Homotopy fixed point sets of group actions on groups

Haynes Miller
February, 2011
Let π be a group acted on by another group G. Then G acts on $B \pi$, and we inquire about the homotopy fixed point set of this action.

The space $(B \pi)^{h G}$ is the space of sections of the projection $E G \times{ }_{G} B \pi \rightarrow$ $B G$. We know that

$$
E G \times{ }_{G} B \pi=B(\pi \tilde{\times} G)
$$

where $\pi \tilde{\times} G$ is the semi-direct product: $\pi \times G$ as a set, with product

$$
(p, \gamma)\left(p^{\prime}, \gamma^{\prime}\right)=\left(p \cdot \gamma p^{\prime}, \gamma \gamma^{\prime}\right)
$$

Write $q: \pi \tilde{\times} G \rightarrow G$ for the projection map.
We know that

$$
\operatorname{map}(B G, B(\pi \tilde{\times} G))=\coprod_{[\sigma]} B Z_{\sigma}
$$

where σ runs over a set of representatives of conjugacy classes of homomorphisms $G \rightarrow \pi \tilde{\times} G$ and Z_{σ} denotes the centralizer of σ,

$$
Z_{\sigma}=\{p \in \pi: p \sigma(\gamma)=\sigma(\gamma) p \text { for all } \gamma \in G\}
$$

The composite $B q \circ B \sigma$ is homotopic to the identity map on $B G$ if and only if $q \circ \sigma$ is conjugate to the identity map on G. This condition is invariant under conjugation, and for a unique G-conjugate of σ the composite with q is equal to the identity. For such a σ,

$$
\sigma(\gamma)=(\varphi(\gamma), \gamma)
$$

for some function $\varphi: \gamma: G \rightarrow \pi$. The fact that σ is a group homomorphism is equivalent to

$$
\varphi\left(\gamma \gamma^{\prime}\right)=\varphi(\gamma) \cdot \gamma \varphi\left(\gamma^{\prime}\right)
$$

-i.e. φ is a 1-cocycle on G with values in π.
For $p \in \pi$, the homomorphism $\gamma \mapsto p \sigma(\gamma) p^{-1}$ corresponds to the 1-cocycle $\gamma \mapsto p \cdot \varphi(\gamma) \cdot \gamma p^{-1}$. This gives an action of π on $Z^{1}(G ; \pi)$, with orbit space $H^{1}(G ; \pi)$.

So the set of components of $\operatorname{map}(B G, B(\pi \tilde{\times} G))$ lying over the identity component of $\operatorname{map}(B G, B G)$ is in bijection with $H^{1}(G ; \pi)$.

The component of the mapping space containing $B \sigma$ is $B Z_{\sigma}$. Suppose that σ corresponds to the 1-cocycle φ. Then $(p, \gamma) \in Z_{\sigma}$ if and only if

$$
(p, \gamma)\left(\varphi\left(\gamma^{\prime}\right), \gamma^{\prime}\right)=\left(\varphi\left(\gamma^{\prime}\right), \gamma^{\prime}\right)(p, \gamma)
$$

for all $\gamma^{\prime} \in G$. This is demanding that $\gamma \in Z(G)$ and that p is such that

$$
\begin{equation*}
\gamma^{\prime} p=\varphi\left(\gamma^{\prime}\right)^{-1} \cdot p \cdot \gamma \varphi\left(\gamma^{\prime}\right) \tag{1}
\end{equation*}
$$

for all $\gamma^{\prime} \in G$. Write $Z(\varphi)$ for this subgroup of $\pi \tilde{\times} G$.
The space of sections is the disjoint union of the fibers of the maps $B Z(\varphi) \rightarrow B Z(G)$ as φ runs over a set of representatives of $H^{1}(G ; \pi)$.

Notice that for any $\gamma \in Z(G),(\phi(\gamma), \gamma) \in Z(G)$ since

$$
\phi\left(\gamma^{\prime}\right) \cdot \gamma^{\prime} \phi(\gamma)=\phi\left(\gamma^{\prime} \gamma\right)=\phi\left(\gamma \gamma^{\prime}\right)=\phi(\gamma) \cdot \gamma \phi\left(\gamma^{\prime}\right)
$$

Let $K(\varphi)=\operatorname{ker}(Z(\varphi) \rightarrow Z(G))$. Then

$$
\begin{equation*}
(B \pi)^{h G}=\coprod_{[\varphi] \in H^{1}(G ; \pi)} B K(\varphi) \tag{2}
\end{equation*}
$$

As a first check suppose that the action is trivial. Then $Z^{1}(G ; \pi)=$ $\operatorname{Hom}(G, \pi)$, the group π acts on this by conjugation, and $H^{1}(G ; \pi)=\operatorname{Rep}(G, \pi)$. $Z(\varphi)=Z(G) \times Z_{\varphi} \subseteq G \times \pi, \bar{Z}(\varphi)=Z(G)$, and $K(\varphi)=Z_{\varphi}$, so (2) reduces to the known formula for maps of classifying spaces.

This is actually more general than it seems: Suppose that G acts on π through a homomorphism $f: G \rightarrow \pi: \gamma p=f(\gamma) p f(\gamma)^{-1}$. Then $(p, \gamma) \mapsto$ $(p f(\gamma), \gamma)$ makes

commute, so $B \pi^{h G}=\operatorname{map}(B G, B \pi)$ for any homomorphism f.
For another example suppose $|G|=2$, with generator γ. Write $\gamma p=\bar{p}$. Let $\varphi(\gamma)=\tau \in \pi$. Then $1=\varphi\left(\gamma^{2}\right)=\tau \bar{\tau}$, so

$$
Z^{1}(G ; \pi)=\{\tau \in \pi: \tau \bar{\tau}=1\} .
$$

Conjugation by $p \in \pi$ sends the 1-cocycle corresponding to τ to the 1-cocycle corresponding to $p \tau \bar{p}^{-1}$, so

$$
H^{1}(G ; \pi)=\{\tau \in \pi: \tau \bar{\tau}=1\} / \tau \sim p \tau \bar{p}^{-1}
$$

The group $\pi \tilde{\times} G$ is given by

$$
\pi \times\{1\} \amalg \pi \times\{\gamma\}
$$

The centralizer of τ is the subgroup given by

$$
Z(\tau)=\{p: \bar{p}=\bar{\tau} p \tau\} \times\{1\} \amalg\{p: \bar{p}=\bar{\tau} p \bar{\tau}\} \times\{\gamma\}
$$

It's fun and reassuring to check that this is a subgroup!
The kernel group is

$$
K(\tau)=\{p: \bar{p}=\bar{\tau} p \tau\} \subseteq \pi
$$

Thus:

$$
(B \pi)^{h G}=\coprod_{[\tau] \in H^{1}(G ; \pi)} B K(\tau)
$$

