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Abstract 

We consider most of the known classes of valid inequalities for the graphical travelling salesman 
polyhedron and compute the worst-case improvement resulting from their addition to the subtour 
polyhedron. For example, we show that the comb inequalities cannot improve the subtour bound 
by a factor greater than ~.  The corresponding factor for the class of clique tree inequalities is 8, 
while it is 4 for the path configuration inequalities. 
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1. Introduct ion 

In the last decade, strong cutting-plane methods have successfully solved larger and 

lärger symmetric travelling salesman problem (TSP) instances to optimality. In the early 

nineties, Padberg and Rinaldi [28] have solved optimally an instance with 2,392 cities, 

and more recently Applegate et al. [1] have solved optimally instances with 3,038, 

4,461 and even 7,397 cities. These cutting-plane methods are based on an extensive 

investigation of  the facets of  the symmetric travelling salesman polytope (STSP) and 
its relatives. Many classes of facet-defining valid inequalities are now known for STSP, 

see [ 3,5,7,9,12,15,17,22-24,26]. 
The success of  cutting-plane methods for the TSP is however not fully understood. In 

particular, it is not clear which classes of  inequalities are most or least useful in solving 
TSP instances. For obvious reasons of  efficiency, the choice of  the inequalities to use 
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in a cutting-plane algorithm is typically dictated by whether efficient exact or heuristic 
algorithms are known for the corresponding separation problem. For this reason, cutting- 
plane approaches tend to use, in addition to the subtour elimination constraints, the comb 
inequalities or the clique tree inequalities, see [ 1,8,13,14,19,26-28]. An exception is a 

recent implementation of [6] which is based on the path inequalities. The motivation 
of this paper is best expressed by the following quote from [24] : 

For which ... inequalities ... would it be worth investing research time to find 
good separation algorithms, and computation time to run them in a cutting- 
plane algorithm? An answer to this question would be easier if there was 
some indicator that could be used to compare two classes of inequalities, 
with respect to their potential effectiveness in a polyhedral cutting-plane 

algorithm. 

In this paper, we describe such an indicator by evaluating the worst-case improvement 
resulting from the addition of many classes of valid inequalities to the subtour polyhe- 

dron. 
For the reader familiar with polyhedral studies of the TSP, Table 1 gives a preview of 

the results. The column "Strength" gives for various classes of inequalities the worst-case 
ratio between the values obtained by optimizing over the subtour polyhedron plus an 
additional class of inequalities and over the subtour polyhedron itself. The inequalities 

are assumed to be in graphical form and the worst case is taken over all nonnegative 
cost functions. In some sense, "worst-case" has to be understood as best-case, since the 
larger the improvement the better it is. The most notable entries in the table are the fact 

that clique tree inequalities cannot improve the subtour polytope bound by more than a 
factor of 7,8 while the path configuration inequalities improve it in the worst case by 3"4 

The paper is structured as follows. Section 2 reviews some well-known polyhedral 

results for the TSE In Section 3, we formally describe a measure to compare two 
polytopes and show how it can be used to compare various relaxations of the TSP. The 
results summarized in Table 1 are established in Section 4 and interpreted in Section 5. 

Finally, we conclude with some remarks in Section 6. 

2. Background material 

We assume a basic knowledge of polyhedral combinatorics, especially related to the 
travelling salesman problem. The reader is referred to [16,29] for a very thorough 

introduction. 
The symmetric travelling salesman polytope (STSP) is defined as the convex hull 

of incidence vectors of Hamiltonian cycles. Optimizing any cost function over STSP is 
equivalent to finding a Hamiltonian cycle of minimum cost. There are several drawbacks 

associated with the polytope STSE First, it is not full-dimensional and this makes its 
study more difflcult. Also, in our worst-case analysis, it will be crucial to consider 
any nonnegative cost function, while one typically considers instances of the TSP for 



M.X. Goemans/Mathematical Programming 69 (1995) 335-349 

Table 1 
Strength of TSP inequalities 
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Class of inequalities Strength Reference 

3t+ 1 
Comb with t teeth Corollary 5 

3t 
in general 1~~ Corollary 5 

9 

3t+ 2 h -  1 
Clique tree with h handles and t teeth Theorem 4 

3t+ h - 1 
8h+2 

with h handles Corollary 5 
7h+2  

in general 8 Corollary 5 
7 

k + l  
Path configuration with k paths Theorem 6 

k 
in general 4 Theorem 6 

3 

6k(k - 1) - 1 
Crown with parameter k Theorem 7 

6k(k - 1) - k 

in general 1~ Theorem 7 10 

k + l  
Hypohamiltonian on k vertices ~< - -  Theorem 8 

k 
in general 1~ Theorem 8 10 

which the cost function satisfies the triangle inequality. To avoid both drawbacks, we 

will allow mult iple  visits of  a vertex and consider the problem of  finding an Eulerian 

subgraph (or  mult igraph) of  minimum cost and its associated polyhedron. Given a graph 

G = (V,, E ) ,  an Eulerian sub(mul t i )graph  2 is a collection of  edges of  E (with possible  

repeti t ion) such that the degree of  every vertex is even and the subgraph is connected. 

For any cost function, the cost of  the minimum Eulerian subgraph is equal to the value 

of  the opt imum Hamiltonian cycle with respect to the shortest path costs. The convex 

hull of  the incidence vectors of  Eulerian subgraphs is called the graphical travelling 

salesman polyhedron (GTSP) .  This polyhedron was introduced in [7,9] and was further 

investigated in [ 10,22-25].  GTSP is full-dimensional since it is of  blocking type, i.e., 

if  x E GTSP and y > /x ,  then y E GTSP. 

Many classes of  facet-defining valid inequalities are known for GTSP. The simplest  

is the class o f  subtour elimination constraints (also called loop constraints in [ 16] or 

cocycle inequalities in [25 ] ) :  x ( ~ ( S ) )  >~ 2 for any S C V, where x ( F )  = ~eEFXe and 
6(S) represents the coboundary of  S defined as {e = ( i , j ) :  IS M {i , j} l  = 1}. Naddef  

and Rinaldi  [25] have shown that any facet-defining inequality for STSP gives rise to 

a facet-defining inequality for GTSP. For this purpose, one needs to convert the valid 

inequality for STSP into tight triangularform by adding or subtracting mult iple of  the 

degree constraints x ( 6 ( { i } ) )  = 2. An inequality ax >1 ao is in tight triangularform 

[25] if  

2 They are also called tours or closed walks, see [7,25]. 
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(1) the nonnegative coefficients ae satisfy the triangle inequality aij + ajk >~ aik for 
all i, j, k, and 

(2) for all j E V, there exists i, k C V - {j}: a~j + a.i k = aik. 

Naddef and Rinaldi [25] prove that any nontrivial 3 tight triangular facet-defining in- 
equality for STSP is also a facet-defining valid inequality for GTSR Furthermore, it 
is easy to see that every facet-defining inequality for GTSP, except the nonnegativity 
constraints and the subtour elimination constraints corresponding to singleton sets, taust 
be in tight triangular form [25]. The most well-known class of inequalities for STSP 
(and thus also for GTSP when in tight triangular form) is the clique tree inequalities 
introduced in [ 17]. They generalize the comb inequalities of [5] and their extensions 
[ 15]. Many other classes of inequalities are known for STSP or GTSP, including the 
path inequatities [7], the path tree inequalities [23], the binested inequalities [22], the 
crown inequalities [24] and the rank inequalities [ 12]. 

The simplest relaxation of GTSP consists of the subtour elimination constraints. The 
corresponding subtour polyhedron SE or subtour elimination polyhedron, is defined as 

SP = {x E NIEI: x ( 8 ( S )  ) >~ 2, S C V, 

Xe >/O, e C E}.  

From an observation of Cunningham [21] (see [ 11]), it follows that optimizing a 
nonnegative cost function over SP is equivalent to optimizing the shortest path cost 
function over the subtour polytope, obtained by adding the degree constraints x(8{i}) = 
2 for all i C V to SP. As a result, the value obtained by optimizing over SP is exactly 
equal to the Held-Karp lower bound [ 18]. Interpreting their result in terms of GTSP, 
Wolsey [31] and Shmoys and Williamson [30] have shown that 

Min{cx: x E GTSP} 3 
~ ~ -  ; ~ ~  ~ ~, 

for any nonnegative cost function c. However, this bound does not appear to be tight 
and, in fact, the following conjecture motivated this study (see Sections 3 and 5). 

Conjecture 1. For any nonnegative cost function c, 

Min{cx: x Œ GTSP} 4 

Instances are known which achieve a bound of 4. One can obtain stronger relaxations 
of GTSP by adding to SP some of the classes of inequalities mentioned previously. 

3. Worst-case comparison of relaxations 

If P and Q are polyhedra in R n, then we say that P is a relaxation of Q or Q 
is a strengthening of P if P D Q. Given a relaxation P of a polyhedron Q, we are 

3 Not dcfining the same incquality as Xe >/0 for any cdgc e. 
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interested in evaluating how weil does P approximate Q. In the context of polyhedral 

combinatorics, this question arises in two different ways. Under the most "classical 
perspective, Q is a combinatorial optimization polyhedron and one would like to estimate 
how tight is a given relaxation P of Q. Another possible scenario is that one has a 

standard relaxation P of some combinatorial optimization polyhedron R and one would 
like to evaluate the improvement that would result from the addition to P of a certain 
class of valid inequalities. So, in the latter case, one has two relaxations P and Q of R 
where Q is a strengthening of P. 

How does one compare two relaxations? This question is not weil understood and, 
in fact, one can formulate several notions of "tightness". For a recent investigation on 
a notion based on the volumes of P and Q, see [20]. In this paper, we adopt an 
optimization point of view. 

Throughout this section, we assume that P c R~ is a relaxation of a polyhedron 
Q c R~_ of blocking type. This assumption leads to a very natural notion of tightness. 

Given oL >/ 1, we say that P is an o~-relaxation of Q or Q is an oz-strengthening of P 
if Q _D ceP = {ex: x E P}, i.e., Q is a relaxation of ceP. Any a-relaxation is also a 

/3-relaxation for any/3 >/«.  Also, let t (P,Q) denote the minimum value of a such that 
P is an ce-relaxation of Q. Notice that t(P, Q) ) 1, t(P, Q) = 1 iff P = Q, and that 
t(P, Q) could be infinite. 

The parameter t(P, Q) can be interpreted from an optimization point of view. Let c 

be any vector in R~_. If  P is an «-relaxation of Q, then clearly 

Min{cx: x E Q} <~ «Min{cx: x E P}. 

From the separating hyperplane theorem, the polyhedron Q contains the polyhedron otP 

iff, for any cost vector c, 

Min{cx: x E Q} <~ ceMin{cx: x E P}. 

For a vector c which fails to be nonnegative, this inequality is vacuous and, therefore, 
the converse statement also holds, as stated in the following lemma. 

L e m m a  2. Let P be a relaxation of a polyhedron Q in R~+ of blocking type. Then P is 
an ce-relaxation of Q iß  for any nonnegative vector e E N n, 

Min{cx: x E Q} ~ ceMin{cx: x E P}. 

As a corollary, t(P, Q) is equal to 

Min{cx: x E Q} 
t (P,Q) = Sup , (1) 

cE~~ Min{cx: x E P} 

where, by convention, o = 1. 
The following result gives an alternate characterization of t(P, Q) when a description 

of Q in terms of linear inequalities is known. 



Min cx 

s.t. x C P  

Hence, 
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Theorem 3. Let P be a relaxation of a polyhedron Q in R% of blocking type where 
Q = {x: "ai x >/ bi f o r  i = 1 . . . . .  m}, ai >/O, bi ~ 0 for i = 1 . . . . .  m. Then, 

bi 
t(P, Q) Max 

• di 

where di = Min{aix: x E P}. 

Proof. From (1), it is clear that 

t(P, Q) ~> Max Min{aix: x C Q) bi 
Min{aix: x E P} >~ Max -- .  

• i di 

We therefore need to prove the reverse inequality. 
Let c be any nonnegative cost function. By strong duality, we know that 

Min cx = Max bTy 
s.t. Ax>~b s.t. A T y = c  T, 

y>~0,  

where "T" denotes the transpose. Let y* be the optimal dual solution of the above 
program. Then, 

{ Min aix } . . 
= M i n  (y*)TAx >1 ~ i  s.t. x C P Yi = ~ i d i y i .  

s.t x E P  

Min~cx: x ~  Q ~ Zi biY: ~ ~ ~iy: ~ bi 
Min{cx: x C P} <~ ~idiy.~ - . ~ ~. idiy~ ß d~" 

Since di », 0 (because ai >/ 0 and P _C R +) and y/* /> 0, the latter quantity can be 
interpreted as a convex combination of bi~dl and is therefore less or equal to 

Max bi 
i di 

The result is proved by taking the supremum over all nonnegative cost functions c. [] 

We should point out that we have not used the fact that P is a relaxation of Q in the 

above theorem. 
Theorem 3 can be rephrased as follows. To compute t (P,Q),  one only needs to 

consider the cases in which a single inequality of Q is added to P. This motivates the 
following definition. The strength of an inequality ax >~ b with respect to a polyhedron 
P is defined as 

b 

Min{ax: x E P}" 

Theorem 3 implies that t(P, Q) is equal to the maximum strength with respect to P of 

a facet-defining inequality for Q. 
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3.1. Comparison of  TSP relaxations 

341 

In this paper, we evaluate t(SP, Q) for many relaxations Q of GTSP, i.e., we evaluate 
the worst-case improvement due to the use of the relaxation Q instead of the subtour 

polyhedron SE From Theorem 3, we know that t(SP, Q) is equal to the maximum 
strength (with respect to SP) of any facet-defining inequality for Q. In particular, 
Conjecture 1, which says that t(SP, GTSP) is at most 4, is equivalent to the conjecture 

that the strength of any facet-defining valid inequality for GTSP is at most 4 3" 
Given a valid inequality ax >~ b for GTSP, we need to compute Min{ax: x E SP} in 

order to evaluate its strength. By strong duality, Min{ax: x C SP) is equal to 

Max 2 Z Ys subject to 
s 

(D) ~ Ys <~ a«, e C E, 
S:eC6(S) 

ys »/O, S c  V. 

Notice that if y is a feasible solution to (D), then bi (2  ~ s Y S )  is an upper bound on 
the strength of the inequality ax >~ b. In the next section, we derive upper bounds on 
the strength of many valid inequalities for GTSP by appropriately constructing simple 
dua! feasible solutions. The resulting upper bounds can in most cases be attained. 

We should point out that two other notions of "strength" of TSP facet-defining in- 
equalities have been proposed in [24]. As a first measure, Naddef and Rinaldi suggest 
to evaluate the number of Hamiltonian cycles on the corresponding facet. Their second 

measure is somewhat similar to our notion of strength. For an inequality ax >1 b they 
evaluate the distance between the optimum solution to Min{ax: x E SP, x ( 6 ( { i } ) )  = 2 

for all i} and the affine space defined by {x: ax = b , x ( ~ ( { i ) ) )  = 2 for all i}. The 
degree constraints are present in the definition of the affine space to avoid that the 
measure depends on the representation of the facet in terms of a linear inequality. 

4. Strength of TSP inequalities 

The results of this section are summarized in Table 1. 

4.1. Clique tree inequalities 

Clique tree inequalities were discovered by Grötschel and Pulleyblank [ 17]. A clique 

tree C consists of a collection of subsets of vertices partitioned into handles H1 . . . . .  Hh 

and teeth 7"1 . . . . .  Tt such that 
(1) no two teeth intersect, 
(2) no two handles intersect, 
(3) each tooth has at least one vertex not belonging to any handle, 
(4) the number of teeth that each handle intersect is odd and at least three, 
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Fig. 1. A clique tree with two handles (indicated by an H) and seven teeth. The closed curves correspond to 
the sets S with Ys = ½ in the proof of Theorem 4. 

(5)  the intersection graph of  the handles and teeth is a tree. 

A clique tree is represented in Fig. 1. When the number of  handles h is 1, the clique 

tree is called a comb. Combs were introduced by Chvätal [5] for the case with at most 

one common vertex between a tooth and a handle and by Grötschel and Padberg [ 15] 

for the general case. The clique tree inequality (in tight triangular form) is 

h t t 

ZX(~(Hi)) ÷ EX(~(T/)) /> 2 E t i ÷ t ÷  1, 
i=1 i=1 i=1 

where ti denotes the number of  handles intersecting T/. For simplicity, let p = Eit=l tl. 

Since the intersection graph of  the handles and teeth is a tree with t + h vertices and p 

edges, we have p = t + h - 1. Hence, the clique tree inequality can be rewritten as 

h t 

Z X ( ~ ( H i ) )  ÷ E x ( ( ~ ( T i ) )  ~ 3 t ÷  2 h -  1. 
i=1 i=1 

Clique tree inequalities define facets of  GTSP or STSP [ 17]. 

Theo r em 4. The strength o f  a clique tree inequality with h handles and t teeth is at 

most 

3 t + 2 h -  1 

3 t + h -  1 

From the above theorem, we can derive the following corollary. 

Corollary 5. 
(1)  The strength o f  a comb inequality with t teeth is at most (3t  + 1 ) /3 t ;  

(2)  the strength o f  a comb inequality is at most !~ ; 

(3)  the strength o f  a clique tree inequality with h handles is at most ( 8 h + 2 ) / ( 7 h + 2 )  ; 
8 (4)  the strength o f  a clique tree inequality is at most 7" 
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Items (1) and (2) follow from the definition of  combs, item (3) from the fact that 

t >~ 2h 4- 1 (since the number of  edges incident to handles in the intersection graph is 

at least 3h and at most p = t 4- h - 1), and item (4) from item (3).  

Proof of Theorem 4. From the discussion in Section 3.1, we need to construct a feasible 
i for solution for (D) of  value 3t + h - 1. Our dual solution is the following. Let ys = 

any S of  the form 

{ HiNTj ,  1 <~i<~h,1 ~ j < ~ t a n d H i N T j ~ O ,  
S= Tj, l<~j<~t,  

Tj - Ui Hi, 1 <~ j <~ t, 

and Ys = 0 otherwise. (See Fig. 1 for an illustration of  y.) Notice that, by definition of  

a clique tree, all these sets are nonempty. Also, 

t 

2 Z y s  = Z t i  + 2 t  = p  + 2 t  = 3 t +  h -  l. 
S i=1 

Finally, one can easily verify that y is a dual feasible solution, completing the proof. []  

Rernark.  Using a result of  [4] ,  the strength of  a clique tree inequality can be shown 

to be exactly equal to 

3 t + 2 h -  1 

3t + 2 h -  2 -  npt '  

where npt denotes the number of  nonpendent teeth of  the clique tree. A nonpendent 
tooth is a tooth intersecting more than one handle. Indeed, it is easy to derive from 

[4, Theorem 2.2] that Zsp = 3t + 2h - 2 - npt, where Zsp denotes the optimum value 
when optimizing over SE Notice that this is in agreement with Theorem 4 since orte 

can easily show (for example, by induction) that npt ~< h - 1. This also shows that 

our upper bounds on the strength of subclasses of  clique tree inequalities described in 

Theorem 4 and Corollary 5 can be attained. 

4.2. Path inequalities 

Path inequalities were introduced in [7] .  A k-path configuration is defined by an 

odd integer k ) 3, integers ni ) 2 for i = 1 . . . . .  k and a partition of  the vertex set V 

into {A, Z, B} for i = 1 . . . . .  k and j = 1 . . . . .  ni} where A and/or  Z could be empty. 

For notational convenience, let B~ = A and B i = Z for i = 1 k. Let 6(S,T) be ni+l  ' " " " ' 

8(S)  N 8(T) .  The k-path inequality is ax >~ ao where 

k 

ao= l + Z nj+l_ 
i=l n i  1 

and 
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2 

ùP:_I .... 

o o ~ 4p+2 
'~ 0 0 0 

Fig. 2. A p-regular 3-path inequality. The coefficient ae in the inequality ax  ) 4p + 2 is equal to the shortest 
path length between the endpoints of e in the above weighted graph. 

a e 

1, e C 8 ( A , Z ) ,  

IJ - II eCS(B},B~) ,  i = l  , kand  
n i _ l ,  , ' ' "  

0 < IJ - II <~ ni, 

1 1 j - 1  l - 1  h i 
n h - 1 + ~ + nh - 1 n i -  1 , e E • ( B j , B I ) ,  j 1 . . . . .  nh,  

h ~ i and l = 1 . . . . .  n i ,  

0, otherwise. 

When n i = p for all i, the k-path inequality is called p-regular and takes a particularly 
attractive form as can be seen in Fig. 2 for the case k = 3. The class of 2-regular path 
inequalities is equivalent to the class of comb inequalities. The k-path inequalities are 
facet-defining for GTSP [7]. 

Theorem 6. The  s t rength  o f  a p a t h  inequal i t y  is 

1 + ~~=1 ri 

2~i=, re 
k + l  4 ~< --T-- ~< ~, 

w h e r e  r i = (ni  q- 1 ) / ( n i  - 1). 

Proof. Let y be defined by (see Fig. 3): 

{ 1 1 S i w i t h  l < ~ i < ~ k a n d  l < ~ j « . n i ,  
2 n i - 1 '  = B j  

Ys = 1 1 i with 1 ~< i ~< k, 2n, 1' s = Ui;':, ~J 

0, otherwise. 

One can verify that y is a feasible solution for (D) with value 2 ~ s Y s  = ~-~~ki= 1 r» 

Moreover, y is an optimal solution since a primal solution of the same value can be 
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A 

B~ e0 

B~" z ~ ~  ~nk 
Fig. 3. Illustration of the dual solution y in the case of a path configuration inequality, y has a nonzero 
component only for those sets represented as thick circles or ellipses. 

obtained by selecting an edge from each set 8(B},B}+ l)  for i = 1 . . . . .  k and j = 

0 . . . . .  ni as well as edges from within the B}. Using the arguments of  Section 3.1, the 

strength o f  a path inequality is thus equal to 

1 + ~ki= 1 ri 1 1 4 -1+--<.1+~<.~, 
~~=lri S~=lri 

where we have used the facts that ri >/ I and k />  3. [] 

4.3. Crown inequalities 

Crown inequalities were recently discovered in [24] .  Consider a partit ion of  V into 4k 

(k  >~ 2) vertex sets UI . . . . .  U4k. Given 1 ~< i, j ~< 4k, let (i, j )  be defined as the distance 

on the cycle {1 ,2  . . . . .  4k, 1}, i.e., ( i , j )  = l i - j l  i f  [ i - j l  <~ 2k and ( i , j )  = 4 k - l i - j l ,  

Fig. 4. Crown inequality on eight vertices (k = 2). The right-hand side is 22 and the coefficients of all edges 
can be obtained by simply rotating the edges of the figure. 
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otherwise.: The crown inequality is the inequality ax >/ao where a0 = 1 2 k ( k -  1) - 2 

and 

{ 4 k - 6 + ( i , j ) ,  e E ( 3 ( u i ,  u i ) ,  l ~ li, j )  < ~ 2 k - 1 ,  

ae= 2 k - 2 ,  eE~(U/ ,Ui+2k) ,  1 ~<i~<2k, 
0, otherwise. 

The simplest crown inequality is represented in Fig. 4. The crown inequalities are 

facet-defining for k >~ 2 [24].  

Theorem 7. The crown inequality has strength 

ó k ( k - 1 )  - I l l  

6k( k - 1) - k  <~ -1Ö" 

Proof. As usual, we claim that the following vector y is a feasible solution to (D) of  

value 12k(k - 1) - 2k: 

{ k - l ,  S = U i  with 1 ~<i~<4k, 

Ys = k - 3 , S = Ui U Ui+ 2~ with 1 ~<i~<2k, 

0, otherwise. 

This vector y is optimal since a primal solution x of the same value can be derived: set 

Xe = 1 for one edge e from each diameter ~(Ui, Ui+2k), Xe = 0.5 for one edge e from 

each ~(Ui, Ui+~ ) and also X e = 1 for edges within Ui. [] 

4.4. Hypohamiltonian inequalities 

A hypohamiltonian gmph  is a nonhamiltonian graph such that the deletion of  any 

node yields a hamiltonian graph. The Petersen graph is the smallest hypohamiltonian 

graph (Sosselier, see [2] ). Consider a partition of  V into V1 . . . . .  Vk and let H be an 

edge maximal hypohamiltonian graph with vertex set {1 . . . . .  k}. The resulting hypo- 

hamiltonian inequality is ax >~ ao where a0 = k + 1 and 

{ 1, e E ~(V/, V./), i 7~j and ( i , j )  C H, 

ae = 2, e E ô(Vi, Vj), i ~ j  and ( i , j )  ~ H, 

0, otherwise. 

The hypohamiltonian inequalities were shown to be facet-defining for GTSP in [7] .  For 

related results for STSP, see [ 16]. 

Theorem 8. The strength o f  a hypohamiltonian inequality corresponding to a hypo- 

hamiltonian graph on k vertices is at most 

k + l  11 --T- <~ ~ö. 

Proofi Let Ys = ½ for any S of  the form V/and Ys = 0 otherwise. Clearly, y is a feasible 

solution to (D) of  value k. Hence, an upper bound on the strength is (k  + 1) /k .  This 
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is at most ~0 since the smallest hypohamiltonian graph is the Petersen graph (on ten 
vertices). [] 

4.5. Miscellany 

As we have seen, it is often child's play to compute the strength (or at least an upper 
bound on the strength) of an inequality for GTSP. The reader can experiment with his 
own favorite class of inequalities. As a last example, one can easily show that a planted 
clique tree inequality as defined in [23] has strength upper bounded by 

4t + 2h 10h + 4 

4 t + h - 1  ~< 9h +-------3-" 

This is at most ~ for h ~> 2. For h = 1, the planted clique tree inequality reduces to the 
3-regular 3-path inequality whose strength is equal to ~ in agreement with Theorem 6. 

5. Interpretation 

We give three different interpretations of the results of the previous section. 
( 1 ) Experimental results show that strong cutting-plane algorithms work very well for 

the travelling salesman problem. This seems to indicate that the intersection of all the 
known classes of inequalities for STSP or GTSP approximates it very closely. The results 
of the previous sections show that if one optimizes any nonnegative cost function over all 
subtour elimination constraints, all clique tree inequalities, all path inequalities, all crown 
inequalities, all hypohamiltonian inequalities and all planted clique tree inequalities, the 
resulting bound is at most 4 times the Held-Karp lower bound. This is some strongly 
supporting evidence for Conjecture 1. 

(2) If the clique tree inequalities and the subtour elimination constraints are sufficient 
to prove optimality for some instance of the TSP, then the Held-Karp lower bound taust 
be within a factor of ~ < 115% of optimal. This gives some explanation of the tightness 
of the bound in practice. 

(3) If one considers a special instance of the travelling salesman problem in which the 
cost function consists of the left-hand side of a p-regular 3-path inequality with p large, 
then all the classes of valid inequalities studied in this paper, except the path inequalities 
themselves, will do badly on this instance. Indeed, the class of comb inequalities for 
example will close at most 

1-0-°--1 1 
9 - - - 33.3% 
4 - 1  3 
3 

of the duality gap. This is not impressive. Similarly the class of clique trees will close 
at most 

8 l 3 
7 - < 43% 
« 1 7 
3 
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of the duality gap. In fact, to close more than 43% of the duality gap, one must use the 

path inequalities, or some class of inequalities which is not considered in this paper. 

6. Conc lud ing  remarks 

The results of the previous sections apply to GTSE One might wonder whether 

the worst-case improvements remain unchanged when one adds the degree constraints 

x(8{i})  = 2 for all i E V and restricts one's attention to cost functions satisfying the 

triangle inequality. We believe so but have been unable to prove it. The result would 

follow immediately if one could prove that the degree constraints never affect the value 

of the relaxation when the cost function satisfies the triangle inequality. In the two 

extreme cases (the subtour polytope and STSP), this is indeed correct (for the subtour 

polytope, see [ 11 ] ). 

In this paper, we have provided a measure to evaluate relaxations for GTSE It would 

be worthwhile to investigate other measures. In particular, one could try to compare the 

volumes of various relaxations for the TSE 

Finally, since the TSP is NP-hard, one should not expect to obtain a simple description 

of the facets of GTSE Nevertheless, one could hope for the derivation of properties of 

them which allow to prove an upper bound on the strength of any facet-defining valid 

inequality. This could lead to a proof of Conjecture 1. 
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