The bar construction spectral sequence of an iterated loop space

Haynes Miller
April, 2021
Here are some guesses about the structure of the mod 2 homology bar construction spectral sequence for an iterated loop space.

First suppose X is an infinite loop space. Ligaard and Madsen construct "vertical" DL operations

$$
Q^{i}: E_{s, t}^{2} \rightarrow E_{s, t+i}^{2}, \quad i \geq t
$$

If $x \in E_{s, t}^{2}$ survives to $a \in H_{s+t}(B X)$, these operations are supposed to represent $Q^{i} a$. But $Q^{i} a=0$ for $i<s+t$, so there must be canonical differentials killing $Q^{i} x$ for $i<s+t$.

I think that $Q^{t} x=0$ already at E^{2}. Killing the rest is the job of the Cartan-Bousfield-Dwyer operations: We have natural elements

$$
\delta_{i} x \in E_{s+i, 2 t}^{2}, \quad 2 \leq i \leq s
$$

and

$$
d^{i}\left(\delta_{i} x\right)=Q^{t+i-1} x, \quad 2 \leq i \leq s
$$

with the usual caveats about indeterminacy.
When X is an $(n+1)$-fold loop space, the situation is more complicated because there aren't enough vertical operations. Here's what I think happens.

For a start, as John Ni showed, the Browder bracket, of degree n on $H_{*}(X)$, gives rise to a bracket

$$
E_{s, t}^{2} \otimes E_{s^{\prime}, t^{\prime}}^{2} \rightarrow E_{s+s^{\prime}-1, t+t^{\prime}+n}^{2}
$$

corresponding to the degree $n-1$ bracket on $H_{*}(B X)$.
When $n=1$, the E^{2} term is commutative but $H_{*}(B X)$ is not, and the bracket represents the commutator bracket. There should also be a "restriction" map

$$
\xi: E_{s, t}^{2} \rightarrow E_{2 s-1,2 t+1}^{2}
$$

(possibly with some indeterminacy) that represents the square and satisfies

$$
\xi(x+y)=\xi(x)+[x, y]+\xi(y)
$$

if x and y are in the same bidegree. Moreover, there should be a vertical DL operator

$$
Q^{t+1}: E_{s, t}^{2} \rightarrow E_{s, 2 t+1}^{2}
$$

that coincides with ξ when $s=1$. But for $x \in E_{s, t}^{2}$ with $s \geq 2$,

$$
d^{2}\left(\delta_{2} x\right)=Q^{t+1} x
$$

For larger n I would expect vertical operations

$$
Q^{t+i}: E_{s, t}^{2} \rightarrow E_{s, t+i}^{2}, \quad 0 \leq i \leq n
$$

The pattern of differentials and non-vertical operations will depend on the relation between n and s.

For $s>n$, I expect differentials

$$
d^{i}\left(\delta_{i} x\right)=Q^{t+i-1} x, \quad 2 \leq i \leq n+1
$$

and extra operations

$$
Q^{s+t+i}: E_{s, t}^{2} \rightarrow E_{2 s-n+i, 2 t+n}^{2}, \quad 0 \leq i<n
$$

representing the DL operator of this name on elements in $H_{s+t}(B X)$.
For $s \leq n$ there will be the differentials as above but only for $2 \leq i \leq s$. So vertical operators $Q^{t+i} x$ remain for $s \leq i \leq n$, but we need more and they will be given by

$$
Q^{s+t+i}: E_{s, t}^{2} \rightarrow E_{2 s-n+i, 2 t+n}^{2}, \quad n-s<i<n
$$

In both cases, the top operation $Q^{s+t+n-1} x \in E_{2 s-1,2 t+n}^{2}$ is the restriction (and so should be nonlinear).

