Ext above the b_{10}^{n} line

Haynes Miller
January, 2009
Following [1], let P denote the dual reduced powers $\bmod p$ (for p odd) and $Q=\mathbb{F}_{p}\left[q_{0}, \ldots\right]$ the comodule algebra so that A is the semitensor product of P and $Q . Q$ has an additional grading by weight in the q_{i} 's, which is respected by the P coaction. Then

$$
H^{* * *}(A)=H^{* *}(P ; Q)
$$

and

$$
H^{* * *}\left(A ; E\left[\tau_{0}, \ldots, \tau_{n-1}\right]\right)=H^{* *}\left(P ; Q /\left(q_{0}, \ldots, q_{n-1}\right)\right)
$$

The element q_{n} is primitive in $Q /\left(q_{0}, \ldots, q_{n-1}\right)$, and in [1] I computed the localization:

$$
q_{n}^{-1} H^{* *}\left(P ; Q /\left(q_{0}, \ldots, q_{n-1}\right)\right)=H^{* *}\left(P /\left(\xi_{1}^{p^{n}}, \xi_{2}^{p^{n}}, \ldots\right)\right)\left[q_{n}^{ \pm 1}\right]
$$

In particular,

$$
q_{0}^{-1} H^{* *}(A)=\mathbb{F}_{p}\left[q_{0}^{ \pm 1}\right]
$$

and

$$
q_{1}^{-1} H^{* *}\left(A ; E\left[\tau_{0}\right]\right)=\mathbb{F}_{p}\left[q_{1}^{ \pm 1}\right] \otimes E\left[h_{10}, h_{20}, \ldots\right] \otimes \mathbb{F}_{p}\left[b_{10}, b_{20}, \ldots\right]
$$

where the $(s, t-s)$ gradings are given by

$$
\left|h_{i 0}\right|=\left(1,2\left(p^{i}-1\right)-1\right), \quad\left|b_{i 0}\right|=\left(2,2 p\left(p^{i}-1\right)-2\right)
$$

The localization map is an isomorphism in a range which is particularly interesting in the case $n=1$: for q-weight k, this is a line of slope $1 /\left(p^{2}-p-1\right)$, with $(s-t)$-intercept given by a constant plus $2(p-1) k$. When $p=3,\left|q_{1}\right|=(1,4)$ and $b_{10}=(2,10)$, so this result computes 20% of $H^{* *}\left(A ; E\left[\tau_{0}\right]\right)$. When $p=5,\left|q_{1}\right|=(1,8)$ and $\left|b_{10}\right|=(2,38)$, so it computes $11 / 19$ of the cohomology. In general it computes $\left(p^{2}-3 p+1\right) /\left(p^{2}-p-1\right)$, a fraction which tends to 1 as $p \rightarrow \infty$. It does significantly better, actually, when you consider the q-grading.

Since $q_{1}^{p^{k}}$ is primitive modulo $q_{0}^{p^{k}}$, one may define

$$
q_{1}^{-1} H^{* *}(A)
$$

and attempt to compute it using the Bockstein spectral sequence

$$
E_{1}^{* * *}=H^{* *}\left(P ; Q /\left(q_{0}\right)\right)\left[q_{0}\right] \Rightarrow H^{* *}(A)
$$

By commutativity, $q_{1}^{p^{k}}$ survives to E_{k}.

Christian Nassau's computation indicates the following pattern of Bockstein differentials. As usual we'll leave the power of q_{0} undenoted. We will use the notation

$$
p^{[n]}=\frac{p^{n}-1}{p-1}
$$

so that $p^{[0]}=0, p^{[1]}=1, p^{[2]}=p+1, \ldots$.

$$
\begin{aligned}
d_{1} q_{1} & =h_{10} & d_{p-1}\left(q_{1}^{-1} h_{10}\right) & =q_{1}^{-p} b_{10} \\
d_{p^{[2]}} q_{1}^{p} & =q_{1}^{-1} h_{20} & d_{p^{2}-1}\left(q_{1}^{-p^{[2]}} h_{20}\right) & =q_{1}^{1-p^{[3]}} h_{20} \\
d_{p^{[3]}} p_{1}^{p^{2}} & =q_{1}^{-p^{[2]}} h_{30} & d_{p^{3}-1}\left(q_{1}^{-p^{[3]}} h_{30}\right) & =q_{1}^{1-p^{[4]}} b_{30} \\
& \vdots & & \vdots \\
d_{p^{[k]}} q_{1}^{p^{k-1}} & =q_{1}^{-p^{[k-1]}} h_{k, 0} & d_{p^{k}-1}\left(q_{1}^{-p^{[k]}} h_{k, 0}\right) & =q_{1}^{1-p^{[k+1]}} b_{k, 0}
\end{aligned}
$$

Since $q_{1}^{p^{k}}$ survives to a cycle in $E_{p^{k}-1}$, we may multiply the right hand calculation by $q_{1}^{p^{k}}$ if we like.

For example when $p=5$,

$$
\begin{aligned}
d_{1} q_{1} & =h_{10} & d_{4}\left(q_{1}^{4} h_{10}\right) & =b_{10} \\
d_{6} q_{1}^{5} & =q_{1}^{-1} h_{20} & d_{24}\left(q_{1}^{19} h_{20}\right) & =q_{1}^{-5} b_{20} \\
d_{31} q_{1}^{25} & =q_{1}^{-6} h_{30} & d_{124}\left(q_{1}^{9} h_{30}\right) & =q_{1}^{-30} b_{30}
\end{aligned}
$$

One may also inquire about the smallest q_{1}-multiple of an element in the image of the localization map. For example the subalgebra generated by h_{10} and b_{10} is in the image already. When $p=5$, it seems that $q_{1} h_{20}$ is in the image but none of the elements of the form $b_{10}^{k} h_{20}$ or $b_{10}^{k} h_{10} h_{20}$ are. It seems that $q_{1}^{6} b_{20}$ is the first q_{1} multiple in the image, and $q_{1}^{6} h_{30}$.

References

[1] H. R. Miller, A localization theorem in homological algebra, Math. Proc. Camb. Phil. Soc 84 (1978) 73-84.

