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INTRODUCTION 

We refer to undirected graphs as graphs and to di- 
rected graphs as digraphs. In a graph G = (V, E ) ,  the 
elements of E are called edges and the edge e between 
the vertices i and j is denoted by {i, j} or { j ,  i}. In a 
digraph D = (V, A), the elements of A are called arcs 
and the arc a between i and j is denoted by (i, j). (i, j )  
and (j, i) do not represent the same arc. From any 
graph G = (V, E), we can obtain a bidirected graph DG 
= (V, A) by replacing every edge of E by two arcs in 
opposite direction, i.e., A = {(i, j )  : {i, j} E E}. 

Given a graph G = (V, E) and a set T C V of termi- 
nals, a Steiner tree is a tree spanning T. We do not 
require its leaves to be terminals. Let 1 be a cost func- 
tion defined on the edge set E. The Steiner tree prob- 
lem is the problem of finding a Steiner tree of minimum 
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cost, where the cost of a tree is the sum of the costs of 
its edges. Given a digraph D = ( V ,  A) and a root vertex 
r, a set of arcs is called an r-arborescence of D if it 
forms a (not necessarily spanning) tree directed away 
from the root r .  For a set T of terminals and a specified 
root vertex r E T, we define a Steiner arborescence as 
an r-arborescence spanning T. The Steiner arbores- 
cence problem is the problem of finding a minimum- 
cost Steiner arborescence. Let T, = T\{r} and V, = 
V\{r}, 

The Steiner tree and Steiner arborescence problems 
have extensively been studied in the literature. Two 
recent surveys on these Steiner problems have sum- 
marized formulations and solution methods [20, 291. 
Maculan [20] emphasizes exact algorithms and integer 
programming formulations, whereas Winter [29] con- 
siders exact algorithms, heuristics, and polynomially 
solvable special cases. 

We associate to any Steiner tree an incidence vec- 
tor x such that xe = 1 if edge e E E is part of the Steiner 
tree and 0 otherwise. Let 9, denote the convex hull of 
incidence vectors of Steiner trees in a graph G. 9, is 
called the Steiner tree polytope. Similarly, the inci- 
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dence vector w of a Steiner arborescence B is defined 
by w, = 1 if a E B and 0 otherwise. The Steiner arbo- 
rescence polytope, denoted by 9,,,, is the convex hull 
of incidence vectors of Steiner arborescences. 

We shall describe linear programming (LP) relaxa- 
tions of the Steiner tree and Steiner arborescence 
problems. An LP relaxation for the Steiner tree prob- 
lem is a linear program of the form 

Minimize( z = l ex , :  x E R,) , 

where R, is a polyhedral region with 9, c R,. More 
generally, we allow this definition to include extended 
relaxations of the form 

Minimize[ z = 2, l e x , :  (x, s) E R-1 ,  

where 9, is contained within the projection proj.(R,,) 
of R,., onto the x variables defined as proj,(R,,) = 
{x : (x, s) E R,, for some s}. We regard two relaxations 
as equivalent f o r  a class 3 of cost functions 1 : E + R if 
their optimal values are equal for any 1 E Y. Of course, 
this does not necessarily imply that their feasible re- 
gions are equal. However, if two relaxations, defined 
by R,,s and R:, , are equivalent for all cost functions of 
x, then proj.(R,,) = proj,(R:,)  and vice versa. In this 
case, we say that R,,s and R:, are extended descriptions 
of R = proj,(R,,s) = proj,(R;,). These concepts are 
defined analogously for the Steiner arborescence prob- 
lem. 

The most classical relaxation for the Steiner arbo- 
rescence problem is the dicut relaxation introduced by 
Wong [30]. This relaxation can also be used for the 
Steiner tree problem since any instance of the problem 
can be equivalently formulated as a bidirected Steiner 
arborescence problem. Chopra and Rao [6] showed 
that this approach leads to better relaxations than do 
simple undirected relaxations for the Steiner tree prob- 
lem. As a result, there has been little emphasis on 
undirected relaxations in recent years. In this paper, 
we show that undirected relaxations can be as tight as 
bidirected ones, provided that we introduce some aux- 
iliary variables. In particular, by considering vertex 
variables that either keep track of the vertices spanned 
or the degrees of the vertices in the Steiner tree, we 
obtain two undirected relaxations that are equivalent 
to the bidirected dicut relaxation. These relaxations 
are valid only for nonnegative cost functions. We also 
introduce tighter bounded analogs to these relaxations 
that appear to be equivalent. 

The paper is organized as follows: In Section 1, we 
review classical formulations for the Steiner tree and 
Steiner arborescence problems and we consider the 
use of bidirected relaxations for the Steiner tree prob- 

lem. In Section 2, we introduce two simple extended 
undirected relaxations involving vertex variables and 
we prove their equivalence to the bidirected dicut re- 
laxation. Bounded analogs to these relaxations are 
presented in Section 3. Finally, in Section 4, we show 
that the polyhedra defined in Section 2 are the domi- 
nants of their bounded analogs of Section 4. This im- 
plies that all relaxations defined in this paper are 
equivalent for all nonnegative cost functions. In Sec- 
tion 4, we also prove that the choice of the root vertex 
is unimportant when bidirecting an undirected in- 
stance. 

1. A REVIEW OF CLASSICAL INTEGER 
PROGRAMMING FORMULATIONS 

Given a graph G = ( V ,  E )  and a set S of vertices, 6(S) 
represents the set of edges in E with exactly one end- 
point in S, whereas E ( S )  represents the set of edges in 
E with both endpoints in S. The corresponding notions 
for a digraph D = (V ,A)  are as follows: For a set S c 
V, 6 - G )  denotes the set of arcs { ( i ,  j )  E A : i $Z S, j E 
S}, 6+(S) = 6- (V \S)  and A(S)  = { ( i ,  j )  : i E S ,  j E S}. 
For simplicity, we write 6-G)  [resp., 6 + ( i )  or S ( i ) ]  in- 
stead of 6 - ( { i } )  [resp., S+( { i } )  or S( { i } ) ] .  If x is defined 
on the elements of a set M (typically M is an edge set 
E, an arc set A, or a vertex set V ) ,  then we denote 

M by x ( N ) .  The only exceptions are 
a(.), 6-(.) ,  a+(.), E ( , ) ,  and A(.) ,  which were defined 
previously. 

x i  for N 

1 .l. Classical Formulations for the Steiner 
Tree Problem 

A Steiner tree can be seen as a minimall subgraph 
having a path between any pair of terminals. In fact, 
we can even restrict our attention to pairs containing a 
specified vertex r E T. This vertex r plays the role of 
root for the Steiner tree. This definition of Steiner 
trees in terms of minimal subgraphs can be used to 
formulate the Steiner tree problem as an integer pro- 
gram when all cost coefficients are nonnegative. For 
this purpose, we introduce some flow variables and 
consider the following program [3]: 

Minimize PEE l r x e  

(1P:f) subject to: 

*With respect to inclusion. 
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where 

and k E T, 1 1 i = r  

S,f = {(x, f): f k ( 6 + ( i ) )  - f k ( s - ( i ) )  = 

k f u  I x, 

f f  2 0 

[ o i E V\{k, r}J 

e = {i, j} E E and k E T, 

a E A and k E T,}, 

and D = ( V ,  A )  is the bidirected graph obtained from 
G = (V, E) by bidirecting every edge of E. The con- 
straints ( I )  imply the existence of a unit flow from r to 
k, and if x, is integral, this means that there exists a 
path from r to k in the subgraph {e E E: x, 2 I}. 

Using the max-flow min-cut theorem, the projection 
S, of S,f onto the x variables can be characterized as 

S, = {x: x(S(S)) 2 1 r 4 S and S f l  T # 0 (3) 

e E E }  x, 2 0 

and S, 19,. For a set S with r $Z Sand S f l  T # 0, the 
set of edges of the form S(S) constitutes a so-called 
Steiner cut, and, as a result, the inequalities (3) are 
known as Steiner cut inequalities. (IP,"f) can thus be 
reformulated by the classical cut formulation [ 11: 

Minimize 2 Irx,  
P E E  

UP,") subject to: 

Moreover, the fact that S, = proj,(S,f) implies that the 
linear programming (LP) relaxations of (Pj) and (IP,") 
obtained by relaxing the integrality constraints on all 
x,'s are equivalent. Notice that (ZP;) is a natural for- 
mulation for the Steiner tree problem that has expo- 
nential size, whereas (ZPtf) is an extended formulation 
that is compact (namely, it has a polynomial number of 
constraints and a polynomial number of variables). 
Therefore, the value of their LP relaxations (LP,") and 
( L P j )  can be computed in polynomial time either us- 
ing an interior-point algorithm on the polynomial-sized 
formulation (LP:f) or the ellipsoid algorithm on (LP,") 
since the separation problem over the Steiner cut in- 
equalities can be solved in polynomial time as a se- 
quence of (TI - 1 maximum flow problems (one for 
each k E T,). 

Goemans and Bertsimas [14] show that, if the cost 
function satisfies the triangle inequality, the linear pro- 
gram (LP,") can be simplified considerably without af- 
fecting its optimal value. As a result of their study, the 

value of (LP;) can be computed a la Held and Karp 
[I51 by solving a sequence of minimum spanning tree 
problems with Lagrangean costs [ 141. 

In some cases, S, is integral, i.e., it is equal to its 
integer hull inr-hull(S,) defined as the convex hull 
conu(S, n ZIEl) of its integer points. For example, this 
happens when IT1 = 2 or when G is acyclic. The case 
JTI = 2 corresponds to the shortest path problem in an 
undirected graph with no negative cycles. However, 
even for the spanning tree problem on a cycle (T = V 
and G is a cycle), S, is not equal to int-huU(S,). It 
would be natural to expect a complete characterization 
for this very simple case. Although (LP:) appears to 
be a fairly loose relaxation, its value has been shown 
to be within a factor of 1/(2 - 2/ITI) of the optimal 
value of the Steiner tree problem [14]. 

The Steiner tree problem on a graph G = ( V ,  E) can 
be transformed into a Steiner arborescence problem by 
considering the digraph DG = (V, A )  obtained by bi- 
directing every edge of G, choosing arbitrarily a root 
vertex r E T and defining the cost of the arc ( i ,  j) E A 
by cij = I ,  where e = { i ,  j } .  This approach leads to 
much better formulations for the Steiner tree problem. 
For this reason, undirected relaxations have recently 
been given much less attention than have bidirected 
relaxations. 

1.2. Classical Formulations for the Stelner 
Arborescence Problem 
The Steiner arborescence problem can be formulated 
in a similar way as is the Steiner tree problem. A 
Steiner arborescence can be seen as a minimal digraph 
having directed paths between the root rand any other 
terminal. Therefore, when the cost function is non- 
negative, the Steiner arborescence problem can be for- 
mulated by the following integer program [30], known 
as the multicommodity flow formulation: 

Minimize caw, 
oE.4 

(ZP,,,,) subject to: 
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where 

and k E T, 

1 i = r  

Qwj = {Cw, f ): f k(6+( i ) )  - f L(6-( i ) )  = 

u E A and k E T, 

a E A and k E T,}. 

Since no Steiner arborescence contains any arc incom- 
ing to the root, we shall assume that A has no  such arc. 
Equivalently, we could assume that w, = 0 for 
a E 6 - ( r ) .  This assumption is made throughout the 
paper and turns out to be useful when dealing with 
bidirected graphs. 

Again, by the max-flow min-cut theorem, the pro- 
jection of Qw,onto the H’ variables can be expressed as 
[20]: 

Qw = { w :  w ( 6 - ( S ) )  2 1 r $Z S and S n T # 0 (4) 

with P,, C Q,,,. The inequalities (4) are known as 
Steiner dicut inequalities. This leads to the classical 
dicut formulation for the Steiner arborescence prob- 
lem: 

Minimize cowo 
u E A  

Relaxing the integrality on w ,  we obtain the linear 
programming relaxations (LP,f) and (LP,,,). These LP 
relaxations are equivalent and, by the same argument 
as for the Steiner tree relaxations, their common opti- 
mal value can be computed in polynomial time. Wong 
[301 proposed a dual ascent method to obtain good 
approximations o n  this optimal value. 

The polyhedron Qw is equal to its integer hull when 
IT1 = 2, when T = V [lo] or when the underlying graph 
is series-parallel ([26], see also [13, 17, 281 for a slight 
generalization). The case T = V corresponds to the 
minimum-cost arborescence problem. 

Tighter relaxations for the Steiner arborescence 
problem have been proposed. Chopra and Rao [7] de- 
rived classes of facet-defining valid inequalities that 
can be used to strengthen Qw . Myung [24] also derived 
a class of facet-defining inequalities with 0-1 coeffi- 
cients for the set covering formulation of the problem. 
Liu [18] gave a formulation for the Steiner arbores- 

cence problem based on an extended complete charac- 
terization of its polyhedron when (TI = 3. 

1.3. The Bldlrected Case 
As we have previously mentioned, the Steiner tree 
problem is equivalent to the bidirected Steiner arbo- 
rescence problem. Therefore, any formulation or re- 
laxation for the Steiner arborescence problem can be 
used for the Steiner tree problem. This gives formula- 
tions not in the space of the edge variables x but in the 
space of the arc variables w (and possibly some addi- 
tional variables). To obtain a formulation in the natural 
set of variables, we need to use the linear transforma- 
tion x, = wy + wji for all e = {i, j} and eliminate the w 
variables, i.e., project onto the x variables. In particu- 
lar, for Q,,, we first define Qxw = {(x. w )  : w E Q,,, and 
x e  = wy + w,, for all e = {i, j} E E }  and then consider 
Qx = projx(Qrw). Clearly, CPx Qx and Qx S,, since, 
forx E Qx, we have x(6(S)) = w ( 6 - ( S ) )  + w ( 6 + ( S ) )  2 

I by (4) and (5). Furthermore, from the results for Q,,,, 
we know that Qx = int-hull(Q,) if IT1 = 2, T = V ,  or C 
is series-parallel. 

Little is known about Qx. Although Qx seems to 
depend on the choice of the root vertex r ,  we shall 
prove at the end of this paper that, in fact, it is inde- 
pendent of r .  To the best of our knowledge, this fact, 
although believed by many authors, has not been es- 
tablished before. On the other hand, a complete de- 
scription of Qx by linear inequalities is unknown. Cho- 
pra and Rao [6]  described some of the linear 
inequalities defining Qx, namely, the class of Steiner 
partition inequalities and the class of odd hole inequal- 
ities. Goemans 1121 obtained many more such inequali- 
ties and showed that Qx has a very rich and compli- 
cated structure. There is therefore no hope of 
obtaining a simple description of Qx by linear inequali- 
ties. This has motivated many researchers to focus 
their attention on bidirected formulations. Our main 
goal in this paper is to show that simple undirecred 
formulations can be as tight as bidirected formulations 
provided that auxiliary variables are allowed. For this 
purpose, we shall present three simple extended de- 
scriptions of ex. Two of them are new and presented 
in the next section. The last one is obtained by “un- 
directizing” Q w / .  
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For this purpose, consider 

1 and k E T, 

1 i = r  

QX/ = {(x, f): f k ( 6 + ( i ) )  - f k ( 6 - ( i ) )  = 

o i E ~ \ { k ,  r}J 

(6) e = { i ,  j }  E E and h ,  k E T, 

a E A and k E T,}.  

The difference between Qxf and S,, resides in the con- 
straints (6). These constraints couple the flow corre- 
sponding to two commodities on arcs of opposite di- 
rection. This technique to strengthen rnulticommodity 
flow formulations has been used by Martin [21] and 
Balakrishnan et al. [2]. 

Qd precisely constitutes an extended description 
of e x .  
Proposition 1. Qx/ = {(x, f ): There exists (w, f )  E Qw, 
with x, = wii + wjifor all e = { i ,  j }  E E } .  

Proof. If (w, f) E Q ,  and x, = wii + w,i for all e = 
{i, j }  E E, then (x, f) E QX,since, by (2), ft, + f$s wii 
+ wji = x, for e = { i ,  j }  E E .  

On the other hand, assume that ( x ,  f) E ex,. By (6), 
maxh f 2 + maxk fj. I x, for e = { i ,  j }  E E .  Hence, we 
can choose w such that maxh f 1 5 wii and x, = wg + w,i 

for all e = { i ,  j }  E E [e.g., take wg = f(x, + rnaxh f 3 - 
maxk fj.11. Clearly, ( w ,  f) E Qwf. w 

Since Qx is integral when IT1 = 2, T = V, or when G 
is series-parallel,g Qx, gives a compact description of 
the dominant of the Steiner tree polytope for these 
cases. In particular, when T = V ,  we have a compact 
extended description of the dominant of the spanning 
tree polytope by a system of linear inequalities.'' A 
description of this dominant in the space of the x vari- 
ables is given by Fulkerson (91 (see also [4]): 

x, 2 0 e E E }  

where ( V l ,  . . . , Vk) is any partition of V and 
6(VI, . . . , V k )  denotes the set of edges whose end- 
points belong to different members of the partition. 

Whether a linear program can be expressed in com- 
pact way is an important question (see [31]). Two gen- 
eral techniques have been proposed to derive compact 

'However editself  is not integral [21]. 
llln fact, Martin [21] showed that if we add the constraint x(E) = 

IVI - I to Q,,, we obtain an extended description of the spanning 
tree polytope. This is a slightly weaker result. 

descriptions. In [22], Martin derives polynomial-sized 
formulations from separation algorithms. Most of the 
compact formulations presented in this paper can be 
obtained in this way. In particular, Martin gave an- 
other compact description of the spanning tree poly- 
tope. The other technique is based upon dynamic pro- 
gramming algorithms for the associated combinatorial 
optimization problems [23]. For example, a compact 
extended description of the Steiner tree polytope for 
series-parallel graphs can be obtained from a dynamic 
programming algorithm based upon the decomposition 
of these graphs [23]. 

2. TWO OTHER EXTENDED 
FORMULATIONS FOR 9, 

In this section, we show that simple descriptions of QX 
can be obtained by introducing some vertex variables. 
We present two such descriptions. 

The first description is obtained by keeping track of 
which vertices are spanned by the Steiner tree. Con- 
sider additional variables yi for i E N = V\T ( N  is the 
set of Steiner vertices) with the meaning that yi = 1 if 
vertex i is spanned by the Steiner tree and 0 otherwise. 
If we know which vertices are spanned by the Steiner 
tree, then we can use Edrnonds' complete description 
[8] of the spanning tree polytope to obtain a (partial) 
description of the Steiner tree polytope: 

x ( E ( S ) )  5 y ( N  f l  S )  + IT f l  SI - 1 S f l  T f 8 (8) 

x, z 0 e E E (10) 

Y k  1 k E N} (11) 

where S - k = S\{k}. Constraints (8) and (9) are called 
generalized subtour elimination constraints. These 
constraints together with (7) and (10) enforce that, 
whenever yk E (0, 1) for all k E N, x is a convex 
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combination of incidence vectors of trees spanning T 
U {k E N :  Yk = 1). 

Relaxations based on Piy or on similar polyhedra 
have been considered by Lucena [I91 and Goemans 
[12]. The separation problem for the constraints (8) 
and (9) can be solved by a sequence of IVI minimum 
cut problems (see [271 or Section 111.3.7. in [251). 

Therefore, optimizing over Pi ,  can be done in polyno- 
mial time. Piy  is integral when T = V [8] or when G is 
series-parallel [ 121. 

To relate this polytope to Q,,  we consider a relaxa- 
tion of P l y .  It involves the same root vertex r as used 
in the definition of Q, (although we shall show later on 
that Q, is independent of r). Let 

In the next theorem, we show that PI, constitutes 
an extended description of Q x .  

Theorem 2. proj,(P,,) = Q , .  

Proof Let P, denote proj,(PxY). We first show that 
Qx C P,.  Let x E Q, and w E Q w  be such that x, = wii 
+ wji for e = {i, j }  E E. Define yi = w(6- ( i ) )  for i E V,  
and y ,  = 1. We claim that ( x ,  y )  E Pry ,  implying that x 
E P,. First, (x, y )  satisfies (12) since x ( E )  = w ( A )  = 
CiEv, w ( 6 - ( i ) )  = y (V , ) .  To show that (x, y )  satisfies (13) 
for S f l  T f 0, we consider two cases. If r $E S, then 

If r E S, then 

5 y(S\{r})  = y ( S )  - 1 

Finally, it is obvious that (x, y )  satisfies (14), (IS), and 
(16). 

To show that P, C Q, ,  consider an (x, y )  E Pxy . We 
would like to prove the existence of a vector w E Q w  
with x ,  = wii + wji for all { i ,  j }  E E .  Given (x, y )  E P r y ,  
define 

P y  = { w :  w" + wji = x, e = (i, j }  E E 

w ( 6 - ( i ) )  = yi i E V ,  

where, as usually, DG = ( V ,  A )  denotes the bidirected 
graph corresponding to G = ( V ,  E )  in which the arcs 
incoming to r have been removed. 

Claim 1. P";' Q,,,. 

gativity constraints (5). 

We have 

Let w E P Z .  By definition, w satisfies all nonne- 

Consider now a set S such that r @ S and S n T # 0. 

w ( ~ - ( S ) )  = C ~ ( 6 - ( i ) )  - w ( A ( S ) )  
IES 

proving that w also satisfies (4). 0 

Claim 2. PCy # 0. 
PY can be interpreted as the set of feasible flows w 

in a transportation network (N, L) .  In this network, 
the set N of nodes consists of E and V,, the set L of 
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arcs is {(e, j) : e = {i, j }  E E}, the supply at node e E E 
is x , ,  the demand at node i E Vr is yi and wii denotes 
the flow on the arc (e, j ) ,  where e = {i, j}. Although the 
arcs in L are uncapacitated, we can view this transpor- 
tation problem as a capacitated transportation problem 
on a complete bipartite network with capacities either 
zero or infinity. Such a transportation problem is feasi- 
ble if€, for any set M of nodes with no arc in L leaving 
M, the total supply in M is less or equal to the total 
demand in M ,  This version of the max-flow min-cut 
theorem follows from Gale's characterization [ I  1 1  of 
the feasible capacitated transportation networks. In 
our case, the set M of nodes must satisfy ( M  n E) C 
E ( ( M  n V,) U { r } )  and the condition on the supplies 

and demands is x ( M  n E )  5 y ( M  n Vr) .  This latter 
condition is clearly satisfied for any such M since 

x(M n E )  5 x(E((M n V,) U {r}))  
(13) 
5 y ( ( M  rl Vr) U { r } )  - 1 = y ( M  r l  Vr) .  

Therefore, P? is nonempty. 0 

This completes the proof of the theorem. 

The other description is obtained by introducing 
vertex variables zi(i E V )  whose values are functions 
of the degree di of vertex i in the Steiner tree. Consider 
the polyhedron 

x, = 0 e E E } .  (20) 

The variables zk for k E T can be easily eliminated 
from this formulation since, from (18) for S = {k }  and 
(19), we derive that zk = 2 - x(6(k) )  for k E T.  If x is 
the incidence vector of a Steiner tree whose degree at 
vertex i is d;, then ( x ,  z )  E R:, for z; = 0 if dj  = 0 (vertex 
i is not spanned) and z; = 2 - d; if di 2 1 .  To verify that 
( x ,  z )  satisfies (18) ,  it suffices to realize that x ( 6 ( S ) )  + 
z(S) is equal to twice the number of connected compo- 
nents of the forest induced by the vertices in S 
spanned by the Steiner tree. 

To relate R:, to Q,. we consider a relaxation of R:, 
involving the root vertex r :  

that P, = R,, where P, = proj,(P,,) and R, = 
ProjSR,,). 

We first show that P, C R,. Let ( x ,  y )  E P,, and 
define z; = 2yi - x ( 6 ( i ) )  for i E V .  We claim that (2", z) 
E R,, . First, ( x ,  z )  satisfies z( V )  = 2y( V )  - 2x(E)(L) 2y, 
(la, - 2 and, hence, (21) holds. For a set S with S n T # 0,  
we have 

x(6(S))  + z ( S )  = x(6(S)) + 2Y(S) - x(6(S) )  

- 2X(E(S))(2 2 .  

Thus, ( x ,  z )  satisfies (22).  Since (23) and (24) are also 
satisfied, ( x ,  z) E R,,. 

To show that R, C_ P,, consider an (x, z )  E R,, and 
define y;  = $(x(S( i ) )  + t i )  for i E V .  We claim that ( x ,  y )  
E P,,. (12) holds since 

xe 2 0 e E E } .  (24) ( x ,  y) satisfies also (13): 

Juenger and Pulleyblank [16] showed that R,, con- 
stitutes an extended description of the dominant of the 
spanning tree polytope when T = V. 

Y ( S )  - 1 = tx@(S) )  + x(E(S) )  + 4z(S) 
(22)  

- 1 1 x(E(S) ) .  

Theorem 3. proj,(R,,) = Q,. Moreover, (15) follows from (22) for S = {k} and (16) 
follows from (23).  Therefore, ( x ,  y )  E P,. This com- 

Proof. Using Theorem 2,  we shall instead show pletes the proof of the theorem. 8 
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From this relationship between R,; and P g ,  a poly- 
nomial time separation algorithm for the constraints 
(22) can be easily derived. 

We have presented four extended descriptions of 
Q,, namely, Q,,, Qxf,  P, ,  and Rxz. The latter two have 
the advantage of requiring just [ VI additional variables 
and this makes them more attractive to be used in a 
cutting plane algorithm. 

Let ( x ,  y) E P h .  Define zi = 2yi - x(6 ( i ) )  for i E V, 
where, by convention, yi = 1 if i E T. We already know 
that (x .  z )  satisfies (21)-(24), i.e., (17), (18) for 
S n T # 0, and (20). (18) fork E S C N also holds since 

3. TIGHTER RELAXATIONS 
= x(6(k)). 

Both Qx and Qw are of blocking type, i.e., their reces- 
sion cones (or characteristic cones) consist of all non- 
negative vectors. As a result, all relaxations men- 
tioned in the previous sections are useful only for 
nonnegative cost functions. In this section, we are in- 
terested in bounded analogs to Qx and Q,,,. More pre- 
cisely, we shall describe polyhedra Q: and Qk., which 
are, respectively, contained within Qx and Qh, and 
whose integer members are the incidence vectors of 
Steiner trees and Steiner arborescences [i.e., in- 
t-hull(Q;) = 9, and int-hull(QL) = 9J. 

Qi is at least as complex as Q,. We should therefore 
not expect a simple description of it in the space of the 
x variables. However, as for Q,, we derive simple ex- 
tended descriptions of Q:. Two of these descriptions 
appear to be the polyhedra P h  and R:, introduced in 
the previous section. 

Theorem 4. proj,(P:,) = projx(R;z). 

Theorem 3. Let Pi  = proj,(P:,) and R: = proj,(R;z). 
Proof. The proof is almost identical to the proof of 

QL, = {w: w(6-(S)) 2 I 

Moreover, from ( l l ) ,  (x, z) satisfies (19) and, hence, 
belongs to R:, . 

On the other hand, consider an ( x ,  z) E R;; and 
define yi = B(x(S(i)) + z i )  for i E V. We already know 
that ( x ,  y) satisfies (l2)-(16). From (19), Yk 5 1 and, 
hence, ( x ,  y) satisfies (1 1) and yk = 1 for k E T. To 
show that ( x ,  y) E P h  (where y is restricted to its 
components in N ) ,  we simply need to check (9) for 
k E S L N :  

Motivated by the results of Section 2, we would like 
to characterize proj,(P:,) or proj,(R:,) in the space of 
the w variables. In the following Theorem 5, we show 
that, in this space, this polytope takes an especially 
attractive form: 

r e  Sand  S n T f 0 (25) 

w(6-(k)) I 1 

w, z 0 

k E V ,  

u E A}. 

Constraints (26) can be interpreted as saying that the 
maximum flow from r to k i n  the network with capacity 
w, on arc a E A has value precisely w(S-(k)). More- 
over, constraints (27) imply that this value is at most l. 
Optimizing over Q ;  can be done in polynomial time 
since the separation problem over (25) and (26) can be 
solved by a sequence of [ VI - I maximum flow prob- 
lems. When the underlying path graph is series-paral- 
lel, Q$ is precisely the Steiner arborescence polytope 
9,,, [13]. 

Theorem 5. P i  = Q:, where Pi = prujx(P:,) and Q: = 
{x : x, = wij + wji for all e = {i, j} E E for some w E 
QL>. 

Proof. The proof is very similar to the proof of The- 
orem 2 and is therefore just outlined. First, we con- 
sider a vector w E Q; and we let x, = wij + wji for e = 
{i, j }  E E. Define y i  = w(6-(i)) for i E N. It is easy to 
verify that ( x ,  y) E P l y .  This proves that Q: C P:.  

Q:, we consider an ( x ,  y) E Piv To show that P: 
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and we define 

PLfY = { w :  w,, + w,, = x, e = { i ,  j }  E E 
i E N 

i E T, 

a E A} .  

w(6-(i))  = yi  
w(6-( i ) )  = 1 

w, = 0 

By the same technique as in the proof of Theorem 2, it 
can be shown that PZY E Q: and that P:"Y # 0. This 
completes the proof of the theorem. rn 

Since P& (or Riz)  is independent of the vertex r ,  so 
is Q:. Without extended undirected descriptions of 
Q:, this might have been difficult to prove because Q; 
clearly depends on the vertex r.  

For the Steiner tree problem, we have seen that the 
introduction of vertex variables y improves the formu- 
lation. This is typically not the case for Steiner arbo- 
rescence formulations since Y k  can be easily eliminated 
as it must be equal to w(6-(k)) .  For example, introduc- 
ing vertex variables y in Q:., we obtain 

This formulation for the vertex weighted Steiner arbo- 
rescence problem is considered in Chopra and Gorres 
[5] .  By the same argument as in Theorem 5 ,  we have 
the Piy = { (x ,  y )  : x, = wij + w,; for all e = {i, j }  E E and 
some ( w ,  y )  E Q;,}. This contradicts the belief (see, 
e.g., [ 5 ] )  that vertex weighted bidirected relaxations 
are tighter than their undirected counterparts. 

4. 9, IS THE DOMINANT OF 9: 

Although Qw # Q ; ,  it appears that Qw and QL lead to 
relaxations that are equivalent for all nonnegative cost 
functions. This follows from the following theorem: 

Theorem 6 .  Qw is equal to the dominant dom(QL) of 
QL, where dom(QJ = { w :  w L w' with w' E Q,,}. 

Proof. If w' E Q,, and w 2 w',  then, clearly, w E 
Qw.  This proves that dom(QL) 

To prove that Qw C dom(QL), we show that the 
minimal members in Qw belong to Q;.  Consider a w E 
Qw such that W $i Qw for all W I w ,  W f w .  Clearly, w 
satisfies (25) and (28). 

Q w .  

Suppose that w violates the inequality (26) for some 
S and k. As it will be useful later, we do not assume 
that S C N. Among all such inequalities, choose the 
one for which IS1 is minimal. If w, = 0 for all a E 
(6-(k)\6-(S)),  then w(6-(k)) = w(6-(S))  and this is a 
contradiction. Let a = ( i ,  k )  E (6- (k) \6- (S) )  (i.e., i E 
S )  with w, > 0. Since w, cannot be decreased without 
violating one of the constraints defining Q w ,  there ex- 
ists R with I @ R ,  R f l  T # 0 ,  a € 6- (R) ,  and w(6-(R)) 
= 1. By submodularity of w(6(.)), we have w(6-(S))  + 
w(6-(R))  L w(6-(S U R ) )  + w(6-(S n R)). Since r $? (S 
U R )  and (S U R) n T # 0 ,  (4) says that w(6-(S U R)) 
I 1 = w(6-(R)) .  Therefore, w(6- (S ) )  I w(6-(S r l  R ) ) .  
This implies that w also violates (26) for S f l  R and k .  
Since i E S\R, we have IS f l  RI C IS1 and this contra- 
dicts the minimality of S. 

Suppose now that w violates the inequality (27) fork 
E V,. Let a = ( i ,  k )  E 6- (k )  with w, > 0. Since w, 
cannot be decreased, there exists S with r $4 S, S f l  T 
f 0 ,  a E 6-(S) and w(6- (S ) )  = 1. Hence, w(6- (S ) )  C 
w(6-(k)).  By the above argument, this gives a contra- 
diction. 

Corollary 7 .  Qx = dom(Q:). 

Theorem 6 and Corollary 7 imply that most of the 
relaxations considered in this paper are equivalent for 
all nonnegative cost functions. 

Corollary 8 .  The LP relaxations obtained by optimiz- 
ing over the following polyhedra are all equivalent for  
all nonnegative cost functions: 

From Corollary 7 and the fact that Q: is indepen- 
dent of r ,  we obtain the following previously men- 
tioned result: 

Theorem 9. Qx is independent of the root r.  

Many thanks to Laurence Wolsey and Bill Pulleyblank 
for describing relaxations closely related to Piv and R;:. 
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