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This is a workup of the algebraic structure called a “vertex algebroid” by
Gorbounov, Malikov, and Schechtman [2] and Bressler [1].

Definition. A Palais algebra over a commutative ring k is a commutative k-
algebra A and a Lie algebra T over k together with k-linear maps A⊗T → T
and T ⊗A→ A which establish T as an A-module and A as a T -module and
which satisfy

s(bc) = (sa)b+ a(sb), [s, bt] = (sb)t+ b[s, t],

for a, b, c ∈ A and s, t ∈ T .

A module over a Palais algebra (A, T ) is a k-module M together with
k linear maps A ⊗ M → M and T ⊗ M → M which establish M as an
A-module and as a T -module and which satisfy

s(ax) = (sa)x+ a(sx)

for s ∈ T , a ∈ A, x ∈M .

The characteristic example is given by taking any commutative k-algebra
A and letting T = Derk(A,A) with its obvious structures as Lie algebra of
operators by derivations on A and as left A-module.

The A-module of Kähler differentials ΩA/k forms the characteristic ex-
ample of an (A, T )-module, with T = Derk(A,A). The T -module structure
T ⊗ ΩA/k → ΩA/k is given by the “Lie derivative,” characterized by the
equation

t(a ∂b) = (ta)∂b+ a ∂(tb).

To verify that this map is well defined one can use the fact that the module
of Kähler differentials is given by dividing the free A-module generated by
the set A (in which an element a ∈ A of the generating set is written as ∂a)
by the relations

∂(ab) = a ∂b+ b ∂a, ∂k = 0.

In fact, this example has two additional bits of structure: (1) the universal
derivation ∂ : A→ ΩA/k; and (2) an A-bilinear pairing

T ⊗ ΩA/k → A,
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defined as the adjoint of the canonical isomorphism T ∼= HomA(ΩA/k, A), or
by the formula

〈t, b ∂c〉 = b(tc).

This gives us the following structure.

Definition. A pre-GMS algebra over a commutative ring k consists in a
Palais algebra (A, T ) and a module Ω for it, together with a map ∂ : A→ Ω
of T -modules and an A-bilinear pairing 〈−,−〉 : T ⊗ Ω → A satisfying the
identities

〈t, ∂b〉 = tb

(at)ω = a(tω) + 〈t, ω〉∂a

s〈t, ω〉 = 〈[s, t], ω〉+ 〈t, sω〉.

We now come to the main definition.

Definition. A GMS algebra over a commutative ring k consists of k-modules
A and V together with an element 1 ∈ A and k-linear maps

∂ : A→ V, A⊗ A→ A,

· : A⊗ V → V, 〈−,−〉 : V ⊗ V → A, [−,−] : V ⊗ V → V

subject to the following axioms.

1a = a, a(bc) = (ab)c, ab = ba,

so A forms a commutative k-algebra with unit 1; and

1 · x = x, 〈x, y〉 = 〈y, x〉

a · (b · z) = (ab) · z + 〈∂b, z〉 · ∂a+ 〈∂a, z〉 · ∂b

∂(ab) = a · ∂b+ b · ∂a, [x, y] + [y, x] = ∂〈x, y〉

〈∂a, ∂b〉 = 0, [∂a, y] = 0

[x, b · z] = b · [x, z] + 〈x, ∂b〉 · z

[[x, y], z] = [x, [y, z]]− [y, [x, z]]

〈a · y, z〉 = a〈y, z〉 − 〈y, [z, ∂a]〉

〈[x, y], z〉+ 〈[x, z], y〉 = 〈x, ∂〈y, z〉〉.
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The structure given by GMS includes three further structure maps, which
are given in terms of our choice of primitive operations by

A⊗ V → A by a⊗ y 7→ −〈∂a, y〉

V ⊗ A→ A by x⊗ b 7→ 〈x, ∂b〉

V ⊗ A→ V by x⊗ b 7→ b · x+ [x, ∂b].

We will give the second of these operations a notation:

xb = 〈x, ∂b〉.

Then it’s easy to check the equations

∂(xb) = [x, ∂b],

x(bc) = b · (xc) + c · (xb),

[x, y]c = x(yc)− y(xc),

[x, b · z] = b · [x, z] + (xb) · z.

It is also useful to note the equation

[a · ∂b, z] = 〈∂b, z〉 · ∂a− 〈∂a, z〉 · ∂b.

Let Ω denote the sub k module of V generated by the elements a ·∂b as a
and b run over A. Then it is easy and fun to check the following statements.
The operation · defines an A-module structure on Ω, the operation [−,−]
defines a Lie algebra structure on the k-module quotient T = V/Ω, and
the operation x, b 7→ xb defines a T -module structure on A, in such a way
that (A, T ) forms a Palais algebra. Moreover, the operation [−,−] defines a
T -module structure on Ω in such a way that Ω becomes a module for this
Palais algebra. For the last one checks that the bracket of two elements of Ω
is trivial.

The Palais algebra structure underlies a natural GMS algebra structure,
in which ∂ : A→ Ω is the corestriction of ∂A→ V and the pairing 〈−,−〉 :
T ⊗ Ω → A descends from the pairing on V . For the last, one checks that
Ω ⊂ V is self-orthogonal with respect to the pairing.
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This work defines the functor in the

Proposition. A GMS algebra has an underlying pre-GMS algebra.

Let (A, V ) be GMS algebra, and assume that the map V → T has a
k-linear section. Use this section to express

V = Ω⊕ T

and teh structure maps accordingly. We will use this decomposition to de-
scribe what information must be added to the pre-GMS system in order to
specify the GMS system. We will simply identify T with its image in V .

For a ∈ A, a· induces actions on Ω and on T , but may have a component
sending T into Ω: so we need to give a map

α : A⊗ T → Ω.

In terms of it,

a ·
(
ω
t

)
=

(
aω + α(a, t)

at

)
.

The pairing 〈−,−〉 is symmetric, Ω is self-orthogonal, and we are given
the induced pairing T ⊗Ω→ A, so what remains to specify is the restriction
of the pairing to T in V : a map

γ : T ⊗ T → A.

In terms of it, 〈(
ζ
s

)
,

(
ω
t

)〉
= 〈s, ω〉+ 〈t, ζ〉+ γ(s, t).

Finally, the bracket [−,−] takes the form[(
ζ
s

)
,

(
ω
t

)]
=

(
∂〈t, ζ〉 − tζ + sω + β(s, t)

[s, t]

)
where

β : T ⊗ T → Ω.

These three maps satisfy various relations:

α(1, t) = 0, γ(s, t) = γ(t, s),

4



α(a, bt)− α(ab, t) + aα(b, t) = (tb) ∂a+ (ta) ∂b

∂γ(s, t) = β(s, t) + β(t, s)

α(sb, t)− sα(b, t) + α(b, [s, t]) = β(s, bt)− bβ(s, t).

sβ(t, u)−tβ(s, u)+uβ(s, t)−β([s, t], u)+β(s, [t, u])−β(t, [s, u]) = ∂〈u, β(s, t)〉.

aγ(s, t)− γ(as, t) = 〈t, α(a, s)〉+ [s, t]a

sγ(t, u) = 〈u, β(s, t)〉+ γ([s, t], u) + 〈t, β(s, u)〉+ γ([s, u], t).

One can change the splitting by means of a k-linear map f : T → Ω,
replacing t ∈ V with t+ f(t). The effect on the three maps is given by

(f · α)(a, t) = α(a, t) + af(t)

(f · β)(s, t) = β(s, t) + ∂〈t, f(s)〉 − tf(s) + sf(t)

(f · γ)(s, t) = γ(s, t) + 〈s, f(t)〉+ 〈t, f(s)〉.
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