ON JONES'S KAHN-PRIDDY THEOREM

Haynes Miller¹ Massachusetts Institute of Technology Cambridge, MA 02139/USA

For Hirosi Toda on his sixtieth birthday

In this note we record a simple proof of a beautiful result of J.D.S. Jones, stating that the Mahowald root invariant of a stable homotopy class α has dimension at least twice that of α . This result is a natural strengthening of the Kahn-Priddy theorem. Our contribution is simply to provide a postcard-length proof of the key diagram (3.1) (which occurs on p. 481 of [2]), but we take the opportunity to restate the notions of root invariant and quadratic construction, and the connection with the Kahn-Priddy theorem. We also deal with odd primes, after J. P. May [1]. We end with a proof of Mahowald's theorem that $\alpha_i \in R(p^i)$, and the observation that Jones's

theorem allows one to translate a 20-year old result of Toda's into the assertion that up to a unit, $\beta_1 \in \mathbb{R}(\alpha_1)$.

§1. Mahowald's root invariant.

We begin with a discussion of the "root invariant" introduced by Mahowald in 1967 [5]. A reference for the constructions in this section is [1]. We begin with p = 2. Let λ denote the canonical line bundle over a real projective space, and let P_{-n}^{t-1} be the Thom spectrum of $-n\lambda |\mathbb{RP}^{t+n-1}$. This is the suspension spectrum of $\mathbb{RP}^{t-1}/\mathbb{RP}^{-n-1}$ if n < 0; it is \mathbb{RP}_{+}^{t-1} if n = 0; and if n > 0 one embeds $n\lambda |\mathbb{RP}^{t+n-1}$ in a trivial vector bundle and considers the complementary subbundle. Atiyah duality shows that the 0-dual of P_{-n}^{t-1} is

$$\mathsf{DP}_{-n}^{t-1} \simeq \Sigma \mathsf{P}_{-t}^{n-1} . \tag{1.1}$$

There are natural inclusions $P_{-n}^{t-1} \rightarrow P_{-n}^{t}$ and collapses $P_{-n}^{t-1} \rightarrow P_{-n+1}^{t-1}$, which will be represented by unnamed arrows. By forming direct limits we get spectra P_{-n} with collapse maps

$$P_{-n} \rightarrow P_{-n+1}$$

The pinch map $\pi: P_0^{t-1} = \mathbb{R}P_+^{t-1} \to S^0$ dualizes to a map $S^{-1} \to P_{-t}^{-1}$. Composing with the inclusion we get maps $\iota: S^{-1} \to P_{-t}$ which are compatible under the collapse maps and yield a diagram

¹Supported in part by the NSF.

Now let $p \neq 2$ and set q = 2(p-1). Then Adams' stable homology approximation to $B\Sigma_p$ (see [1], p. 146) extends to give spectra P_{-n} with analogous properties. Here $n \equiv 0$ or 1 mod q; P_{-n} has one cell in dimension i for each $i \equiv 0$ or $-1 \mod q$ with $i \ge -n$; $P_{q-1} \simeq \Sigma^{\infty} B\Sigma_p$; (1.1) holds with $t \equiv 0$ or 1 mod q; and there is an evident analogue of (1.2). See [1], pp. 146 and 42. For $1 \le i \le q-1$, let $P_{-qk-i} = P_{-qk-1}$.

The Mahowald filtration on the p-completed stable homotopy group π_t is

$$M^{S} \pi_{t} = \ker(\iota_{*} : \pi_{t-1}(S^{-1}) \longrightarrow \pi_{t-1}(P_{-S})).$$
(1.3)

Clearly $M^0 \pi_t = \pi_t$ for all t. There is a cofiber sequence

$$S^{-1} \xrightarrow{\iota} P_{-1} \xrightarrow{} P_0 \xrightarrow{\tau} S^0$$

in which τ is the "transfer" map. The Kahn–Priddy theorem may thus be stated as

$$M^{1} \pi_{t} = \pi_{t} \qquad \text{for all } t \ge 1.$$
 (1.4)

The theorem of Jones asserts

$$M^{S} \pi_{t} = \pi_{t} \quad \text{for } s \leq t, \text{ for } p = 2.$$

$$(1.5)$$

We will show also that for any prime p,

$$M^{S}\pi_{t} = \pi_{t} \text{ for } s \leq qk - \epsilon, \text{ if } t = 2k - \epsilon$$
(1.6)

Lin's theorem [4] (Gunawardena's when $p \neq 2$) says that the map $\iota: S^{-1} \longrightarrow holim P_{-t}$ is p-adic completion. This implies

$$\int_{S} M^{S} \pi_{*} = 0 .$$
 (1.7)

If $\alpha \in M^{s} \pi_{t} - M^{s+1} \pi_{t}$, the root invariant of α is defined as

$$\mathbf{R}(\alpha) = \{\beta : \mathbf{S}^{\mathsf{t}-1} \xrightarrow{\beta} \mathbf{S}^{-\mathsf{S}-1} \xrightarrow{\mathsf{j}} \mathbf{P}_{-\mathsf{S}-1}\} \subseteq \pi_{\mathsf{S}+\mathsf{t}}$$
(1.8)

where j is the inclusion of the bottom cell. Jones's result is thus that $|R(\alpha)| \ge 2|\alpha|$. when p = 2, and we find that for any prime p, $|R(\alpha)| \ge 2(pk-\epsilon)$ if $|\alpha| = 2k-\epsilon$.

One may of course define an invariant " $R_s(\alpha)$ " by means of (1.8) for any s. But if $\alpha \in M^{S+1} \pi_t$, then $R_s(\alpha) = \{\beta : j \circ \beta = *\}$, and if $\alpha \notin M^S \pi_t$, then $R_s(\alpha) = \emptyset$: in either case it is independent of α and of little interest.

The root invariant of α may be interpreted in terms of the homotopy spectral sequence associated to the tower (1.2): it is the set of representatives of α in $E_{-s,s+t}^1 = \pi_{s+t}$. Lin's theorem shows that this spectral sequence converges to $\pi_*((S^{-1})_p^{\Lambda})$; so

$$E_{u,q}^{\infty} = 0$$
 for $q < -(u + 1)$. (1.9)

From (1.4), we have

$$E_{11,*}^{\infty} = 0 \text{ for } u \ge 0 ,$$
 (1.10)

and the Kahn-Priddy theorem asserts

$$E_{-1,q}^{\infty} = 0$$
 for $q \ge 1$. (1.11)

For p = 2, Jones's theorem is

$$E_{u,q}^{\infty} = 0$$
 for $q > -2(u+1)$. (1.12)

Thus E^{∞} is concentrated in a wedge:

More precise information about the position of E^{∞} is tied up with the conjecture that the root invariant converts "v_n-periodic" families to "v_{n+1}-periodic" families. This leads one to expect that E^{∞} should be concentrated near rays with slopes $-(2-2^{-n})$. Similar analytic geometry holds at odd primes.

§2. The Cup-i construction.

Jones proves his theorem by relating the root invariant to the cup-i construction. We recall this construction from [2].

The p-adic construction

$$D_{p}X = \frac{E\sigma \times_{\sigma} X^{(p)}}{E\sigma \times_{\sigma} *}, \ \sigma = \Sigma_{p},$$

of a pointed space X extends naturally to spectra; see [3], [1]. It is easy to see that $D_p S^{2n} = \Sigma^{2n} P_{qn}$ and $D_p S^{2n-1} = \Sigma^{2n-1} P_{qn-1}$ for n > 0, and this holds for $n \le 0$ as well. There is a natural map

$$\varphi_{\mathbf{K}}: \mathbf{K} \land \mathbf{D}_{\mathbf{p}}\mathbf{X} \longrightarrow \mathbf{D}_{\mathbf{p}}(\mathbf{K} \land \mathbf{X})$$

for K a pointed space and X a spectrum. If X is a space this given by

$$\mathbf{k}; \, \mathbf{e}, \, \mathbf{x}_1, \dots \mathbf{x}_p \longmapsto \mathbf{e}, \, (\mathbf{k}, \mathbf{x}_1), \dots (\mathbf{k}, \mathbf{x}_n).$$

If $K = S^1$ and $X = S^n$, this is the "collapse map," $\Sigma^{n+1}P_n \longrightarrow \Sigma^{n+1}P_{n+1}$ when p = 2, and analogously for $p \neq 2$.

For p = 2 and $\alpha \in \pi_t$ define $Q(\alpha) : P_t \to S^{-t}$ as the desuspension of the composite

$$\Sigma^{t} \mathbf{P}_{t} = \mathbf{D}_{2}(\mathbf{S}^{t}) \xrightarrow{\mathbf{D}_{2}(\alpha)} \mathbf{D}_{2}(\mathbf{S}^{0}) = \mathbf{P}_{0} \xrightarrow{\pi} \mathbf{S}^{0} .$$

$$(2.1)$$

The quadratic filtration of π_t is given by

$$\mathbf{F}^{\mathbf{n}}\boldsymbol{\pi}_{\mathbf{t}} = \{\boldsymbol{\alpha}: \mathbf{Q}(\boldsymbol{\alpha}) | \mathbf{P}_{\mathbf{t}}^{\mathbf{t}+\mathbf{n}-1} \simeq *\} .$$

$$(2.2)$$

Thus

$$F^0 \pi_t = \pi_t \tag{2.3}$$

and

$$F^{1}\pi_{t} = \{\alpha : \alpha^{2} = 0\} .$$
 (2.4)

We will see that

$$\bigcap_{n} F^{n} \pi_{t} = 0 . \qquad (2.5)$$

If $\alpha \in F^n \pi_t - F^{n+1} \pi_t$, we define the *cup-n* construction to be

$$C(\alpha) = \begin{cases} \beta : P_{-t}^{t+n} & \beta \\ \beta : P_{-t}^{t+n} & \beta \\ p_{t} & Q(\alpha) \end{cases} \subseteq \pi_{2t+n} .$$
(2.6)

Thus for example if $\alpha \notin F^1 \pi_t$ then $C(\alpha) = \{\alpha^2\}$.

It is useful to extend this definition by considering the composite

$$P_{-s} \xrightarrow{c} P_t \xrightarrow{Q(\alpha)} S^{-t}$$

for $s \ge -t$, where c is the collapse map. We then have a modified quadratic filtration

$$\mathbf{F}_{s}^{n} \pi_{t} = \{ \alpha : (\mathbf{Q}(\alpha) \circ \mathbf{c}) | \mathbf{P}_{-s}^{t+n-1} \simeq * \}$$

$$(2.7)$$

Then

$$\mathbf{F}^{\mathbf{n}}\boldsymbol{\pi}_{\mathbf{t}} = \mathbf{F}_{-\mathbf{t}}^{\mathbf{n}}\boldsymbol{\pi}_{\mathbf{t}} \subseteq \mathbf{F}_{-\mathbf{t}+1}^{\mathbf{n}}\boldsymbol{\pi}_{\mathbf{t}} \subseteq \dots,$$
(2.8)

and $F_s^n \pi_t$ is independent of s for $s \ge t + 1$. We call this last the stable quadratic filtration and write $F_{\alpha}^n \pi_t$ for it.

For $s \ge -t$ and $\alpha \in F_s^n \pi_t - F_s^{n+1} \pi_t$ we may define the modified cup-n construction

$$C_{s}(\alpha) = \begin{cases} \beta : P_{-s}^{t+n} & \beta \\ P_{-s} & Q(\alpha) \end{cases} \leq \pi_{2t+n}$$
(2.9)

For $s \ge t + 1$, $C_s(\alpha)$ is independent of s; it is the stable cup-n construction $C_{\infty}(\alpha)$.

For $p \neq 2$ and $\alpha \in \pi_t$, define $Q(\alpha)$ analogously as the composite

$$\Sigma^{2k-\epsilon} \mathbf{P}_{qk-\epsilon} = \mathbf{D}_{\mathbf{p}}(\mathbf{S}^{t}) \xrightarrow{\mathbf{D}_{\mathbf{p}}(\alpha)} \mathbf{D}_{\mathbf{p}}(\mathbf{S}^{0}) \xrightarrow{\pi} \mathbf{S}^{0}$$

if $t = 2k - \epsilon$ with $\epsilon \in \{0,1\}$. If t = 2k then $Q(\alpha) | S^{pt} = \alpha^{p}$. If t = 2k-1, $Q(\alpha) | S^{2pk-2}$ is the "restricted p-fold Massey product" $\langle \alpha \rangle^{p}$, depending not just on the product in the

sphere—spectrum but on the commuting homotopies as well. For example, in [7] Toda proves $\langle \alpha_1 \rangle^p = \beta_1$ up to a unit in \mathbb{F}_p . The proof uses little more than the non-existence of elements of mod p Hopf invariant one corresponding to \mathbb{P}^p .

The rest of the definitions go just as for p = 2; we have the p-adic filtration and the stable p-adic filtration, the cup-construction and the stable cup-construction. For instance, if $|\alpha|$ is odd and $\langle \alpha \rangle^p \neq 0$, then $C(\alpha) = \{\langle \alpha \rangle^p\}$; otherwise $\alpha \in F^1\pi_+$.

§3. The proof.

Jones's key observation is the

Lemma 3.1. Let $\alpha \in \pi_t$, with $t = 2k - \epsilon$, let $2\ell + \delta \ge t + 1$, and let $r = q\ell + \delta$. Then

$$\begin{array}{c} P_{-r} & \xrightarrow{\pi} & S^{0} \\ \downarrow^{-r} & \downarrow^{\alpha} \\ P_{qk-\epsilon} & \xrightarrow{Q(\alpha)} & S^{-t} \end{array}$$

commutes.

This lemma relates the Mahowald filtration to the stable quadratic filtration, and the root invariant to the stable cup-construction. To see this we note that for any $s \equiv 0$ or $-1 \mod q$ and any $\beta \in \pi_{s+t}$,

commutes iff

$$\begin{array}{c} \mathbf{S}^{\mathbf{t}-1} & \underline{\alpha} & \mathbf{S}^{-1} \\ \downarrow^{\beta} & \downarrow^{\iota} \\ \mathbf{S}^{-\mathbf{s}-1} & \underline{j} & \mathbf{P}^{\mathbf{r}-1} \\ \end{array}$$

does. By (1.1), together with the fact that the dual of α is α , this commutes iff

$$\begin{array}{c} \mathbf{P}^{\mathbf{s}} & \xrightarrow{\pi} & \mathbf{S}^{\mathbf{0}} \\ \downarrow^{-\mathbf{r}} & \downarrow^{\alpha} \\ \mathbf{S}^{\mathbf{s}} & \xrightarrow{\beta} & \mathbf{S}^{-1} \end{array}$$

does. But by (3.1), this commutes iff

does. Thus (taking $\beta = 0$) $S^{t-1} \xrightarrow{\alpha} S^{-1} \xrightarrow{\iota} P_{-s-1}$ is null iff $P_{-r}^{s} \xrightarrow{Q(\alpha)} P_{qk-\epsilon} \xrightarrow{Q(\alpha)} S^{-t}$ is null. The latter is surely null if $s < qk-\epsilon$; and this is Jones's theorem (1.5) and its extension

to odd primes, (1.6). In fact this shows (as Jones notes) that

$$M^{S}\pi_{t} = F_{\infty}^{S-t} \pi_{t} , \qquad (3.2)$$

and that the root invariant coincides with the stable cup construction:

$$R(\alpha) = C_{\omega}(\alpha). \tag{3.3}$$

Since $M^{s}\pi_{t} = F_{\infty}^{s-t} \pi_{t} \supseteq F^{s-t} \pi_{t}$, Lin's theorem leads via (1.7) to (2.5), which may be restated as:

(3.4) The p-adic construction (with $t = 2k-\epsilon$)

$$\mathbf{Q}: \pi^{-\mathbf{t}} \longrightarrow \pi^{-\mathbf{t}} \mathbf{P}_{\mathbf{q}\mathbf{k}-\epsilon}$$

is injective.

The proof of (3.1) is quite simple. Let $s = 2\ell + \delta$. Since $s \ge t + 1$, $\alpha \in \pi_t$ is represented by a map $\overline{\alpha}: S^{s+t} \longrightarrow S^s$. The following diagram then commutes by naturality in K of φ_K , and this proves (3.1).

§4. Two examples.

Let $\alpha_0 = \iota$, and for s > 0 let $\alpha_s \in \pi_*$ be a minimal dimensional nonzero p-torsion element of Adams filtration s. These are represented in Adams' E_2 along Adams' edge. The element α_s is well-defined up to a unit in \mathbb{F}_p .

For s > 0, the dimension of α_s is q(s) - 1, where if p > 2, q(s) = qs; if q = 2, q(s + 4) = q(s) + 8 and

Theorem (Mahowald). $\alpha_{s} \in R(p^{s}\iota)$.

This says that the diagram

commutes, and that the common composite is essential. Since $E_2^{s,s-1}(S^{-q(s)}) = \mathbb{Z}/p$ maps isomorphically to $E_2^{s,s-1}(P_{-q(s)})$, and $\mathbf{E}_{2}^{\mathbf{r},\mathbf{r}-1}(\mathbf{P}_{-\mathbf{q}(s)}) = 0 \text{ for } \mathbf{r} > \mathbf{s}, \text{ it will suffice to show that } 0 \neq \mathbf{p}^{s} \iota \in \pi_{-1}\mathbf{P}_{-\mathbf{q}(s)}.$

Take p = 2. When $s \equiv 1$ or 2 mod 4, this may be checked by projecting on into bo $\wedge P_{-q(s)}$, which is not hard to compute [6]. In the other cases, one may detect the class in J-theory. Using James periodicity to translate Mahowald's analysis in [6] of $J_*(\mathbb{RP}^n)$ to stunted projective spaces, one finds

$$J_{-1}(P_{-q(s)}) = \mathbb{Z}/2^{s+1}$$

generated by the Hurewicz image of ι .

When p > 2, a similar but simpler analysis shows that $J_{-1}(P_{-\sigma s}) = \mathbb{I}/p^{s+1}$, and the result again follows.

In our second example, we will use Toda's computation of $C(\alpha_1)$; as recalled above, it is a unit multiple of β_1 . Thus by Lemma 3.1

commutes. If the horizontal composite is nonzero for large s, then $u\beta_1 \in R(\alpha_1)$. The dual of the bottom composite is

$$S^{q-2} \xrightarrow{\beta_1} S^{-(p-1)q} \xrightarrow{P_{-(p-1)q}} P_{-(p-1)q}$$

(after dropping the unit, suspending, and including into the infinite projective space). To see this is essential one checks that it is nonzero at Adams' E_2 . Since $E_2^{0,q-1}(P_{-(p-1)q}) = 0$, this element survives.

References

1. R. R. Bruner, J. P. May, J. E. McClure, and M. Steinberger, H_{∞} ring spectra and their applications, Springer Lecture Notes in Math. 1176 (1986).

2. J.D.S. Jones, Root invariants, cup-r-products and the Kahn-Priddy theorem, Bull. Lon. Math. Soc. 17 (1985) 479-483.

3. J.D.S. Jones and S. A. Wegmann, Limits of stable homotopy and cohomology groups, Math. Proc. Camb. Phil. Soc. 94 (1983) 473-482.

4. W. H. Lin, On conjectures of Mahowald, Segal and Sullivan, Math. Proc. Camb. Phil. Soc. 87 (1980) 449-458.

5. M. E. Mahowald, The metastable homotopy of Sⁿ, Mem. A.M.S. 72 (1967).

6. M. E. Mahowald, The image of J in the EHP sequence, Ann. of Math. 116 (1982), 65-112.

7. H. Toda, Extended p^{th} powers of complexes and applications to homotopy theory, Proc. Japan Acad. 44 (1968), 198–203.