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WHEN DOES THE POSITIVE SEMIDEFINITENESS
CONSTRAINT HELP IN LIFTING PROCEDURES?

MICHEL X. GOEMANS and LEVENT TUNÇEL

We study the lift-and-project procedures of Lovász and Schrijver for 0-1 integer programming
problems. We prove that the procedure using the positive semidefiniteness constraint is not better
than the one without it, in the worst case. Various examples are considered. We also provide
geometric conditions characterizing when the positive semidefiniteness constraint does not help.

1. Introduction. Lovász and Schrijver (1991) have proposed a very intriguing convex
relaxation procedure for 0-1 integer programming problems. The procedure called N+, to
be defined shortly, when applied to a classical linear programming (LP) relaxation of the
stable set problem (with only the edge and nonnegativity constraints) produces a relaxation
for which many well-known inequalities are valid, including the odd-hole, odd-antihole,
odd-wheel, clique, and even the orthonormal-representation inequalities of Grötschel et al.
(1981). This implies that for many classes of graphs, including perfect (for which clique
inequalities are sufficient) or t-perfect graphs (for which odd-hole inequalities are sufficient),
one can solve the maximum stable set problem by using the N+ procedure.
The N+ procedure is a strengthening of another procedure, called N , also introduced by

Lovász and Schrijver. The main difference between the two procedures is that N+ involves
a positive semidefinite constraint. When applied to a linear programming relaxation, N will
produce another (stronger) LP relaxation while N+ will produce a semidefinite relaxation.
For the stable set problem, Lovász and Schrijver have shown that the relaxation produced
by N is much weaker than the one derived from N+.

In general, however, it is not clear in which situations the procedure N+ is better or
significantly better than N ; especially when N and N+ are applied iteratively. In this paper
we try to shed some light on this question. We generalize certain properties derived by
Lovász and Schrijver. We also identify certain situations in which N produces the same
relaxation as N+. Several examples are discussed throughout the paper, including one in
which the number of iterations of the N+ procedure needed to derive the convex hull of
0-1 points is equal to the dimension of the space, hence resolving a question left open by
Lovász and Schrijver.
In the next section, we review the lift-and-project procedures and their basic properties.

Section 3 includes upper bounds on the number of major iterations required by such pro-
cedures. Section 4 discusses techniques to prove lower bounds on the number of major
iterations required. Sections 5 and 6 include geometric properties and characterizations of
the convex relaxations produced by the procedures.

2. Lovász–Schrijver procedures N and N+. First, we describe two lift-and-project
procedures proposed by Lovász and Schrijver (1991) which produce tighter and tighter
relaxations of the convex hull of 0-1 points in a convex set. In what follows, ej is the jth
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unit vector and e is the vector of all ones. The sizes of e and ej will be clear from the
context. The cone generated by all 0-1 vectors x ∈�d+1 with x0 = 1 is called Q. Let K ⊂Q
denote a convex cone; for example, K could be a polyhedral cone obtained from a polytope
P in 
0�1�d via homogenization using a new variable x0. That is, if

P = x ∈ �d � Ax ≤ b�0 ≤ x ≤ e��

then

K �=
{(

x0
x

)
∈ �d+1 � Ax ≤ x0b�0 ≤ x ≤ x0e

}
�

We are interested in determining (or approximating) KI , the cone generated by all 0-1
vectors of K.
Let K∗�Q∗ denote the dual cones of K and Q under the standard Euclidean inner prod-

uct, e.g.,
K∗ �= s ∈ �d+1 � xT s ≥ 0�∀x ∈ K��

� d+1 denotes the space of �d+1�×�d+1� symmetric matrices and � d+1
+ denotes the cone

of �d+1�× �d+1� symmetric, positive semidefinite matrices. For a matrix A ∈ � d+1, we
denote its positive semidefiniteness by A
 0. When we deal with the duals of convex cones
in the space of �d+1�× �d+1� matrices (or in the subspace of the symmetric matrices),
we always take the underlying inner product to be the trace inner product (or Frobenius
inner product): �A�B� �= Tr�ATB�.
Let diag �� d+1→�d+1 denote the linear operator which maps a symmetric matrix to its

diagonal. Then its adjoint diag∗ � �d+1 → � d+1 is the linear operator Diag�·� which maps
a vector from �d+1 to the diagonal matrix in � d+1 whose �i� i�th component is the ith
component of the original vector.
Definition 2.1 (Lovász and Schrijver 1991). A �d+1�×�d+1� symmetric matrix,

Y , with real entries is in M�K� if
(i) Ye0 = diag�Y �, and
(ii) uTYv ≥ 0�∀u ∈Q∗� v ∈ K∗.
Lovász and Schrijver note that Condition (ii) of the above definition is equivalent to

YQ∗ ⊆ K (where YQ∗ = Yx � x ∈ Q∗�), or: (ii)′ Yei ∈ K for all i ∈ 1� � � � � d� and Y �e0−
ei� ∈ K for all i ∈ 1� � � � � d�, since the extreme rays (after normalization) of the cone Q∗

are given by ext�Q∗�= e1� e2� � � � � ed� �e0− e1�� �e0− e2�� � � � � �e0− ed���
Definition 2.2 (Lovász and Schrijver 1991). Y ∈ M+�K� if Y ∈ M�K� and Y is

positive semidefinite.
Observe that if we take any x ∈ K (not necessarily integral) and consider Y = xxT �Y

satisfies Y 
 0 and also (ii)
′
, but this specific Y satisfies (i) if and only if x is such that

xi�x0−xi�= 0 for all i, i.e., x corresponds to a 0-1 vector.
Now we define the projections of these liftings M and M+:

N�K� �= diag�Y � � Y ∈M�K���

N+�K� �= diag�Y � � Y ∈M+�K���

The above argument regarding xxT shows that KI ⊆N+�K�⊆N�K�⊆K, the last inclusion
following from the fact that Y �e0− ei� ∈ K and Yei ∈ K imply that x = Ye0 ∈ K.
If P is a polytope (or any convex set) in 
0�1�d, then we simply write N+�P� to represent

x �
(1
x

) ∈ N+�K�� where K is the cone obtained via homogenization using the variable x0,
and similarly for N�P�. We also let M�P�=M�K� and M+�P�=M+�K�.
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Figure 1. Two convex sets with the same N+�·�.

We should point out that the definition of M (or M+) is such that M�K� depends only
on the sets K∩ x � xi = x0� and K∩ x � xi = 0� for all i. In particular, we have:

Lemma 2.1. Let K and K ′ be such that K∩x � xi = x0�=K ′ ∩x � xi = x0� and K∩x �
xi = 0�=K ′ ∩x � xi = 0� for all i ∈ 1� � � � � d�. Then M�K�=M�K ′� (and N�K�=N�K ′�)
and M+�K�=M+�K ′� (and N+�K�= N+�K ′�).

For example, if P = x ∈�2 � �x−0�5e�2 ≤ 1
2� and P ′ = x ∈�2 � �x−0�5e�1 ≤ 0�5� (see

Figure 1), then N�P�= N�P ′�.
The definitions of M�N�M+, and N+ are invariant under various operations, includ-

ing flipping coordinates xi → �1− xi�, for any subset of the indices 1�2� � � � � d�. More
formally,

Proposition 2.2 (Lovász and Schrijver 1991). Let L be a linear transformation
mapping Q onto itself. Then

N�LK�= LN�K� and N+�LK�= LN+�K��

One crucial feature of the operators N and N+ is that they can be iterated. The iterated
operators N r�K� and N r

+�K� are defined as follows: N 0�K� �= K�N 0
+�K� �= K�NT �K� �=

N�N r−1�K��, and N r
+�K� �= N+�N r−1

+ �K�� for all integers r ≥ 1. Lovász and Schrijver
(1991) show that even without the positive semidefiniteness constraints, d iterations are
sufficient to get KI :

Theorem 2.3 (Lovász and Schrijver 1991).

K ⊇ N�K�⊇ N 2�K�⊇ · · · ⊇ Nd�K�= KI�

and
K ⊇ N+�K�⊇ N 2

+�K�⊇ · · · ⊇ Nd
+�K�= KI�

Let aTx ≤ "x0 be a valid inequality for KI . Then, the smallest nonnegative integer r
such that aTx ≤ "x0 is valid for N r�K� is called the N -rank of aTx ≤ "x0 relative to K.
The N+-rank of aTx ≤ "x0 relative to K is defined similarly. The above theorem states that
these ranks are at most d for any valid inequality. The N -rank (resp., N+-rank) of a cone
K is the smallest nonnegative integer r such that N r�K�= KI (resp., N

r
+�K�= KI ).

Theorem 2.3 can also be proved using the results of Balas (1974); also see Balas et al.
(1993). Our interest, in this paper, mostly lies in understanding the strength of N+ in com-
parison to N . Consider the stable set polytope on a graph G= �V �E� defined as the convex
hull of incidence vectors of sets of nonadjacent vertices (known as stable sets). Let FRAC
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be the relaxation defined by the edge constraints (xi+xj ≤ 1 for all edges �i� j� ∈ E) and
the nonnegativity constraints (xi ≥ 0 for all i ∈ V ). Then N�FRAC� is exactly equal to the
relaxation obtained by adding all odd-hole inequalities, saying that

∑
i∈C xi ≤ ��C�− 1�/2

for any odd cycle C with no chords. However, many more complicated inequalities have
small N+-rank. Lovász and Schrijver (1991) proved that odd-hole, odd-antihole, odd-wheel,
clique, and orthogonal-representation inequalities all have N+-rank of at most 1, relative
to FRAC. These results are proved using Lemma 3.5 of the next section, except for the
orthogonality constraints. In contrast, the N -rank of a clique inequality, for example, is
equal to p− 2 where p is the size of the clique. Note that the separation problem for the
class of clique inequalities is NP-hard (and so is the problem of optimizing over the clique
inequalities; see Grötschel et al. 1981). N+, however, leads to a polynomial-time separation
algorithm for a broader class of inequalities. This, and more generally the importance of N
and N+, stems from the following result.

Theorem 2.4 (Lovász and Schrijver 1991). If we have a weak separation oracle for
K, then we have a weak separation oracle for N r�K� and N r

+�K� for any fixed constant r .

Together with the equivalence between (weak) optimization and (weak) separation
(Grötschel et al. 1981), this implies, for example, that the stable set problem can be solved
in polynomial time for any graph with bounded N+-rank (Lovász and Schrijver 1991).
Next we study the upper bounds on N -rank and N+-rank of inequalities and convex sets.

3. Upper bounds on the N - and N+-rank. Lovász and Schrijver give some ways to
derive an upper bound for the N -rank of an inequality. They show the following:

Lemma 3.1 (Lovász and Schrijver 1991).

N+�K�⊆ N�K�⊆ �K∩ x � xi = 0��+ �K∩ x � xi = x0��� for all i ∈ 1�2� � � � � d��

Lovász and Schrijver (1991) define an operator N0 by:

N0�K� �= ⋂
i=1� � � � �d

�K∩ x � xi = 0��+ �K∩ x � xi = x0����

Thus, N�K�⊆N0�K�. The iterated operator N r
0 , N0-rank of inequalities, polytopes, and con-

vex cones are defined analogously to the corresponding definitions of N -rank and N+-rank.
Lemma 3.1 shows that an inequality will be valid for N�K� if it is valid for K∩x � xi= 0�

and K∩ x � xi = x0� for some i. To iterate Lemma 3.1, we first need the following lemma.
It is stated in terms of the faces of Q, which can be obtained by intersecting Q with
hyperplanes of the form x � xi = 0� or x � xi = x0�. Similar insights for a procedure related
to the N0-procedure were discussed by Balas (1974).

Lemma 3.2. Let F be any face of Q. Then

N�K∩F�= N�K�∩F �

Similarly for N+ and N0.

Proof. “⊆” is clear from the definitions. For the converse, let x ∈N�K�∩F . This means
that there exists a matrix Y ∈M�K� with Ye0 = x. Since for every i ∈ 1�2� � � � � d�� Yei ∈
K ⊆ Q and Y �e0− ei� ∈ K ⊆ Q and their sum Yei+Y �e0− ei� = Ye0 belongs to the face
F of Q, we have that Yei and Y �e0− ei� must belong to F , by definition of a face. Thus,
Yei ∈K∩F and Y �e0−ei� ∈K∩F for all i implying that Y ∈M�K∩F� and x ∈N�K∩F�.
The proofs for N+ and N0 are analogous. �
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Iterating Lemma 3.2, we get:

Corollary 3.3. Let F be any face of Q. Then, for every r ≥ 0,

N r�K∩F�= N r�K�∩F �

Similarly for N+ and N0.

Repeatedly using Lemma 3.1 and Lemma 3.2 (or Corollary 3.3), we can derive a condition
that an inequality must be valid for N r�K�. This in particular proves Theorem 2.3. The
following result is implicit in the proof of Theorem 1.4 of Lovász and Schrijver (1991).

Theorem 3.4 (Lovász and Schrijver 1991). N r
+�K� ⊆ N r�K� ⊆ N r

0 �K� ⊆ Ñ r
0 �K�

where

Ñ r
0 �K� �= ⋂

J⊆1� � � � �d���J �=r�

∑
�J0� J1�partitions of J�

�K∩ x � xi = 0 for i ∈ J0 and

xi = x0 for i ∈ J1���

We should point out that even though N0�K�= Ñ0�K� and Nd
+�K�= Nd�K�= Nd

0 �K�=
Ñ d

0 �K��N r
0 �K� is not necessarily equal to Ñ r

0 �K�, if 2 ≤ r ≤ �d− 1�. For example, for
K = x ∈Q � x1+x2+x3 ≤ 1�5x0�, one can show that �1�0�5�0�5�0�5� ∈ �Ñ 2

0 �K�\N 2
0 �K��.

For N+�K�, Lovász and Schrijver (1991) give a different condition for the validity of an
inequality. In the statement of the next lemma, we can assume, without loss of generality,
that a≥ 0 (by flipping coordinates if necessary, as shown in Proposition 2.2).

Lemma 3.5 (Lovász and Schrijver 1991). Let a ≥ 0. If aTx ≤ "x0 is valid for
�K∩ x � xi = x0�� for all i such that ai > 0, then aTx ≤ "x0 is valid for N+�K�.

As mentioned previously, the result that clique, odd-hole, odd-antihole, and odd-wheel
inequalities for the stable set problem have N+-rank of 1 follows from the above lemma. For
the stable set problem (as for many combinatorial optimization problems), there exist several
important constructions to derive facet-defining valid inequalities from other facet-defining
inequalities. The simplest is cloning a clique at a vertex v, which consists of replacing the
vertex by a clique, replacing all the edges incident to v by corresponding edges incident
to all clique vertices, and substituting in the inequality the variable for v by the sum of
the variables of the clique vertices. It can easily be shown that the resulting inequality is
valid and facet-defining if the original inequality was a nontrivial (i.e., different from the
nonnegativity constraints) facet-defining inequality. In general, it is not clear how cloning
influences the N+-rank of an inequality. However, if we perform cloning at the center vertex
of an odd-wheel inequality, Lemma 3.5 implies that the N+-rank still remains equal to 1.
If we perform cloning at one or several vertices of an odd-wheel, odd-hole or odd-antihole
inequality, Lemma 3.5 implies that the N+-rank is at most 2. Indeed, if we fix any variable
(of the corresponding subgraph) to 1, the resulting inequality can be seen to be a linear
combination of clique inequalities, and hence valid for N+�FRAC�.
Lemma 3.5 can be extended to derive conditions under which the N+-rank of an inequality

is at most r .

Theorem 3.6. Let a ≥ 0 and let I+ = i � ai > 0�. If aTx ≤ "x0 is valid for
�K ∩ x � xi = x0� for all i ∈ I�� for all sets I ⊆ I+ satisfying either of the following two
conditions:
(1) �I � = r ,
(2) �I � ≤ �r−1� and

∑
i∈I ai > ",

then aTx ≤ "x0 is valid for N r
+�K�.

Observe, however, that the result mentioned previously regarding cloning does not follow
from Theorem 3.6.
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Proof. We proceed by induction on r . For r = 1, the result is Lemma 3.5.
Assume now that r > 1, that the theorem was proved for �r−1� (and for every inequality

and for every convex set K), and that the hypothesis is satisfied for the inequality aTx≤"x0

and r . From Corollary 3.3 and Lemma 3.5, we know that aTx ≤ "x0 is valid for N r
+�K�=

N+�N r−1
+ �K�� if it is valid for N r−1

+ �K�∩x � xi = x0�=N r−1
+ �K∩x � xi = x0�� for all i ∈ I+.

This is equivalent to showing that aTx−aixi ≤ �"−ai�x0 is valid for N
r−1
+ �K∩x � xi= x0��.

Now there are two cases. If "−ai < 0, then Condition 2 implies that K∩ x � xi = x0�=
�, and thus any inequality is valid for N r−1

+ �K ∩ x � xi = x0�� = �. On the other hand,
if "− ai ≥ 0, we can use induction to prove the result. Indeed, Conditions 1 and 2 for
inequality aTx ≤ "x0 and r imply that Conditions 1 and 2 are satisfied for the inequality
aTx−aixi ≤ �"−ai�x0 for r−1. Thus, by the inductive hypothesis, aTx−aixi ≤ �"−ai�x0

is valid for N r−1
+ �K∩ x � xi = x0��, proving the inductive statement. �

For the stable set problem, the above theorem implies that the N+-rank of a graph is
at most its stability number "�G�, the cardinality of the largest stable set in G; this was
proved in Corollary 2.19 of Lovász and Schrijver (1991). More generally, if we consider
a polytope P for which PI is only described by inequalities of the form aTx ≤ "x0 with
a ≥ 0 (i.e., it is lower comprehensive, see §5), then its N+-rank is bounded above by the
maximum number of variables that can be set to 1 in P to obtain a unique integral point of
PI (in which the other variables are thus set to 0). Similar, more complex, statements can
be made if the polytope is not lower comprehensive.

3.1. Example 1: Matching polytope. Consider the complete undirected graph on the
vertex set V ; let E denote its edge set. Let

P �= x ∈ �E � x�.�v��≤ 1�∀v ∈ V �0 ≤ x ≤ e��

In the above, .�v� is the set of edges in E that are incident to v; for S ⊆ E, x�S� represents∑
j∈S xj . For S ⊆ V , let E�S� refer to the set of edges with both endpoints in S. Then the

matching polytope for the complete graph is

PI �= convP ∩ 0�1�E��

Edmonds (1965) proved that

PI =
{
x ∈ P � x�E�S��≤ �S�−1

2
for all S ⊆ V such that �S� is odd

}
�

The above inequalities are known as the blossom inequalities.

Theorem 3.7 (Stephen and Tunçel 1999). The N+-rank of the inequality

x�E�S��≤ �S�−1
2

with respect to P is ��S�−1�/2.

The fact that the N+-rank is at most ��S�−1�/2 also follows directly from Theorem 3.6.
Observe that since d is �V ���V � − 1�/2, we derive that the N+-rank of P is equal to
�
√
1+8d−1�/4 if �V � is odd and �

√
1+8d−3�/4 if �V � is even.

From Theorem 3.7, the N -rank of the blossom inequality on S is at least ��S� − 1�/2.
Furthermore, using Theorem 3.4 with J being the complement of a complete bipartite graph
on ��S�−1�/2 and ��S�+1�/2 vertices on each side, we derive that the Ñ0-rank of a blossom
inequality is equal to ��S�− 1�2/4. This uses the fact that P is an integral polytope if and
only if the underlying graph is bipartite. Thus, the N0-rank and the N -rank are at most
��S� − 1�2/4. These bounds are to be compared with those derived from Corollary 2.8 of
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Lovász and Schrijver (1991) (since a matching in a graph can be viewed as a stable set
in its line graph). Their results imply a lower bound of ��S� − 2� and an upper bound of
1
2 ��S�−1�2−1.

3.2. Example 2. Let d be an even positive integer. Consider

K �=
{(

x0
x

)
∈ �d+1 � x�S�≤ d

2
x0�

for all S ⊂ 1�2� � � � � d� such that �S� = d

2
+1�0 ≤ x ≤ x0e

}
�

Then

KI =
{(

x0
x

)
∈ �d+1 �

d∑
i=1

xi ≤
d

2
x0�0 ≤ x ≤ x0e

}
�

Theorem 3.4 implies that the N -rank of
∑d

i=1 xi ≤ �d/2�x0 is at most �d− 2�, while
Theorem 3.6 implies that the N+-rank is at most d/2. These bounds are actually attained,
and this is discussed in §4.2. We also show in that section that the positive semidefiniteness
constraint does not help for many iterations.

4. Lower bounds on the N -rank and N+-rank. In this section we provide lower
bounds on the N -rank and N+-rank. We also show a situation in which the positive semidef-
initeness constraints do not help at all, and both the N -rank and the N+-rank of a polytope
are d.
We first provide a way to derive points in N+�P� in certain cases. For x ∈ �d define

x
�j�
i �=

{
xi if i �= j0
0 if i = j�

So, x�j� = x−xjej . Throughout this section, let K = 
(

1

1x

)
� x ∈ P�1≥ 0�.

Theorem 4.1. Let x̄ ∈ P such that

x̄�j� and �x̄�j�+ ej� ∈ P� for all j ∈ 1�2� � � � � d� such that 0 < x̄j < 1�

Then x̄ ∈ N+�P�.

Simply stated, this result says that if we can replace any coordinate of x (strictly between
0 and 1) by 0 and 1 and remain in P, then x ∈ N+�P�.
Proof. We define

Y �x� �=
(
1
x

)
�1� xT �+Diag



0

x1−x2
1

x2−x2
2

���

xd−x2
d

 �

By definition, Y �x̄� ∈� d+1, Y �x̄�e0 = diag�Y �x̄��= (1
x̄

) ∈ K. Moreover,

Y �x̄�ej = x̄j

(
1

x̄�j�+ ej

)
� for all j ∈ 1�2� � � � � d�0
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Figure 2. Convex set satisfying the condition of Corollary 4.2.

therefore, Y �x̄�ej ∈ K for all j ∈ 1�2� � � � � d�. Similarly,

Y �x̄��e0− ej�= �1− x̄j�

(
1

x̄�j�

)
� for all j ∈ 1�2� � � � � d�0

therefore, Y �x̄��e0− ej� ∈ K for all j ∈ 1�2� � � � � d�. Finally, since

Diag



0

x1−x2
1

x2−x2
2

���

xd−x2
d


 0 and
(
1
x

)
�1� xT �
 0�

for all 0 ≤ x ≤ e, we have Y �x� 
 0. Therefore, Y �x̄� ∈ M+�P� and x̄ ∈ N+�P� as
desired. �

As a corollary, we derive the following (see Figure 2 for an illustration).

Corollary 4.2. Let P be such that �P ∩ x � xj = 0��+ ej = P ∩ x � xj = 1� for all
j ∈ 1� � � � � d�. Then

N+�P�= N�P�= N0�P�= ⋂
j∈1� � � � �d�

x � x�j� ∈ P��

Proof. Let C =⋂
j∈1� � � � �d�x � x�j� ∈P�. By Lemma 3.1, we know that N+�P�⊆N�P�⊆

N0�P�⊆ C. On the other hand, Theorem 4.1 shows that C ⊆ N+�P�. �

In the proof of Theorem 4.1, we constructed a Y ∈ M+�P� such that a certain x ∈ P

would also be in N+�P�. The idea of the proof suggests a stronger technique to achieve
such a goal. We define

Y �x� �=
(
1
x

)
�1� xT �+Diag


0

x1−x2
1

���
xd−x2

d

+(
0 0T

0 B�x�

)
�
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where B�x� ∈ � d�diag�B� = 0. Then clearly we have Y �x� ∈ � d+1� Y �x�e0 = diag�Y �x��.
Moreover, using the Schur complement of �Y �x��00 in Y �x�, we have

Y �x�
 0 iff B�x�+Diag

x1−x2
1

���
xd−x2

d


 0�

The latter can be assured in many simple ways, for example, by diagonal dominance: It
suffices to choose Bij such that

�Bij � ≤min

{
xi−x2

i

# of nonzeros in column i
�

xj−x2
j

# of nonzeros in column j

}
�

The entries of such a B�x� will be further restricted by the condition Y �x�ei ∈ K for
every i ∈ 1�2� � � � � d� and Y �x��e0− ei� ∈ K for every i ∈ 1�2� � � � � d�. If this condition
is verified for some B�x�, then the above argument would imply x ∈ N+�P�. In the case
of Theorem 4.1, we utilized diagonal dominance; because of the special structure of P, we
could choose B�x� �= 0 and satisfy all the conditions for x ∈ N+�P�.

4.1. Example 3: Infeasibility detection. We now give an example where both N and
N+ require d iterations, showing that Theorem 2.3 cannot be improved. This result was
independently obtained by Cook and Dash (2001), who also show additional results regard-
ing the rank of inequalities. Previously, the worst example known in terms of the number
of repeated N+ iterations needed to obtain KI was the matching polytope results of Stephen
and Tunçel, (1999), where the N+-rank was of the order of

√
d.

Let

P�k� �=
{
x ∈ �d �

∥∥∥∥x− 1
2
e

∥∥∥∥
1

≤ k

2

}
�

Theorem 4.3. For every k ∈ 1�2� � � � � d− 1�, N+�P�k�� ⊇ P�k− 1�. Furthermore,
P�0� = {

1
2e
} �= � while PI�d− 1� = �. Thus, the N+ procedure requires d iterations to

prove PI�d−1�=�.
Proof. Follows from Corollary 4.2. (In fact, this corollary establishes that N+�P�k��=

P�k−1� for every k ∈ 1�2� � � � � d−1�.) �

One interesting feature of the example above is that P�d− 1� can be described by 2d

inequalities and contains no integral point, but no inequality can be removed without creat-
ing an integral point. This is actually an extreme situation in this regard, as shown by the
following result of Doignon (1973). Suppose we are given a set of m linear inequalities

aT
i x ≤ bi� for all i ∈ J�

where x ∈ �d and �J � ≥ 2d. A theorem of Doignon (1973) implies that if this system does
not contain any integer points then there is a subsystem (of this system) with at most
2d inequalities which does not have an integer solution. Doignon’s Theorem is an integer
analog of Helly’s Theorem.

4.2. Example 2, continued. In §3.2, we have shown that the N -rank and the N+-rank of

K �=
{(

x0
x

)
∈ �d+1 � x�S�≤ d

2
x0�

for all S ⊂ 1�2� � � � � d� such that �S� = d

2
+1�0 ≤ x ≤ x0e

}
�

are at most �d−2� and d/2, respectively. Here we claim that these bounds are attained.
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Theorem 4.4. The N -rank of
∑d

i=1 xi ≤ d/2 relative to K is �d− 2�. The N+-rank of
the same inequality relative to K is d/2. Moreover, for r ≤ d/2−√d+3/2, the optimum
values of

maxeT x � x ∈ N r�K�� and maxeT x � x ∈ N r
+�K��

are the same.

Our proof of the first statement of the theorem, saying that the N -rank is �d− 2�, is
lengthy and is not included here. The proof of the remainder of the theorem appears partly
in this section and partly in the Appendix. The theorem indicates that the positive semidef-
initeness constraint does not help for �d/2−o�d�� iterations.
Unfortunately, neither Theorem 4.1 nor Corollary 4.2 is useful here. Instead, exploiting

the symmetry (and convexity of N�K� and N+�K�), we will only consider points in N r�K�
or N r

+�K� such that xi takes only three possible values, 0�1, and a constant ". Letting n0

denote the number of xi set to 0 and letting n1 denote the number of xi set to 1, we define
c�r�n0� n1� to be the largest common value " of the remaining �d−n0−n1� coordinates
of x such that x ∈ N r�K�. We define c+�r� n0� n1� similarly with respect to N r

+�K�.
By symmetry, such a point x belongs to N r�K� (resp., to N r

+�K�) if there exists a sym-
metric matrix Y ∈Mr�K� (resp., Y ∈Mr

+�K�) of the form

Y �n0� n10"�7� �=
 1 eT 0 "eT

e eeT 0 "eeT

0 0 0 0
"e "eeT 0 �"−7�I +7eeT

 �

for some value 7; here the columns of Y are partitioned in the way that the first column
corresponds to the homogenizing variable x0, the next n1 columns correspond to those xj

that are set to one, the next n0 columns correspond to those xj set to zero, and the remaining
�d−n0−n1� columns correspond to the remaining xjs (which are set to ").
For r = 0 and n1 ≤ d/2, we see by plugging x into the description of K that

c�0� n0� n1�= c+�0� n0� n1�=


d/2−n1

d/2+1−n1

if n0 ≤ d/2−1�

1 otherwise�

(1)

For r > 0, the condition that Y ∈ Mr�K� is equivalent to 7/" ≤ c�r − 1� n0� n1 + 1�
(corresponding to Yei ∈N r−1�K�) and �"−7�/�1−"�≤ c�r−1� n0+1� n1� (corresponding
to Y �e0− ei� ∈ N r−1�K�). Eliminating 7, we derive:

c�r�n0� n1�=
c�r−1� n0+1� n1�

1− c�r−1� n0� n1+1�+ c�r−1� n0+1� n1�
�

The condition that Y 
 0 reduces to (by taking a Schur complement) �"−7�I + �7−
"2�eeT 
 0 (where the matrices have size �d−n0−n1�× �d−n0−n1�), or "−7 ≥ 0 and
"−7+ �d−n0−n1��7−"2�≥ 0. This can be seen to imply that

c+�r� n0� n1� = min
(

c+�r−1� n0+1� n1�

1− c+�r−1� n0� n1+1�+ c+�r−1� n0+1� n1�
�

�d−n0−n1−1�c+�r−1� n0� n1+1�+1
d−n0−n1

)
�

Observe that the N -rank (resp., the N+-rank) of K is the smallest integer r such that
c�r�0�0� = 1

2 (resp., c+�r�0�0� = 1
2 ). Theorem 4.4 hence follows from the following

proposition.
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Proposition 4.5.

(1) c�d−3�0�0�=
{

1
2 + 1

5d−6 if d is even�
1
2 + 1

10d−20 if d is odd�
(2) c+�d/2−1�0�0� > 0�5,
(3) for any r� n0� n1 such that r + n0+ n1 ≤ d/2−√d+ 3/2, we have c�r�n0� n1� =

c+�r� n0� n1�.

The proof of (1) is obtained by solving explicitly the recurrence for c; a sketch of the
details is in the Appendix. The proof of the rest of the proposition is also given in the
Appendix.
Theorem A.3 in the Appendix actually illustrates a peculiar behavior of the N+ operator

(as well as the N operator) on this example. In cutting-plane procedures, it is usual that the
improvement due to the addition of a cutting-plane (or a batch of them) decreases as the
algorithm progresses. However, Theorem A.3 shows that

maxeT x � x ∈ N r
+�K��= dc+�r�0�0� > d

(
1− 1

d/2+1− r

)
�

Hence, as illustrated on Figure 3 for d = 500, the improvement in the objective function
value is negligible for many iterations and only toward the end increases considerably. We
should point out, however, that the procedures N and N+ are such that the number of
“important” inequalities generated in each iteration could potentially increase tremendously
in later iterations.

5. Additional properties. A nonempty convex set P ⊆ �d
+ is called lower comprehen-

sive if for every x ∈ P, every y ∈ �d
+ such that y ≤ x is also in P.

0 50 100 150 200 250
0.5

0.55

0.6

0.65

0.7
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0.95

1

Figure 3. Plot of c+�r�0�0� for d = 500 as a function of r .
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Definition 5.1. Let v ∈ 0�1�d. A convex set P ⊆ 
0�1�d is said to be a convex corner
with respect to v if there exists a linear transformation L of Q onto itself such that L

(1
v

)= (1
0

)
and x ∈ �d �

(1
x

)= L
(

1

1u

)
�1 > 0� u ∈ P� is lower comprehensive.

Theorem 5.1. If P is a convex corner with respect to v ∈ 0�1�d, then so are N�P�
and N+�P�.

Proof. By Proposition 2.2 and the definitions, it suffices to prove that if P is lower
comprehensive, then so are N�P� and N+�P�. Let P be lower comprehensive and x ∈N�P�.
It suffices to show that �x− xjej� ∈ N�P� for every j such that xj > 0. Without loss of
generality, suppose j = 1 and x1 > 0. Then there exists Y ∈M�P� such that Ye0 =

(1
x

)
. Let

�Ypq �=
{
Ypq if p �= 1 or q �= 10

0 otherwise�

Then, using the fact that P is lower comprehensive, it is easy to see that �Y ∈M�P�. Since
the above argument applies to every j such that xj > 0, and it can be applied recursively,
we have proved that N�P� is lower comprehensive.
We can prove that N+�P� is lower comprehensive by a very similar argument. We only

have to note that if Y ∈ M+�P�, then the corresponding �Y constructed as above will be
positive semidefinite (in addition to satisfying �Y ej ∈ K for every j ∈ 0�1�2� � � � � d� and
�Y �e0− ej� ∈ K for every j ∈ 1�2� � � � � d�) since every principal minor of �Y is a principal
minor of Y , and Y is positive semidefinite. �

A similar fact in a less general form was observed independently by Cook and
Dash (2001).

6. General conditions on the strength of the semidefinite constraint. In this section,
we derive general conditions under which the positive semidefiniteness constraint is not
useful. This can be expressed in several ways as
• M�K�=M+�K�, or as
• N�K�= N+�K�, or even as
• maxcT x � x ∈ N�K��=maxcT x � x ∈ N+�K�� for some given c.
First, we rewrite Condition (ii) of Definition 2.1. Since Y is symmetric,

uTYv ≥ 0� ∀u ∈Q∗� v ∈ K∗ ⇐⇒ uTYv+vTYu≥ 0� ∀u ∈Q∗� v ∈ K∗�

Using the fact that uTYv+ vTYu = Tr�Y �uvT + vuT ��, we see that Condition (ii) is also
equivalent to
(ii)′′ Y ∈ 
T �K��∗,

where

T�K� �= coneuvT +vuT � u ∈Q∗� v ∈ K∗�

= coneuvT +vuT � u ∈ ext�Q∗�� v ∈ ext�K∗���

Let us define
D �= Y ∈� d+1 � diag�Y �= Ye0��

Note that the cone (more specifically, the subspace in this case) dual to D in the space
� d+1 is the orthogonal complement of D.

D∗ =D⊥ =
{ d∑

i=1
"i�Eii−E0i� � " ∈ �d

}
�

where Eij �= eie
T
j + eje

T
i . For the next theorem and its proof we need a bit more notation:

� d
++ denotes the cone of d× d, symmetric positive definite matrices, cl�·� denotes the

closure.
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Theorem 6.1. Let K ⊆Q be a convex cone. Then we have
(1) M+�K�=M�K� if and only if T�K�+D⊥ ⊇� d+1

++ .
(2) N+�K� = N�K� if and only if for every s ∈ �d+1, Diag�s� ∈ T�K�+D⊥ +� d+1

+
implies Diag�s� ∈ cl�T �K�+D⊥�.

Proof. By definition of the sets M�K��M+�K�, we have

M�K�=M+�K�⇐⇒ 
T �K��∗ ∩D = 
T �K��∗ ∩D∩� d+1
+ �

Since the inclusion 
T �K��∗ ∩D ⊇ 
T �K��∗ ∩D∩� d+1
+ is clear, we have

M�K�=M+�K�⇐⇒ 
T �K��∗ ∩D ⊆� d+1
+ �

Noting that

T �K��∗ ∩D ⊆� d+1

+ ⇐⇒ �
T �K��∗ ∩D�∗ ⊇� d+1
+

(we used the facts that 
T �K��∗ and D are closed convex cones, � d+1
+ is self dual under the

trace inner product, in the space � d+1) and that

�
T �K��∗ ∩D�∗ = cl�T �K�+D∗�

(we used Corollary 16.4.2 of Rockafellar 1970) we conclude

M�K�=M+�K� if and only if T�K�+D⊥ ⊇� d+1
++ �

This establishes Part (1). Now we turn to Part (2). Using definitions, we have

N�K�= N+�K�⇐⇒ diag�
T �K��∗ ∩D�⊆ diag�
T �K��∗ ∩D∩� d+1
+ ��

Now we use the fact that for any convex cone � ⊆� d+1, we have


diag����∗ = s ∈ �d+1 � Diag�s� ∈�∗��(2)

Using Equation (2) and the ideas in the first part of the proof, we find

N�K�= N+�K� if and only if

s ∈ �d+1 � Diag�s� ∈ cl�T �K�+D⊥��

⊇ s ∈ �d+1 � Diag�s� ∈ cl�T �K�+D⊥+� d+1
+ ��

if and only if for every s ∈�d+1�Diag�s�∈ T�K�+D⊥+� d+1
+ implies Diag�s�∈ cl�T �K�+

D⊥�. �

Note that if K is polyhedral, then in Part (1), � d+1
++ can be replaced by � d+1

+ and in
Part (2), cl�T �K�+D⊥� can be replaced by �T �K�+D⊥�. This theorem completely char-
acterizes when M and M+ differ or are equal. To make the condition more easily tractable,
we can give a more explicit description of T�K�+D⊥. Define F�K� to be the set of all
v = (

v0
v̄

) ∈ �d+1 such that −v̄T x ≤ v0 is a facet of P (or, more generally, for nonpolyhedral
convex sets, F�K� describes a set of valid inequalities exactly characterizing P). Note that
F�K� can be taken as the set of extreme rays of K∗. We arrive at the identity

T�K�+D⊥ = cone
{
�eiv

T +veT
i �� i ∈ 1�2� � � � � d�� v ∈ F�K�0


�e0− ei�v
T +v�e0− ei�

T �� i ∈ 1�2� � � � � d�� v ∈ F�K�0

�Eii−E0i�� i ∈ 1�2� � � � � d�
}
�
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where we have used the fact that E0i−Eii ∈ T�K� since ei ∈ F�K�. So, M+�K� =M�K�
iff for every x ∈ �d+1, we can express xxT as an element of the closure of the above cone
�T �K�+D⊥�.
Consider the clique on four vertices and the corresponding LP relaxation FRAC of the

stable set problem (with the edge and nonnegativity constraints only). So, K is polyhedral.
For this example,

Y �=



1 1
3

1
3

1
3

1
3

1
3

1
3 0 0 0

1
3 0 1

3 0 0
1
3 0 0 1

3 0
1
3 0 0 0 1

3

 ∈ 
T �K��∗ ∩D0

but clearly Y �∈ � d+1
+ . A proof of this is provided by the incidence vector of the clique

inequality on the four vertices:

�e0− e1− e2− e3− e4�
T Y �e0− e1− e2− e3− e4�=−

1
3
�

This means, for x �= �e0− e1− e2− e3− e4�, xx
T is not in the convex cone �T �K�+D⊥�.

Now, we relate these findings to the iterated operators N r�K� and N r
+�K�.

Corollary 6.2. If �T �K�+D⊥�⊇� d+1
++ , then N r

+�K�= N r�K� for every r ≥ 0.

Proof. Trivial for r = 0. By Theorem 6.1, the assumption of the corollary implies
N+�K�= N�K�. By Theorem 2.3, N�K�⊆ K. Thus,

�T �N�K��+D⊥�⊇ �T �K�+D⊥�⊇� d+1
++ �

Now, applying Theorem 6.1 recursively, we obtain the desired result. �

We should compare these results to Lemma 1.2 of Lovász and Schrijver (1991). Note that
our result is also based on cone duality; we also characterize the dual cones of N�K� and
N+�K�, but we only work in the space of symmetric matrices instead of the larger space
of all matrices. As a result, the dependence of the characterization on the skew symmetric
matrices is eliminated and our description is more explicit.
Our ideas in the geometric characterizations above are also applicable in comparing the

weaker procedure N0 to N . Recall

N0�K� �= ⋂
i=1� � � � �d

�K∩ x � xi = 0��+ �K∩ x � xi = x0����

We define

M0�K� �= Y ∈ ��d+1�×�d+1� � Ye0 = Y T e0 = diag�Y ��uTYv ≥ 0�∀u ∈Q∗� v ∈ K∗�0

the main difference with M is that Y is not necessarily symmetric. As is mentioned by
Lovász and Schrijver (1991), we have

N0�K�= Ye0 � Y ∈M0�K���

We further define

T0�K� �= coneuvT � u ∈Q∗� v ∈ K∗��

and
D0 �= Y ∈ ��d+1�×�d+1� � Ye0 = Y T e0 = diag�Y ���
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Then
Y ∈M0�K� iff Y ∈ �
T0�K��∗ ∩D0��

where 
T0�K��∗ is the dual of T0�K� in ��d+1�×�d+1� under the trace inner product.

Theorem 6.3. Suppose K ⊆Q is a polyhedral cone. Then we have
(1) M0�K�=M�K� iff �T0�K�+D⊥

0 �⊇ �eie
T
j − eje

T
i � � i� j ∈ 1�2� � � � � d���

(2) N0�K� = N�K� if and only if for every s ∈ �d+1�Diag�s� ∈ T0�K� + D⊥
0 +

�̃ d+1 implies Diag�s� ∈ T0�K�+D⊥
0 �

Proof. As we showed, M0�K�= 
T0�K��∗ ∩D0, and it is clear from the definitions that
M�K�= 
T0�K��∗ ∩D0∩� d+1� Note that

D⊥
0 = spaneie

T
i − e0e

T
i � eie

T
i − eie

T
0 � i ∈ 1�2� � � � � d���

Thus,
±�e0e

T
i − eie

T
0 � ∈ �T0�K�+D⊥

0 �� ∀ i ∈ 1�2� � � � � d��

Let �̃ d+1 denote the subspace of �d+ 1�× �d+ 1� skew-symmetric matrices with real
entries. Therefore,

�T0�K�+D⊥
0 �⊇ �̃ d+1 iff �T0�K�+D⊥

0 �⊇ �eie
T
j − eje

T
i � � i� j ∈ 1�2� � � � � d���

Now, using elementary cone geometry on polyhedral cones and the definitions, we have the
following string of equivalences:

�T0�K�+D⊥
0 �⊇ �eie

T
j − eje

T
i � � i� j ∈ 1�2� � � � � d�� iff �T0�K�+D⊥

0 �⊇ �̃ d+10

iff 
T0�K��∗ ∩D0 ⊆� d+10

iff M0�K�=M�K��

The second part follows from the first as in the proof of Theorem 6.1. �

Corollary 6.4. If �T0�K�+D⊥
0 �⊇ �eie

T
j −eje

T
i � � i� j ∈ 1�2� � � � � d��, then N r

0 �K�=
N r�K� for every r ≥ 0.

Proof. Trivial for r = 0. By Theorem 6.3, the assumption of the corollary implies
N0�K�= N�K�. By Theorem 2.3, N�K�⊆ K. Thus,

T0�N �K��⊇ T0�K�⊇ �eie
T
j − eje

T
i � � i� j ∈ 1�2� � � � � d���

Now, applying Theorem 6.3 recursively, we obtain the desired result. �

Let G denote the complete graph on d vertices, and consider the LP relaxation FRAC
of the stable set problem on G. For every i� j ∈ 1�2� � � � � d� such that i �= j, we have

�e0− ei− ej� ∈ K∗ and clearly, ei� ej ∈ �K∗ ∩Q∗��

Thus, for every i� j ∈ 1�2� � � � � d� such that i �= j, we have

ei�e0− ei− ej�
T � eje

T
i ∈ T0�K� and �eie

T
i − eie

T
0 � ∈D⊥

0 �

This implies
�T0�K�+D⊥

0 �⊇ �eie
T
j − eje

T
i � � i� j ∈ 1�2� � � � � d���

Therefore, the condition of Theorem 6.3 is satisfied and we have N r
0 �FRAC�= N r�FRAC�

for every r ≥ 0.
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Instead of comparing M�K� and M+�K�, or N�K� and N+�K�, we might ask when the
set of optimal solutions of both relaxations are the same. This is precisely when


N �K��∗ +
(−z∗

c

)
⊇ 
N+�K��∗ +

(−z∗

c

)
�

where z∗ is the optimal value of maxcT x �
(1
x

) ∈ N�K��.
Sometimes we are only interested in the bound provided by the relaxation. This is equiv-

alent to finding the smallest z for which
(

z

−c

) ∈ 
N �K��∗ and the smallest z+ for which(
z+
−c

) ∈ 
N+�K��∗.

Appendix. In this Appendix, we prove Proposition 4.5 and derive additional properties
of c and c+. We first start with a sketch of the proof of Part (1) of Proposition 4.5.
Proof of Part (1) of Proposition 4.5. We consider the case d even; the case d odd

can be handled similarly. For i≥ 0� j ≥ 0� i+j ≥ 3, let f �i� j�= c�i+j−3�d/2−i� d/2−j�.
Observe that

f �i� j�=



0 j = 0�
1 i = 0�

j

j+1
i+ j = 3 and i ≥ 1�

f �i−1� j�
1−f �i� j−1�+f �i−1� j�

otherwise.

As a result, f �i� j� is independent of d. The first few values of f �i� j� are given below:

i\j 0 1 2 3 4 5

0 1 1 1
1 2/3 3/4 4/5 5/6
2 1/2 4/7 7/11 11/16 16/22
3 0 1/3 6/13 13/24 24/40 40/62
4 0 1/4 8/21 21/45 45/85 85/147
5 0 1/5 10/31 31/76 76/161 161/308

For i ≥ 0� j ≥ 0� i+ j ≥ 3, define d�i� j� in the following way:

d�i� j�=


0 j = 0�
1 i = 0�
2 i = 1� j = 2 or i = 2� j = 1�

d�i−1� j�+d�i� j−1� otherwise�

The first few values of d�i� j� are given below:

i\j 0 1 2 3 4 5

0 1 1 1
1 2 3 4 5
2 2 4 7 11 16
3 0 2 6 13 24 40
4 0 2 8 21 45 85
5 0 2 10 31 76 161
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We claim that

f �i� j�= d�i� j�

d�i� j+1�
�

To prove the claim, we verify it for
• i = 0� f �0� j�= 1 while d�0� j�/d�0� j+1�= 1,
• j = 0� f �i�0�= 0 while d�i�0�/d�i�1�= 0,
• �i� j� = �1�2� or �i� j� = �2�1�� f �i� j� = j/�j+ 1� while d�i� j�/d�i� j+ 1� = 2/3 if

i = 1 and d�i� j�/d�i� j+1�= 1/2 if i = 2,
• otherwise: we proceed by induction on i+ j. We have

f �i� j� = f �i−1� j�
1−f �i� j−1�+f �i−1� j�

= d�i−1� j�
d�i−1� j+1�

1[
1− d�i�j−1�

d�i�j�
+ d�i−1�j�

d�i−1�j+1�
]

= d�i−1� j�
d�i−1� j+1�

1[
d�i�j�−d�i�j−1�

d�i�j�
+ d�i−1�j�

d�i−1�j+1�
] = d�i−1� j�

d�i−1� j+1�
1[

d�i−1�j�
d�i�j�

+ d�i−1�j�
d�i−1�j+1�

]
= d�i� j�d�i−1� j+1�

d�i−1� j+1��d�i� j�+d�i−1� j+1��
= d�i� j�

d�i� j+1�
�

We now can easily check that

d�i� j�=
(
i+ j−3

i

)
+2

(
i+ j−2
j−1

)
verifies the definition for d; by convention

(
a

b

) = 0 if a < b or b < 0. (The formula for d
was obtained by computing the generating function for d�·� ·�.) As a result,

f

(
d

2
�
d

2

)
=

(
d−3
d/2

)+2
(

d−2
d/2−1

)(
d−2
d/2

)+2
(
d−1
d/2

) = 1
2
+ 1

5d−6

after simplifications. �

Now, we continue with a few preliminary lemmas.

Lemma A.1. Assuming 0 ≤ b < a≤ 1 and p > 0, we have

a >
a

1−b+a
> b�

and

a > min
(

a

1−b+a
�
�p−1�b+1

p

)
> b�

Proof. First, a > a/�1− b+a� follows from the fact that a > 0 and a > b, and this
implies also that a > min�a/�1−b+a�� ��p−1�b+1�/p�.
On the other hand, we have that a/�1−b+a� > b iff a> b−b2+ab iff �a−b��1−b� >

0, which follows by assumption. Furthermore, ��p−1�b+1�/p > b iff �p−1�b+1 > pb
iff 1 > b. As a result, both terms in the minimum are greater than b, and the second part
of each inequality follows. �

This implies the following interlacing property.

Corollary A.2. For any r ≥ 1 and any n0� n1 ≤ d/2− r , we have that

c�r−1� n0� n1+1� < c�r�n0� n1� < c�r−1� n0+1� n1�

and
c+�r−1� n0� n1+1� < c+�r� n0� n1� < c+�r−1� n0+1� n1��
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Proof. For r = 1 and n0� n1 ≤ d/2− 1, we have that 0 ≤ f �r − 1� n0� n1 + 1� <
f�r−1� n0+1� n1� ≤ 1 where f = c or f = c+ by (1). Lemma A.1 now implies the result
for r = 1.
Proceeding by induction on r and assuming the result for r − 1 is true, we derive that

f �r−1� n0� n1+1� < f�r−2� n0+1� n1+1� < f�r−1� n0+1� n1�, which implies the result
for r by Lemma A.1. �

We can now get a lower bound on the coefficients c and c+.

Theorem A.3. For any r� n0� n1 such that s = r+n0+n1 ≤ d/2, we have that

c�r�n0� n1�≥ c+�r� n0� n1� > c�0�0� s�= d/2− s

d/2+1− s
�

In particular, c+�d/2−1�0�0� > 0�5.

This shows that the N+-rank of K is d/2.
Proof. For s ≤ d/2, we have

c�r�n0� n1�≥ c+�r� n0� n1� > c+�r�0� n0+n1� > c+�0�0� r+n0+n1�= c�0�0� s��

where we have used Corollary A.2 twice. �

Lemma A.4. Let a > b > c > d ≥ 0 with 1> b be such that a−b < b−c < c−d. Then

a

1−b+a
− b

1− c+b
<

b

1− c+b
− c

1−d+ c
�

Proof. Since a/�1− b+ a� is an increasing function of a for 1 > b, we have that
a/�1−b+a� < a′/�1−b+a′�, where a′ −b = b− c. Hence,

a

1−b+a
− b

1− c+b
<

2b− c

1− c+b
− b

1− c+b

= b− c

1− c+b
<

b

1− c+b
− c

1−d+ c
� �

This implies the following corollary.

Corollary A.5. For any r ≥ 1, any 0 ≤ n0 ≤ d/2− r − 2, any 1 ≤ n1 ≤ d/2− r , we
have c�r−1� n0+2� n1−1�−c�r−1� n0+1� n1� < c�r−1� n0+1� n1�−c�r−1� n0� n1+1��

Proof. For r = 1�1 ≤ n1 ≤ d/2−1 and n0 ≤ d/2−3, let a= c�0� n0+2� n1−1�� b =
c�0� n0+ 1� n1�, and c = c�0� n0� n1+ 1�. Observe that a = 1− 1/�d/2+ 2−n1�� b = 1−
1/�d/2+1−n1�, and c = 1−1/�d/2−n1�, implying that a > b > c and a−b < b− c.
We now proceed by induction and assume the result true for r − 1 ≥ 1. Let a =

c�r − 2� n0 + 3� n1 − 1�� b = c�r − 2� n0 + 2� n1�� c = c�r − 2� n0 + 1� n1 + 1�, and d =
c�r−2� n0� n1+2�. We know from Corollary A.2 that a> b > c > d and from the inductive
hypothesis that �a−b� < �b− c� < �c−d�. Lemma A.4 then implies the result for r . �

We need an additional lemma.

Lemma A.6. Let 1≥ a > b > c ≥ 0 be such that a−b < b− c. Then

a

1−b+a
− b

1− c+b
< b− c�

Proof. We have that(
b

1− c+b
− c

)
−
(

a

1−b+a
−b

)
= �b− c��1− c�

1− c+b
− �a−b��1−b�

1−b+a
�
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Moreover, we know that 1−c > 1−b > 0 and �b−c�/�1−c+b� > �a−b�/�1−b+a� > 0
since 0 < a− b < b− c. Multiplying these two inequalities together, we get the desired
inequality. �

Lemma A.6 implies the following corollary.

Corollary A.7. For any r ≥ 1, any 0 ≤ n0 ≤ d/2− r − 2, any 1 ≤ n1 ≤ d/2− r , we
have that c�r�n0+1� n1−1�− c�r�n0� n1� < c�r−1� n0+1� n1�− c�r−1� n0� n1+1��

Proof. Setting a = c�r − 1� n0 + 2� n1 − 1�, b = c�r − 1� n0 + 1� n1�, and c =
c�r−1� n0� n1+1�, we need to prove that a/�1− b+ a�− b/�1− c+ b� < b− c. From
Corollary A.2 we know that a > b > c and from Corollary A.5 that a− b < b− c. The
result now follows from Lemma A.6. �

Using Corollaries A.5 and A.7 repeatedly, we derive the following corollary.

Corollary A.8. For any r ≥ 1� n0� n1 ≥ 0 such that s= r+n0+n1 ≤ d/2, we have that

c�r−1� n0+1� n1�− c�r−1� n0� n1+1�

< c�0�1� s−1�− c�0�0� s�= 1
�d/2+1− s��d/2+2− s�

�

Proof. Using Corollaries A.5 and A.7, we derive

c�r−1� n0+1� n1�− c�r−1� n0� n1+1�

< c�r−1�1� n0+n1�− c�r−1�0� n0+n1+1�

< c�0�1� s−1�− c�0�0� s�� �

Theorem A.9. For any r� n0� n1 ≥ 0 such that s = r +n0+n1 ≤ d/2−√d+ 3/2, we
have that c�r�n0� n1�= c+�r� n0� n1��

Proof. The proof is by induction on r . The base case is obvious. Assume the
result is true for r − 1. This implies that c�r − 1� n0+ 1� n1� = c+�r − 1� n0+ 1� n1� and
c�r−1� n0� n1+1� = c+�r −1� n0� n1+1�; we denote these quantities by a and b, respec-
tively. The result would then follow if we can show that

a

1−b+a
≤ �p−1�b+1

p
�

where p = d − n0 − n1. This inequality is equivalent to pa ≤ 1− b + a+ �p−1�b −
�p−1�b2+ �p−1�ab, or to �1−b��a−b��p−1� ≤ 1−b. Since b ≤ 1, we need to prove
that a− b ≤ 1/�p− 1� = 1/�d− n0− n1− 1�. This follows from Corollary A.8 since we
have that

a−b <
1

�d/2+1− s��d/2+2− s�
≤ 1

�
√

d−0�5��
√

d+0�5�

<
1

d−1
≤ 1

d−n0−n1−1
� �

Acknowledgments. The authors thank László Lipták for pointing out an error in an
earlier version of Lemma A.4. Parts of the final version of this paper were written while both
authors were members of the Fields Institute, Toronto, during Fall 1999. Part of this research
was performed when the first author was visiting the Department of Combinatorics and
Optimization of the University of Warerloo, and their hospitality and support are gratefully
acknowledged. Research of this author was also supported in part by NSF contract 9623859-
CCR. Research of the second author was supported in part by a grant from NSERC and a
PREA from Ontario, Canada.



WHEN DOES THE POSITIVE SEMIDEFINITENESS CONSTRAINT HELP IN LIFTING PROCEDURES? 815

References

Balas, E. 1974. Disjunctive programming: Properties of the convex hull of feasible points. Management Science
Research Report 348 GSIA, Carnegie Mellon University, Pittsburgh, PA.
, S. Ceria, G. Cornuéjols. 1993. A lift-and-project cutting plane algorithm for mixed 0-1 programs. Math.
Programming 58 295–323.

Cook, W., S. Dash. 2001. On the matrix-cut rank of polyhedra. Math. Oper. Res. 26 19–30.
Doignon, J.-P. 1973. Convexity in crystallographical lattices. J. Geometry 3 71–85.
Edmonds, J. 1965. Maximum matching and a polyhedron with 0,1-vertices. J. Res. National Bureau of Standards-

B 69B 125–130.
Grötschel, M., L. Lovász, A. Schrijver. 1981. The ellipsoid method and its consequences in combinatorial opti-

mization. Combinatorica 1(2) 169–197.
Lovász, L., A. Schrijver. 1991. Cones of matrices and set-functions and 0-1 optimization. SIAM J. Optim. 1

166–190.
Rockafellar, R. T. 1970. Convex Analysis. Princeton University Press, Princeton, NJ.
Stephen, T., L. Tunçel. 1999. On a representation of the matching polytope via semidefinite liftings. Math. Oper.

Res. 24 1–7.

M. X. Goemans: Department of Mathematics, Massachusetts Institute of Technology, Room 2-351, Cambridge,
Massachusetts 02139

L. Tunçel: Department of Combinatorics and Optimization, Faculty of Mathematics, University of Waterloo,
Waterloo, Ontario N2L 3G1, Canada


