
1 The fixed point formula

The fixed point theorem is occurs in two ways in the story of elliptic co-
homology. First, Witten came to consider elliptic genera by imagining the
result of applying it to the circle action of the free loop space of a manifold.
Second, the present proofs of the rigidity theorem use the fixed point formula
in an essential way (as was also foreseen by Witten).

A convenient reference for this material is the paper [?] of Atiyah and
Bott.

Let T denote the circle group R/2πZ and let X be a finite T-CW complex.
Let E be a complex-oriented spectrum, so that E∗(ET ×T X) is a module
for E∗(BT) = E∗[[x]]. Let i : XT → X be the inclusion of the fixed point
subcomplex.

Lemma 1.1 The map i∗ : E∗(ET ×T X) → E∗(ET ×T X
T) becomes an

isomorphism after inverting x and tensoring with Q. In fact, it suffices to
invert the primes dividing the orders of the finite isotropy groups of the action.

Proof. Consider first the case X = T/K, where K is the subgroup of T
of order n. Then ET ×T X = BK. Since XT = ∅, we must show that
E∗(BK) localizes to zero. The trick to understanding E∗(BK) is to think
of BK as the total space of the sphere-bundle of the n-fold tensor power of
the tautologous bundle λ over BT. As a general notation, write Bξ for the
Thom space of the bundle ξ over B. The map σ : B → Bξ induced by the
inclusion of the zero-section is up to homotopy the cofiber of the projection
map from the sphere-bundle of ξ, and by definition it pulls the Thom class
back to the Euler class of ξ. With ξ = λn, this is the n-series [n](x). σ
induces in E-cohomology a module-homomorphism over E∗(BT), so to show
that it becomes an isomorphism after localization it suffices to show that
[n](x) becomes a unit. But [n](x) ≡ nx modulo x2, so in the localization it
is a unit since

[n](x)

nx
= 1 + · · ·

is invertible.
The result now follows by induction over a T-CW structure on X. //

Now assume X is a compact smooth T-manifold. General theorems imply
that X admits the structure of a T-CW complex. Let C be a component of

1



the fixed point set. It is a smooth submanifold. Let νC denote its normal
bundle. The T-action on X induces an action of T without fixed-points on
each fiber of νC . Such an action decomposes naturally into eigenspaces, where
on the nth factor the eigenvalues of t ∈ T are e±int (with equal multiplicity).
For each n > 0, these eigenspaces assemble into a subbundle εC(n), and νC
is the direct sum of these eigenbundles.

We endow the eigenbundle εC(n) with a complex structure by letting
multiplication by i coincide with the action by π/2n ∈ R/2πZ. εC(n) thus
becomes T-equivariant complex bundle over C.

νC and its subbundles εC(n) determine vector-bundles ν̃C = ET ×T νC
and ε̃C(n) = ET×T εC(n) over ET×T C = BT× C. By construction,

ε̃C(n) = λn ⊗ εC(n) .

the external tensor product. I claim that the Euler class ẽC of ν̃C is invertible
in E∗(BT× C)[x−1]⊗Q.

Pick c ∈ C and consider the restriction map j∗ : E∗(BT×C)→ E∗(BT).
Its kernel is nilpotent. One way to see this is to consider the Atiyah-
Hirzebruch-Serre spectral sequence

H∗(C;E∗(BT))⇒ E∗(BT× C).

C is a finite complex, so the spectral sequence has finite width and an element
of ker j is nilpotent by multiplicativity of the spectral sequence.

The kernel of any localization of j∗ is thus nilpotent as well, so it suffices
to show that ẽC restricts to a unit in E∗(BT)[x−1] ⊗ Q. But the bundle ν̃C
resticts to a sum of powers of the canonical bundle over BT, so its Euler
class is invertible in the localization just as before.

Let iC : BT× C → ET×T X be the inclusion. For a ∈ E∗(BT× C), we
have

i∗CiC∗a = ẽC ∪ a.
In particular, ẽC = i∗CiC∗1. Since i∗C localizes to an isomorphism, iC∗1 is
invertible in E∗(ET×T X)[x−1]⊗Q. In the localization of E∗(BT× C),

a =
i∗CiC∗a

ẽC
= i∗C

iC∗a

iC∗1
= i∗CiC∗(

a

ẽC
),

where for the last step we used the fact that iC∗ is a module-homomorphism
over E∗(ET×T X). Thus for b ∈ E∗(ET×T X),

i∗b =
∑
C

i∗CiC∗(
i∗Cb

ẽC
),
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and so in E∗(ET×T X)[x−1]⊗Q we have

b =
∑
C

iC∗

(
i∗Cb

ẽC

)
.

This is the basic formula. It is usually employed, however, to compute the
localization of the Gysin homomorphism associated to the projection map

π : ET×T X → BT

under the assumption that π is orientable in E-cohomology. Since Gysin
maps compose, we have

π∗b =
∑
C

πC∗

(
i∗Cb

ẽC

)
where πC = π ◦ iC : BT× C → BT.

For example, suppose E is complex K-theory, with the usual complex
orientation given by

eK(L) = 1− L. (1)

(Here we have omitted mention of the Bott class.) Let’s then assume that X
admits an invariant weakly-almost complex structure, so that each C has a
WAC as well (complementary to the complex structure on its normal bundle
in the restriction of the complex structure of X.) We wish to compute the
equivariant Todd genus of X.

Our approach to this formula will use the formalism of operations on
vector bundles. It follows from (1) and the splitting principal that the K-
theory Euler class of a complex vector bundle is

eK(ξ) = Λ−1(ξ).

If µ is a line bundle, then

Λk(µ⊗ ξ) = µk ⊗ Λk(ξ),

so
eK(λn ⊗ ξ) =

∑
k

(−1)kλknΛk(ξ) = Λ−λn(ξ).
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Thus
eK(ν̃C) =

⊗
n>0

Λ−λn(εC(n))

and so

πK∗ (1) =
∑
C

πC
K
∗

(⊗
n>0

SλnεC(n)

)
.

We can express this result cohomologically (without loss of information,
since the fixed point theorem is a rational result anyway) using the Riemann-
Roch formula associated to the multiplicative transformation from K-theory
to rational cohomology given by the Chern character. The corresponding
exponential characteristic class ρ is characterized by the property that for a
line bundle λ it takes on the value

ρ(λ) =
ch eK(λ)

eH(λ)
.

The standard convention sets eH(λ) = −c1(λ), and we let x denote this class
in the universal case. We will also use the notation

q = ch λ = e−x.

Then the multiplicative class ρ is the inverse of the Todd class, which is
characterized by

Td(λ) =
eH(λ)

ch eK(λ)
=

x

1− e−x
.

Thus the Riemann Roch theorem gives

ch πC
K
∗ (a) = πC

H
∗ (Td(τC) ∪ ch a).

where Td(τC) ∈ H∗(C;Q) acts on H∗(BT × C;Q) through the projection
map p : BT×C → C. (p∗τC = ET×T τC is the bundle of tangents along the
fiber of π.)

Using the splitting principle we may formally write εC(n) as a sum of line
bundles:

εC(n) =
⊕
i

λn,i, xn,i = −c1(λn,i).

Then

ch Λ−λn(εC(n)) = ch
⊗
i

Λ−λnλn,i =
∏
i

ch (1− λnλn,i) =
∏
i

(1− qne−xn,i)
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and

ch πK∗ (1) =
∑
C

πC
H
∗

(
Td(τC) ∪

∏
n>0

∏
i

1

(1− qne−xn,i)

)
.

Now consider the case of KO. The natural orientation here is the Atiyah-
Bott-Shapiro orientation of spin-bundles. It is useful to notice that a stable
spin structure on an oriented vector bundle—i.e., a lifting of the classifying
map X → BSO through the covering map BSpin → BSO—automatically
destabilizes to a spin-reduction of the oriented frame bundle, since

BSpin(n) → BSpin
↓ ↓

BSO(n) → BSO

is a homotopy-pullback square.
Let M be an oriented smooth closed Riemannian n-manifold, with ori-

ented orthonormal frame bundle P → M . Suppose T acts smoothly on M .
The action lifts canonically to an action on P , by differentiation. Suppose
Q → P is a spin-structure on M . The action is compatible with the spin-
structure, or “even,” if the action on P lifts to an action on Q. Since Q→ P
is a double cover, the induced action of the double cover T̂ is always even.

If we have an even action on M , there is a Gysin homomorphism

πKO∗ : KO∗(ET×T M)→ KO∗(BT).

To apply the fixed point theorem as we have described it, we must have
a complex-oriented theory. KO is not complex oriented, but it becomes
orientable after inverting 2. On the other hand, the bundle of tangents
along the fiber of π has a spin-structure as well as a complex structure. The
structure group for such bundles is the pull-back in the diagram

Û(n)
r̂−→ Spin(2n)

↓ ↓
U(n)

r−→ SO(2n)

.

Since c1(ξ) reduces mod 2 to w2(rξ), the group Û(n) is equally well the
pull-back in the diagram

Û(n) −→ T̂
↓ ↓

U(n)
det−→ T
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where T̂ → T is the double cover. In short, a spin structure on the real
bundle underlying a complex vector bundle is simply a square root of its
determinant line bundle.

If I have such a bundle ξ over X, it has an Atiyah-Bott-Shapiro Euler class
(namely the difference between the two half-spin bundles) eKO(ξ) ∈ KO(X)
that complexifies to the class

eÂ(ξ) =
Λ−1(ξ)√

det ξ
∈ KU(X).

It is a multiplicative class on bundles with structure groups Û(n) which on
line bundles λ (which are their own determinant bundles) takes value

eÂ(λ) =
1− λ√
λ
.

It serves as an Euler class if we invert 2. If µ is a line bundle, We have

eÂ(µ⊗ ξ) =
µ−d/2Λ−µ(ξ)√

det ξ

where d is the fiber-dimension of ξ.
Thus in the situation of the fixed point theorem,

eÂ(λnεC(n))−1 = λndn/2
√

det εC(n)Sλn(εC(n)).

where dn = dim εC(n). Thus, with m =
∑
ndn (which is even if the action

is even),

πÂ∗ (1) =
∑
C

πC
Â
∗

(
λm/2

√
det νC

⊗
n>0

Sλn(εC(n))

)
To reduce to ordinary cohomology, note that

ch eÂ(λ) =
1− e−x

e−x/2
= 2 sinh(x/2).

The corresponding multiplicative characteristic class is the Â-genus, charac-
terized by

Â(λ) =
eH(λ)

ch eÂ(λ)
=

x/2

sinh(x/2)
,
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so the Riemann-Roch formula asserts that

ch πÂ∗ (a) = πC
H
∗ (Â(τC) ∪ ch a),

Thus, with the usual conventions,

ch πÂ∗ (1) =
∑
C

πC
H
∗

(
Â(τC) ∪ qm/2e−x/2

∏
n>0

∏
i

1

(1− qne−xn,i)

)

where x = −c1(νC).

Finally, the L-genus arises from the K[1
2
]-theoretic class

eL(λ) =
1− λ
1 + λ

.

(One has to introduce 1/2 here in order to form

(1 + λ)−1 = (2− (1− λ))−1 =
1

2

∑
n≥0

(
1− λ

2

)n
in K[1

2
](CP∞).) In terms of exterior and symmetric algebras, this is

eL(λ) = Λ−1(λ)⊗ S−1(λ).

This formula extends by multiplicativity to a general complex vector bundle
ξ twisted by a line bundle λ:

eL(λξ) = Λ−λ(ξ)⊗ S−λ(ξ).

In the situation of the fixed point theorem, we have

eL(λnεC(n))−1 = Sλn(εC(n))⊗ Λλn(εC(n)),

so

πL∗ (1) =
∑
C

πC
L
∗

(⊗
n>0

(Sλn(εC(n))⊗ Λλn(εC(n)))

)
. (2)

To reduce to ordinary cohomology, note that

ch eL(λ) =
1− q
1 + q

=
1− e−x

1 + e−x
=
ex/2 − e−x/2

ex/2 + e−x/2
= tanh(x/2).

7



If ξ =
⊕

i Li is a splitting into line bundles then

Λ−s(ξ) =
⊗
i

(1− sLi), S−sξ =
⊗
i

(1 + sLi)
−1,

and so if xi = −c1(Li), we find

ch eL(λn ⊗ ξ) =
∏
i

1− qne−xi
1 + qne−xi

.

The corresponding exponential characteristic class is the L-genus, character-
ized by

L(λ) =
eH(λ)

ch eL(λ)
=

x

tanh(x/2)
,

so the Riemann-Roch formula asserts that

ch πC
L
∗ (a) = πC

H
∗ (L(τC) ∪ ch a).

Thus, with the usual conventions,

ch πL∗ (1) =
∑
C

πC
H
∗

(
L(TM) ∪

∏
n>0

∏
i

1 + qne−xn,i

1− qne−xn,i

)
.

If ξ is a complex vector bundle and
√

det ξ is given, the K-theoretic
spinor class is given by

∆(ξ) =
eL(ξ)

eÂ(ξ)
=

(det ξ)d/2

Λ1(ξ)
.

Thus

∆(λ) =

√
λ

1 + λ
.

This implies that the quotient multiplicative characteristic class L(ξ)/Â(ξ)
is characterized by

L(λ)

Â(λ)
=

1 + λ√
λ

= λ−1/2 + λ1/2.

This class is associated to the spinor representation: if τC has a spin structure,
and ∆(τC) denotes the corresponding spinor bundle, then

ch ∆(τC) =
∏
i

(e−xi/2 + exi/2),
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where the xi are the formal roots of the tangent bundle. The equivariant
signature may thus be expressed in terms of the Â-genus (from (2)):

πL∗ (1) =
∑
C

πC
Â
∗

(
∆(τC)⊗

⊗
n>0

(Sλn(εC(n))⊗ Λλn(εC(n)))

)
.
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