Problem Set 3

This problem set is due in class on April 12th, 2012.

1. Given a full rank matrix $A \in \mathbb{R}^{n \times n}$ (true also for any field F), let R and C denote the indices of the rows and columns of A. Given $I \subset R$, show using matroid intersection that there exists $J \subset C$ with $|I|=|J|$ such that both $A(I, J)$ and $A(R \backslash I, C \backslash J)$ are of full rank.
2. Suppose we are given an undirected graph $G=(V, E)$, and additional vertex $s \notin V$, an integer k, and we would like to add the minimum number of edges between s and vertices of V (multiple edges are allowed) such that the resulting graph H on $V+s$ has k edge-disjoint paths between any two vertices of V (i.e. the only cut that could possibly have fewer than k edges is the cut separating s from V).
(a) Argue that this problem is equivalent to finding $x: V \rightarrow \mathbb{Z}_{+}$minimizing $x(V)$ such that $\forall \emptyset \neq S \subset V:$

$$
x(S) \geq k-d_{E}(S)
$$

where $d_{E}(S)=\left|\delta_{E}(S)\right|$ corresponds to the number of edges between S and $V \backslash S$ in G.
(b) Add k edges between s and each vertex of V. Let A be these $k|V|$ newly added edges. Say that $F \subseteq A$ is feasible if the graph $(V+s, E \cup(A \backslash F))$ has at least k edge-disjoint paths between any two vertices of V. Prove that the feasible sets form the independence sets of a matroid.
(c) How would you efficiently solve the original problem (say that k is part of the input)?
3. Consider a matroid $M=(S, \mathcal{I})$, and let B be a given basis of M. Let $A=S \backslash B$. From M and B, we define a linking system \mathcal{P} by

$$
\mathcal{P}=\left\{\left(A \cap B^{\prime}, B \backslash B^{\prime}\right) \subset A \times B: B^{\prime} \text { is a basis of } M\right\}
$$

\mathcal{P} consists of pairs $(X, Y) \subset A \times B$ which corresponds to valid basis exchanges for B in the matroid M. For such a pair (X, Y), we say that X is linked to Y. Observe that
(a) $(\emptyset, \emptyset) \in \mathcal{P}$
(b) $(X, Y) \in \mathcal{P} \Rightarrow|X|=|Y|$
(We could add some additional axioms that would then characterize linking systems but we won't do it here.)
(a) Given a bipartite graph $G=(V, E)$ with bipartition (A, B), let \mathcal{P} be the pairs (X, Y) with $X \subseteq A$ and $Y \subseteq B$ such that there exists a perfect matching between X and Y. Show that \mathcal{P} define a linking system.
(b) Given a matrix L (over some field F), let A index the rows of L and B index the columns of L. Say that $X \subseteq A$ is linked to $Y \subseteq B$ is the corresponding submatrix $L(X, Y)$ is of full rank (over F). Show that this also define a linking system.
(c) Let $\mathcal{P}_{1} \subseteq 2^{A \times B}$ and $\mathcal{P}_{2} \subseteq 2^{B \times C}$ be two linking systems. Define

$$
\mathcal{P}_{1} * \mathcal{P}_{2}=\left\{(X, Z) \subseteq A \times C: \exists Y \subseteq B \text { with }(X, Y) \in \mathcal{P}_{1} \text { and }(Y, Z) \in \mathcal{P}_{2}\right\}
$$

Show that $\mathcal{P}_{1} * \mathcal{P}_{2}$ is also a linking system.
(d) Suppose we are given disjoint sets $V_{0}, V_{1}, \cdots, V_{k}$ and, for $i=1, \cdots, k$, a linking system \mathcal{P}_{i} on $\left(V_{i-1}, V_{i}\right)$. This constitutes a linking network. Define a flow to be $\left(X_{0}, X_{1}, \cdots, X_{k}\right) \subseteq$ $\left(V_{0}, V_{1}, \cdots, V_{k}\right)$ where X_{i-1} is linked to X_{i} in \mathcal{P}_{i} for $i=1, \cdots, k$. The value of the flow is $\left|X_{0}\right|=\left|X_{1}\right|=\cdots=\left|X_{k}\right|$. (If all the linking systems involved are of the matching type given above, a flow corresponds to a set of vertex-disjoint directed paths in a layered network. But the beauty here is that you can have many different types of linking systems involved.) How would you efficiently find a maximum flow (i.e. one of maximum value) in such a linking network (given access to matroid independence oracles for all the matroids defining the linking systems)? (Can you do it with matroid union/partition?)
(One can also derive a max-flow min-cut type result, but I won't formulate it here.)

