac + 1/2 + 1/2 c− a

)
c2 where

c = p/n. Note that though the SEI techniques do not exploit any eigenvector information, its performance
compares favorably to the maximum likelihood technique that does. As for the other techniques it is evident
that the inherent biasses in the problem cripple the estimators.

An important implication of this in practice is that in high dimensional, sample size starved settings,
local inference, performed on a subset of sample eigenvalues alone, that fails to take into account the global
structure (i.e., by modelling the remaining eigenvalues) is likely to be inaccurate, or worse misleading. In
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Testing: Hθ0 : h(θ) := vT
θ Q−1

θ vθ ∼ χ2
2 ≥ γ, q = dim(vθ) = 2

Estimation: θ̂ = arg min
θ∈Θ

{
vT

θ Q−1
θ vθ + log detQθ

}
, q = dim(vθ) ≥ dim(θ)

Legend: (vθ)j = p ×
(

1

p
Tr Sj − E

[
1

p
Tr Sj

])
, j = 1, . . . , q

Qθ = cov [vθv
′
θ]

Table 1: Structure of proposed algorithms.

such settings, practitioners are advised to consider tests (such as the ones proposed) for the equality of the
entire population eigen-spectrum instead of testing for the equality of individual population eigenvalues.

We view the inference techniques developed herein as the first step in the development of improved high-
dimensional covariance matrix estimation algorithms. The issue of inverse covariance matrix estimation
which Srivastava [2007] examines in the context of discriminant analysis is also related.

The approach we have in mind differs from the (sample eigenvalue) shrinkage based techniques in [Haff,
1980, Dey and Srinivasan, 1985] in a crucial regard. Our perspective is that the eigenvalues and the eigen-
vectors (or subspaces) of the sample covariance matrices are blurred relative to the population eigenvalues
and eigenvectors (or subspaces), respectively. For the model considered in this article, the precise analyt-
ical characterization of the blurring of the eigenvalues (Theorem 2.7) allows us to formulate and solve the
deblurring problem. The tools from free probability are applied in [Nadakuditi, 2007] to precisely describe
the blurring of the population eigenvectors (or subspaces) as well. The answer is encoded in the form of a
conditional eigenvector “distribution” that explicitly takes into account the dimensionality of the system and
the sample size available - the conditioning is with respect to the population eigenvalues. The idea that the
covariance matrix estimate thus constructed from the deblurred eigenvalues and eigenvectors should be sig-
nificantly better has merit. The development of computationally realizable eigenvector deblurring algorithms
is a significant obstacle to progress along this direction of research.

1.4 Related work

There are other alternatives found in the literature to the block subspace hypothesis testing problem
considered in this article. [El Karoui, 2005] provides a test for the largest eigenvalue for a large class of
complex Wishart matrices including those with a population covariance matrix of the form in (1.2). Though
the results are stated for the case when p < n, simulations confirm the validity of the techniques to the
general case when p < n and for real Wishart matrices. El Karoui’s tests can be classified as a local test that
utilizes global information, i.e., information about the entire (assumed) population eigen-spectrum. Testing
is performed by computing the largest eigenvalue of the sample covariance matrix, recentering, rescaling it
and rejecting the hypothesis if it is too large. The recentering and rescaling parameters are determined by the
ai and ti values in (1.2) while the threshold is determined by the quantiles of the appropriate (real or complex)
Tracy-Widom distribution. A disadvantage of this procedure is the great likelihood whenever recentering
by the false parameter pushes the test statistic towards the left tail of the distribution. Consequently, the
identity covariance hypothesis will be accepted with great likelihood whenever the recentering and rescaling
coefficients are calculated for the model in (1.2) with ai > 1. The proposed global test based on global
information avoids this pitfall and is based on distributional results for the traces of powers of Wishart
matrices that also appear in Srivastava [2005]. The issue of whether a local test or a global test is more
powerful is important and highlighted using simulations in the context of a joint estimation and testing
problem in Section 6., its full resolution is beyond the scope of this article.
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Figure 1: The challenge of estimating the population eigenvalues from the sample eigenvalues in high-
dimensional settings.
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(a) Bias.

Known U Known U Unknown U

p n Max Like. Max Like. ×p2 Anderson Max Like. SEI SEI ×p2

10 20 0.0117 0.1168 -1.9994 -0.5811 -0.0331 -0.3308
20 40 0.0000 0.0001 -1.9994 -0.5159 -0.0112 -0.2244
40 80 0.0008 0.0301 -1.9994 -0.5245 -0.0019 -0.0776
80 160 -0.0003 -0.0259 -1.9994 -0.4894 -0.0003 -0.0221
160 320 0.0000 0.0035 -1.9994 -0.4916 -0.0003 -0.0411
320 640 0.0001 0.0426 -1.9994 -0.5015 0.0001 0.0179

(b) MSE.

Known U Known U Unknown U

p n Max Like. Max Like. ×p2 Anderson Max Like. SEI SEI ×p2

10 20 0.0380 3.7976 3.9990 0.3595 0.0495 4.9463
20 40 0.0100 3.9908 3.9990 0.2722 0.0126 5.0256
40 80 0.0025 3.9256 3.9991 0.2765 0.0030 4.8483
80 160 0.0006 4.1118 3.9991 0.2399 0.0008 5.1794
160 320 0.0002 4.1022 3.9990 0.2417 0.0002 5.0480
320 640 0.0000 4.0104 3.9990 0.2515 0.0000 5.0210

Table 2: Comparison of performance of different techniques for estimating the non-unity population eigen-
value in Figure 1 when the block structure is known apriori.

Silverstein and Combettes [1992] consider the situation when the sample eigenvalues discernibly split
into distinct clusters and suggest that the proportion of the eigenvalues in each cluster will provide a good
estimate of the parameters ai in (1.2). The nature of the distributional results in Bai and Silverstein [1998]
imply that whenever the sample eigenvalues are thus clustered, then for large enough p, the estimate of
ai thus obtained will be exactly equal to true value. Such a procedure could not, however be applied for
situations as such those depicted in Figure 1(a) where the sample eigenvalues do not separate into clusters.
Silverstein and Combettes [1992] does not provide a strategy for computing the ti in (1.2) once the ai is
computed - the proposed techniques fill the void.

A semi-parametric, grid-based technique for inferring the empirical distribution function of the population
eigenvalues from the sample eigen-spectrum was proposed in El Karoui [2006]. The procedure described can
be invaluable to the practitioner in the initial data exploration stage by providing a good estimate of the
number of blocks in (1.2) and a less refined estimate of the underlying ai and ti associated with each block.
Our techniques can then be used to improve or test the estimates.

1.5 Outline

The rest of this article is organized as follows. In Section 2. we introduce the necessary definitions and
summarize the relevant theorems. The eigen-inference techniques are developed in Section 4.. Concrete
algorithms for computing the analytic expectations that appear in the algorithms summarized in Table 1)
are presented in Section 3.. The performance of the algorithms is illustrated using Monte-Carlo simulations
in Section 5.. Some concluding remarks are presented in Section 7.. In Section 8. , we outline the relevance
of free probability theory for the considered problem and provide a proof of Theorem 2.7.
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2. Preliminaries

Definition 2.1. Let A = (AN )N∈N be an N ×N matrix with real eigenvalues. The j-th sample moment is
defined as

tr(Aj) :=
1

N
Tr (Aj).

where Tr is the usual un-normalized trace.

Definition 2.2. Let A = (AN )N∈N be a sequence of self-adjoint N ×N -random matrices. If the limit of all
moments defined as

αA
j =: lim

N→∞
E[tr(Aj

N )] (N ∈ N)

exists then we say that A has a limit eigenvalue distribution.

Notation 2.3. For a random matrix A with a limit eigenvalue distribution we denote by MA(x) the moment
power series, which we define by

MA(x) := 1 +
∑

j≥1

αA
j xj .

Notation 2.4. For a random matrix ensemble A with limit eigenvalue distribution we denote by gA(x) the
corresponding Cauchy-transform, which we define as formal power series by

gA(x) := lim
N→∞

E
[ 1

N
Tr (xIN − AN )−1

]
=

1

x
MA(1/x).

Definition 2.5. Let A = (AN )N∈N be a self-adjoint random matrix ensemble. We say that it has a second
order limit distribution if for all i, j ∈ N the limits

αA
j := lim

N→∞
k1(tr(A

j
N ))

and
αA

i,j := lim
N→∞

k2(Tr(Ai
N ), Tr(Aj

N ))

exist and if

lim
N→∞

kr

(
Tr(A

j(1)
N ), . . . , Tr(A

j(r)
N )

)
= 0

for all j ≥ 3 and all j(1), . . . , j(r) ∈ N. In this definition, we denote the (classical) cumulants by kn. Note
that k1 is just the expectation, and k2 the covariance.

Notation 2.6. When A = (AN )N∈N has a limit eigenvalue distribution, then the limits αA
j := limN→∞ E[tr(Aj

N )]
exist. When AN has a second order limit distribution, the fluctuation

tr(Aj
N ) − αA

j

is asymptotically Gaussian of order 1/N . We consider the second order covariances defined as

αA
i,j := lim

N→∞
cov(Tr(Ai

N ), Tr(Aj
N )),

and denote by MA(x, y) the second order moment power series, which we define by:

MA(x, y) :=
∑

i,j≥1

αA
i,jx

iyj.
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Theorem 2.7. Assume that the p× p (non-random) covariance matrix Σ = (Σp)p∈N has a limit eigenvalue
distribution. Let S be the (real or complex) sample covariance matrix formed from the n samples as in (1.1).
Then for p, n → ∞ with p/n → c ∈ (0,∞), S has both a limit eigenvalue distribution and a second order
limit distribution. The Cauchy transform of the limit eigenvalue distribution, g(x) ≡ gS(x), satisfies the
equation:

g(x) =
1

1 − c + c x g(x)
gΣ

(
x

1 − c + c x g(x)

)
, (2.1)

with the corresponding power series MS(x) = 1/x gS(1/x). Define S̃ = 1
nX′X so that its moment power

series is given by
MeS(y) = c (MS(z) − 1) + 1. (2.2)

The second order moment generating series is given by

MS(x, y) = MeS(x, y) =
2

β
M∞

S (x, y) (2.3a)

where

M∞
S (x, y) = xy

(
d
dx(xMeS(x)) · d

dy (yMeS(y))

(xMeS(x) − yMeS(y))2
− 1

(x − y)2

)
(2.3b)

where β equals 1 (or 2) when the elements of S are real (or complex).

Proof. See Appendix 8..

3. Computational aspects

Proposition 3.1. For Σθ = UΛθU
′ as in (1.2), let θ = (t1, . . . , tk−1, a1, . . . , ak) where ti = pi/p. Then S

has a limit eigenvalue distribution as well as a second order limit distribution. The moments αS
j , and hence

αS
i,j, depend on θ and c. Let vθ be a q-by-1 vector whose j-th element is given by

(vθ)j = TrSj − p αS
j .

Then for large p and n,
vθ ∼ N (µθ ,Qθ) (3.1)

where µθ = 0 if S is complex and (Qθ)i,j = αS
i,j.

Proof. This follows directly from Theorem 2.7. From (3.2) and (3.4), the moments αS
k depend on αΣ and

c = p/n and hence on the unknown parameter vector θ. The existence of the non-zero mean when S is real
follows from the statement in [Bai and Silverstein, 2004].

3.1 Computation of moments of limiting eigenvalue distribution

Equation (2.1) expresses the relationship between the moment power series of Σ and that of S via the
limit of the ratio p/n. We can hence express the expected moments of S in terms of the moments of Σ. The

general form of the moments of S̃, given by Corollary 9.12 in [?, pp.143], is

α
eS
j =

∑

ij≥0

1i1+2i2+3i3+···+jij=j

ci1+i2+···+ij (αΣ
1 )i1(αΣ

2 )i2 · · · (αΣ
j )ij · γ(j)

i1,i2,...,ij
, (3.2)

where γj
i1,...,ij

is the multinomial coefficient given by

γ
(j)
i1,i2,...,ij

=
j!

i1!i2! · · · ij! (j + 1 − (i1 + i2 + · · · + ij))!
. (3.3)
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The multinomial coefficient in (3.3) has an interesting combinatorial interpretation. Let j a positive integer,
and let i1, . . . , ij ∈ N ∪ {0} be such that i1 + 2i2 + · · · + jij = j. The number of non-crossing partitions
π ∈ NC(j) which have i1 blocks with 1 element, i2 blocks with 2 elements, . . . , ij blocks with j elements is

given by the multinomial coefficient γj
i1,...,ij

.

The moments of S̃ are related to the moments of S as

α
eS
j = c αS

j for j = 1, 2, . . . (3.4)

We can use (3.2) to compute the first few moments of S in terms of the moments of Σ. This involves
enumerating the partitions that appear in the computation of the multinomial coefficient in (3.3). For j = 1

only i1 = 1 contributes with γ
(1)
1 = 1, thus.

α
eS
1 = cαΣ

1 (3.5)

For n = 2 only i1 = 2, i2 = 0 and i1 = 0, i2 = 1 contribute with

γ
(2)
2,0 = 1, γ

(2)
0,1 = 1,

and thus
α

eS
2 = cαΣ

2 + c2(αΣ
1 )2 (3.6)

For n = 3 we have three possibilities for the indices, contributing with

γ
(3)
3,0,0 = 1, γ

(3)
1,1,0 = 3, γ

(3)
0,0,1 = 1,

thus
α

eS
3 = cαΣ

3 + 3c2αΣ
1 αΣ

2 + c3(αΣ
1 )3 (3.7)

For n = 4 we have five possibilities for the indices, contributing with

γ
(4)
4,0,0,0 = 1, γ

(4)
2,1,0,0 = 6, γ

(4)
0,2,0,0 = 2, γ

(4)
1,0,1,0 = 4, γ

(4)
0,0,0,1 = 1

thus
α

eS
4 = cαΣ

4 + 4c2αΣ
1 αΣ

3 + 2c2(αΣ
2 )2 + 6c3(αΣ

1 )2αΣ
2 + c4(αΣ

1 )4. (3.8)

For specific instances of Σ, we simply plug in the moments αΣ
i into the above expressions to get the

corresponding moments of S. The general formula in (3.2) can be used to generate the expressions for higher
order moments as well though such an explicit enumeration will be quite tedious even if symbolic software
is used.

An alternate method is to use the software package RMTool [Rao] based on the “polynomial method”
developed in the second part of the first author’s dissertation [Nadakuditi, 2007]. The software enables the
moments of S to be enumerated rapidly whenever the moment power series of Σ is an algebraic power series,
i.e., it is the solution of an algebraic equation. This is always the case when Σ is of the form in (1.2). For
example, if θ = (t1, t2, a1, a2, a3) then we can obtain the moments of S by typing in the following sequence
of commands in Matlab once RMTool has been installed. This eliminates the need to obtain manually the
expressions for the moments apriori.

>> startRMTool

>> syms c t1 t2 a1 a2 a3

>> number_of_moments = 5;

>> LmzSigma = atomLmz([a1 a2 a3],[t1 t2 1-(t1+t2)]);

>> LmzS = AtimesWish(LmzSigma,c);

>> alpha_S = Lmz2MomF(LmzS,number_of_moments);

>> alpha_Stilde = c*alpha_S;
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3.2 Computation of covariance moments of second order limit distribution

Equations (2.3) and (2.3b) express the relationship between the covariance of the second order limit
distribution and the moments of S. Let M(x) denote a moment power series as in Notation 2.3 with
coefficients αj . Define the power series H(x) = xM(x) and let

H(x, y) :=

(
d
dx(H(x)) · d

dy (H(y))

(H(x) − H(y))2
− 1

(x − y)2

)
(3.9)

so that M∞(x, y) := xyH(x, y). The (i, j)-th coefficient of M∞(x, y) can then be extracted from a multi-
variate Taylor series expansion of H(x, y) about x = 0, y = 0. From (2.3), we then obtain the coefficients
αS

i,j = (2/β)αM∞

i,j . This is best done using the Maple symbolic package where the following sequence of

commands enumerates the coefficients αS
i,j for β = 1, 2 and indices i and j such that i+j <= 2 max coeff.

> with(numapprox):

> max_coeff := 5:

> H := x -> x*(1+sum(alpha[j]*x^2,j=1..2*max_coeff)):

> dHx : = diff(H(x),x): dHy := diff(H(y),y):

> H2 := simplify(dHx*dHy/(H(x)-H(y))^2-1/(x-y)^2:

> H2series := mtaylor(H2,[x,y],2*max_coeff):

> i:=5: j =2:

> M2_infty_coeff[i,j] := simplify(coeff(coeff(H2series,x,i-1),y,j-1)):

> alphaS_second[i,j] := (2/beta)*M2_infty_coeff[i,j]:

Table 3 lists some of the coefficients of M∞ obtained using this procedure. When αj = 1 for all j ∈ N,
then αi,j = 0 as expected, since αj = 1 denotes the identity matrix. Note that the moments α1, . . . , αi+j

are needed to compute the second order covariance moments αi,j = αj,i.
The covariance matrix Q with elements Qi,j = αi,j gets increasingly ill-conditioned as dim(Q) increases;

the growth in the magnitude of the diagonal entries αj,j in Table 3 attests to this. This implies that the
eigenvectors of Q encode the information about the covariance of the second order limit distribution more
efficiently than the matrix Q itself. When Σ = I so that the SCM S has the (null) Wishart distribution,
the eigenvectors of Q are the (appropriately normalized) Chebychev polynomials of the second kind [Mingo
and Speicher, 2006]. The structure of the eigenvectors for arbitrary Σ is, as yet, unknown though research
in that direction might yield additional insights.

4. Eigen-inference algorithms

4.1 Estimating θ for known model order

Estimating the unknown parameter vector θ follows from the asymptotic result in Proposition 3.1. For
large p, n, since vθ is (approximately) normally distributed we can obtain the estimate θ by the principle
of maximum-likelihood. When S is real, Bai and Silverstein provide a formula, expressed as a difficult to
compute contour integral, for the correction term µθ in (3.1). The log-likelihood of vθ is (ignoring constants
and the correction term for the mean when S is real) given by

ℓ(vθ|θ) ≈ −vT
θ Q−1

θ vθ − log detQθ, (4.1)

which allows us to obtain the maximum-likelihood estimate of θ as

θ̂(q) = argmin
θ∈Θ

vT
θ Q−1

θ vθ + log detQθ for q = dim(vθ) ≥ dim(θ) (4.2)

where Θ represents the parameter space for the elements of θ and vθ and Qθ are constructed as in Proposition
3.1.
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Coefficient Expression

α1,1 α2 − α1
2

α2,1 −4 α1α2 + 2 α1
3 + 2 α3

α2,2 16 α1
2α2 − 6 α2

2 − 6 α1
4 − 8 α1α3 + 4 α4

α3,1 9 α1
2α2 − 6 α1α3 − 3 α2

2 + 3 α4 − 3 α1
4

α3,2 6 α5 + 30 α1α2
2 − 42 α1

3α2 − 18 α2α3 + 12 α1
5 + 24 α1

2α3 − 12 α1α4

α3,3 −18 α3
2 − 27 α2α4 + 9 α6 − 30 α1

6 + 21 α2
3 + 36 α1

2α4 − 72 α1
3α3 + 126 α1

4α2 −
135 α1

2α2
2 + 108 α1α2α3 − 18 α1α5

α4,1 12 α1α2
2 − 16 α1

3α2 − 8 α2α3 + 12 α1
2α3 − 8 α1α4 + 4 α1

5 + 4 α5

α4,2 −12 α3
2−24 α2α4+8 α6−20 α1

6+16 α2
3+32 α1

2α4−56 α1
3α3+88 α1

4α2−96 α1
2α2

2+

80 α1α2α3 − 16 α1α5

α4,3 96 α2
2α3 + 60 α1

7 + 84 α1α3
2 + 432 α1

3α2
2 + 180 α1

4α3 − 48 α3α4 + 12 α7 − 36 α2α5 −
24 α1α6 + 144 α1α2α4 + 48 α1

2α5 − 96 α1
3α4 − 156 α1α2

3 − 300 α1
5α2 − 396 α1

2α2α3

α4,4 −140 α1
8 − 76 α2

4 − 48 α6α2 + 256 α3α4α1 − 40 α4
2 + 16 α8 − 64 α3α5 − 32 α1α7 +

1408 α1
3α2α3−336 α1

2α3
2+256 α1

4α4+144 α2
2α4−480 α1

5α3+160 α2α3
2+64 α1

2α6−
128 α1

3α5 − 1440 α1
4α2

2 + 832 α1
2α2

3 + 800 α1
6α2 − 768 α1α2

2α3 − 576 α1
2α2α4 +

192 α1α2α5

α5,1 −5 α3
2−10 α2α4 +5 α6−5 α1

6 +5 α2
3 +15 α1

2α4−20 α1
3α3 +25 α1

4α2−30 α1
2α2

2 +

30 α1α2α3 − 10 α1α5

α5,2 60 α2
2α3 + 30 α1

7 + 50 α1α3
2 + 240 α1

3α2
2 + 110 α1

4α3 − 30 α3α4 + 10 α7 − 30 α2α5 −
20 α1α6 + 100 α1α2α4 + 40 α1

2α5 − 70 α1
3α4 − 90 α1α2

3 − 160 α1
5α2 − 240 α1

2α2α3

α5,3 −105 α1
8 − 60 α2

4 − 45 α6α2 + 210 α3α4α1 − 30 α4
2 + 15 α8 − 60 α3α5 − 30 α1α7 +

1140 α1
3α2α3−270 α1

2α3
2+225 α1

4α4+120 α2
2α4−390 α1

5α3+135 α2α3
2+60 α1

2α6−
120 α1

3α5 − 1125 α1
4α2

2 + 660 α1
2α2

3 + 615 α1
6α2 − 630 α1α2

2α3 − 495 α1
2α2α4 +

180 α1α2α5

α5,4 −900 α1
2α4α3 + 80 α1

2α7 − 160 α1
3α6 − 620 α1

5α4 − 3200 α1
3α2

3 + 700 α1α2
4 +

3960 α1
5α2

2 − 720 α1
2α5α2 + 1840 α1

3α4α2 − 4100 α1
4α3α2 + 3600 α1

2α2
2α3 −

1140 α1α3
2α2 + 1040 α1

3α3
2 − 440 α2

3α3 + 440 α3α4α2 + 240 α1α6α2 + 320 α1α5α3 −
1020 α1α2

2α4 +20 α9−1820 α1
7α2 +180 α2

2α5 +320 α1
4α5 +180 α1α4

2 +1120 α1
6α3 +

80 α3
3 + 280 α1

9 − 40 α1α8 − 60 α7α2 − 80 α3α6 − 100 α4α5

α5,5 2400 α2α5α1
3−1350 α2

2α5α1+600 α3α5α2+300 α1α7α2−900 α6α2α1
2−1200 α3α5α1

2+

400 α1α6α3 + 3000 α3α4α1
3 + 5100 α1

2α2
2α4 + 12300 α1

5α2α3 + 5700 α1
2α2α3

2 +

4400 α1α2
3α3+400 α1

4α6−15000 α1
3α2

2α3−5750 α1
4α2α4−200 α1

3α7+500 α1α4α5+

225 α6α2
2 − 675 α4

2α1
2 − 3250 α1

4α3
2 − 625 α2

3α4 + 350 α3
2α4 − 600 α1α3

3 −
1050 α2

2α3
2 − 2800 α3α1

7 − 11550 α1
6α2

2 − 3300 α3α4α1α2 − 800 α5α1
5 + 325 α4

2α2 −
4375 α1

2α2
4 − 630 α1

10 + 100 α8α1
2 − 75 α5

2 + 255 α2
5 + 12000 α1

4α2
3 + 4550 α1

8α2 +

1550 α1
6α4 + 25 α10 − 50 α1α9 − 75 α2α8 − 100 α3α7 − 125 α4α6

Table 3: Relationship between the coefficients αi,j = αj,i and αi.
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Canonically, the parameter vector θ of models such as (1.2) is of length 2k−1 so that q = dim(vθ) ≥ 2k−1.
In principle, estimation accuracy should increase with q since the covariance of vθ is explicitly accounted for
via the weighting matrix Qθ.

Figure 2 compares the quantiles of the test statistic v′
θQθvθ for dim(vθ) = q with the quantiles of the

chi-square distribution with q degrees of freedom when q = 2, 3 for the model in (1.2) with θ = (0.5, 2, 1),
n = p for n = 40 and n = 320. While there is good agreement with the theoretical distribution for large
n, p, the deviation from the limiting result is not insignificant for moderate n, p. This justifies setting q = 2
for the testing procedures developed herein.

Hence, we suggest that for the estimation in (4.2), q = dim(vθ) = dim(θ). This choice provide robustness
in low to moderate dimensional settings where the deviations from the asymptotic result in Theorem 2.7
are not insignificant. Numerical simulations suggest that the resulting degradation in estimation accuracy
in high dimensional settings, from such a choice, is relatively small. This loss in performance is offset by an
increase in the speed of the underlying numerical optimization routine. This is the case because, though the
dimensionality of θ is the same, the matrix Q gets increasingly ill-conditioned for higher values of q thereby
reducing the efficiency of optimization methods .

4.2 Testing θ = θ0

Proposition 4.1. Define the vector vθ and the covariance matrix Qθ as

vθ =




TrS − p αΣ
1

TrS2 − p
(
αΣ

2 +
p

n
(αΣ

1 )2
)
−
(

2

β
− 1

)
αΣ

2

p

n


 (4.3a)

Qθ =
2

β




α̃2 − α̃2

1 2α̃3
1 + 2α̃3 − 4α̃1α̃2

2α̃3
1 + 2α̃3 − 4α̃1α̃2 4α̃4 − 8α̃1α̃3 − 6α̃2

2 + 16α̃2α̃
2
1 − 6α̃4

1



 (4.3b)

with β = 1 (or 2) when S is real (or complex) and α̃i ≡ α
eS
i given by

α̃1 =
p

n
αΣ

1 (4.4a)

α̃2 =
p

n
αΣ

2 +
p2

n2
(αΣ

1 )2 (4.4b)

α̃3 =
p

n
αΣ

3 + 3
p2

n2
αΣ

1 αΣ
2 +

p3

n3
(αΣ

1 )3 (4.4c)

α̃4 =
p

n
αΣ

4 + 4
p2

n2
αΣ

1 αΣ
3 + 2

p2

n2
(αΣ

2 )2 + 6
p3

n3
(αΣ

1 )2αΣ
2 +

p4

n4
(αΣ

1 )4. (4.4d)

and αΣ
i = (1/p)TrΣi =

∑k
j=1 ajt

i
j. Thus, for large p and n, vθ ∼ N (0,Qθ) so that

h(θ) := vT
θ Q−1

θ vθ ∼ χ2
2 (4.5)

Proof. This follows from Proposition 3.1. The correction term for the real case is discussed in a different
context in Dumitriu and Edelman [2004]. A matrix theoretic derivation in the real case (β = 1) can be found
in Srivastava [2005, Corollary 2.1, pp. 3].

We test for θ = θ0 by obtaining the test statistic

Hθ0 : h(θ0) = vT
θ0

Q−1
θ0

vθ0 (4.6)
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(a) p = n = 40: dim(v) = 2.
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(b) p = n = 320: dim(v) = 2.
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(c) p = n = 40: dim(v) = 3.
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(d) p = n = 320: dim(v) = 3.

Figure 2: Numerical simulations (when S is complex) illustrating the robustness of the distribution approx-
imation for the test statistic in (4.2) formed with dim(v) = 2 to moderate dimensional settings.
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where the vθ0 and Qθ0 are constructed as in (4.3a) and (4.3b), respectively. We reject the hypothesis for
large values of Hθ0 . For a choice of threshold γ, the asymptotic convergence of the test statistic to the χ2

2

distribution, implies that

Prob.(Hθ0 = 1|θ = θ0) ≈ Fχ2
2(γ). (4.7)

Thus, for large p and n, when γ = 5.9914, Prob.(Hθ0 = 1|θ = θ0) ≈ 0.95.

4.3 Estimating θ and testing θ = θ̂

When an θ̂ is obtained using (4.2) then we may test for θ = θ̂ by forming the testing statistic

Hbθ
: h(θ̂) = uT

bθ
W−1

bθ
ubθ

(4.8)

where the ubθ
, and Wbθ

are constructed as in (4.3a) and (4.3b), respectively. However, the sample covariance

matrix S can no longer be used since the estimate θ̂ was obtained from it. Instead, we form a test sample
covariance matrix constructed from ⌈(n/2)⌉ randomly chosen samples. Equivalently, since the samples are
assumed to be mutually independent and identically distributed, we can form the test matrix from the first
⌈(n/2)⌉ samples as

S =
1

⌈n
2 ⌉

⌈
n
2 ⌉∑

i=1

xix
′
i (4.9)

Note that αS
k will have to be recomputed using Σbθ

and c = p/⌈(n/2)⌉. The hypothesis θ = θ̂ is tested
by rejecting values of the test statistic greater than a threshold γ. The threshold is selected using the
approximation in (4.7). Alternately, the hypothesis can be rejected if the recentered and rescaled largest
eigenvalue of S is greater than the threshold γ. The threshold is selected using the quantiles of the (real or
complex) Tracy-Widom distribution. The recentering and rescaling coefficients are obtained by the procedure
described in [El Karoui, 2005].

4.4 Estimating θ for unknown model order

Suppose we have a family of models parameterized by the vector θ(k). The elements of θ(k) are the free
parameters of the model. For the model in (1.2), in the canonical case θ = (t1, . . . , tk−1, a1, . . . , ak) since

t1 + . . . tk−1 + tk = 1 so that dim(θ(k)) = 2k − 1. If some of the parameters in (1.2) are known, then the
parameter vector is modified accordingly.

When the model order is unknown, we select the model which has the minimum Akaike Information
Criterion . For the situation at hand we propose that

θ̂ = θ̂(bk) where k̂ = arg min
k∈N

{
uT

bθ(k) W−1
bθ(k)

ubθ(k) + log detWbθ(k)

}
+ 2 dim(θ(k)) (4.10)

where ubθ(k) and Wbθ(k) are constructed as described in Section 4.3 using the test sample covariance matrix
in (4.9). Alternately, a sequence of nested hypothesis tests using a largest eigenvalue based test as described
in [El Karoui, 2005] can be used. Note that we think of the eigenvalues of the sample covariance matrix on
which we are performing inference as a single sample and so applying the Bayesian Information Criterion
to this problem is meaningless. It would be useful to compare the performance of the proposed and the
nested hypothesis testing procedures in situations of practical interest. The full resolution of the model
selection issues encountered is beyond the scope of this article though for a simple example we demonstrate
the robustness of the proposed method in Section 5.1.
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5. Numerical simulations

Let Σθ be as in (1.2) with θ = (t1, a1, a2). When t1 = 0.5, a1 = 2 and a2 = 1 then half of the population
eigenvalues are of magnitude two while the remainder are of magnitude one. Let the unknown parameter
vector θ = (t, a) where t ≡ t1 and a ≡ a1. Using the procedure described in Section 3.1, the first four
moments can be obtained as (here c = p/n)

αS
1 = 1 + t(a − 1) (5.1a)

αS
2 =

(
−2 ac + a2c + c

)
t2 +

(
−1 + 2 ac− 2 c + a2

)
t + 1 + c (5.1b)

αS
3 =

`

−3 c
2
a
2 + a

3
c
2
− c

2 + 3 ac
2
´

t
3 +

`

3 c
2 + 3 c

2
a
2
− 3 ac− 6 ac

2
− 3 a

2
c + 3 a

3
c + 3 c

´

t
2

+
`

−3 c
2 + a

3
− 1− 6 c + 3 ac + 3 a

2
c + 3 ac

2
´

t + 1 + c
2 + 3 c (5.1c)

αS
4 =

`

6 a
2
c
3 + a

4
c
3
− 4 ac

3
− 4 a

3
c
3 + c

3
´

t
4

+
`

−6 c
2
− 12 a

3
c
2 + 12 ac

3
− 12 a

2
c
3 + 4 a

3
c
3 + 12 ac

2 + 6 a
4
c
2
− 4 c

3
´

t
3

+
`

−4 a
2
c− 4 ac− 12 ac

3
− 24 ac

2 + 6 a
4
c + 6 a

2
c
3 + 12 a

3
c
2 + 6 c− 6 c

2
a
2 + 6 c

3 + 18 c
2
− 4 a

3
c
´

t
2

+
`

−4 c
3 + 4 ac + 6 c

2
a
2 + 4 ac

3
− 1 + 12 ac

2
− 18 c

2 + 4 a
2
c− 12 c + 4 a

3
c + a

4
´

t

+1 + c
3 + 6 c + 6 c

2 (5.1d)

From the discussion in Section 3.2, we obtain the covariance of the second order limit distribution

Qθ =
2

β

2

4

c2(αS
2 − α2

1) c3
`

2(αS
1 )3 + 2αS

3 − 4αS
1 αS

2

´

c3
`

2(αS
1 )3 + 2αS

3 − 4αS
1 αS

2

´

c4
`

4αS
4 − 8αS

1 αS
3 − 6(αS

2 )2 + 16αS
2 (αS

1 )2 − 6(αS
1 )4

´

3

5. (5.2)

where β = 1 when S is real valued and β = 2 when S is complex valued.
We then use (4.2) to estimate θ and hence the unknown parameters t and a. Table 4 and 5 compares the

bias and mean squared error of the estimates for a and t respectively. Note the 1/p2 type decay in the mean
squared error and how the real case has twice the variance as the complex case. As expected by the theory of
maximum likelihood estimation, the estimates become increasingly normal for large p and n. This is evident
from Figure 3. As expected, the performance improves as the dimensionality of the system increases.

5.1 Robustness to model overspecification

Consider the situation when the samples are complex valued and the true covariance matrix Σ = 2I.
We erroneously assume that there are two blocks for the model in (1.2) and that a1 = 1 is known while
a := a2 and t := t1 are unknown and have to be estimated. We estimate θ = (a, t) using (4.2) as before.
The empirical cumulative distribution function (CDF) of t̂ over 4000 Monte-Carlo trials shown in Figure
4(d) shows that t̂ → 1 as p, n(p) → ∞. Figure 4(c) compares the quantiles of test statistic in (4.5) with that
of the chi-squared distribution with two degrees of freedom. The excellent agreement for modest values of
p and n validates the distributional approximation. Figures 4(a) and 4(b) plot the mean squared errors in
estimating a and t, respectively. As before, the mean squared exhibits a 1/p2 behavior. Table 6 shows the
1/p decay in the bias of estimating these parameters.

For this same example, the seventh column and eight column of Table 6 show the level at which a
sphericity and the 2 block hypothesis are accepted when the procedure descripted in (4.2) is applied and a
threshold is set at the 95% significance level. The ninth and tenth columns of Table 6 show the acceptance
rate for the 2 block hypothesis when the largest eigenvalue test proposed in [El Karoui, 2005] is applied on
a test sample covariance matrix formed using first ⌉n/2 samples and the original sample covariance matrix,
respectively. The largest eigenvalue value test has an acceptance rate closer to the 95% significance level
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(a) n = 0.5p.

Complex Case Real Case
p n Bias MSE MSE x p2/100 Bias MSE MSE x p2/100
20 10 0.0455 0.3658 1.4632 0.4862 1.2479 4.9915
40 20 -0.0046 0.1167 1.8671 0.2430 0.3205 5.1272
80 40 -0.0122 0.0337 2.1595 0.1137 0.08495 5.437
160 80 -0.0024 0.0083 2.1250 0.0598 0.02084 5.335
320 160 0.0008 0.0021 2.1790 0.0300 0.00528 5.406

(b) n = p.

Complex Case Real Case
p n Bias MSE MSE x p2/100 Bias MSE MSE x p2/100
20 20 -0.0137 0.1299 0.5196 0.2243 0.3483 1.3932
40 40 -0.0052 0.0390 0.6233 0.1083 0.0901 1.4412
80 80 -0.0019 0.0093 0.5941 0.0605 0.0231 1.4787
160 160 -0.0005 0.0024 0.6127 0.0303 0.0055 1.4106
320 320 -0.0001 0.0006 0.6113 0.0162 0.0015 1.5155

(c) n = 2 p.

Complex Case Real Case
p n Bias MSE MSE x p2/100 Bias MSE MSE x p2/100
20 40 -0.0119 0.0420 0.1679 0.1085 0.1020 0.4081
40 80 -0.0017 0.0109 0.1740 0.0563 0.0255 0.4079
80 160 -0.0005 0.0028 0.1765 0.0290 0.0063 0.4056
160 320 -0.0004 0.0007 0.1828 0.0151 0.0016 0.4139
320 640 0.0001 0.0002 0.1752 0.0080 0.0004 0.4024

Table 4: Quality of estimation of t = 0.5 for different values of p (dimension of observation vector) and n
(number of samples) – both real and complex case for the example in Section 5..

designed it was designed for. For all of the p and n values in Table 6, over the 4000 Monte-Carlo trials,
applying the procedure described in Section 4.4 produced the correct estimate k̂ = 1 for the order of the
model in (1.2) when Σ = 2I.
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(a) n = 0.5p.

Complex Case Real Case
p n Bias MSE MSE x p2/100 Bias MSE MSE x p2/100
20 10 0.1278 0.1046 0.4185 0.00748 0.1024 0.4097
40 20 0.0674 0.0478 0.7647 -0.01835 0.04993 0.7989
80 40 0.0238 0.0111 0.7116 -0.02240 0.01800 1.1545
160 80 0.0055 0.0022 0.5639 -0.02146 0.00414 1.0563
320 160 0.0007 0.0005 0.5418 -0.01263 0.00112 1.1692

(b) n = p.

Complex Case Real Case
p n Bias MSE MSE x p2/100 Bias MSE MSE x p2/100
20 20 0.0750 0.0525 0.2099 -0.0019 0.0577 0.2307
40 40 0.0227 0.0127 0.2028 -0.0206 0.0187 0.2992
80 80 0.0052 0.0024 0.1544 -0.0206 0.0047 0.3007
160 160 0.0014 0.0006 0.1499 -0.0126 0.0012 0.3065
320 320 0.0003 0.0001 0.1447 -0.0074 0.0003 0.3407

(c) n = 2 p.

Complex Case Real Case
p n Bias MSE MSE x p2/100 Bias MSE MSE x p2/100
20 40 0.0251 0.0134 0.0534 -0.0182 0.0205 0.0821
40 80 0.0049 0.0028 0.0447 -0.0175 0.0052 0.0834
80 160 0.0015 0.0007 0.0428 -0.0115 0.0014 0.0865
160 320 0.0004 0.0002 0.0434 -0.0067 0.0004 0.0920
320 640 0.0000 0.0000 0.0412 -0.0038 0.0001 0.0932

Table 5: Quality of estimation of a = 2 for different values of p (dimension of observation vector) and n
(number of samples) – both real and complex case for the example in Section 5..
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(a) ba: p = 320, n = 640.
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(b) bt: p = 320, p = 640.
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(c) ba: p = 320, n = 640. (Real valued)
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(d) bt: p = 320, n = 640. (Real valued)

Figure 3: Normal probability plots of the estimates of a and t (true values: a = 2, t = 0.5) for the example
in Section 5..
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(c) QQ plot: Test statistic in (4.5) for p = 320 =
2n.

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
(x

)

Empirical CDF (p = 10)

0.965 0.97 0.975 0.98 0.985 0.99 0.995 1 1.005
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F
(x

)

Empirical CDF (p = 320)

(d) Empirical CDF of t̂: n = p/2.

Figure 4: Performance of estimation algorithm when model order has been overspecified and S is complex.
The population covariance matrix Σ = 2I while we assume that a1 = 1 and estimate a := a2 and
t := t1 in (1.2).
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(a) n = p/2.

â â t̂ t̂ Sphericity 2 block λmax test λmax test
p n Bias Bias x p Bias Bias x p Acceptance Acceptance (full) (half)
10 5 0.3523 3.5232 -0.1425 -1.4246 0.9820 0.9801 1.0000 0.9698
20 10 0.1997 3.9935 -0.1157 -2.3148 0.9783 0.9838 0.9998 0.9710
40 20 0.1078 4.3114 -0.0783 -3.1336 0.9795 0.9870 0.9958 0.9713
80 40 0.0545 4.3561 -0.0463 -3.7018 0.9765 0.9873 0.9838 0.9720
160 80 0.0272 4.3530 -0.0251 -4.0175 0.9743 0.9828 0.9763 0.9643
320 160 0.0141 4.5261 -0.0133 -4.2580 0.9805 0.9885 0.9753 0.9675

(b) n = p.

â â t̂ t̂ Sphericity 2 block λmax test λmax test
p n Bias Bias x p Bias Bias x p Acceptance Acceptance (full) (half)
10 10 0.2087 2.0867 -0.1123 -1.1225 0.9793 0.9768 0.9998 0.9675
20 20 0.1050 2.0991 -0.0753 -1.5060 0.9773 0.9845 0.9965 0.9723
40 40 0.0558 2.2312 -0.0470 -1.8807 0.9850 0.9898 0.9898 0.9743
80 80 0.0283 2.2611 -0.0255 -2.0410 0.9813 0.9868 0.9773 0.9710
160 160 0.0137 2.1990 -0.0130 -2.0811 0.9805 0.9870 0.9790 0.9613
320 320 0.0067 2.1455 -0.0067 -2.1568 0.9775 0.9835 0.9608 0.9603

(c) n = 2p.

â â t̂ t̂ Sphericity 2 block λmax test λmax test
p n Bias Bias x p Bias Bias x p Acceptance Acceptance (full) (half)
10 20 0.1067 1.0674 -0.0717 -0.7171 0.9790 0.9810 0.9993 0.9708
20 40 0.0541 1.0811 -0.0442 -0.8830 0.9753 0.9858 0.9890 0.9708
40 80 0.0290 1.1581 -0.0257 -1.0272 0.9743 0.9845 0.9830 0.9695
80 160 0.0140 1.1161 -0.0131 -1.0497 0.9763 0.9850 0.9743 0.9658
160 320 0.0071 1.1302 -0.0068 -1.0883 0.9778 0.9830 0.9703 0.9578
320 640 0.0036 1.1549 -0.0035 -1.1237 0.9758 0.9833 0.9598 0.9608

Table 6: Performance of estimation algorithm when model order has been overspecified and S is complex.
The population covariance matrix Σ = 2I while we assume that a1 = 1 and estimate a := a2 and
t := t1 in (1.2).
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6. Inferential aspects of spiked covariance matrix models

Consider covariance matrix models whose eigenvalues are of the form λ1 ≥ λ2 ≥ . . . ≥ λk > λk+1 = . . . =
λp = λ. Such models arise when the signal occupies a k-dimensional subspace and the noise has covariance
λ I. Such models are referred to as spiked covariance matrix models. When k ≪ p, then for large p, for vθ

defined as in Proposition 3.1, the matrix Qθ may be constructed from the moments of the (null) Wishart
distribution [Dumitriu and Rassart, 2003] instead, which are given by

αW
k = λk

k−1∑

j=0

cj 1

j + 1

(
k

j

)(
k − 1

j

)
(6.1)

where c = p/n. Thus, for q = 2, Qθ is given by

Qθ ≡ Qλ =
2

β

[
λ2 c 2 λ3 (c + 1) c

2 λ3 (c + 1) c 2 λ4
(
2 c2 + 5 c + 2

)
c

]
. (6.2)

This substitution is motivated by Bai and Silverstein’s analysis [Bai and Silverstein, 2004] where it is shown
that when k is small relative to p, then the second order fluctuation distribution is asymptotically independent
of the “spikes.” When the multiplicities of the spike is known (say 1), then we let ti = 1/p and compute the
moments αS

j accordingly. The estimation problem thus reduces to

θ̂ = argmin
θ∈Θ

vT
θ Q−1

λ vθ with q = dim(vθ) = dim(θ) + 1 (6.3)

where λ is an element of θ when it is unknown.
Consider the problem of estimating the magnitude of the spike for the model in (1.2) with t1 = 1/p, and

a2 = 1 known and a1 = 10 unknown so that θ = a ≡ a1. We obtain the estimate θ̂ from (6.3) with λ = 1
wherein the moments αS

k given by

αS
1 =

−1 + a + p

p
(6.4a)

αS
2 =

a2p − 2 pc + c − 2 ac + cp2 + p2 − p + 2 pac + a2c

p2
(6.4b)

are obtained by plugging in t = 1/p into (5.1).
Table 7 summarizes the estimation performance for this example. Note the 1/p scaling of the mean

squared error and how the complex case has half the mean squared error. The estimates produced are
asymptotically normal as seen in Figure 5.

6.1 Impact of the sample eigenvalue phase transition phenomenon

Consider testing for the hypothesis that Σ = I. For the model in (1.2), which is equivalent to testing
θ = (1, 1), from the discussion in Section 4.2, we form the test statistic

HSph. : h(θ) = vT
θ Q−1

θ vθ (6.5)

where Qθ is given by (6.2) with λ = 1 and

vθ =




TrS − p

TrS2 − p
(
1 +

p

n

)
−
(

2

β
− 1

)
p

n




where c = p/n, as usual. We set a threshold γ = 5.9914 so that we accept the sphericity hypothesis whenever
h(θ) ≤ γ. This corresponds to the 95-th percentile of the χ2

2 distribution. Table 7(a) demonstrates how the
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test is able to accept the hypothesis when Σ = I close to the 0.95 significance level it was designed for. Table
7(b) shows the acceptance of the sphericity hypothesis when Σ = Σ = diag(10, 1, . . . , 1) instead.

Table 9 illustrates the performance of the sphericity test proposed by Ledoit and Wolf [2002] which
consists of forming the test statistic

LW(S) :=
np

2

[
1

p
Tr[(S − I)2] − p

n

[
1

p
TrS

]2
+

p

n

]
→ χ2

p(p+1)/2 (6.6)

and rejecting for large values above a threshold that is determined by using the asymptotic chi-squared
approximation. Comparing Tables 9 and 8 reveals the (slightly) increased power of the test derived based
on the framework developed in rejecting spiked models. Note how when p/n is large, both tests erroneously
accept the null hypothesis an inordinate number of times. The faulty inference provided by the test based
on the methodologies developed is not surprising given the phase transition phenomenon for the sample
eigenvalues described by the following result due to Baik and Silverstein [2004], Paul [2005] and others [Baik
et al., 2005].

Proposition 6.1. Let S denote a sample covariance matrix formed from an p×n matrix of Gaussian obser-
vations whose columns are independent of each other and identically distributed with mean 0 and covariance
Σ. Denote the eigenvalues of Σ by λ1 ≥ λ2 > . . . ≥ λk > λk+1 = . . . λp = λ. Let lj denote the j-th largest

eigenvalue of R̂. Then as p, n → ∞ with cn = p/n → c ∈ (0,∞),

lj →






λj

(
1 +

λ c

λj − λ

)
if λj > λ (1 +

√
c)

λ (1 +
√

c)2 if λj ≤ λ(1 +
√

c)

(6.7)

where the convergence is almost surely.

Since the inference methodologies we propose in this paper exploit the distributional properties of traces of
powers of the sample covariance matrix, Proposition 6.1 pinpoints the fundamental inability of the sphericity
test proposed to reject the hypothesis Σ = I whenever (for large p, n),

λi ≤ 1 +

√
p

n

For the example considered, λ1 = 10, so that the above condition is met whenever p/n > ct = 81. For p/n
on the order of ct, the resulting inability to correctly reject the null hypothesis can be attributed to this
phenomenon and the fluctuations of the largest eigenvalue.

Canonically speaking, eigen-inference methodologies which rely on traces of powers of the sample covari-
ance matrix will be unable to differentiate between closely spaced population eigenvalues in high-dimensional,
sample sized starved settings. This impacts the quality of the inference in a fundamental manner that is
difficult to overcome. At the same time, however, the results in Baik and Silverstein [2004] suggest that
if the practitioner has reason to believe that the population eigenvalues can be split into several clusters
about ai ±

√
p/n, then the use of the model in (1.2) with a block subspace structure, where the individual

blocks of sizes p1, . . . , pk are comparable to p, is justified. In such situations, the benefit of the proposed
eigen-methodologies will be most apparent and might motivate experimental design that ensures that this
condition is met.
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(a) n = p.

Complex Case Real Case
p n Bias MSE MSE x p Bias MSE MSE x p
10 10 -0.5528 9.3312 93.3120 -0.5612 18.4181 184.1808
20 20 -0.2407 4.8444 96.8871 -0.2005 9.6207 192.4143
40 40 -0.1168 2.5352 101.4074 -0.0427 4.9949 199.7965
80 80 -0.0833 1.2419 99.3510 -0.03662 2.4994 199.9565
160 160 -0.0371 0.6318 101.0949 0.03751 1.2268 196.3018
320 320 -0.0125 0.3186 101.9388 0.04927 0.6420 204.4711

(b) n = 1.5 p.

Complex Case Real Case
p n Bias MSE MSE x p Bias MSE MSE x p
10 15 -0.3343 6.6954 66.9537 -0.3168 12.7099 127.0991
20 30 -0.1781 3.2473 64.9454 -0.1454 6.4439 128.8798
40 60 -0.1126 1.6655 66.6186 -0.08347 3.2470 129.88188
80 120 -0.0565 0.8358 66.8600 -0.02661 1.6381 131.04739
160 240 -0.0287 0.4101 65.6120 0.02318 0.8534 136.5475
320 480 -0.0135 0.2083 66.6571 0.02168 0.4352 139.2527

(c) n = 2 p.

Complex Case Real Case
p n Bias MSE MSE x p Bias MSE MSE x p
10 20 -0.2319 4.9049 49.0494 -0.2764 9.6992 96.9922
20 40 -0.1500 2.5033 50.0666 -0.1657 4.6752 93.5043
40 80 -0.0687 1.2094 48.3761 -0.03922 2.5300 101.2007
80 160 -0.0482 0.6214 49.7090 -0.02426 1.2252 98.0234
160 320 -0.0111 0.3160 50.5613 0.01892 0.6273 100.3799
320 640 -0.0139 0.1580 50.5636 0.02748 0.3267 104.5465

Table 7: Algorithm performance for different values of p (dimension of observation vector) and n (number
of samples) – both real and complex case.
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(a) p = 320, n = 640 (Complex S).
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(b) p = 320, n = 640 (Real S).

Figure 5: Normal probability plots of the spiked magnitude estimate (true value = 10).
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(a) Empirical probability of accepting the null hypothesis when Σ = I.

n = 10 n = 20 n = 40 n = 80 n = 160 n = 320 n = 640
p = 10 0.9329 0.9396 0.9391 0.9411 0.9410 0.9464 0.9427
p = 20 0.9373 0.9414 0.9408 0.9448 0.9411 0.9475 0.9450
p = 40 0.9419 0.9482 0.9487 0.9465 0.9467 0.9451 0.9495
p = 80 0.9448 0.9444 0.9497 0.9496 0.9476 0.9494 0.9510
p = 160 0.9427 0.9413 0.9454 0.9505 0.9519 0.9473 0.9490
p = 320 0.9454 0.9468 0.9428 0.9451 0.9515 0.9499 0.9504

(b) Empirical probability of accepting the null hypothesis when Σ = diag(10, 1, . . . , 1).

n = 10 n = 20 n = 40 n = 80 n = 160 n = 320 n = 640
p = 10 0.0253 0.0003 - - - - -
p = 20 0.0531 0.0029 - - - - -
p = 40 0.1218 0.0093 - - - - -
p = 80 0.2458 0.0432 0.0080 - - - -
p = 160 0.4263 0.1466 0.0002 - - - -
p = 320 0.6288 0.3683 0.0858 0.0012 - - -

Table 8: The null hypothesis is accepted when the test statistic in (6.5) exceeds the 95% significance level
for the χ2 distribution with 2 degrees of freedom, i.e., whenever h(θ) ≤ 5.9914.

(a) Empirical probability of accepting the null hypothesis when Σ = I (Ledoit-Wolf test).

n = 10 n = 20 n = 40 n = 80 n = 160 n = 320 n = 640
p = 10 0.9483 0.9438 0.9520 0.9493 0.9510 0.9553 0.9465
p = 20 0.9498 0.9473 0.9510 0.9513 0.9498 0.9495 0.9423
p = 40 0.9428 0.9545 0.9468 0.9448 0.9488 0.9460 0.9478
p = 80 0.9413 0.9490 0.9513 0.9540 0.9480 0.9500 0.9460
p = 160 0.9438 0.9495 0.9475 0.9520 0.9508 0.9543 0.9448
p = 320 0.9445 0.9475 0.9493 0.9490 0.9485 0.9468 0.9453

(b) Empirical probability of the Ledoit-Wolf test accepting the null hypothesis when Σ =
diag(10, 1, . . . , 1).

n = 10 n = 20 n = 40 n = 80 n = 160 n = 320 n = 640
p = 10 0.0345 0.0008 - - - - -
p = 20 0.0635 0.0028 - - - - -
p = 40 0.1283 0.0130 - - - - -
p = 80 0.2685 0.0450 0.0008 - - - -
p = 160 0.4653 0.1575 0.0070 - - - -
p = 320 0.6533 0.3700 0.0773 0.0010 - - -

Table 9: The null hypothesis is accepted when the test statistic in (6.6) exceeds the 95% significance level
for the χ2 distribution with p(p + 1)/2 degrees of freedom.
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7. Extensions and lingering issues

In the development of the estimation procedures in this article, we ignored the correction term for the
mean that appears in the real covariance matrix case (see Proposition 3.1). This was because Bai and
Silverstein expressed it as a contour integral which appeared challenging to compute (see Eq. (1.6) in Bai
and Silverstein [2004]). It is desirable to include this extra term in the estimation procedure if it can be
computed efficiently using symbolic techniques. The recent work of Anderson and Zeitouni [Anderson and
Zeitouni, 2006], despite its ambiguous title, represents a breakthrough on this and other fronts.

Anderson and Zeitouni encode the correction term in the coefficients of a power series that can be directly
computed from the limiting moment series of the sample covariance matrix (see Theorem 3.4 [Anderson and
Zeitouni, 2006]). Furthermore, they have expanded the range of the theory for the fluctuations of traces of
powers of large Wishart-like sample covariance matrices, in the real sample covariance matrix case, to the
situation when the entries are composed from a broad class of admissible non-Gaussian distributions. In
such a scenario, the correction term takes into account the fourth moment of the distribution (see Eq. (5)
and Theorems 3.3-3.4 in [Anderson and Zeitouni, 2006]). This latter development might be of use in some
practical settings where the non-Gaussianity is well characterized. We have yet to translate their results
into a computational recipe for determining the correction term though we intend to do so at a later date
along with an Open Source distribution of a software implementation based on the principles outlined in
this paper. The numerical results presented show the consistency of the proposed estimators; it would be
of interest to establish this analytically and identify conditions in the real covariance matrix case, where
ignoring the correction term in the mean can severely degrade the quality of estimation. The issue of how a
local test that exploits global information, of the sort proposed by El Karoui [2005], compares to the global
test developed in this article in terms of hypothesis discriminatory power is an unresolved question of great
interest. A more systematic investigation is needed of the efficacy of various model order selection techniques
for the problem considered.
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8. Appendix: Random Matrices and Free Probability Theory

8.1 Moments of random matrices and asymptotic freeness

Assume we know the eigenvalue distribution of two matrices A and B. What can we say about the
eigenvalue distribution of the sum A+B of the matrices? Of course, the latter is not just determined by the
eigenvalues of A and the eigenvalues of B, but also by the relation between the eigenspaces of A and of B.
Actually, it is a quite hard problem (Horn’s conjecture) — which was only solved recently — to characterize
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all possible eigenvalue distributions of A + B. However, if one is asking this question in the context of
N × N -random matrices, then in many situations the answer becomes deterministic in the limit N → ∞.

Definition 8.1. Let A = (AN )N∈N be a sequence of N × N -random matrices. We say that A has a limit
eigenvalue distribution if the limit of all moments

αn := lim
N→∞

E[tr(An
N )] (n ∈ N)

exists, where E denotes the expectation and tr the normalized trace.

Using the language of limit eigenvalue distribution (see Def. 2.2), our question becomes: Given two
random matrix ensembles of N × N -random matrices, A = (AN )N∈N and B = (BN )N∈N, with limit
eigenvalue distribution, does also their sum C = (CN )N∈N, with CN = AN + BN , have a limit eigenvalue
distribution, and furthermore, can we calculate the limit moments αC

n of C out of the limit moments (αA
k )k≥1

of A and the limit moments (αB
k )k≥1 of B in a deterministic way. It turns out that this is the case if the

two ensembles are in generic position, and then the rule for calculating the limit moments of C are given by
Voiculescu’s concept of “freeness”.

Theorem 8.2 (Voiculescu [1991]). Let A and B be two random matrix ensembles of N×N -random matrices,
A = (AN )N∈N and B = (BN )N∈N, each of them with a limit eigenvalue distribution. Assume that A and
B are independent (i.e., for each N ∈ N, all entries of AN are independent from all entries of BN ), and
that at least one of them is unitarily invariant (i.e., for each N , the joint distribution of the entries does
not change if we conjugate the random matrix with an arbitrary unitary N ×N matrix). Then A and B are
asymptotically free in the sense of the following definition.

Definition 8.3 (Voiculescu [1985]). Two random matrix ensembles A = (AN )N∈N and B = (BN )N∈N with
limit eigenvalue distributions are asymptotically free if we have for all p ≥ 1 and all n(1), m(1), . . . , n(p),
m(p) ≥ 1 that

lim
N→∞

E
[
tr
{
(A

n(1)
N − αA

n(1)1) · (B
m(1)
N − αB

m(1)1) · · · (An(p) − αA
n(p)1) · (Bm(p) − αB

m(p)1)
}]

= 0

One should realize that asymptotic freeness is actually a rule which allows to calculate all mixed moments
in A and B, i.e. all expressions

lim
N→∞

E[tr(An(1)Bm(1)An(2)Bm(2) · · ·An(p)Bm(p))]

out of the limit moments of A and the limit moments of B. In particular, this means that all limit moments
of A + B (which are sums of mixed moments) exist, thus A + B has a limit distribution, and are actually
determined in terms of the limit moments of A and the limit moments of B. The actual calculation rule is
not directly clear from the above definition but a basic result of Voiculescu shows how this can be achieved
by going over from the moments αn to new quantities κn. In [Speicher, 1994], the combinatorial structure
behind these κn was revealed and the name “free cumulants” was coined for them.

Definition 8.4 (Voiculescu [1986], Speicher [1994]). Given the moments (αn)n≥1 of some distribution (or
limit moments of some random matrix ensemble), we define the corresponding free cumulants (κn)n≥1 by
the following relation between their generating power series: If we put

M(x) := 1 +
∑

n≥1

αnxn and C(x) := 1 +
∑

n≥1

κnxn,

then we require as a relation between these formal power series that

C(xM(x)) = M(x).
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Voiculescu actually formulated the relation above in a slightly different way using the so-called R-
transform R(x), which is related to C(x) by the relation

C(x) = 1 + zR(x)

and in terms of the Cauchy transform G(x) corresponding to a measure with moments αn, which is related
to M(x) by

G(x) =
M( 1

x )

x
.

In these terms the equation C(xM(x)) = M(x) says that

1

G(x)
+ R(G(x)) = x, (8.1)

i.e., that G(x) and K(x) := 1
x + R(x) are inverses of each other under composition.

One should also note that the relation C(xM(x)) = M(x) determines the moments uniquely in terms
of the cumulants and the other way around. The relevance of the κn and the R-transform for our problem
comes from the following result of Voiculescu, which provides, together with (8.1), a very efficient way for
calculating eigenvalue distributions of the sum of asymptotically free random matrices.

Theorem 8.5 (Voiculescu [1986]). Let A and B be two random matrix ensembles which are asymptotically
free. Denote by κA

n , κB
n , κA+B

n the free cumulants of A, B, A + B, respectively. Then one has for all n ≥ 1
that

κA+B
n = κA

n + κB
n .

Alternatively,
RA+B(x) = RA(x) + RB(x).

This theorem is one reason for calling the κn cumulants (as they linearize the ”free convolution” in the
same way as the usual convolution is linearized by classical cumulants), but there is also another justification
for this, namely they are also the limit of classical cumulants of the entries of our random matrix, in the
case that this is unitarily invariant.

Theorem 8.6 (Collins et al.). Let A = (AN )N∈N be a unitarily invariant random matrix ensemble of
N × N random matrices AN whose limit eigenvalue distribution exists. Then the free cumulants of this
matrix ensemble can also be expressed as the limit of special classical cumulants of the entries of the random

matrices: If AN = (a
(N)
ij )N

i,j=1, then

κA
n = lim

N→∞
Nn−1 · kn

(
a
(N)
i(1)i(2), a

(N)
i(2)i(3), . . . , a

(N)
i(n),i(1)

)

for any choice of distinct i(1), . . . , i(n).

8.2 Fluctuations of random matrices and asymptotic second order freeness

There are many more refined questions about the limiting eigenvalue distribution of random matrices. In
particular, questions around fluctuations have received a lot of interest in the last decade or so. The main
motivation for introducing the concept of “second order freeness” was to understand the global fluctuations
of the eigenvalues, which means that we look at the probabilistic behavior of traces of powers of our matrices.
The limiting eigenvalue distribution, as considered in the last section, gives us the limit of the average of
this traces. However, one can make more refined statements about their distributions. Consider a random
matrix A = (AN )N∈N and look on the normalized traces tr(Al

N ). Our assumption of a limit eigenvalue
distribution means that the limits αl := limN→∞ E[tr(Al

N )] exist. It turned out that in many cases the
fluctuation around this limit,

tr(Al
N ) − αl
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is asymptotically Gaussian of order 1/N ; i.e., the random variable

N · (tr(Al
N ) − αl) = Tr(Al

N ) − Nαl = Tr(Al
N − αl1)

(where Tr denotes the unnormalized trace) converges for N → ∞ to a normal variable. Actually, the whole
family of centered unnormalized traces (Tr(Al

N ) − Nαl)l≥1 converges to a centered Gaussian family. (One
should note that we restrict all our considerations to complex random matrices; in the case of real random
matrices there are additional complications, which will be addressed in some future investigations.) Thus
the main information about fluctuations of our considered ensemble is contained in the covariance matrix of
the limiting Gaussian family, i.e., in the quantities

αm,n := lim
N→∞

cov(Tr(Am
N ), Tr(An

N )).

Let us emphasize that the αn and the αm,n are actually limits of classical cumulants of traces; namely of the
expectation as first and the variance as second cumulant. Nevertheless, the α’s will behave and will also be
treated like moments; accordingly we will call the αm,n ‘fluctuation moments’. We will below define some
other quantities κm,n, which take the role of cumulants in this context.

This kind of convergence to a Gaussian family was formalized in [Mingo and Speicher, 2006] by the notion
of ”second order limit distribution” (see our Def. 2.5).

Definition 8.7. Let A = (AN )N∈N be an ensemble of N × N random matrices AN . We say that it has a
second order limit distribution if for all m, n ≥ 1 the limits

αn := lim
N→∞

k1(tr(A
n
N ))

and
αm,n := lim

N→∞
k2(Tr(Am

N ), Tr(An
N ))

exist and if

lim
N→∞

kr

(
Tr(A

n(1)
N ), . . . , Tr(A

n(r)
N )

)
= 0

for all r ≥ 3 and all n(1), . . . , n(r) ≥ 1.

We can now ask the same kind of question for the limit fluctuations as for the limit moments; namely, if
we have two random matrix ensembles A and B and we know the second order limit distribution of A and
the second order limit distribution of B, does this imply that we have a second order limit distribution for
A+B, and, if so, is there an effective way for calculating it. Again, we can only hope for a positive solution
to this if A and B are in a kind of generic position. As it turned out, the same requirements as before are
sufficient for this. The rule for calculating mixed fluctuations constitutes the essence of the definition of the
concept of second order freeness.

Theorem 8.8 (Mingo et al.). Let A and B be two random matrix ensembles of N × N -random matrices,
A = (AN )N∈N and B = (BN )N∈N, each of them having a second order limit distribution. Assume that A

and B are independent and that at least one of them is unitarily invariant. Then A and B are asymptotically
free of second order in the sense of the following definition.

Definition 8.9 (Mingo and Speicher [2006]). Consider two random matrix ensembles A = (AN )N∈N and
B = (BN )N∈N, each of them with a second order limit distribution. Denote by

YN

(
n(1), m(1), . . . , n(p), m(p)

)

the random variable

Tr
(
(A

n(1)
N − αA

n(1)1)(B
m(1)
N − αB

m(1)1) · · · (An(p)
N − αA

n(p)1)(B
m(p)
N − αB

m(p)1)
)
.
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The random matrices A = (AN )N∈N and B = (BN )N∈N are asymptotically free of second order if for all
n, m ≥ 1

lim
N→∞

k2

(
Tr(An

N − αA
n 1), Tr(Bm

N − αB
m1)

)
= 0

and for all p, q ≥ 1 and n(1), . . . , n(p),m(1), . . . , m(p),ñ(1), . . . , ñ(q), m̃(1), . . . , m̃(q) ≥ 1 we have

lim
N→∞

k2

(
YN

(
n(1), m(1), . . . , n(p), m(p)

)
, YN

(
ñ(1), m̃(2), . . . , ñ(q), m̃(q)

))
= 0

if p 6= q, and otherwise (where we count modulo p for the arguments of the indices, i.e., n(i + p) = n(i))

lim
N→∞

k2

(
YN

(
n(1), m(1), . . . , n(p), m(p)

)
, YN

(
ñ(p), m̃(p), . . . , ñ(1), m̃(1)

))

=

p∑

l=1

p∏

i=1

(
αA

n(i+l)+ñ(i) − αA
n(i+l)α

A
ñ(i)

)(
αB

m(i+l)+m̃(i+1) − αB
m(i+l)α

B
m̃(i+1)

)
.

Again, it is crucial to realize that this definition allows one (albeit in a complicated way) to express every
second order mixed moment, i.e., a limit of the form

lim
N→∞

k2

(
Tr(A

n(1)
N B

m(1)
N · · ·An(p)

N B
m(p)
N ), Tr(A

ñ(1)
N B

m̃(1)
N · · ·Añ(q)

N B
m̃(q)
N )

)

in terms of the second order limits of A and the second order limits of B. In particular, asymptotic freeness
of second order also implies that the sum A + B of our random matrix ensembles has a second order limit
distribution and allows one to express them in principle in terms of the second order limit distribution of
A and the second order limit distribution of B. As in the case of first order freeness, it is not clear at all
how this calculation of the fluctuations of A + B out of the fluctuations of A and the fluctuations of B

can be performed effectively. In [Collins et al.] we were able to solve this problem by providing a second
order cumulant machinery, similar to the first order case. Again, the idea is to go over to quantities which
behave like cumulants in this setting. The actual description of those relies on combinatorial objects (annular
non-crossing permutations), but as before this can be reformulated in terms of formal power series. Let us
spell out the definition here in this form.

Definition 8.10 (Collins et al.). Let (αn)n≥1 and (αm,n)m,n≥1 describe the first and second order limit
moments of a random matrix ensemble. We define the corresponding first and second order free cumulants
(κn)n≥1 and (κm,n)m,n≥1 by the following requirement in terms of the corresponding generating power series.
Put

C(x) := 1 +
∑

n≥1

κnxn, C(x, y) :=
∑

m,n≥1

κm,nxmyn

and
M(x) := 1 +

∑

n≥1

αnxn, M(x, y) :=
∑

m,n≥1

αm,nxmyn.

Then we require as relations between these formal power series that

C(xM(x)) = M(x) (8.2)

and for the second order

M(x, y) = H
(
xM(x), yM(y)

)
·

d
dx(xM(x))

M(x)
·

d
dy (yM(y))

M(y)
, (8.3)

where

H(x, y) := C(x, y) − xy
∂2

∂x∂y
log
(xC(y) − yC(x)

x − y

)
, (8.4)
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or equivalently,

M(x, y) = C
(
xM(x), yM(y)

)
·

d
dx (xM(x))

M(x)
·

d
dy (yM(y))

M(y)
+xy

( d
dx(xM(x)) · d

dy (yM(y))

(xM(x) − yM(y))2
− 1

(x − y)2

)
. (8.5)

As in the first order case, instead of the moment power series M(x, y) one can consider a kind of second
order Cauchy transform, defined by

G(x, y) :=
M( 1

x , 1
y )

xy
.

If we also define a kind of second order R transform R(x, y) by

R(x, y) :=
1

xy
C(x, y),

then the formula (8.5) takes on a particularly nice form:

G(x, y) = G′(x)G′(y)
{
R(G(x), G(y)) +

1

(G(x) − G(y))2

}
− 1

(x − y)2
. (8.6)

G(x) is here, as before, the first order Cauchy transform, G(x) = 1
xM(1/x).

The κm,n defined above deserve the name “cumulants” as they linearize the problem of adding random
matrices which are asymptotically free of second order. Namely, we have the following theorem, which pro-
vides, together with (8.6), an effective machinery for calculating the fluctuations of the sum of asymptotically
free random matrices.

Theorem 8.11 (Collins et al.). Let A and B be two random matrix ensembles which are asymptotically
free. Then one has for all m, n ≥ 1 that

κA+B
n = κA

n + κB
n and κA+B

m,n = κA
m,n + κB

m,n.

Alternatively,
RA+B(x) = RA(x) + RB(x)

and
RA+B(x, y) = RA(x, y) + RB(x, y).

Again, one can express the second order cumulants as limits of classical cumulants of entries of a unitarily
invariant matrix. In contrast to the first order case, we have now to run over two disjoint cycles in the indices
of the matrix entries.

Theorem 8.12 (Collins et al.). Let A = (AN )N∈N be a unitarily invariant random matrix ensemble which
has a second order limit distribution. Then the second order free cumulants of this matrix ensemble can also

be expressed as the limit of classical cumulants of the entries of the random matrices: If AN = (a
(N)
ij )N

i,j=1,
then

κA
m,n = lim

N→∞
Nm+n · km+n

(
a
(N)
i(1)i(2), a

(N)
i(2)i(3), . . . , a

(N)
i(m),i(1), a

(N)
j(1)j(2), a

(N)
j(2)j(3), . . . , a

(N)
j(n),j(1)

)

for any choice of distinct i(1), . . . , i(m), j(1), . . . , j(n).
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8.3 Moments and Fluctuations of Wishart Matrices and Proof of Theorem 2.7

Wishart matrices, in the large size limit, fit quite well into the frame of free probability theory of first
and second order (actually, they take over the role of Poisson distributions in that theory). In particular,
their free cumulants of first and second order are quite easy to determine and are of a particularly nice form.
We will use this to give a proof of Theorem 2.7. The statements in that theorem go back to the work of
Bai and Silverstein [2004]. They give a more direct proof via analytic calculations of the Cauchy transforms.
We prefer here, however, to show how Wishart matrices fit conceptually into the frame of free probability
theory. At the end of the section we will also point out the generalization of formula (2.3b) to the case of
random covariance matrices.

Let us remark that whereas the results around first order freeness are valid for complex as well as real
random matrices, this is not the case any more for the second order; there are some complications to be
dealt with in this case and at the moment the theory of second order freeness for real random matrices has
not yet been developed. Thus our proof of the fluctuation formula (2.3b) will only cover the complex case.
The fact that the real case differs from the complex case by a factor 2 can be found in the work of Bai and
Silverstein [2004].

Instead of looking on the Wishart matrix S := 1
nXX′ from Equation (1.1) we will consider the closely

related matrix

S̃ :=
1

n
X′X.

Note that S is a p × p-matrix, whereas S̃ is an n × n matrix. The relation between the spectral behavior
of those two matrices is quite straightforward, namely they have the same non-zero eigenvalues, which are
filled up with additional zeros for the larger one. Thus the transition between these two matrices is very
easy; their eigenvalue distributions are related by a rescaling (since the first order moments αn go with the
normalized trace) and their fluctuations are the same (since the second order moments αm,n go with the

unnormalized trace). The reason for considering S̃ instead of S is the following nice description of its first
and second order distribution. In this theorem we will realize the Wishart matrix S = 1

nXX′ with covariance

matrix Σ in the form Σ1/2YY′Σ1/2 where Y is a p × n Gaussian random matrix with independent entries
of mean zero and variance 1/n. The matrix S̃ takes then on the form

S̃ = Y′ΣY.

Note that we allow Σ to be itself random in the following theorem.

Theorem 8.13 (Nica and Speicher [1996], Mingo and Speicher [2006]). Let Σ = (Σp)p∈N be a random
matrix ensemble of selfadjoint p × p-matrices and consider in addition a Gaussian ensemble Y = (Yp)p∈N

of non-selfadjoint rectangular Gaussian p × n-random matrices (with mean zero and variance 1/n for the
entries) such that Y and Σ are independent. Put

S̃ := (Y′
pΣpYp)p∈N.

In the following we consider the limit

p, n → ∞ such that lim
p

n
=: c

for some fixed c ∈ (0,∞).
(1) Assume that the limit eigenvalue distribution of Σ = (Σp)p∈N exists for p → ∞. Then S̃, considered as

an ensemble of n × n-random matrices Y′
pΣpYp, has a limit eigenvalue distribution. This limit eigenvalue

distribution is determined by the fact that its free cumulants are given by the scaled corresponding limit
moments of Σ, i.e., for all n ≥ 1 we have

κS̃
n = cαΣ

n .
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(2) Assume that we are in the complex case and that Σ = (Σp)p∈N has a second order limit distribution

for p → ∞. Then S̃ has a second order limit distribution, which is determined as follows: for all m, n ≥ 1
we have

κS̃
n = cαΣ

n and κS̃
m,n = αΣ

m,n.

The first order statement of this theorem is due to Nica and Speicher, see [Nica and Speicher, 2006], the
second order statement follows from the calculations in [Mingo and Speicher, 2006]. We will now use this
theorem to prove our Theorem 2.7 in the complex case.
Proof. If

MΣ(x) = 1 +
∑

n≥1

αΣ
nxn

is the generating power series for the limit moments of Σ, then the above theorem says that the generating
power series CS̃(x) for the free cumulants of S̃ is related with MΣ(x) by

CS̃(x) = 1 +
∑

n≥1

κS̃
nxn

= 1 + c
∑

n≥1

αΣ
nxn

= (1 − c) + cMΣ(x).

Thus, by the general relation CS̃(xMS̃(x)) = MS̃(x), we get the generating power series MS̃(x) for the limit

moments of S̃ as a solution to the equation

1 − c + cMΣ[xMS̃(x)] = MS̃(x). (8.7)

Let us now rewrite this for the Wishart matrix S. Recall that the moments of S and the moments of S̃

are related by a simple scaling factor, resulting in a relation of the form

MS̃(x) = c (MS(x) − 1) + 1.

This gives
MS(x) = MΣ[x(cMS(x) − c + 1)].

Rewriting this in terms of

g(x) :=
1

x
MS(1/x) and gΣ(x) :=

1

x
MΣ(1/x)

yields formula (2.1).
In order to get the result for second order one only has to observe that the fluctuations of a non-random

covariance matrix vanish identically, hence CS̃(x, y) = CS(x, y) = 0, and thus (8.5) reduces directly to (2.3).

If Σ is itself a random matrix with a second order limit distribution then we have (at least in the complex
case) more general that

CS̃(x, y) = MΣ(x, y)

and thus 8.5

MS(x, y) = MS̃(x, y) = MΣ

(
xMS̃(x), yMS̃(y)

)
·

d
dx(xMS̃(x))

MS̃(x)
·

d
dy (yMS̃(y))

MS̃(y)

+ xy
( d

dx(xMS̃(x)) · d
dy (yMS̃(y))

(xMS̃(x) − yMS̃(y))2
− 1

(x − y)2

)
. (8.8)



Bibliography

Greg W. Anderson and Ofer Zeitouni. A CLT for a band matrix model. Probab. Theory Related Fields, 134
(2):283–338, 2006. ISSN 0178-8051.

T. W. Anderson. Asymptotic theory of principal component analysis. Annals of Math. Statistics, 34:122–248,
1963.

Z. D. Bai and J. W. Silverstein. CLT for linear spectral statistics of large-dimensional sample covariance
matrices. Ann. Probab., 32(1A):553–605, 2004. ISSN 0091-1798.

Z.D. Bai and J. W. Silverstein. No eigenvalues outside the support of the limiting spectral distribution of
large dimensional sample covariance matrices. Ann. Probab., 26, No. 1:316–345, 1998.

J. Baik and J. W. Silverstein. Eigenvalues of large sample covariance matrices of spiked population models.
http://arxiv.org/math.ST/048165, 2004.
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