GMS systems

Haynes Miller, summer 2002
This is a workup of the algebraic structure called a "vertex algebroid" by Gorbounov, Malikov, and Schechtman [2] and Bressler [1].

Definition. A Palais algebra over a commutative ring k is a commutative k algebra A and a Lie algebra T over k together with k-linear maps $A \otimes T \rightarrow T$ and $T \otimes A \rightarrow A$ which establish T as an A-module and A as a T-module and which satisfy

$$
s(b c)=(s a) b+a(s b), \quad[s, b t]=(s b) t+b[s, t]
$$

for $a, b, c \in A$ and $s, t \in T$.
A module over a Palais algebra (A, T) is a k-module M together with k linear maps $A \otimes M \rightarrow M$ and $T \otimes M \rightarrow M$ which establish M as an A-module and as a T-module and which satisfy

$$
s(a x)=(s a) x+a(s x)
$$

for $s \in T, a \in A, x \in M$.
The characteristic example is given by taking any commutative k-algebra A and letting $T=\operatorname{Der}_{k}(A, A)$ with its obvious structures as Lie algebra of operators by derivations on A and as left A-module.

The A-module of Kähler differentials $\Omega_{A / k}$ forms the characteristic example of an (A, T)-module, with $T=\operatorname{Der}_{k}(A, A)$. The T-module structure $T \otimes \Omega_{A / k} \rightarrow \Omega_{A / k}$ is given by the "Lie derivative," characterized by the equation

$$
t(a \partial b)=(t a) \partial b+a \partial(t b)
$$

To verify that this map is well defined one can use the fact that the module of Kähler differentials is given by dividing the free A-module generated by the set A (in which an element $a \in A$ of the generating set is written as ∂a) by the relations

$$
\partial(a b)=a \partial b+b \partial a, \quad \partial k=0
$$

In fact, this example has two additional bits of structure: (1) the universal derivation $\partial: A \rightarrow \Omega_{A / k}$; and (2) an A-bilinear pairing

$$
T \otimes \Omega_{A / k} \rightarrow A
$$

defined as the adjoint of the canonical isomorphism $T \cong \operatorname{Hom}_{A}\left(\Omega_{A / k}, A\right)$, or by the formula

$$
\langle t, b \partial c\rangle=b(t c) .
$$

This gives us the following structure.
Definition. A pre-GMS algebra over a commutative ring k consists in a Palais algebra (A, T) and a module Ω for it, together with a map $\partial: A \rightarrow \Omega$ of T-modules and an A-bilinear pairing $\langle-,-\rangle: T \otimes \Omega \rightarrow A$ satisfying the identities

$$
\begin{gathered}
\langle t, \partial b\rangle=t b \\
(a t) \omega=a(t \omega)+\langle t, \omega\rangle \partial a \\
s\langle t, \omega\rangle=\langle[s, t], \omega\rangle+\langle t, s \omega\rangle .
\end{gathered}
$$

We now come to the main definition.
Definition. A GMS algebra over a commutative ring k consists of k-modules A and V together with an element $1 \in A$ and k-linear maps

$$
\begin{gathered}
\partial: A \rightarrow V, \quad A \otimes A \rightarrow A, \\
\cdot: A \otimes V \rightarrow V, \quad\langle-,-\rangle: V \otimes V \rightarrow A, \quad[-,-]: V \otimes V \rightarrow V
\end{gathered}
$$

subject to the following axioms.

$$
1 a=a, \quad a(b c)=(a b) c, \quad a b=b a
$$

so A forms a commutative k-algebra with unit 1 ; and

$$
\begin{gathered}
1 \cdot x=x, \quad\langle x, y\rangle=\langle y, x\rangle \\
a \cdot(b \cdot z)=(a b) \cdot z+\langle\partial b, z\rangle \cdot \partial a+\langle\partial a, z\rangle \cdot \partial b \\
\partial(a b)=a \cdot \partial b+b \cdot \partial a, \quad[x, y]+[y, x]=\partial\langle x, y\rangle \\
\langle\partial a, \partial b\rangle=0, \quad[\partial a, y]=0 \\
{[x, b \cdot z]=b \cdot[x, z]+\langle x, \partial b\rangle \cdot z} \\
{[[x, y], z]=[x,[y, z]]-[y,[x, z]]} \\
\langle a \cdot y, z\rangle=a\langle y, z\rangle-\langle y,[z, \partial a]\rangle \\
\langle[x, y], z\rangle+\langle[x, z], y\rangle=\langle x, \partial\langle y, z\rangle\rangle .
\end{gathered}
$$

The structure given by GMS includes three further structure maps, which are given in terms of our choice of primitive operations by

$$
\begin{aligned}
& A \otimes V \rightarrow A \quad \text { by } \quad a \otimes y \mapsto-\langle\partial a, y\rangle \\
& V \otimes A \rightarrow A \quad \text { by } \quad x \otimes b \mapsto\langle x, \partial b\rangle \\
& V \otimes A \rightarrow V \quad \text { by } \quad x \otimes b \mapsto b \cdot x+[x, \partial b] .
\end{aligned}
$$

We will give the second of these operations a notation:

$$
x b=\langle x, \partial b\rangle .
$$

Then it's easy to check the equations

$$
\begin{gathered}
\partial(x b)=[x, \partial b] \\
x(b c)=b \cdot(x c)+c \cdot(x b) \\
{[x, y] c=x(y c)-y(x c)} \\
{[x, b \cdot z]=b \cdot[x, z]+(x b) \cdot z}
\end{gathered}
$$

It is also useful to note the equation

$$
[a \cdot \partial b, z]=\langle\partial b, z\rangle \cdot \partial a-\langle\partial a, z\rangle \cdot \partial b
$$

Let Ω denote the sub k module of V generated by the elements $a \cdot \partial b$ as a and b run over A. Then it is easy and fun to check the following statements. The operation \cdot defines an A-module structure on Ω, the operation $[-,-]$ defines a Lie algebra structure on the k-module quotient $T=V / \Omega$, and the operation $x, b \mapsto x b$ defines a T-module structure on A, in such a way that (A, T) forms a Palais algebra. Moreover, the operation $[-,-]$ defines a T-module structure on Ω in such a way that Ω becomes a module for this Palais algebra. For the last one checks that the bracket of two elements of Ω is trivial.

The Palais algebra structure underlies a natural GMS algebra structure, in which $\partial: A \rightarrow \Omega$ is the corestriction of $\partial A \rightarrow V$ and the pairing $\langle-,-\rangle:$ $T \otimes \Omega \rightarrow A$ descends from the pairing on V. For the last, one checks that $\Omega \subset V$ is self-orthogonal with respect to the pairing.

This work defines the functor in the
Proposition. A GMS algebra has an underlying pre-GMS algebra.
Let (A, V) be GMS algebra, and assume that the map $V \rightarrow T$ has a k-linear section. Use this section to express

$$
V=\Omega \oplus T
$$

and teh structure maps accordingly. We will use this decomposition to describe what information must be added to the pre-GMS system in order to specify the GMS system. We will simply identify T with its image in V.

For $a \in A, a$. induces actions on Ω and on T, but may have a component sending T into Ω : so we need to give a map

$$
\alpha: A \otimes T \rightarrow \Omega
$$

In terms of it,

$$
a \cdot\binom{\omega}{t}=\binom{a \omega+\alpha(a, t)}{a t} .
$$

The pairing $\langle-,-\rangle$ is symmetric, Ω is self-orthogonal, and we are given the induced pairing $T \otimes \Omega \rightarrow A$, so what remains to specify is the restriction of the pairing to T in V : a map

$$
\gamma: T \otimes T \rightarrow A
$$

In terms of it,

$$
\left\langle\binom{\zeta}{s},\binom{\omega}{t}\right\rangle=\langle s, \omega\rangle+\langle t, \zeta\rangle+\gamma(s, t) .
$$

Finally, the bracket $[-,-]$ takes the form

$$
\left[\binom{\zeta}{s},\binom{\omega}{t}\right]=\binom{\partial\langle t, \zeta\rangle-t \zeta+s \omega+\beta(s, t)}{[s, t]}
$$

where

$$
\beta: T \otimes T \rightarrow \Omega
$$

These three maps satisfy various relations:

$$
\alpha(1, t)=0, \quad \gamma(s, t)=\gamma(t, s)
$$

$$
\begin{gathered}
\alpha(a, b t)-\alpha(a b, t)+a \alpha(b, t)=(t b) \partial a+(t a) \partial b \\
\partial \gamma(s, t)=\beta(s, t)+\beta(t, s) \\
\alpha(s b, t)-s \alpha(b, t)+\alpha(b,[s, t])=\beta(s, b t)-b \beta(s, t) . \\
s \beta(t, u)-t \beta(s, u)+u \beta(s, t)-\beta([s, t], u)+\beta(s,[t, u])-\beta(t,[s, u])=\partial\langle u, \beta(s, t)\rangle . \\
a \gamma(s, t)-\gamma(a s, t)=\langle t, \alpha(a, s)\rangle+[s, t] a \\
s \gamma(t, u)=\langle u, \beta(s, t)\rangle+\gamma([s, t], u)+\langle t, \beta(s, u)\rangle+\gamma([s, u], t) .
\end{gathered}
$$

One can change the splitting by means of a k-linear map $f: T \rightarrow \Omega$, replacing $t \in V$ with $t+f(t)$. The effect on the three maps is given by

$$
\begin{gathered}
(f \cdot \alpha)(a, t)=\alpha(a, t)+a f(t) \\
(f \cdot \beta)(s, t)=\beta(s, t)+\partial\langle t, f(s)\rangle-t f(s)+s f(t) \\
(f \cdot \gamma)(s, t)=\gamma(s, t)+\langle s, f(t)\rangle+\langle t, f(s)\rangle .
\end{gathered}
$$

References

[1] Paul Bressler, Vertex Algebroids I, https://arxiv.org/abs/math/ 0202185
[2] Vassily Gorbounov, Fyodor Malikov, and Vadim Schechtman, Gerbes of chiral differential operators. II. Vertex algebroids. Invent. Math. 155 (2004) 605680.

