Problem set 1

This problem set is due in class on Feb 18th, 2015.

1. Exercise 1-2 of the bipartite matching notes.
2. Exercise 1-4 of the bipartite matching notes.
3. Exercise 1-5 of the bipartite matching notes.
4. (More difficult.) Let $S=\{1,2, \cdots, n\}$. Let A_{k} be the set of all subsets of S of cardinality k (thus $\left|A_{k}\right|=\binom{n}{k}$). Let $k<\frac{n}{2}$. Consider the graph G_{k} with bipartition A_{k} and A_{k+1}, and with $E=\left\{(a, b) \mid a \in A_{k}, b \in A_{k+1}\right.$ and $\left.a \subset b\right\}$.
(a) Prove that the maximum matching in G_{k} has size A_{k} (remember $k<n / 2$).
(b) Prove Sperner's lemma. The maximum number of subsets of S such that no subset is contained into another is $\binom{n}{\lfloor n / 2\rfloor}$.
