
Sink Equilibria and Convergence

Michel Goemans
Massachusetts Institute of Technology

goemans@math.mit.edu

Vahab Mirrokni
Massachusetts Institute of Technology

mirrokni@theory.csail.mit.edu

Adrian Vetta
McGill University

vetta@math.mcgill.ca

Abstract

We introduce the concept of a sink equilibrium. A sink
equilibrium is a strongly connected component with no out-
going arcs in the strategy profile graph associated with a
game. The strategy profile graph has a vertex set induced
by the set of pure strategy profiles; its arc set corresponds
to transitions between strategy profiles that occur with non-
zero probability. (Here our focus will just be on the spe-
cial case in which the strategy profile graph is actually a
best response graph; that is, its arc set corresponds exactly
to best response moves that result from myopic or greedy
behaviour.) We argue that there is a natural convergence
process to sink equilibria in games where agents use pure
strategies. This leads to an alternative measure of the social
cost of a lack of coordination, the price of sinking, which
measures the worst case ratio between the value of a sink
equilibrium and the value of the socially optimal solution.
We define the value of a sink equilibrium to be the expected
social value of the steady state distribution induced by a
random walk on that sink.

We illustrate the value of this measure in three ways.
Firstly, we show that it may more accurately reflects the in-
efficiency of uncoordinated solutions in competitive games
when the use of pure strategies is the norm. In particular,
we give an example (a valid-utility game) in which the game
converges to solutions which are a factor � worse than so-
cially optimal. The price of sinking is indeed � , but the
price of anarchy is close to

�
. Secondly, sink equilibria al-

ways exist. Thus, even in games in which pure strategy Nash
equilibria (PSNE) do not exist, we can still calculate the
price of sinking. Thirdly, we show that bounding the price
of sinking can have important implications for the speed of
convergence to socially good solutions in games where the
agents make best response moves in a random order.

We present two examples to illustrate our ideas.
(i) Unsplittable Selfish Routing (and Weighted Congestion

Games): we prove that the price of sinking for the weighted
unsplittable flow version of the selfish routing problem (for
bounded-degree polynomial latency functions) is at most� � � � 
 � � 
 � � �

. In comparison, we give instances of these
games without any PSNE. Moreover, our proof technique
implies fast convergence to socially good (approximate) so-
lutions. This is in contrast to the negative result of Fab-
rikant, Papadimitriou, and Talwar [2] showing the exis-
tence of exponentially long best-response paths.
(ii) Valid-Utility Games: we show that for valid-utility
games the price of sinking is at most � � �

; thus the worst
case price of sinking in a valid-utility game is between �

and � � �
. We use our proof to show fast convergence to con-

stant factor approximate solutions in basic-utility games.
In addition, we present a hardness result which shows

that, in general, there might be states that are exponen-
tially far from any sink equilibrium in valid-utility games.
We prove this by showing that the problem of finding a
sink equilibrium (or a PSNE) in valid-utility games is PLS-
complete.

1 Introduction

A standard approach in analysing the performance of
systems controlled by non-cooperative agents is by the ex-
amination of Nash equilibria. Of particular interest is the
price of anarchy1 in a game [8]. This gives one measure
of the cost to society of the inherent lack of coordination in
a game. There are, however, several drawbacks in the use
of Nash equilibria. For example, one issue relates to use of
non-randomized (pure) and randomized (mixed) strategies.
Often pure strategy Nash equilibria may not exist, yet the
use of a randomized (mixed) strategy is unrealistic in many

1The price of anarchy is the worst case ratio between the social value
of an optimal solution and a Nash equilibrium.
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games. This necessitates the need for an alternative solu-
tion concept in evaluating such games. Another issue arises
from the observation that Nash equilibria represent “stable”
points in a system. Therefore (even if pure Nash equilibria
exist), they are a more acceptable solution concept if it is
likely that the system does converge to such stable points.
In particular, the use of Nash equilibria seems more valid
in games in which Nash equilibria arise when agents itera-
tively engage in selfish behaviour. However, in many games
it is not the case that repeated selfish behaviour always leads
to Nash equilibria. In these games it also seems that another
measure of the cost of the lack of coordination would be
useful. Observe that these issues are particularly important
in games in which the use of pure strategies and repeated
moves are the norm, for example, auctions. We remark that
for many practical games these properties are the rule rather
than the exception (and this observation motivates much of
the work in this paper). For these games, then, it is not suf-
ficient to just study the value of the social function at Nash
equilibria.

In this paper we introduce a new solution concept in a
game, namely sink equilibria. We model the behaviour of
agents using a graph, called the state graph (or strategy pro-
file graph) whose vertex set is the set of strategy states (or
strategy profiles). We assume that evolution of the game
over time can be described by walks on this graph. Here, we
also assume that the only arcs of the state graph are arcs that
correspond to moves of the players that may occur with non-
zero probability. Thus, solutions or stable outcomes will be
given by the long-run behaviour of such random walks. In
particular, eventually these walks must lead to a set of states
that have the following two properties:

� These states form a strongly connected component in the
state graph.

� The strongly connected component has no outgoing arcs
in the state graph.

These strongly connected components are sink equilib-
ria. They are stable in that once we reach such a component
we will never leave it. They include PSNE as a special case,
but unlike PSNE they are guaranteed to exist in all such
games. As with Nash equilibria, we can use sink equilibria
to measure the cost to society of the lack of coordination. In
particular, here we will consider an analogue of the price of
anarchy termed the price of sinking. This is the worst case
ratio of the social value of a sink equilibrium compared to
the optimal social solution. The social value of a sink equi-
librium is measured by the expected value of the stationary
distribution of a random walk on the states in the sink.

We formally define the price of sinking in Section 2. For
any game the arc set and their associated probabilities in the
state profile graph may vary dramatically. As mentioned,
we will focus on perhaps the simplest case: the best re-
sponse graph associated with myopic players. Here, the arc

set consists only of those arcs that correspond to a best re-
sponse move of some player. We will also assume that, at
a given state, each player is equally likely to be selected
to move. Thus our random walk will be a uniform ran-
dom walk on the best response graph. We call sink equi-
libria in such graphs myopic sink equilibria, and refer to
the price of sinking myopically. We will omit the “myopic”
term when the context is clear. We remark that the assump-
tion of myopic behaviour is very restrictive and unrealistic
in many situations. Consequently, further investigation into
the general case is important. This would allow for an ex-
amination into alternate behaviours such as non-myopic be-
haviour, long-term planning, and simultaneous moves. We
content ourselves, here, with considering the basic case of
myopic behaviour with non-simultaneous moves for several
reasons though. Firstly, it allows us to introduce sink equi-
libria in a clear manner, without having to deal with the
complexities (both practical and game-theoretic) of alterna-
tive behaviours. For example, given a game how do you jus-
tify non-uniform moves, realistically incorporate forward
planning, or assign probabilities to simultaneous moves etc.
Moreover, even finding simple, realistic examples of games
with non-myopic behaviours is not a straight-forward task.
In addition, mathematically there appears to be no intrinsic
additional difficulty in tackling the general case, and so the
ideas and techniques presented here should also be useful in
examining games with non-myopic behaviours.

We illustrate the usefulness of our measure in Section 3
where we present an � -agent valid-utility game which al-
ways converges to states with social value a factor � worse
than optimal. Indeed, the price of sinking for this game is � .
However the price of anarchy is almost

�
. Thus, the price of

anarchy gives us a misleading confidence in the social qual-
ity of an outcome that will result from selfish behaviour.

As well as being perhaps a more appropriate solution
concept than PSNE in many games, the existence of sink
equilibria has several nice implications. Since sink equi-
libria always exist, the price of sinking can always be cal-
culated2 even in games without PSNE. Unlike PSNE, sink
equilibria also possess natural convergence properties. In
particular, the techniques used to bound the price of sinking
may often also give bounds on the speed of convergence of
random walks to sink equilibria and/or approximate solu-
tions. We study two examples in Section 4:
(1) Unsplittable Selfish Routing (and Weighted Congestion
Games). We present instances of the weighted unsplit-
table flow version of the selfish routing problem that pos-
sess no PSNE. However, we show that, for polynomial la-
tency functions of degree at most

�
, the price of sinking

is
� � � 	 � � 	 � � � �

. In addition, our proof technique implies
fast convergence to good (approximate) solutions. This may
be compared to the negative result by Fabrikant, Papadim-

2Of course, actually doing so may not be easy!
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itriou, and Talwar [2] showing the existence of exponen-
tially long best-response paths to PSNE. For example, con-
sider the case of linear latency functions. Here, it is known
that PSNE exist [4], but it may be the case that the number
of best response moves needed for convergence to a PSNE
is exponential. Our results show that after a small number
of random best response moves the social value of the flow
is within a constant factor of the optimal solution.
(2) Valid-Utility Games. Our second example concerns the
class of valid-utility games; specific example in this class
include marking sharing games [5], caching games [3], traf-
fic routing games, facility location games, and multiple item
auctions [14]. Here we show that the price of sinking is at
most � � �

; thus the worst case price of sinking in a valid-
utility game is between � and � � �

. Again, our meth-
ods signify fast convergence to approximate solutions. In
particular, for basic-utility games, the expected social value
of any state after � � � � � random best response moves is at
least half of optimum.

We also present a hardness result concerning sink equi-
libria. In section 5 we show that in general it is a PLS-
complete problem to find a sink equilibria (or PSNE) in
valid-utility games. This implies the existence of exponen-
tially long best response paths to any sink equilibrium in
some valid-utility games.

We conclude this introduction with a very brief discus-
sion on related work. In order to deal with the stability
and convergence problems of Nash equilibria, equilibrium
concepts other than Nash equilibria have been studied in
the economics literature. Among these concepts are sta-
ble equilibria [7], stochastic adjustment models [6], iterative
elimination of dominated strategies, the set of undominated
strategies etc. Convergence and strategic stability of equi-
libria in evolutionary game theory is a also central subject
of study for many economists. However, in their studies the
most important factor is typically the stability of equilibria,
and not measurements of the social value of equilibria. In
[9], we began our investigation into games in which pure
strategy moves are the norm.

2 Sink Equilibria

A strategic game � is defined as a tuple � � � 
 � � � � � �
� � 
 � � � � � � � � � � �

where (i)
�

is the set of � players or
agents, (ii)

� �
is a family of feasible (pure) strategies or

actions for player
�

and (iii)
� � � ! � $ & � � ' ) � + � - �

is the
(private) payoff or utility function for agent

�
, given the set

of strategies of all players. Player
�
’s strategy is denoted by/ � � � �

, and we let 1 � 3 ! � $ & � �
be the set of all possible

strategy profiles. In the games we consider, there will be a
social utility function, usually denoted by 5 � ! � $ & � � '

)
, defined on all strategy profiles in a strategic game. The

social value of the optimal solution is denoted by OPT. Our

main focus is on the social quality of outcomes produced by
selfish agents.

A strategy profile or a (strategy) state, denoted by 6 3
� / 8 
 / � 
 9 9 9 
 / ; �

, is the collection of strategies chosen by the
players. We let 6 = / >� � 3 � / 8 
 9 9 9 
 / � @ 8 
 / > � 
 / � � 8 
 9 9 9 
 / A �

,
that is, the strategy profile obtained from 6 if agent

�
changes its strategy from / �

to / >� . In order to model the
selfish behavior of players, we use the underlying strategy
profile graph or state graph. Each vertex in the state graph
represents a state 6 3 � / 8 
 / � 
 9 9 9 
 / ; �

. As noted, in this
paper the arcs in the state graph will correspond to best-
response moves by the players. Hence we have, for each
player

�
an arc from 6 to 6 = D/ �

, where D/ �
is the best re-

sponse of agent
�

at state 6 . (This model can be justified in
extensive games with complete information, and is used in
the economics literature extensively in the context of study-
ing convergence in games.) In many games with iterative
moves, the evolution of game-play may then be naturally
modeled by a path in the state graph. Such a path may
or may not converge to a pure strategy Nash equilibrium
(PSNE); a PSNE of a strategic game is a strategy profile in
which each player plays mutual best responses (that is, a
vertex in the state graph for which the best response move
of each agent corresponds to a self-loop). Clearly it may
be the case that there are no PSNE. So we may ask what
happens in such games. Specifically, does some concept of
stability or equilibrium exist? The answer is yes, and we
now describe such an “equilibrium”.

Consider the strongly connected components of the state
graph. If we contract the strongly connected components to
singletons then we obtain an acyclic graph. The sink nodes
in this graph (nodes with out-degree equal to zero) corre-
spond to strongly connected components with no out-going
arcs in the state graph. We call such a strongly connected
component a (myopic) sink equilibrium. The reason for this
terminology is clear: if a best-response walk ever reaches a
node in a sink equilibrium then it will never leave that set of
nodes. In addition, a long enough random walk in the state
graph will converge to a sink equilibrium with probability
arbitrarily close to 1.

We denote by E the set of sink equilibria in a game. We
remark that the union of states in sink equilibria correspond
to the set of recurrent states in a Markov chain that only
has non-zero transitional probabilities on arcs in the state
graph. In a random sequence of best responses of agents, we
independently choose an agent uniformly at random at each
step and let this agent play its best response (if the agent
has more than one best-response move, we may assume that
the agent arbitrarily chooses a move from the collection of
best-response moves). When this walk reaches a state in
some sink we then follow a random walk over the states
in that sink. For a sink F � E , let G H � F ' ) � +

� - �
be the steady state distribution of the random walk over
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states in � . Let � � � �
measure the social value of a state

� . The (expected) social value of a sink equilibrium � �
� , denoted by � � � �

, is the expected social value of states
given by the steady distribution of the random walk over
the states of � , i.e., � � � � � � � � � � � � � � � � � �

We then
define, the price of sinking (myopically) for a maximization
social function as

Price of Sinking
� OPT� � 	

� � � � � � �
� OPT� � 	

� � � � � � � � � � � � � � � �

In other words, the price of sinking is the worst ratio be-
tween the expected social value of a sink equilibrium and
the social value of the optimum. Similarly, the price of sink-
ing for a minimization problem is � � �

� � � � � � � �
OPT. More-

over, we have an analogous definitions for the price of sink-
ing for general strategy profile graphs with alternate arc
sets. Given that sink equilibria are stable solutions in such
games, this may be a more realistic measure of the cost of
the lack of coordination than the price of anarchy.

3 Price of Sinking vs. Price of Anarchy

In this section, we present an � -agent (valid-utility)
game in which the price of sinking and the price of anar-
chy give very different pictures as to the consequences of
non-cooperative behavior. In particular, the price of anar-
chy will be close to

�
, suggesting that no form of mecha-

nism design is required to enforce socially good solutions.
However, every possible outcome of the game will result
in a solution whose value is a factor � smaller than that
of the optimal social solution. The collection of strategies
(groundset) available to of agent

	
is


 � � � � � � � �� � � � � � � �� �
,

where
	 � � � � � � � � � � � �

. For motivation, we can think of
strategy

� �
as a socially responsible strategy for agent

	
. In

contrast, all the strategies

 � � � � �� � � � � � � �� �

can be viewed
as socially irresponsible strategies. Moreover, we will see
that in any situation one of these � irresponsible strategies
provides a better payoff for agent

	
than acting responsibly.

Consequently, there is an incentive for every agent to act
anti-socially with extreme consequences for the social out-
come. In contrast, the price of anarchy is oblivious to this
incentive for anti-social behavior. The reason being that the
payoffs to each agent are intrinsically linked to the behavior
of the other agents. Any specific irresponsible strategy may
be beneficial in certain circumstances but typically (given
the other agents responses) that specific strategy has smaller
payoff than the responsible strategy. Consequently, under
randomized strategies, playing an irresponsible strategy is
likely to lead to low private returns. Thus mixed strategy
Nash equilibria will require that most agents behave respon-
sibly, blissfully ignoring the fact that in every possible situ-
ation each agent has an incentive to behave irresponsible.

The family of feasible strategies
� �

for each agent
	

is
the set of singletons of his ground set and the empty set,
i.e.,

� � � 
 � � � � � � � � � � �
. Let � � � 
 � � � � �� � � � � � � �� �

and � � � � � �
. Let � � � �  � � � � � � � � � � �

be a collection
of subsets � � � � �

for all
	 � � � � � � � � � � � �

. For a collec-
tion � � � �  � � � � � � � �

, we let � # � � � � # � �
. We construct

a non-decreasing, submodular social utility function � on$ � � # � �
in the following manner.

� � � � � % � � # ( � �
if � # + � � -

� � # ( � � � �
otherwise

We now need to specify the private utilities of each agent
at any state. In order to define the payoff functions, we de-
fine a function

	 / � � �
for each strategy profile � . We set	 / � � � � � 0 2 2 for any strategy profile � in which no player

plays an irresponsible strategy. If in a strategy profile � ,
some players play irresponsibly,

	 / � � �
is the index of one of

the players who plays irresponsibly. In addition, we would
like

	 / � � �
to satisfy the following property: given the strate-

gies of the other agents, any agent
	

can always choose some
irresponsible strategy which forces

	 / � � � � 	
. Clearly, this

will give agents an incentive to act irresponsibly when us-
ing pure strategies. In order to complete the description of
the function

	 /
, let 4 � 6 � � �

be the indicator variable for the
event that agent

	
plays the irresponsible strategy

� 6 �
. That

is 4 � 6 � � � � �
if

� 6 � � � # and 4 � 6 � � � � � � �
otherwise.

Next let

	 / � � � � 89 : � 0 2 2 if � # + � � -
(No irresponsible moves)	 @

if
� � � � # + � � � A� -

and2 � C � � � # � � �6 D  E G 4 � 6 � � � � � ' J K M
Observe that if

	 / � � � � � 0 2 2 then
	

can play the irresponsi-
ble strategy � (� � 
 � �� �

, thus forcing
	 / � � ) � (� � � 	

. More-
over, there always exists a strategy � (� � 
 � O � �

such that if
	

plays � (� � 
 � O � �
then

	 / � � ) � (� � � 	
. We are now ready to

give a payoff function
* �

for each agent
	
.

* � � � � � 8PP9
PP:

�
if

� � �� � �
and

	 A� 	 / � � �
�

if
� � � � �

and
	 A� 	 / � � �

�
if

� � �� � �
and

	 � 	 / � � �S
if

� � � � �
and

	 � 	 / � � � �

So agent
	

gets utility
�

for playing the responsible strategy
and another

�
units of utility if

	 � 	 / � � �
. We will see

in Section 4.2 that this is a valid-utility game with a non-
decreasing social utility function. Thus we may apply the
following result from [14].

Theorem 3.1. A valid-utility game with a non-decreasing
social utility function has a price of anarchy at most

�
.

If fact, it is easy to see that the price of anarchy in this
game actually tends to

�
as the number of agents increases.

In particular, a socially optimal solution has � � �
of the
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agents playing their responsible strategies and exactly one
of the agents plays an irresponsible strategy. Such an out-
come has value � � �

. Moreover, note that by playing re-
sponsibly an agent can guarantee that they receive

�
unit

of utility. Thus, it must be the case that in a Nash equilib-
rium3 every agent has an expected payoff of at least

�
. Since

� � � � � � � � � � � � � �
for any state � , we have that the ex-

pected social value of a Nash equilibrium is at least � . Thus
the price of anarchy is at most

� �
�� .

Now we consider the price of sinking in this game. Given
any strategy profile � , the best response of each agent is to
play the specific irresponsible strategy that gives it a pay-
off of

�
. To see this, note that agent

	
always has a move

that sets
	 � � � 
 � � 	

. Thus a responsible strategy
� �

is never
a best-response strategy. In fact, the best response of each
player is to play an irresponsible strategy to get the payoff
of

�
, thus forcing to the payoffs of the other players us-

ing irresponsible strategies to
�
. It follows that there is a

unique sink equilibrium consisting of every strategy profile
in which each agent plays an irresponsible strategy. Thus,
every state in the sink has social value exactly two. Hence
the price of sinking is exactly

� � �
� . We remark that even if

we start at an optimal solution and then allow each agent to
make just one single best-response move in turn then we end
up with a solution of value

�
! Moreover, we can then never

leave this sink if players play their myopic best responses.
Notice also that we could alter the payoffs in the game

slightly so that the payoff resulting from the first irresponsi-
ble move is

� � � rather than
�
. Clearly the price of sinking

is then
� � �� � � whilst the price of anarchy is

� � �� . Thus we
have

Lemma 3.2. There are valid-utility games, with non-
decreasing social utility functions, having a price of sinking
of almost � and a price of anarchy of almost

�
.

Consequently the price of anarchy underestimates the so-
cial cost of the lack of coordination by a factor � . The rea-
son for this is that the good strategy always gives a good
return. Any bad strategy can give a high return but only in a
small number of situations, thus any bad strategy performs
badly against randomized strategies and players tend to play
their good strategies in a mixed Nash equilibria. This type
of issue often arises in games, and explains why the price
of anarchy may often significantly under-estimate the social
cost of the lack of coordination in such games.

Finally, note that this game has no PSNE so focusing
here upon sink equilibria is essential. Surprisingly, Lemma
3.2 is also almost tight; we will show in Section 4 that the
price of sinking in a valid-utility game is at most � � �

.

3One Nash equilibrium is the following. Each agent � plays strategy � 	
with probability 
 and each bad strategy with probability �  �� . It is easy

to check that letting 
 � � � �� �� � � � ��  �  gives a Nash equilibrium.

4 Price of Sinking and Convergence

Recall that PSNE are special cases of sink equilibria. We
have already seen that games in which agents repeatedly re-
act to the other agent’s strategies via the use of pure strategy
best responses will converge to sink equilibria and not nec-
essarily to PSNE. Moreover, many classes of games have
instances for which no PSNE exists. In these games, we
can still measure the cost to society of the lack of coordina-
tion using the price of sinking. Moreover, in bounding the
price of sinking for sink equilibria we may obtain bounds on
the expected social value of states after a random sequence
of best responses.

4.1 Unsplittable Selfish Routing and Weighted
Congestion Games

Consider the “unsplittable flow” version of the selfish
routing game. We have a directed network ! � � �  # �

with a flow dependent latency function $ & � � � � � � � � �
on each arc ' � #

. There is a set
�

of � agents; agent
	

wishes to route flow at a rate ) �
from a source � �

to a sink* �
. Each agent aims to incur as small a latency as possi-

ble. In the unsplittable flow version, an agent may not split
its flow. Hence each agent picks a unique � � � * �

path and
routes all its flow along the path. The latency of an agent is
equal to its traffic size multiplied by the sum of the laten-
cies of arcs along the path that it chooses. The latency of
an arc ' is a non-decreasing and non-negative function of
the total load on arc ' . In this paper, we consider bounded-
degree polynomial latency functions. In particular, for an
arc ' , we let $ & � � � � � , - � -

� / & 0 � � �
be a non-negative and

non-decreasing delay function for arc ' . For a strategy pro-
file 1 � � 3 �  3 �  � � �  3 � �

where
3 �

is a � � � * �
path, let the

load of arc ' be 5 & � � � 7 & � 8 9 ) �
. Then, the latency of agent	

is � � � 5 � � ) � � & � 8 9 $ & � 5 & �
and the total latency of flow 5

is � � 5 � � � � � � � � � 5 � � � & � : < > ? $ & � 5 & � 5 & .
Recently Awerbuch, Azar, and Epstein [1] proved that

the price of anarchy in such games is exactly
� � A � B

for lin-
ear latency functions and is at most

	 � � � � � � � �
for polyno-

mial latency functions of degree at most
�
. They extended

their results to mixed Nash equilibria, since the existence
of pure Nash equilibria for these games with polynomial
latency functions was not known. For linear latency func-
tion Fotakis, Kontogiannis, and Spirakis [4] proved that the
game is a potential game. Here, we exhibit an instance of
this game with quadratic latency functions that does not
possess any PSNE. This, in turn, provides additional mo-
tivation for analyzing the price of sinking in these games.
Our example is shown in Figure 1. It depicts a network withC

vertices and
A

arcs. Arcs are labeled from
�

to
A
. The la-

tency functions of arcs are $ � � � � � � � 
 

, $ � � � � � � 
 �

,$ � � � � � 
 � �
, $ E � � � � A � �

, $ H � � � � � � � C C
, and
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� � � � � � � � �
. There are two agents with traffic � � � �

and
� � � �

. The source of both agents is vertex
�

( � � � � � � �
)

and the destination of both agents is vertex
�

(
� � � � � �

�
). There are four source-destination paths:

� � � � � �
,

1

3

4

2

3

6

1 5

P

P

P

1

2

3P 24

4

Figure 1. A routing game without PSNE.

� � � � � � � �
,

� � � � � � � � � �
, and

� � � � � � � �
where the

numbers within the parentheses are the labels of arcs on the
path. It is not hard to check that the weighted unsplittable
selfish routing game on this network has no PSNE. There
is one sink equilibrium, namely the set of strategy profiles� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

.
The key to obtaining bounds on the price of sinking is

that any agent making a best-response move cannot cause
too much cumulative harm to the other agents. Conse-
quently, if an agent can make a move that significantly in-
creases its private welfare, then the overall social welfare
must rise. This will be an important factor in allowing us to
prove that we have a low price of sinking in these routing
games.

Theorem 4.1. The price of sinking for a weighted unsplit-
table selfish routing game is at most

	 � � � � � � � � � �
.

Proof. We need the following three lemmas for the proof.

Lemma 4.2. Let � be the flow corresponding to the strategy
profile � � � � � � � � � � � 	 �

. If agent



changes its flow path
from

� �
to

� ��
, to give a new flow � ��

, then � � � �� � � � � � � � � � �
� � � � � � �� � � � � � � �

. In particular, if agent



decreases its latency
by changing to

� ��
, then � � � �� � � � � � � � � � � � � � � � � � � � � � � �

.

Proof. The latency incurred by agent



is then

� � � � �� � � � � �
  � 	�

�� � � �
�

�  � � � � �� �  �
�

� � � �
  � 	� 
 � �

�� � � �
�

�  � � �
�

 � � � �
  � 	� � � �

�� � � �
�

�  � � � �  � � � �
�

Note that for � � � �� � � �
, we have � �� �  � �  � � �

. Moreover,
we know that

� � � �� � � � � � � � � � � � � �� � � � � � � � �

� �
  � 	� � � �

� �� � � �
�

� �  � � � �� � 
�

� � � �  � � �
�

 � �� � � �� �  � � � �

the last term corresponding to the increase in latency for
agents other than



due to the rerouting of agent



. We can

get an upper bound on the increase in latencies faced by the
other agents by noting that

�
  � 	� � � �

� �� � � �
�

� �  � � � �� � 
�

� � � �  � � �
�

 � �� � � �� �  � � � �

� �
  � 	� � � �

�� � � �
�

� �  � � � � �� � 
�

� �
�

 � �  �

� �
  � 	� � � �

�� � � �
�

�  � � � � �� �  � �  � � 
� �

� � � � � � �� � 
� � �

�
� � �

 ��
� �

  � 	� � � �
�� � � �

�
�  � � � � � �  � � � �

� �
� � � � �

� �  � � � �
� � � ��

� � � �
  � 	� � � �

� �� � � �
�

� �  � � � �  � � � �
� ��

� � � � � � �� �

Thus, the total latency after agent



changes its strategy is at
most � � � � � � � � � � � � � � �� � � � � � � �

. Since, � � � � �� � � � � � � �
,

this shows that � � � �� � � � � � � � � � � � � � � � � � � � � � � �
.

Lemma 4.3. Let � be the flow corresponding to the current
strategy profile. Consider the following random process: let
a random agent



play its best response. If � � is the new flow

after this change, then � 
 � � � � � � � � � � � � �	 � � � � �
.

Proof. Let � ��
be the flow after agent



plays its best re-

sponse to � . Then, using Lemma 4.2, we have � 
 � � � � � � � � �
�

	 � �  � � � � �� � � �
	 � �  � � � � � � � � � � � � � � � �

	 � � � � � � �
� � � � � � � � � � �	 � � � � � �

The third lemma we need is below. Its proof is inspired
by the work of Awerbuch et al. [1].

Lemma 4.4. Let � be the flow corresponding to the current
strategy profile. Consider the following random process: let
a random agent



play its best response. If � � is the new flow

after this change, then either � 
 � � � � � � � � � � � � �
� 	 � � � � �

, or
� � � � � 	 � � � � � � � � � � � � � �

OPT.

Proof. Assume that the best response of agent



is to
switch from path

� �
to

� ��
resulting in the flow � ��

. Thus,
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� � � � � � � � � � � �
� � � � 
 � � � �� �

. We consider the following two
cases:
Case 1:

� � � 
 � � � � � � � � � � �� � � � � � 
 � � � � �
. In this

case, by Lemma 4.2, � � � � � � � � � � � �
� � � � 
 � � � �� � �

�
� � � � 
 � � � � � � � � � � � � � � � �� � � � � � � � �

. So, � � � � � � � � � � �
�

� � � � � 
 � � � � � � � � 
 �
� � � � � � � � � � 
 � � � � � � �

�
� � 	 � � � � � �

� � � � � � � � � � �
� � � � � � �

. Thus, we obtain
� � � � � � � � � � � � � � �

� � � � � � �
.

Case 2:
� � � 
 � � � � � � � � � � �� � � � � � 
 � � � � �

. Let � � �
� � �� �    � � �� �

be the optimal solution and let � �
be the flow

corresponding to � �
. Set � � � � � � � � � � � � �� �

. Let � ��

be the flow resulting from the switch of agent
�

from
� �

to� ��
. Since

� ��
is

�
’s best response, we have � � � � �� � � � � � � �� �

.
Thus, in this case,

� � � 
 � � � � � � � � � � �� � � � � � 
 � � � � � �
� � � �

. Consequently,

� � � � � �
� � 


� � � � � � � � � � �� �

� � � � � � � �
� � 
 	 � �


 � � � � 
 � � 
 � 	 � �

� � � � � � � �
� � 
 	 � �


 � � �

�

	 � � � 
 � 	 � � 
 � 	 � �
	

� � � � � � � �




�
	 � �

�
� � 
 � � 
 � � 
 � 	 � � 
 � 	 � �

	
	 �

The rest of the proof of this case is based on the proof of
Lemmas A1, A2, and A3 in [1]. First, we use the following
inequality from [1]:

�  � � � 
 � �  
 � � � � 
 � � � � � � 

for

any
� � �

. Thus, we get:

�




�
	 � �

�
� � 
 � � 
 � � 
 � 	 � � 
 � 	 � �

	
	 �

� �




�
	 � � � 
 � 	 �

� � 
 � � 
 �
� � �

	

 	 � � � �

� � � � � � 	

	
	 � �� �

� �




�
	 � � � 
 � 	

� � �
	


 � �
 � � �

� � � � � � 


� �

	 � � �

where the first inequality comes from the fact that� � � 
 � � 
 � 	 
� � � �




and the function � �  � � � � � � � � � �
is an increasing function for

 � �
. Hence

� � � � � � � � � � � � �




�
	 � � � 
 � 	 �

	

 � �


� � � � � � � � �

� � � � � � 
 �




�
	 � � � 
 � 	 � �


	 � �

� � � � � � � � �




�
	 � � � 
 � 	 �

	

 � �


� � � � � � � � �

� � � � � � 
 �



� 
 � � �
 � � �


Holder’s inequality states:
� 	 � �	 � � � �	 � � 	 � 	 ! �  � 	 � 	 ! � � �

. Applying this, with

� 	 � � 
 � 	 �
	 � �


 ,
� 	 � � 
 � 	 � �


	 � �
,

� � 	
	 � � , yields

�




�
	 � � � 
 � 	 �

	

 � �


�

�

	 � �
�

�



� 
 � 	 �
	 � �


 � 	 $ � 	 � � � �
�



� 
 � 	 � �


	 � � � � $ � 	 � � �

�

�

	 � �
�

�



� 
 � � 
 � � 
 � 	 $ � 	 � � � �
�



� 
 � � �
 � � �
 � � $ � 	 � � �

�

�

	 � �
�

�



� 
 � � 
 � � 
 � 
 $ � 
 � � � �
�



� 
 � � �
 � � �
 � � $ � 
 � � �

� � � � � �
�

�



� 
 � � 
 � � 
 � && ( � �
�



� 
 � � �
 � � �
 � �& ( �

where the third inequality follows from the fact that � � � � � �  � � � � � � �
for

 � � � �
and

� � � � � � � �

with
 � �


 � 
 � � 
 � � 
 and
� � �


 � 
 � � �
 � � �
 . So we have

� � � � � � � � � � � � �




�
	 � � � 
 � 	 �

	

 � �


� � � � � � � � �

� � � � � � 
 �



� 
 � � �
 � � �


� � � � � � � � �
�

�



� 
 � � 
 � � 
 � && ( � �
�



� 
 � � �
 � � �
 � �& ( �

� � � � � � � � �

� � � � � � 
 �



� 
 � � �
 � � �


By letting
 � � � � � �& ( � �

OPT �& ( � we get
 
 � � � � � � � �

� � �  
 � � � � � � � � 
 � � � � � 

. After dividing both sides by

 

, we have

 � � � � � � � � � � � � � � � �  &, - / � �� ! 

. We

claim that if we set
� � � � 1 for 1 � �


 � �
 �

� � 
 � � � ! 

,

then we have
 � � � � � � � �

. Assume for contradiction that � � � � � � � �
. Then,

� � � � � � � �  � � � � � � � � � � 1 � � � � � � � � � � � � �
� 
 � � � �

 � 
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Thus, since � � � � � � �
,

� � � � � � �
� �� � � � �

� 	 �
� 
 � � � �

� � �

We then obtain the contradiction

� � � � � � � 
 � � � �
� � � � � � �

� �
� 
 �

� � � � � �
� �

� � � � � � �
Therefore, by setting

� � � � � , we get
� � � � � � � � �

.
Hence, � � � � � � � 
 �

OPT
� � � � � � � � � � � � � 
 � �

OPT.
From Lemma 4.4, we can bound the price of sinking

as follows. Consider a sink � . Let � �
be a flow in � .

Consider a random walk starting from � �
in which we

let a random agent play his best response at each step.
Let � � � � � � � � � � � � � � � be a sequence of observed flows in

� . Recall that the value for sink � is equal to � � � � �
� � �  �  � � � � � � � �

where � �
is the flow corresponding to

the state � and �  is the steady distribution for the random
walk on � . Since � is strongly connected, this is equal

to � � � � � � 	 
 � � �
� � 
 � 
 � � � � � � � � �

� . In order to upper
bound this value, it is sufficient to upper bound � � � � �  � �
for each

� � � � �
. Lemma 4.4 shows that there exists a

state in any sink � with total latency less than
� � � � � � � �

� � � � 
 � �
OPT. Note that, as � is strongly connected the value

of the sink is independent of the choice of � �
. Therefore, we

can set � �
such that � � � � � � � � � � � � � � � � � � 
 �

OPT. Let
� �

be the coin toss of step
�

in the random walk. More pre-
cisely, we want to upper bound �  � � � � 	 � � 	 � � � 	 � � � � � �  � � . By
Lemma 4.4 and Lemma 4.3, we have
(i) Either

� � �  �
� � � �  
 � � � �  � � � � � �

� � � � � �  �
or � � �  � �� � � � � � � � � � � � 
 �

OPT.
(ii)

� � �  �
� � � �  
 � � � �  � � � � � �� � � � �  �

.
Let

� � be the event that � � �  � � � � � � � � � � � � � � 
 �
and

� � be
the event that � � �  � � � � � � � � � � � � � � 
 � �

OPT. Let � be the
probability that event

� � happens. Furthermore, let � �
� � � � �  � � � � � � � � � � � � � � � � � � 
 �

and � � � � � � �  � � � � � .
Thus, �  � � � � � �  � � � � � � � � � � � � . Now,

�  
 � � � � � � �  
 � � �
� � 
 � �

�
� �

� � � � � � � � 
 � �
�

�
� �

� 
 � �
�

� �
� � � � � � � � � � � � �

� � � �
� � �

� 
 � �
�

� �
� �  �

� � � �
� � �

� 
 � �
�

� �
� �  �

� � � �
� �

� � � � � � � � � � � � 
 �
OPT

�

Combining the above recurrence relation and � � � � � � � � �
� � � � � � � � � � � � � 
 �

OPT, we can prove �  
 � � � � � � � � � � �
� � � � 
 �

OPT by induction. Thus,
� � � 	 � � 	 � � � 	 � � � � � �  � � �

� � � � � � � � � � � � 
 �
OPT

�
. Hence, the price of sinking is at

most
� � � � � � � � � � � � 
 � �

by the linearity of expectation. As� � � � � � � 
 � � � � � � � 
 � �
, we have the desired bound.

We can also use the lemmas used in the proof of The-
orem 4.1 to bound the rate of convergence to states with
good social value in unsplittable (weighted) selfish rout-
ing games. We can prove that starting from a flow of la-
tency  , after

� � � � � � "
OPT

�
random best responses, the ex-

pected social value is less than
� �

OPT for linear latency
functions, and is less than

� � � � � � � � 
 � �
OPT for polynomial

latency functions of degree at most
�
. This is in contrast

with the negative convergence result of Fabrikant, Papadim-
itriou, and Talwar [2], in which they exhibit exponentially
long best-response paths to PSNE (or sink equilibria) in
these games. Our bounds show that, even though conver-
gence to PSNE (or sink equilibria) may be exponential, a
random sequence of best responses of agents converges to
a state with good social value after polynomial number of
best responses. Here, we prove a tighter bound for conver-
gence in the weighted unsplittable selfish routing game with
linear latency functions. We assume that the latency func-
tion of arc 
 is a linear function. In particular, we let the
latency function for arc 
 � � � � �

be �  � � � � �  � � � 
with �  � �  � �

.

Theorem 4.5. Given a weighted unsplittable selfish routing
game with linear latency functions. Starting from any state
with total latency  , the expected latency of the flow after� � � � � � "

OPT

�
random best responses is at most

� �
OPT.

Proof. Let � be the current flow, and suppose agent
�

changes its flow path from
� �

to
� ��

, to give a new flow � ��
.

From Lemma 4.2, � � � �� � � � � � � � � � � � � �� � � � � � � �
. We will

use the following refinement of Lemma 4.4, whose proof
we omit due to space constraints.

Lemma 4.6. Let � be the flow corresponding to the cur-
rent strategy profile. Consider the following random pro-
cess: choose an agent

�
at random and let it play its best

response. If � � is the new flow after this change, then either
� � � � � � � � � � � � � � �

� � � � � � �
, or � � � � � � � � � �

OPT.

Proof of Theorem 4.5. Let � � �  be the social value
of the initial flow. Assume that at each step we choose an
agent at random and let it play its best response. Let � 
be the expected latency of the flow after � ’s step. From
Lemma 4.6, we have for any � � �

, �  � � � � � �
OPT or

�  
 � � �  � � � �
� � �

. Moreover, from Lemma 4.3, �  
 � �
�  � � � �� �

for any � � �
. Now, let � be the probability

that �  � � � � � �
OPT. Let � be the expected value of � 

given that �  � � � � � �
OPT and � be the expected value of
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� �
given that � � � � � � � �

OPT. Thus,

� � � � �
� � � �

�
� �

� � � � � � �
� � � �

�

�
�

�

� � � �
�

� �
� �

� � � � � � �
�

�
� �

�
� � �

� � � �
�

� �
� � � �

� � � � �
� � OPT

�

It follows that

� � � � � � � � � �
�

� �
� �

�
� � � � �

� � OPT

� � � � � � �
� � � � �

�
� �

for
� � � . As a result, � � � � � � � � �

� � � �
�

� � � � � � � � � � � �
� � � � �

OPT
�

� � � � �
� � � �

� � � � � �
OPT.

Thus, for � � � � 
 � �
� � 
 � �

OPT
, we get � � � � � � � � � � � �

OPT.
Therefore, after

� � � � 
 � �
OPT

�
steps the expected value of � �

is at most
� 

OPT.
Finally, we note that all our results on the price of sink-

ing and convergence for weighted unsplittable selfish rout-
ing games extend to weighted congestion games. Weighted
congestion games are the generalization of weighted un-
splittable selfish routing game in which the family of fea-
sible strategies of players are an arbitrary family of subsets
of arcs (and not necessarily paths from a source to a desti-
nation). Our proofs do not rely on the fact that the feasible
strategy is a path. Therefore, all our results hold for general
weighted congestion games.

4.2 VALID-UTILITY GAMES

Here we define the class of valid-utility games; see [14] for
more details. A function � of the form

� � � � � � �  �
is called a set function on the ground set � . A set function

� � � � � � � � �  �
is submodular if for any two sets� � � 	 � , � � � � � � � � � � � � � 
 � � � � � � � � �

. A
set function � , is non-decreasing if � � � � � � �

�
�

for any
� 	 � 	 � . In valid-utility games, for each player

�
, there

exists a ground set � �
. We denote by � the union of ground

sets of all players, i.e., � � � � � � � �
. The feasible strategy

set
� �

of player
�

is a subset of the power set,
� � �

, of � �
.

Thus, the strategy � �
of player

�
is a subset of � �

( � � 	 � �
).

The empty set, denoted
 �

for player
�
, corresponds to player�

taking no action.
Given a collection of strategies  � � � � � � � � � � � �

, where� �
is a subset of the ground set � �

( � � 	 � �
), the set
 � � � � � � � � � � # $ � � # � � �

is called the pair set for the
collection  . Note that  may or may not be a feasible strat-
egy profile. Given a function � � % � � � � � � � � � �  �

, the
corresponding set function � � of � is a set function of the

form
� � � � � � �  �

where

 � � � � � � � � � # $ � � # � �

and � � � 
 � � � � �  �
. In other words, for a set

� 	 

,

� � � � � � � � � � � � � � � � � � � � � � �
if � � � � � � � � � � � # � �

.
Here, we also assume that the social function ( is of the
form

% � � � � � � � � � �  �
rather than just of the form% � � � � � � � � � �  �

.
Let * � $ � � � � . � # $ � � � 0 � � � . � # $ � �

be a non-
cooperative strategic game where

� � 	 � � �
is a family of

feasible strategies for player
�
. Let � � � � � � � �

and let the
social function be ( � % � � � � � � � � � �  �

. Then * is a
valid-utility game if it satisfies the following properties:
(1) Submodular and Non-decreasing Social Function: The
corresponding set function, ( � , of ( over the set


 �
� � � � � � � � # $ � � # � �

, is submodular and non-decreasing.
(2) Vickrey Condition: The payoff of a player is at least
the difference in the social function when the player par-
ticipates versus when it does not participate, i.e.,

0 � �  � �
( 6

�
� �  7  � �

. In basic-utility games we always have
0 � �  � �

( 6
�

� �  7  � �
.

(3) Cake Condition: For any strategy profile, the sum of the
payoffs of players should be less than or equal to the social
function for that strategy profile, i.e., for any strategy profile

 ,
� � � � 0 � �  � � ( �  �

.
This framework encompasses a wide range of games in-

cluding the facility location games, traffic routing games,
auctions [14], market sharing games [5], and distributed
caching games [3]. In [14] it was shown that the price of
anarchy (for mixed Nash equilibria) in valid-utility games
is at most

�
. While proving theorems about valid-utility

and basic-utility games, we use the following notation:
given  � � � � � � � � � � � �

and  6 � � � 6 � � � � � � � 6� �
, we de-

fine  �  6 � � � � � � � 6 � � � � � � � � � � 6� �
. Also we define

 � � 6� � � � � � � � � � � � � � � � � � � � � � � 6� � � � � � � � � � � � � �
.

Here we prove bounds on the worst-case price of sinking
in valid-utility games. It is easy to show (see the full paper)
that our bad example in Section 3 is a valid-utility game.
Thus the price of sinking in valid-utility games can be as
bad as � . We will now prove that this lower bound for valid-
utility games is almost tight. In particular, we will show that
the price of sinking in a valid-utility game is at most � � �

.

Lemma 4.7. Given a strategy profile � � � � � � � � � � � � �

in a valid-utility game, let the best response of agent
�

be � �
. Set �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
. Then� � � � 0 � � �

� � �
OPT

� ( � � �
.

Proof. Let � � � � � � � � � � � � �
be the optimum state, and

let �
� � � � � � � � � � � � � � � �  � � � �  � � � � � � � �  � �

. Given that� �
is a best-response strategy, we have

0 � � �
� � � ( 6� � � � 7 � �

. Combining this with the submodularity of ( , we obtain� � � � 0 � � �
� � � � � � � ( 6� � � � 7  � � � � � � � � ( � � 7 � � � �

( � � 7  � � � � � � � � � ( � �
� � � � � ( � � � � � � � � � � ( � �

�
�

� � � ( � �
�

�
� � � � � � ( � �

�
� � � ( � � �

. Since ( is non-
decreasing, we have

� � � � 0 � � �
� � �

OPT
� ( � � �

.
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Theorem 4.8. The price of sinking in a valid-utility game
is at most � � �

.

Proof. Consider a sink equilibrium � . Let �
� � � � � � � � � � � �

be a state in � . Let the best response of agent
�

be 	 

at state

� , and set �

 � � � � � � � � � � 
 � � � 	 
 � � 
 � � � � � � � � � �

. Let � be
the expected social value of the state after a random best-
response move from � . By the cake property and Lemma
4.7, we have �

� �� � 
  � � �
�


 � � �� � 
  � � 
 �
�


 � �
�� �

OPT
� � �

�
� �

. Observe that the price of sinking is equal
to the expected social value on a sufficiently long random
walk. Now take a long random walk �

� �
� � � � � � �

� � . Let
� 


be the expected value of � �
�


 �
where the expectation

is over the random coin tosses of the random walk. We
know that as

�
tends to � , � � � � � � 


. We need to
prove that � 
 � �� � � OPT as

�
tends to � . Let �


 � � be the
probability that � �

�

 � � �

. Thus, � 
 � �
� �


 � �
�

and
� 
 � � � �

� �

 � � �

� � �
�


 � � � � � �
�


 � � � � . The above inequal-
ity shows that �

� � �
�


 � � � � � �
�


 � � � � � �� �
OPT

� � �
. There-

fore, � 
 � � � �� �
� �


 � �
�
OPT

� � � � �� �
OPT

� �
� �


 � �
� � �

�� �
OPT

� � 
 �
. Hence, � 
 � � � �� OPT

� � �
� . Since as

�
goes

to � , � � � � � � 
 � � 
 � � , we get � � � � � �� OPT
� �

� � �
� .

Therefore, � � � � � �� � � OPT as desired.
Thus the worst case price of sinking in a valid-utility game
is between � and � � �

.

4.3 BASIC UTILITY GAMES

For basic utility games (examples include service provider
and facility location games [14]) the situation is much bet-
ter. These games are potential games, thus, the only sink
equilibria are PSNE. Hence, the price of sinking in a basic-
utility game is equal to the price of anarchy for PSNE which
is at most

�
. Using similar techniques to those of Theo-

rem 4.8, we can prove that in basic-utility games, the ex-
pected social value of a state after

� � � � � � �
�

�
random best

responses is at least
�


 � � of the optimal social value, for
any � � �

. We omit the proof due to space constraints.

Theorem 4.9. In basic-utility games, for any constant � �

�
, there exists a constant

�
such that the expected social

value of a state after
� � � � � �

� random best responses is at
least

�

 � � of the optimum. Moreover, for any constant

� � � �
, there exist constants � � � � � �

such that after
� � � � � � � � � � �

� random best responses, the social value is
at least

�

 � � � of the optimum with high probability.

5 A Hardness Result

In this section, we show that finding a sink equilibrium
(or a PSNE if it exists) in some instances of valid-utility

games is PLS-complete. This, in turn, has some implica-
tions on the convergence to sink equilibria of these games.
Again, we omit the proofs of the following results

Theorem 5.1. Finding a sink equilibrium is PLS-complete
for some instances of valid-utility games.

Corollary 5.2. There are valid-utility games containing
states exponentially far from any sink equilibrium.
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