18.438 Advanced Combinatorial Optimization

Michel X. Goemans

Problem Set 4

April 24th, 2012

This problem set is due in class on May 1st, 2012.

- 1. Consider the scribe notes at http://math.mit.edu/~goemans/18438F09/lec16.pdf on graph orientation using matroid intersection. Show that as stated the definition of \mathcal{M}_2 in the middle of page 16-2 does not give a matroid (rather, as mentioned in lecture, one has to specify the bases by imposing a cardinality constraint).
- 2. Consider a submodular function $f: 2^V \to \mathbb{R}$. Let $\mathcal{F} = \{S \subseteq V | |S| \equiv 1 \pmod{2}\}$ be the family of odd sets and assume that |V| is even. Let S^* be a minimal set minimizing f over \mathcal{F} . Show that there exist $a, b \in V$ such that S^* is the unique minimal set minimizing f over $\mathcal{C}_{ab} = \{S \subset V | a \in S, b \notin S\}$. Derive from this an algorithm for finding S^* with a polynomial number of oracle calls to f.
- 3. Can you find an algorithm for minimizing a submodular function over *even* sets which are non-empty and not the entire set? This is harder than the previous exercise.
- 4. Consider the separation problem for the matching polytope, i.e. given $x \in \mathbb{R}^E$, decide if $x \ge 0$, $x(\delta(v) \le 1$ for all $v \in V$ and $x((E(S)) \le (|S| 1)/2$ for all odd sets S.
 - (a) Show to use submodular function minimization to solve the separation problem efficiently.
 - (b) Can you use a maximum flow problem to solve each submodular function minimization problem that arises?