Problem Set 4

April 24th, 2012

This problem set is due in class on May 1st, 2012.

1. Consider the scribe notes at http://math.mit.edu/~goemans/18438F09/lec16.pdf on graph orientation using matroid intersection. Show that as stated the definition of \mathcal{M}_{2} in the middle of page 16-2 does not give a matroid (rather, as mentioned in lecture, one has to specify the bases by imposing a cardinality constraint).
2. Consider a submodular function $f: 2^{V} \rightarrow \mathbb{R}$. Let $\mathcal{F}=\{S \subseteq V| | S \mid \equiv 1(\bmod 2)\}$ be the family of odd sets and assume that $|V|$ is even. Let S^{*} be a minimal set minimizing f over \mathcal{F}. Show that there exist $a, b \in V$ such that S^{*} is the unique minimal set minimizing f over $\mathcal{C}_{a b}=\{S \subset V \mid a \in S, b \notin S\}$. Derive from this an algorithm for finding S^{*} with a polynomial number of oracle calls to f.
3. Can you find an algorithm for minimizing a submodular function over even sets which are non-empty and not the entire set? This is harder than the previous exercise.
4. Consider the separation problem for the matching polytope, i.e. given $x \in \mathbb{R}^{E}$, decide if $x \geq 0$, $x(\delta(v) \leq 1$ for all $v \in V$ and $x((E(S)) \leq(|S|-1) / 2$ for all odd sets S.
(a) Show to use submodular function minimization to solve the separation problem efficiently.
(b) Can you use a maximum flow problem to solve each submodular function minimization problem that arises?
