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1. Introduction. The traveling salesman problem (TSP)—the problem of finding a minimum cost tour
through a set of cities—is the most celebrated combinatorial optimization problem. It is often used as a
testbed for novel ideas, as was the case for Adleman’s molecular computing (Adleman [1]), memetic algorithms
(Moscato [23]), or ant colony optimization (Dorigo et al. [10]), to cite just a few examples. The TSP book
(Lawler et al. [20]) provides a tour d’horizon of combinatorial optimization, illustrating all the concepts and
techniques on the TSP.
The traveling salesman problem comes in two variants. The symmetric version (STSP) assumes that the

cost cij of going from city i to city j is equal to cji while the more general asymmetric version (ATSP) does
not make this assumption. In both cases, it is usually assumed—and we make this assumption in the rest of this
paper—that we are in the metric case, i.e., the costs satisfy the triangle inequality: cij + cjk ≥ cik for all i, j , k.
Even though the TSP is the most studied combinatorial optimization problem, little progress has been made on its
approximability in the general metric case in the last quarter of a century. Christofides in 1976 (Christofides [9])
discovered a 3

2 -approximation algorithm
1 for STSP. No better approximation algorithm has since been found for

the general symmetric metric case. (For the special case of Euclidean instances, Arora [3] and Mitchell [21]
found polynomial-time approximation schemes.) For the asymmetric case, no constant approximation algorithm
is known. Frieze et al. [11] gave a simple log2�n�-approximation algorithm for ATSP in 1982, where n is
the number of vertices. In the last two years, this was slightly improved to a guarantee of 0	999 log2�n� by
Bläser [4] and subsequently to 4

3 log3�n� ≈ 0	8412 log2�n� by Kaplan et al. [19]. This is in sharp contrast to
the best inapproximability result of Papadimitriou and Vempala [24] which shows the nonexistence of an 
-
approximation algorithm for ATSP for 
 = 117/116− � and for STSP for 
 = 220/219− �, unless P = NP .
Whether ATSP can be approximated within a constant factor is a major open question, and so is whether an

-approximation algorithm for STSP can be obtained for a constant 
< 3

2 .
Mathematical programming relaxations and especially linear programming relaxations have played a central

role both in solving combinatorial optimization problems in practice (see, e.g., Applegate et al.’s [2] record exact
solution of the STSP instance having all 24,978 cities in Sweden) and in the design and analysis of approximation
algorithms. For the traveling salesman problem, Held and Karp [13, 14] introduced a linear programming
relaxation for both the symmetric and asymmetric versions and gave several equivalent formulations for them.
The bound they gave is often referred to as the Held-Karp lower bound. It can be computed in polynomial

1 An 
-approximation algorithm is a polynomial-time algorithm guaranteed to deliver a solution whose cost is within a factor of 
 of the
optimum value.
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Figure 1. A 3-path configuration instance. The cost between two vertices i and j is equal to the length of the shortest path between
i and j .

time and very efficiently in practice. As a linear program, this Held-Karp relaxation can be formulated for the
symmetric case by writing the cut constraints and the degree constraints:2

min
∑
e∈E
cexe

subject to x���S��≥ 2� for all � 	= S 	= V �
x���v��= 2� for all v ∈ V �
0≤ xe ≤ 1� for all e ∈E�

(1)

and in the asymmetric case by writing the cut constraints and the in-degree and out-degree constraints:3

min
∑
e∈E
cexe

subject to x��+�S��≥ 1� for all � 	= S 	= V �
x��+�v��= 1� for all v ∈ V �
x��−�v��= 1� for all v ∈ V �
0≤ xe ≤ 1� for all e ∈E	

One can easily see that the asymmetric formulation is equivalent to the symmetric one for the special case of
symmetric costs and, therefore, it makes sense to denote by HK the Held-Karp bound both in the symmetric
and asymmetric cases.
The quality of the Held-Karp lower bound has puzzled researchers for over 25 years. Wolsey [27] and

later Shmoys and Williamson [25] showed that for symmetric (metric) instances we have STSP ≤ 3
2HK, where

STSP denotes the optimum value of an STSP instance. This was shown by proving that the tour returned by
Christofides’ [9] heuristic has cost bounded above by 3

2HK. For ATSP, Williamson [26] showed that the Frieze
et al. [11] heuristic returns a tour of cost at most log2�n�HK, thereby showing that ATSP/HK ≤ log2�n�, where
ATSP is the optimum value of an ATSP instance. On the other hand, the worst family that was known for
both integrality ratios STSP/HK and ATSP/HK was symmetric and achieved a ratio arbitrarily close to 4

3 ;
see Figure 1, whose solid edges e have xe = 1, whose alternating dark and light edges e have xe = 1

2 , and
whose missing edges e have xe = 0. However, instances with large integrality ratios for STSP or ATSP are
not easy to encounter “in practice.” Based on Johnson and McGeoch [16] and Johnson et al. [17, 18], D. S.
Johnson [15] states that the largest percentage integrality gap �OPT −HK�/HK he has seen for an asymmetric
testbed instance is 2.8%. In contrast, the largest integrality gap he has seen for a symmetric testbed instance is
9.55%, achieved on the 225-node tsplib instance ts225 which was specifically designed to foil TSP software.
Except for that one instance, Johnson is not aware of any testbed instance, symmetric or not, with integrality
gap exceeding 3%.
In a systematic search for large ratios, Boyd and Labonté [6] and Boyd and Elliott [5] showed that the

integrality ratio is at most 4
3 for STSP instances with at most ten vertices and for ATSP instances with at most

seven vertices. They were not able to carry out their experiments beyond these values. We provide a recursive
construction leading to ATSP instances whose integrality ratio ATSP/HK approaches 2 arbitrarily closely. The
first three levels of our construction are illustrated in Figure 2.
A longstanding conjecture formulated at least twenty years ago states that the integrality ratio STSP/HK for

STSP instances is at most 4
3 . There have been many unsuccessful attempts to prove it. A constructive proof of

this conjecture would likely lead to a 4
3 -approximation algorithm for STSP. One classical reformulation of the 4

3

2 The latter are not necessary for metric instances (Goemans and Bertsimas [12]).
3 For ATSP metric instances, we can replace the two degree constraints by x��−�i��= x��+�i��.



Charikar, Goemans, and Karloff: Integrality Ratio for the Asymmetric Traveling Salesman Problem
Mathematics of Operations Research 31(2), pp. 245–252, © 2006 INFORMS 247

ts

u 1 u2 u3 u4

u 1 u2 u3 u4

v 1 v2 v3 v4

v 1 v2 v3 v4

ts

s t

Figure 2. An illustration of three levels of our construction: digraphs G1, G2, and G3 for r = 4, with the arc costs not shown.

conjecture is that any extreme point of the subtour polytope (1) after being multiplied by 4
3 can be decomposed

into a convex combination of Eulerian subgraphs. Carr and Vempala [8] considered what may appear as a slight
strengthening of this 4

3 conjecture—that the decomposition is of leafless Eulerian subgraphs, i.e., subgraphs in
which the degree-2 vertices are adjacent to two different neighbors. They showed that this slight strengthening
would imply their conjecture that the integrality ratio for ATSP is also bounded by 4

3 . Our construction refutes
their ATSP 4

3 conjecture and, therefore, also their strengthened the STSP
4
3 conjecture. It, however, leaves open

whether the integrality ratio for STSP instances is bounded by 4
3 .

Our construction of instances for ATSP proves that the worst-case integrality ratio for ATSP (at least 2) is
provably larger than that for STSP instances (at most 1.5).
Our construction has a few other interesting features. First, it requires a number of vertices exponential in 1/�

in order to achieve a ratio of 2−� while for STSP the worst-case integrality ratio, if equal to 4
3 , would require a

number of vertices linear in 1/� to achieve 4
3 − � (Monma et al. [22]). Second, our feasible (but not necessarily

optimal) solution of the linear programming relaxation for our instances is half-integral (i.e., xe ∈ �0� 12 �1�).
Although the LP relaxation (both in the symmetric and asymmetric versions) contains extreme points which are
not half-integral (Boyd and Pulleyblank [7]), proving that the worst-case behavior is attained for instances for
which the optimum LP solution is half-integral would allow one to easily prove an integrality ratio of 2 for
all ATSP instances: Simply multiply the extreme point by 2 and interpret the resulting vector as the incidence
vector of an Eulerian subgraph. Third, our construction is obtained by defining costs on the arcs of a digraph
and letting the cost between any two vertices i and j be the shortest-path length from i to j . For our construction
to work we need the arc costs to vary from arc to arc.
In the next section, we present our recursive construction of an instance with integrality ratio approaching 2

for ATSP. Even one level of the recursion (the middle part of Figure 2) leads to instances with integrality ratio
approaching 3

2 (k = 2 in Theorem 1.1 below), thereby already refuting the 4
3 conjectures. The difficulty in the

analysis lies not in computing the Held-Karp bound (or an upper bound on it), but in computing a lower bound
on the cost of the optimum tour. Our main result is the following.
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Theorem 1.1. For r ≥ 3 and k≥ 2, we construct an ATSP instance with  �rk� vertices for which

ATSP

HK
≥ r − 1
r + 1

· 2k− 1
k

�

which tends to 2 as r and k tend to infinity.

2. Definitions.
Definition 2.1. An Eulerian subdigraph H of a digraph G= �V �E� is V together with a collection of arcs

of G with multiplicities such that (i) the indegree of every vertex equals its outdegree, and (ii) H is weakly
connected (i.e., the underlying undirected graph is connected).
(Strictly speaking, an “Eulerian subdigraph” H of a digraph G is not a subdigraph in the traditional sense,

because the multiplicity of an arc in the subdigraph may exceed the multiplicity of the same arc in G (i.e., 1)
and, hence, H is really a “multidigraph.”)
Definition 2.2. The deficiency of a vertex v in a digraph G is equal to its outdegree minus its indegree and

is denoted defG�v�.
An Eulerian subdigraph is therefore precisely a weakly connected subdigraph with no deficiency at any vertex.

An Eulerian subdigraph can be traversed by a walk that starts and ends at the same vertex and visits every vertex
at least once.
Given a digraph G= �V �A� with arc costs wa, the ATSP asks for an Eulerian subdigraph of minimum total

cost, i.e., one that minimizes
∑
a∈A mawa, where ma denotes the multiplicity of arc a in the Eulerian subdigraph.

This is equivalent to finding the minimum cost tour for the shortest-path metric corresponding to the arc costs wa.
Definition 2.3. An �s� t�-Eulerian subdigraph F of a digraph G on V having vertices s and t, s 	= t, is V

together with a collection of arcs of G with multiplicities such that F becomes an Eulerian subdigraph of G if
the vertices s and t are identified (or contracted or shrunk). The �s� t�-Eulerian subdigraph is said to be closed
if the deficiency of s (and t) is 0 and open otherwise.
In other words, a closed �s� t�-Eulerian subdigraph has no deficiency at any vertex but, if not Eulerian, consists

of two weakly connected components, every vertex being weakly connected to either s or t. On the other hand,
an open �s� t�-Eulerian subdigraph is always weakly connected but the deficiency of both s and t is nonzero,
the deficiency of any other vertex being zero.

3. Bad instances and their analysis. We now define a family �Gk� of digraphs with costs; our family �Lk�
of instances of the ATSP will be derived from the family �Gk�. Fix any positive integer r for the remainder of
the paper; large r’s will give integrality ratios approaching 2 as r approaches infinity. G1 consists of a bidirected
path of r+2 vertices, starting at a distinguished “source” s and ending at a distinguished “sink” t whose 2�r+1�
arcs all have cost 1. For each k ≥ 2, we build Gk as follows (see Figure 2). Start with 2+ 2r distinct vertices
s; u1� u2� ) ) ) � ur ; vr � vr−1� ) ) ) � v1; t, with s and t being the source and sink, respectively. For simplicity, let
u0 = v0 = s and ur+1 = vr+1 = t. Add arcs �ui� ui+1� and arcs �vi+1� vi� for i= 0�1� ) ) ) � r , all of cost rk−1. Then,
add r vertex-disjoint isomorphic copies of Gk−1 using new vertices, except that the ith copy of Gk−1, 1≤ i≤ r ,
uses ui as its source and vi as its sink. Hence, �V �Gk�� = 2+ r �V �Gk−1��, i.e., �V �Gk�� = rk+ 2

∑k−1
i=0 r

i, which
is  �rk�.
Let tk be the sum of the costs of the arcs in Gk. Clearly, t1 = 2�r+1� and tk = 2�r+1�rk−1+ rtk−1 for k≥ 2,

whose solution is
tk = �2k�rk−1�r + 1�

for all k≥ 1.
Let ak denote the minimum cost of an open �s� t�-Eulerian subdigraph of Gk, and bk the minimum cost of a

closed �s� t�-Eulerian subdigraph. The next proposition provides a recursive formula to bound these quantities
from below.

Proposition 3.1. a1 = r + 1, b1 = 2r , and for k≥ 2,

ak ≥ min
l∈�0�1�2� ) ) ) �r�

��l+ r + 1�rk−1 + lak−1 + �r − l�bk−1�

and
bk ≥ min

l∈�0�1�2� ) ) ) �r�
��l+ 2r − 2�rk−1 + lak−1 + �r − l�bk−1�	
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Proof. That a1 = r + 1 and b1 = 2r are obvious.
Let k≥ 2. Let F be an �s� t�-Eulerian subdigraph of Gk. Let Hi denote the copy of Gk−1 for which ui and vi

are the source and sink, respectively. Since Hi has only ui and vi in common with the rest of Gk, F restricted
to Hi (denoted by Fi) induces a �ui� vi�-Eulerian subdigraph of Hi (since identifying ui and vi in Fi is equivalent
to shrinking V �Gk�\�V �Hi�\�ui� vi�� in Gk). Each Fi can be open or closed (regardless of whether F is open
or closed). Let l denote the number of open �ui� vi�-Eulerian subdigraphs Fi. The number of closed ones is
therefore r − l. The total cost of the arcs in the union of the Fi’s is therefore at least lak−1+ �r − l�bk−1 and this
accounts for the second and third terms in the statement of the lemma. We now need to evaluate the total cost
of the remaining arcs in F .
For i = 0� ) ) ) � r , let pi ≥ 0 denote the multiplicity of arc �ui� ui+1� in F and qi ≥ 0 the multiplicity of arc

�vi+1� vi�. The total cost of the arcs in F \
⋃r
i=1 Fi is thus r

k−1∑r
i=0�pi+ qi�. Our goal is to show that

r∑
i=0
�pi+ qi�≥

{
l+ r + 1 if F is open�

l+ 2r − 2 if F is closed.
(2)

In order to derive this, we need two basic observations. First, for any digraph G and for any subset S of
vertices of V �G�, the sum of the deficiencies of the vertices in S is equal to the number of arcs leaving S minus
the number of arcs entering S, i.e., ∑

v∈S
defG�v�= ��+�S�� − ��−�S��	

Applying this to F with S = �s�∪ V �H1�∪ V �H2�∪ · · · ∪ V �Hi� where i ∈ �0� ) ) ) � r�, we obtain that pi − qi =
defF �s� for i= 0�1� ) ) ) � r , because F has deficiency 0 at all vertices other than s and t.
The second observation is that

defFi �ui�= pi−1 −pi = qi−1 − qi
(where i ∈ �1� ) ) ) � r�). This follows from the facts that outdegF �ui�= pi+outdegFi �ui�, that indegF �ui�= pi−1+
indegFi �ui�, and that 0= defF �ui�= outdegF �ui�− indegF �ui�= pi − pi−1 + defFi �ui�, implying that defFi �ui�=
pi−1 −pi; now pi− qi = defF �s� for all i implies that pi− qi = pi−1 − qi−1 and that pi−1 −pi = qi−1 − qi.
From this second observation we conclude that Fi is closed iff pi−1 = pi iff qi−1 = qi.
We now prove (2). Let us first assume that F is open. Without loss of generality we can assume that defF �s� >

0, and thus we have pi−qi ≥ 1 for all i. Thus,
∑r
i=0�pi+qi�=

∑r
i=0�pi−qi+2qi�≥ r+1+2

∑r
i=0 qi. We claim

that
∑r
i=0 qi ≥ l/2 where l is the number of open �ui� vi�-Eulerian subdigraphs Fi. Indeed, if qi were 0 for all i,

l would be 0 by our second observation. Whenever we increase some qi by 1, l can increase by at most two units
since only Fi and Fi+1 could now be open. This proves our claim and thus

∑r
i=0�pi + qi�≥ r + 1+ 2

∑r
i=0 qi ≥

r + 1+ l, proving Equation (2) if F is open.
Now assume that F is closed. We have pi = qi for i = 0�1� ) ) ) � r , implying that

∑r
i=0�pi + qi�= 2

∑r
i=0 pi.

Observe that there can be at most one index x ∈ �0�1� ) ) ) � r� with px = 0. Otherwise, if px = py = 0 for x < y,
then V �Hx+1�∪· · ·∪V �Hy� would be disconnected from the rest of the graph and F would induce an undirected
graph with at least three components (as a closed �s� t�-Eulerian subdigraph, F is allowed to induce at most
two). Therefore, the vector p is greater than or equal to p′ where p′ is a vector of all 1’s except for one 0
suitably placed (at x if px = 0 and anywhere otherwise). In p′, the number of consecutive entries that differ is
at most 2 and the corresponding l′ would therefore satisfy l′ ≤ 2. As we increase p′ toward p one entry at a
time, l′ increases by at most 2 for every increase of p by the second observation, implying that

l≤ 2+ 2
(( r∑

i=0
pi

)
− r

)
0

that is,

2
r∑
i=0
pi ≥ l+ 2r − 2�

proving Equation (2) if F is closed. �

The following lemma gives a solution to the recurrence of Proposition 3.1.

Lemma 3.1. Let ak and bk be as defined in Proposition 3.1. Then, ak ≥ �2r − 2�krk−1 − �r − 3�rk−1 and
bk ≥ �2r − 2�krk−1.
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Proof. Let a′1 = r + 1, b′1 = 2r − 2, and for k≥ 2, let

a′k = min
l∈�0�1�2� ) ) ) �r�

��l+ r + 1�rk−1 + la′k−1 + �r − l�b′k−1��

and let
b′k = min

l∈�0�1�2� ) ) ) �r�
��l+ 2r − 2�rk−1 + la′k−1 + �r − l�b′k−1�	

The only differences with the recurrences for ak and bk are the value of b
′
1 and the fact that inequalities have

been replaced by equalities. By induction on k, we have ak ≥ a′k and bk ≥ b′k for every k≥ 1.
Given these expressions for a′k and b

′
k, we have b

′
k = a′k+ �r − 3�rk−1 for k≥ 2 and this is true also for k= 1

given the values chosen for a′1 and b
′
1. We can therefore rewrite the expression for b′k as

b′k = min
l∈�0�1�2� ) ) ) �r�

��l+ 2r − 2�rk−1 + rb′k−1 − l�r − 3�rk−2�	

As the coefficient of l in b′k is 3r
k−2, the expression is minimized for l= 0; thus,

b′k = �2r − 2�rk−1 + rb′k−1	
Since b′1 = 2r − 2, this implies that b′k = �2r − 2�krk−1 for all k.
The fact that bk ≥ b′k implies the second part of the lemma while the first follows from ak ≥ a′k and b′k =

a′k+ �r − 3�rk−1. �

From Gk we define a new digraph Lk with costs, as follows. Let V �Lk�= V �Gk�\�s� t� and replace the arcs
�s� u1�, �ur � t�, �t� vr �, and �v1� s� of Gk with new arcs �ur � u1� and �v1� vr � in Lk of cost r

k−1. Lk inherits all
other arcs of Gk. The total cost of Lk is thus equal to the total cost of Gk minus 2r

k−1 and is therefore less than
tk = 2krk−1�r + 1�.
We will now derive first a lower bound on the cost of any Eulerian subdigraph of Lk and then an upper bound

on the Held-Karp lower bound for this instance.

Lemma 3.2. For r ≥ 3 and k≥ 2, the cost of any Eulerian subdigraph of Lk is at least �2k− 1��r − 1�rk−1.

Proof. We proceed in a similar fashion as for Gk and use the same notation and arguments as in the proof
of Proposition 3.1. Consider any Eulerian subdigraph F of Lk. Let l denote the number of open �ui� vi�-Eulerian
subdigraphs Fi. As for Gk, the total cost within the Fi’s is at least lak−1 + �r − l�bk−1. We claim that the other
arcs, those between the ui’s and those between the vi’s, contribute at least �l+ r − 1�rk−1. Assuming this claim,
the total cost of F is at least �l+ r −1�rk−1+ lak−1+ �r − l�bk−1 and by the proof of Lemma 3.1 this is at least
a′k− 2rk−1 ≥ �2r − 2�krk−1 − �r − 1�rk−1 = �2k− 1��r − 1�rk−1, proving the desired bound.
To prove the claim, let pi ≥ 0 denote the multiplicity of the arc �ui� ui+1� in F for i= 1� ) ) ) � r . Here, as in

the rest of this proof, all indices have to be interpreted cyclically and thus r +1 represents 1 and 0 represents r .
Similarly, let qi ≥ 0 denote the multiplicity in F of the arc �vi+1� vi�. The arcs between the ui’s and those
between the vi’s contribute

∑r
i=1�pi+ qi�rk−1 and, thus, our goal is to prove that

∑r
i=1�pi+ qi�≥ l+ r − 1.

As in Proposition 3.1, Fi is closed iff pi−1 = pi iff qi−1 = qi� and this implies that

l≤ 2
( r∑
i=1
pi

)
= 2

( r∑
i=1
qi

)
	 (3)

Since we must have the same positive number of arcs leaving and entering V �Hi�, we have pi−1 + qi = pi +
qi−1 ≥ 1. This implies that pi− qi = pi−1 − qi−1 for all i.
We distinguish two cases: either (i) pi−qi = 0 for all i, or (ii) pi−qi ≥ 1 for all i (without loss of generality).

In case (i), i.e., pi = qi for all i, we cannot have pj = qj = 0 and pk = qk = 0 for two indices j 	= k. Otherwise,
V �Hj+1�∪ V �Hj+2�∪ · · · ∪ V �Hk� would have no arcs coming in or out. Thus,

∑r
i=1 pi =

∑r
i=1 qi ≥ r − 1 with

equality only if all pi’s are 1 except one which is 0 (and similarly for the qi’s), implying that at equality l= 2
because l is equal to the number of i such that pi−1 	= pi. Thus, either

∑r
i=1 pi ≥ r and, hence,

∑r
i=1�pi + qi�≥

2r ≥ l+ r , or ∑r
i=1 pi = r − 1 and, hence,

∑r
i=1�pi + qi�= 2�r − 1�≥ r + 1≥ l+ r − 1 for r ≥ 3. This proves

the claim in case (i). For case (ii), we have pi − qi ≥ 1 for all i, which together with Equation (3) implies that∑r
i=1�pi+ qi�≥

∑r
i=1�pi− qi�+ 2

∑r
i=1 qi ≥ r + l, also proving the claim. �

We will now prove that the asymmetric LP relaxation has a half-integral solution of low cost.

Lemma 3.3. The vector x with xa = 1
2 for every arc a is feasible for the asymmetric subtour polytope for Lk.

Hence, HK ≤ tk/2= krk−1�r + 1�.
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Proof. The lemma follows from the claims that (i) Lk has exactly two arcs entering any vertex and exactly
two arcs leaving any vertex, and that (ii) Lk has at least two arcs in both directions in any cutset.
The first claim follows easily by induction by proving that all vertices of Gk have indegree and outdegree 2,

except s and t which have indegree and outdegree 1.
By Menger’s theorem, the second claim can be rephrased by fixing any one vertex of Lk, say, u1, and saying

that for every vertex v, there exist in Lk two arc-disjoint paths from v to u1 and two arc-disjoint paths from
u1 to v. We will show the existence of two arc-disjoint paths to u1; this will be enough since Lk is Eulerian,
implying that every cutset has the same number of arcs in either direction.
To prove the existence of these two arc-disjoint paths to u1, we first argue by induction on k that there exist

in Gk two arc-disjoint paths from every vertex v, one to s and the other to t. This is clear since if v ∈Hi, then
the two arc-disjoint paths to ui and vi in Hi (a copy of Gk−1) which exist by our inductive hypothesis can be
extended: the first to t (by visiting ui+1� ) ) ) � ur � t) and the other to s (by visiting vi−1� ) ) ) � v1� s). Now, to prove
our second claim, consider any vertex v ∈ Hi. We know that there exist two arc-disjoint paths within Hi, one
from v to ui (call it P1), and the other from v to vi (call it P2). P1 can be extended to u1 by using the arcs
�ui� ui+1�� ) ) ) � �ur−1� ur�� �ur � u1� to get a path P ′

1 from v to u1. If i 	= 1, then we can extend P2 from vi to v1
via the arcs �vi� vi−1�� ) ) ) � �v2� v1� and then from v1 to u1 through any directed path within H1; the resulting
path will be arc-disjoint from P ′

1. If i= 1, then P ′
1 does not use the arc �ur � u1� and, therefore, we can extend P2

first from v1 to vr by adding the arc �v1� vr �, then to ur through a directed path in Hr , and finally from ur to u1
through the arc �ur � u1�. �

Combining Lemmas 3.2 and 3.3, we get a restatement of Theorem 1.1.

Theorem 3.1. For Lk with k≥ 2 and r ≥ 3, the ratio between the minimum cost of any Eulerian subdigraph
and the asymmetric Held-Karp lower bound is at least ��r − 1�/�r + 1�� · �2k− 1�/k, which can be made
arbitrarily close to 2 by choosing k and r sufficiently large.
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helpful comments.
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