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Abstract. Let vc(G) denote the minimum size of a vertex cover of a graph G = (V,E). It is
well known that one can approximate vc(G) to within a factor of 2 in polynomial time; and despite
considerable investigation, no (2−ε)-approximation algorithm has been found for any ε > 0. Because
of the many connections between the independence number α(G) and the Lovász theta function ϑ(G),
and because vc(G) = |V | − α(G), it is natural to ask how well |V | − ϑ(G) approximates vc(G). It is
not difficult to show that these quantities are within a factor of 2 of each other (|V | − ϑ(G) is never
less than the value of the canonical linear programming relaxation of vc(G)); our main result is that
vc(G) can be more than (2− ε) times |V | − ϑ(G) for any ε > 0. We also investigate a stronger lower
bound than |V | − ϑ(G) for vc(G).
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1. Introduction. Let G = (V,E) be an undirected graph. By a vertex cover of
G we mean a set S ⊂ V such that for each e ∈ E at least one endpoint of e lies in S.
Thus, a vertex cover is the complement of an independent set in G. For a graph in
which each vertex i is given a nonnegative weight wi, the problem of finding a vertex
cover of minimum total weight is a classical NP-complete problem. We are interested
here in the question of finding approximate solutions to this problem in polynomial
time.

We can formulate the problem of finding a minimum-weight vertex cover via the
following integer program. Assign a variable xi to each vertex i ∈ V ; then we have

(VC) Min
∑
i wixi

s.t. xi + xj ≥ 1, (i, j) ∈ E,
xi ∈ {0, 1}, i ∈ V.

Let us denote the optimum value of this integer program, i.e., the weight of the optimal
vertex cover, by vc(G).

It is well known that vc(G) can be approximated to within a factor of 2 in poly-
nomial time; one way to see this is as follows. We can relax the constraint that the
xi be 0-1 variables, obtaining the following linear program:

(LP) Min
∑
i wixi

s.t. xi + xj ≥ 1, (i, j) ∈ E,
0 ≤ xi ≤ 1, i ∈ V.
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Let us denote the optimum value of (LP) by lp(G). Then clearly vc(G) ≥ lp(G), but
we also have that lp(G) ≥ vc(G)/2, as the set

{i : xi ≥ 1/2},

in any feasible solution x to (LP) is easily seen to be a vertex cover for G (Hochbaum
[7]). Thus, this linear program leads to a 2-approximation algorithm for the vertex
cover problem.

There has been considerable work on the problem of finding a polynomial-time
approximation algorithm with an improved performance guarantee; the best bound
currently known is 2− log log n

2 log n [2, 13]. What is quite striking is that no polynomial-time
(2− ε)-approximation algorithm is known, for any constant ε > 0.

1.1. The present work. In this note, we consider a number of natural semidef-
inite programming relaxations of the vertex cover problem and investigate whether
any of these might provide a (2− ε)-approximation algorithm. Semidefinite program-
ming relaxations have recently proved useful in obtaining improved approximation
algorithms for a number of well-studied optimization problems, including maximum
cut and satisfiability problems [6], vertex coloring [9], and the maximum independent
set problem [1]. Probably the most well-known semidefinite programming relaxation
is the theta function ϑ(G) of Lovász [11]. This was introduced as a relaxation of
the maximum independent set problem and used in [11] to show the polynomial-time
solvability of the maximum independent set and minimum vertex coloring problems
in perfect graphs. It has been used recently in the approximation algorithms of [9]
and [1].

Let α(G) denote the maximum weight of an independent set of G, and let W =∑
i∈V wi denote the sum of all vertex weights in G. Since vc(G) = W − α(G), it is

natural to ask how well W −ϑ(G) approximates vc(G). It is not difficult to show (see
section 2) that W −ϑ(G) is always at least lp(G), and hence not more than a factor of
2 smaller than vc(G). Our main result is a corresponding lower bound; we construct
a family of unweighted graphs for which the ratio of vc(G) to n− ϑ(G) converges to
2, where n = |V |.

The techniques involved in our construction of the lower bound have also been
developed in independent work of Alon and Kahale [1] and Karger, Motwani, and
Sudan [9]. In particular, the gap between vc(G) and n − ϑ(G) can also be obtained
from a construction due independently to Alon and Kahale [1]. Their concern was
with the complement of our problem: graphs G with small independence number for
which ϑ(G) converges to 1

2n. We also note that the recent construction of Feige [4],
showing that the ratio ϑ(G)/α(G) can be as large as n1−o(1), is of no use for our
purposes; for the graphs he deals with, the ratio of vc(G) to n− ϑ(G) converges to 1,
not 2.

In the final section, we present a natural strengthening of the formulation; this
turns out to be equal to W − ϑ′(G), where ϑ′ denotes the variant of the Lovász theta
function introduced by Schrijver [14]. We currently do not know of families of graphs
for which the ratio of W − ϑ′(G) to vc(G) converges to 2, and we indicate how the
question of the existence of such examples is closely related to some open problems
in combinatorial geometry.

2. The semidefinite programming relaxation. Perhaps the most natural
way to obtain our semidefinite programming relaxation is by considering the following
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quadratic integer programming formulation of vc(G).

(VC) Min
∑
i∈V wi(1 + y0yi)/2

s.t. (y0 − yi)(y0 − yj) = 0, (i, j) ∈ E,
yi ∈ {−1,+1}, i ∈ V,
y0 ∈ {−1,+1},

where the vertex cover corresponds to the set of vertices i for which yi = y0. One
could of course get rid of y0 and/or restrict yi to be in {0, 1}, but this form simplifies
the derivation of the relaxation. We now relax this integer program to one in which
y0 and yi (i ∈ V ) are vectors in Rn+1 (where n denotes |V |).

(SD) Min
∑
i∈V wi(1 + y0 · yi)/2

s.t. (y0 − yi) · (y0 − yj) = 0, (i, j) ∈ E,
y2
i = 1, i ∈ V,
y2

0 = 1.

The constraints (y0 − yi) · (y0 − yj) = 0 for (i, j) ∈ E can also be expressed more
geometrically by saying that the midpoint 1

2 (yi+yj) must be on the sphere centered at
y0/2 and of radius 1

2 , i.e., that (yi+yj−y0
2 )2 = 1

4 . The relaxation can be reformulated as
a semidefinite program and therefore, using the ellipsoid algorithm, one can determine
its optimum to within additive errors in polynomial time. Let us denote the optimum
value of this semidefinite program by sd(G). Observe that sd(G) ≤ vc(G), since
for any vertex cover S of G, we obtain a feasible solution to the above semidefinite
program as follows. Set y0 equal to any unit vector u, and for each i ∈ V , set yi = y0
if i ∈ S and yi = −y0 if i 6∈ S.

First let us establish that we are indeed dealing with the theta function.
THEOREM 2.1. W − sd(G) = ϑ(G).
Proof. We can write W − sd(G) as

(SDc) Max
∑
i∈V wi(1− y0 · yi)/2

s.t. (y0 − yi) · (y0 − yj) = 0, (i, j) ∈ E,
y2
i = 1, i ∈ V,
y2

0 = 1.

We use the following formulation of the theta function [11]; there is a unit vector
ui ∈ Rn+1 for each vertex of G and an additional unit vector d ∈ Rn+1.

(ϑ) Max
∑
i∈V wi(d · ui)2

s.t. ui · uj = 0, (i, j) ∈ E,
u2
i = 1, i ∈ V,
d2 = 1.

We claim first that W − sd(G) ≤ ϑ(G). Given a feasible solution to (SDc), set
d = y0; for each i ∈ V , we set

ui =
y0 − yi
‖y0 − yi‖
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if y0 6= yi; otherwise we choose ui to be any unit vector orthogonal to d and to all
other unit vectors uj . For this set of unit vectors, we have ui · uj = 0 for (i, j) ∈ E.
We compute the value of the objective function as follows. If y0 6= yi, then

(d · ui)2 =
[y0 · (y0 − yi)]2

(y0 − yi)2

=
(1− y0 · yi)2

2(1− y0 · yi)

=
1
2

(1− y0 · yi).

If y0 = yi, then

(d · ui)2 = 0 =
1
2

(1− y0 · yi).

As a result, we have constructed a feasible solution to (ϑ) of value W − sd(G).
Conversely, we show that ϑ(G) ≤ W − sd(G). Given a feasible solution to (ϑ),

write y0 = d and yi = d− 2(d · ui)ui. Then y2
i = 1, and if (i, j) ∈ E, we have

(y0 − yi) · (y0 − yj) = 4(d · ui)(d · uj)(ui · uj) = 0.

Finally,

1
2

(1− y0 · yi) =
1
2

(2(d · ui)2) = (d · ui)2.

The next two results determine the exact approximation ratio achieved by sd(G),
specifically vc(G) ≤ 2sd(G), but, for any ε > 0, there exist instances for which
vc(G) > (2 − ε)sd(G). It is worth noting, however, that on many natural examples,
sd(G) is a much tighter relaxation than lp(G). For instance onKn, the complete graph
on n vertices with unit weights, one has lp(G) = 1

2n, while sd(G) = vc(G) = n− 1.
PROPOSITION 2.2. sd(G) ≥ lp(G).
Proof. Suppose we have a feasible solution to (SD), and we write xi = (1+y0·yi)/2.

Then we claim that {xi : i ∈ V } is a feasible solution to (LP). For clearly 0 ≤ xi ≤ 1,
and if (i, j) ∈ E, then (y0− yi) · (y0− yj) = 0, whence y0 · yi + y0 · yj = 1 + yi · yj and

xi + xj =
3
2

+
1
2
yi · yj ≥ 1,

as required.
THEOREM 2.3. For each ε > 0 there is a graph Gε on n = n(ε) vertices, with all

vertex weights equal to 1, for which vc(Gε)/sd(Gε) ≥ 2− ε.
Proof. For a point x ∈ Rd, let x(i) denote the ith coordinate of x. Also, let

e1, . . . , ed denote the coordinate unit vectors in Rd.
The idea is to construct a graph Gε as follows. The vertices of Gε will be the set

of all n = 2m many m-bit strings of zeroes and ones, for some sufficiently large value
of m, and two vertices will be joined by an edge if their Hamming distance is equal
to (1− γ)m, for some small γ > 0 depending on ε. Thus, two vertices will be joined
if they are nearly antipodal under the Hamming metric. We then obtain a solution
to (SD), in which all yi (i ∈ V ) are nearly orthogonal to y0, by mapping the yi to the
vertices of an “inscribed” hypercube in a copy of the m-dimensional unit ball. Thus
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sd(Gε) is close to n/2. Using a theorem of Frankl and Rödl [5], we can show that Gε
does not have large independent sets and thus show that vc(Gε) is close to n.

The details are as follows. Let ε′ be a rational number such that ε′ ≤ ε. Let

α =
ε′

4
,

β =
√

1− α2,

γ =
1
2
− (1− α)2

2β2 .

Note that γ > 0. The vertex set of Gε consists of all m-bit strings of zeroes and ones,
where the value of m will be determined below; for now, we only require that (1−γ)m
be an even integer. If i and j are vertices of Gε, then (i, j) ∈ E iff the Hamming
distance between i and j is equal to (1− γ)m.

First we compute an upper bound on sd(Gε). To do this, we construct the
following unit vectors in Rm+1. Set y0 = em+1. For i ∈ V , define yi so that y(p)

i =
β/
√
m if the pth bit of i is 1 and y(p)

i = −β/
√
m if it is 0. Finally, y(m+1)

i = α for all
i ∈ V ; thus all yi are unit vectors.

Now, if (i, j) ∈ E, then i and j have Hamming distance (1− γ)m, and hence

(y0 − yi) · (y0 − yj) = (1− α)2 + γm(β2/m)− (1− γ)m(β2/m)

= (1− α)2 − β2(1− 2γ)

= 0

by the definition of γ. Thus the given vectors constitute a feasible solution for (SD).
Moreover, the value of the objective function with these vectors is equal to 1

2 (1+α)n,
so

sd(Gε) ≤
1
2

(1 + α)n.

Now we show a lower bound on vc(Gε); for this we need the following theorem of
Frankl and Rödl [5].

Let C be a collection of m-bit strings, ξ a constant satisfying 0 <
ξ < 1

2 , and d an even integer satisfying ξm < d < (1 − ξ)m. Then
for some constant δ depending only on ξ, if |C| > (2 − δ)m, then C
contains two strings with Hamming distance exactly d.

For our purposes, choose ξ < γ and let δ denote the constant obtained by applying
this theorem. Now, let d = (1− γ)m, where m is chosen large enough so that d is an
even integer and

(2− δ)m ≤ α · 2m.

Thus, in Gε any set of more than α ·2m = αn vertices contains the two endpoints
of some edge, so the largest independent set in Gε has size at most αn. Since the
complement of any vertex cover is an independent set, this implies

vc(Gε) ≥ (1− α)n.
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The theorem now follows, since

vc(Gε)
sd(Gε)

≥ (1− α)n
1
2 (1 + α)n

≥ 2− ε.

3. Strengthening the relaxation. It turns out that we can add a set of very
natural valid inequalities to (SD) that rules out the bad example of the previous sec-
tion. As we remarked in the introduction, this new formulation (SD′) is in fact equal
to W − ϑ′(G), where ϑ′ denotes the variant of the Lovász theta function introduced
by Schrijver [14].

The new formulation is obtained by observing the following. We saw that for
any vertex cover S, we can obtain a feasible solution to (SD) by setting yi = y0
for i ∈ S and yi = −y0 for i 6∈ S. But such a solution satisfies the conditions
(y0 − yi) · (y0 − yj) ≥ 0 for all pairs of vertices i, j ∈ V , regardless of whether
(i, j) ∈ E. Thus we can write

(SD′) Min
∑
i∈V wi(1 + y0 · yi)/2

s.t. (y0 − yi) · (y0 − yj) = 0, (i, j) ∈ E,
(y0 − yi) · (y0 − yj) ≥ 0, ∀ i, j ∈ V,
y2
i = 1, i ∈ V,
y2

0 = 1.

Let us denote the optimum value of (SD′) by sd′(G).
The function ϑ′(G) was introduced by Schrijver [14]. As in the definition of ϑ,

we have a unit vector ui ∈ Rn+1 for each vertex of G and an additional unit vector
d ∈ Rn+1. We can now formulate ϑ′(G) as follows.

(ϑ′) Max
∑
i∈V wi(d · ui)2

s.t. ui · uj = 0, (i, j) ∈ E,
ui · uj ≥ 0, ∀ i, j ∈ V,
d · ui ≥ 0, i ∈ V,
u2
i = 1, i ∈ V,
d2 = 1.

By a straightforward modification of the proof of Theorem 2.1, we have the fol-
lowing.

THEOREM 3.1. sd′(G) = W − ϑ′(G).
Now it is easy to verify that the set of vectors we constructed in the proof of

Theorem 2.3 is no longer feasible for (SD′). But in fact we can say more. Let
U = {u1, . . . , un} denote a set of points in Rd, and define dU by

dU = max
ui,uj∈U

‖ui − uj‖.

We now associate a graph KU with U as follows. KU contains a vertex i for each
ui ∈ U ; we join i and j by an edge iff ‖ui − uj‖ = dU .

Graphs of the form KU are of considerable interest in combinatorial geometry
because of their role in the well-known Borsuk conjecture [3], which asked (in its
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finite form) whether χ(KU ) ≤ d + 1 for all point sets U in Rd. (This is the bound
achieved, for example, by the unit d-simplex.) This was recently answered negatively
by Kahn and Kalai [8], who constructed, for infinitely many values of d, a set U in
Rd for which χ(KU ) ≥ (1.2)

√
d.

Here we ask a related question. Let Sd−1 denote the unit sphere centered at the
origin in Rd.

QUESTION 1. Do there exist absolute constants ε > 0 and δ > 0 so that, for all
sets U of n points on Sd−1, dU ≥ 2− ε implies α(KU ) ≥ δn?

That is, does every point set of sufficiently large diameter on Sd−1 have a linear-
sized independent set in its graph KU? It is important to note that the constants ε
and δ do not depend on n or d.

The relation of this to our formulation (SD′) is contained in the following fact.
PROPOSITION 3.2. If for some c < 2 we have vc(G)/sd′(G) < c for all graphs G,

then Question 1 has an affirmative answer.
Proof. Given c < 2, let ε = 1 − c

2 > 0 and δ = ε2/4 > 0. Consider a set
U = {u1, . . . , un} on Sd−1 for which dU ≥ 2− ε.

We first claim that sd′(KU ) ≤ 2
(2−ε)2n. Select any unit vector y0 orthogonal to all

ui’s (adding one dimension if necessary). Let yi = βy0+
√

1− β2ui, where β = 4
d2
U
−1.

Observe that yi is a unit vector and that

(y0 − yi) · (y0 − yj) = ((1− β)y0 −
√

1− β2ui) · ((1− β)y0 −
√

1− β2uj)

= (1− β)2 + (1− β2)(ui · uj)
= (1− β) (1− β + (1 + β)ui · uj) .

(1)

Since the ui are unit vectors, ||ui − uj ||2 = 2− 2ui · uj . Substituting this into (1) we
derive that

(y0 − yi) · (y0 − yj) = (1− β)
(

2− 1 + β

2
||ui − uj ||2

)
≥ (1− β)

(
2− 1 + β

2
d2
U

)
= 0,

with equality if ||ui − uj || = dU . We have therefore constructed a feasible solution to
(SD′) of value 1+β

2 n = 2
d2
U
n ≤ 2

(2−ε)2n,

vc(KU ) < c
2

(2− ε)2n =
4− 4ε

4− 4ε+ ε2n <

(
1− ε2

4

)
n = (1− δ)n,

implying that α(KU ) > δn.
We do not know the answer to Question 1, but it is worth remarking on its relation

to a number of other questions.

3.1. The counterexample to Borsuk’s conjecture. In their counterexample
to Borsuk’s conjecture, Kahn and Kalai construct a family of sets {Un} such that Un
is a set of n points on a unit sphere, and α(KU ) = o(n). However, their sets Un also
have dUn =

√
2+o(1). Thus, following the proof of Proposition 3.2, their construction

is not sufficient to exhibit a family of graphs {Gn} for which vc(Gn)/sd′(Gn) ≥ c′,
for any constant c′ > 1.
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3.2. Strongly self-dual polytopes. In [12], Lovász introduces the notion of a
strongly self-dual polytope, which is defined as a polytope P in Rd with the following
properties:

(i) The vertices of P all lie on Sd−1.
(ii) For some 0 < r < 1, P is circumscribed around the sphere of radius r centered

at the origin.
(iii) There is a bijection between the vertices and facets of P so that the vector

from the origin to any vertex of P is orthogonal to the corresponding facet.
Note that in R2, an odd regular polygon satisfies these conditions. Let U(P )

denote the vertices of P . Lovász proves the following two facts:
• For each dimension d, and all ε > 0, there is a strongly self-dual polytope P

in Rd with dU(P ) ≥ 2− ε.
• For any strongly self-dual polytope P in Rd, χ(KU(P )) ≥ d+ 1.

Taken together, these two facts provide a negative answer to the following—a
slight modification of a question due to Erdős and Graham.

QUESTION 2. Do there exist absolute constants ε > 0 and C > 0 so that, for all
sets U of n points on Sd−1, dU ≥ 2− ε implies χ(KU ) ≤ C?

Clearly, an affirmative answer to Question 2 would have implied an affirmative
answer to Question 1. On the other hand, an affirmative answer to Question 1 im-
plies that if dU ≥ 2 − ε, then χ(KU ) ≤ 1 + log(1/(1−δ)) n = O(log n). This simply
corresponds to repeatedly coloring a fraction δ of the vertex set with a new color. For
this argument, we also need to observe that we could apply the affirmative answer to
Question 1 to an induced subgraph of KU (unless it is itself an independent set).

However, looking at Lovász’s construction, one finds that for the strongly self-dual
polytopes P he constructs, one always has α(KU(P )) ≥ n−1

2 (with equality achieved,
for example, on all regular odd polygons in R2). Thus, his construction is not able
to provide a negative answer to Question 1; as with [8], it does not provide a family
of graphs {Gn} for which vc(Gn)/sd′(Gn) ≥ c′, for any constant c′ > 1.

Naturally, it would be interesting to investigate other constructions of strongly
self-dual polytopes.

3.3. A graph-coloring formulation. Consider the following special case of
Question 1, to which we also do not know the answer.

QUESTION 3. Can one take some ε > 2−
√

3 in Question 1?
Then we have the following proposition.
PROPOSITION 3.3. If Question 3 has an affirmative answer, then for some C > 0

one can prove in polynomial time that a graph of chromatic number at least C log n
is not 3-colorable.

Proof. Given a graph G = (V,E), consider the problem of finding unit vectors ui
such that E is a subset of the edge set of KU and such that dU is maximized. Let
dmax be the maximum achievable. Since ||ui − uj ||2 = 2− 2ui · uj , this problem can
be formulated in terms of a semidefinite program

Min z
s.t. ui · uj = z, (i, j) ∈ E,

ui · uj ≥ z, (i, j) /∈ E,
u2
i = 1, i ∈ V.

Now suppose that Question 1 has an affirmative answer for some constants ε > 0 and
δ > 0. By the remark following Question 2, we know that if the chromatic number of
G is at least C log n (for some C depending on δ), then there are no vectors ui with the
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desired properties for which dU ≥ 2 − ε. But, in polynomial time, we can determine
dmax to within any additive error by solving the above semidefinite program. In
particular, if ε > 2 −

√
3, we can prove in polynomial time that dmax <

√
3. This

constitutes a proof that the graph is not 3-colorable, since a 3-coloring would imply
dmax ≥

√
3 (as in [9]).

Note added in proof. Jens Lagergren and Alexander Russell have recently
announced that, by weighting Lovász’s construction of strongly self-dual polytopes,
one can obtain weighted graphs for which vc(G)/sd′(G) is arbitrarily close to 2 [10].
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