ON JONES'S KAHN-PRIDDY THEOREM

Haynes Miller ${ }^{1}$
Massachusetts Institute of Technology
Cambridge, MA 02139/USA

For Hirosi Toda on his sixtieth birthday

In this note we record a simple proof of a beautiful result of J.D.S. Jones, stating that the Mahowald root invariant of a stable homotopy class α has dimension at least twice that of α. This result is a natural strengthening of the Kahn-Priddy theorem. Our contribution is simply to provide a postcard-length proof of the key diagram (3.1) (which occurs on p. 481 of [2]), but we take the opportunity to restate the notions of root invariant and quadratic construction, and the connection with the Kahn-Priddy theorem. We also deal with odd primes, after J. P. May [1]. We end with a proof of Mahowald's theorem that $\alpha_{i} \in \mathrm{R}\left(\mathrm{p}^{\mathrm{i}}\right)$, and the observation that Jones's theorem allows one to translate a 20 -year old result of Toda's into the assertion that up to a unit, $\beta_{1} \in \mathrm{R}\left(\alpha_{1}\right)$.

§1. Mahowald's root invariant.

We begin with a discussion of the "root invariant" introduced by Mahowald in 1967 [5]. A reference for the constructions in this section is [1]. We begin with $p=2$. Let λ denote the canonical line bundle over a real projective space, and let $\mathrm{P}_{-\mathrm{n}}^{\mathrm{t}-1}$ be the Thom spectrum of $-n \lambda \mid \mathbb{R} P^{t+n-1}$. This is the suspension spectrum of $\mathbb{R} P^{t-1} / \mathbb{R} P^{-n-1}$ if $n<0$; it is $\mathbb{R} P_{+}^{t-1}$ if $\mathrm{n}=0$; and if $\mathrm{n}>0$ one embeds $\mathrm{n} \lambda \mid \mathbb{R P}^{\mathrm{t}+\mathrm{n}-1}$ in a trivial vector bundle and considers the complementary subbundle. Atiyah duality shows that the $0-$ dual of $\mathrm{P}_{-\mathrm{n}}^{\mathrm{t}-1}$ is

$$
\begin{equation*}
D P_{-n}^{\mathrm{t}-1} \simeq \Sigma \mathrm{P}_{-\mathrm{t}}^{\mathrm{n}-1} \tag{1.1}
\end{equation*}
$$

There are natural inclusions $\mathrm{P}_{-\mathrm{n}}^{\mathrm{t}-1} \rightarrow \mathrm{P}_{-\mathrm{n}}^{\mathrm{t}}$ and collapses $\mathrm{P}_{-\mathrm{n}}^{\mathrm{t}-1} \rightarrow \mathrm{P}_{-\mathrm{n}+1}^{\mathrm{t}-1}$, which will be represented by unnamed arrows. By forming direct limits we get spectra P_{-n} with collapse maps $\mathrm{P}_{-\mathrm{n}}+\mathrm{P}_{-\mathrm{n}+1}$.

The pinch map $\pi: \mathrm{P}_{0}^{\mathrm{t}-1}=\mathbb{R} \mathrm{P}_{+}^{\mathrm{t}-1} \rightarrow \mathrm{~S}^{0}$ dualizes to a map $\mathrm{S}^{-1} \rightarrow \mathrm{P}_{-\mathrm{t}}^{-1}$. Composing with the inclusion we get maps $\iota: \mathrm{S}^{-1} \rightarrow \mathrm{P}_{-\mathrm{t}}$ which are compatible under the collapse maps and yield a diagram

[^0]

Now let $\mathrm{p} \neq 2$ and set $\mathrm{q}=2(\mathrm{p}-1)$. Then Adams' stable homology approximation to $\mathrm{B} \Sigma_{\mathrm{p}}$ (see [1], p. 146) extends to give spectra P_{-n} with analogous properties. Here $n \equiv 0$ or $1 \bmod q$; $\mathrm{P}_{-\mathrm{n}}$ has one cell in dimension i for each $\mathrm{i} \equiv 0$ or $-1 \bmod q$ with $\mathrm{i} \geq-n ; \mathrm{P}_{\mathrm{q}-1} \simeq \sum^{\infty} \mathrm{B} \Sigma_{\mathrm{p}}$; (1.1) holds with $t \equiv 0$ or $1 \bmod q$; and there is an evident analogue of (1.2). See [1], pp. 146 and 42. For $1 \leq \mathrm{i} \leq \mathrm{q}-1$, let $\mathrm{P}_{-\mathrm{qk}-\mathrm{i}}=\mathrm{P}_{-\mathrm{qk}-1}$.

The Mahowald filtration on the p -completed stable homotopy group π_{t} is

$$
\begin{equation*}
\mathrm{M}^{\mathrm{S}} \pi_{\mathrm{t}}=\operatorname{ker}\left(\iota_{*}: \pi_{\mathrm{t}-1}\left(\mathrm{~S}^{-1}\right) \longrightarrow \pi_{\mathrm{t}-1}\left(\mathrm{P}_{-\mathrm{s}}\right)\right) \tag{1.3}
\end{equation*}
$$

Clearly $\mathrm{M}^{0} \pi_{\mathrm{t}}=\pi_{\mathrm{t}}$ for all t . There is a cofiber sequence

$$
\mathrm{S}^{-1} \xrightarrow{\iota} \mathrm{P}_{-1} \longrightarrow \mathrm{P}_{0} \xrightarrow{\tau} \mathrm{~S}^{0}
$$

in which τ is the "transfer" map. The Kahn-Priddy theorem may thus be stated as

$$
\begin{equation*}
\mathrm{M}^{1} \pi_{\mathrm{t}}=\pi_{\mathrm{t}} \quad \text { for all } \mathrm{t} \geq 1 \tag{1.4}
\end{equation*}
$$

The theorem of Jones asserts

$$
\begin{equation*}
\mathrm{M}^{\mathrm{s}} \pi_{\mathrm{t}}=\pi_{\mathrm{t}} \quad \text { for } \mathrm{s} \leq \mathrm{t}, \text { for } \mathrm{p}=2 \tag{1.5}
\end{equation*}
$$

We will show also that for any prime p ,

$$
\begin{equation*}
\mathrm{M}^{\mathrm{s}} \pi_{\mathrm{t}}=\pi_{\mathrm{t}} \text { for } \mathrm{s} \leq \mathrm{qk}-\epsilon, \text { if } \mathrm{t}=2 \mathrm{k}-\epsilon \tag{1.6}
\end{equation*}
$$

Lin's theorem [4] (Gunawardena's when $p \neq 2$) says that the map $\iota: \mathrm{S}^{-1} \longrightarrow$ holim $\mathrm{P}_{-\mathrm{t}}$ is p -adic completion. This implies

$$
\begin{equation*}
\cap \mathrm{M}^{\mathrm{S}} \pi_{*}=0 \tag{1.7}
\end{equation*}
$$

If $\alpha \in \mathrm{M}^{\mathrm{s}} \pi_{\mathrm{t}}-\mathrm{M}^{\mathrm{s}+1} \pi_{\mathrm{t}}$, the root invariant of α is defined as

$$
\begin{equation*}
\mathrm{R}(\alpha)=\left\{\beta: \mathrm{S}^{\mathrm{t}-1-{ }_{\alpha}^{\underline{\beta} \rightarrow \mathrm{S}^{-\mathrm{s}-1}} \mathrm{~S}^{\mathrm{j}} \mathrm{C}_{i}^{2}} \mathrm{P}_{-\mathrm{s}-1}\right\} \subseteq \pi_{\mathrm{s}+\mathrm{t}} \tag{1.8}
\end{equation*}
$$

where j is the inclusion of the bottom cell. Jones's result is thus that $|\mathrm{R}(\alpha)| \geq 2|\alpha|$.
when $\mathrm{p}=2$, and we find that for any prime $\mathrm{p},|\mathrm{R}(\alpha)| \geq 2(\mathrm{pk}-\epsilon)$ if $|\alpha|=2 \mathrm{k}-\epsilon$.
One may of course define an invariant " $\mathrm{R}_{\mathrm{s}}(\alpha)$ " by means of (1.8) for any s. But if $\alpha \in$ $M^{s+1} \pi_{t}$, then $R_{s}(\alpha)=\{\beta: j \circ \beta=*\}$, and if $\alpha \notin M^{s} \pi_{t}$, then $R_{s}(\alpha)=\emptyset$: in either case it is independent of α and of little interest.

The root invariant of α may be interpreted in terms of the homotopy spectral sequence associated to the tower (1.2): it is the set of representatives of α in $E_{-s, s+t}^{1}=\pi_{s+t} . \operatorname{Lin}$'s theorem shows that this spectral sequence converges to $\pi_{*}\left(\left(\mathrm{~S}^{-1}\right)_{\mathrm{p}}^{\wedge}\right)$; so

$$
\begin{equation*}
E_{u, q}^{\infty}=0 \quad \text { for } q<-(u+1) \tag{1.9}
\end{equation*}
$$

From (1.4), we have

$$
\begin{equation*}
\mathrm{E}_{\mathrm{u}, *}^{\infty}=0 \text { for } \mathrm{u} \geq 0 \tag{1.10}
\end{equation*}
$$

and the Kahn-Priddy theorem asserts

$$
\begin{equation*}
E_{-1, q}^{\infty}=0 \quad \text { for } q \geq 1 \tag{1.11}
\end{equation*}
$$

For $\mathrm{p}=2$, Jones's theorem is

$$
\begin{equation*}
E_{u, q}^{\infty}=0 \quad \text { for } q>-2(u+1) \tag{1,12}
\end{equation*}
$$

Thus E^{∞} is concentrated in a wedge:

More precise information about the position of E^{∞} is tied up with the conjecture that the root invariant converts " v_{n}-periodic" families to " $\mathrm{v}_{\mathrm{n}+1}$-periodic" families. This leads one to expect that E^{∞} should be concentrated near rays with slopes $-\left(2-2^{-\mathrm{n}}\right)$. Similar analytic geometry holds at odd primes.

§2. The Cup-i construction.

Jones proves his theorem by relating the root invariant to the cup-i construction. We recall this construction from [2].

The p-adic construction

$$
\mathrm{D}_{\mathrm{p}} \mathrm{X}=\frac{\mathrm{E} \sigma \times_{\sigma} \mathrm{X}^{(\mathrm{p})}}{\mathrm{E} \sigma \times_{\sigma}{ }^{*}}, \sigma=\mathrm{\Sigma}_{\mathrm{p}},
$$

of a pointed space X extends naturally to spectra; see [3], [1]. It is easy to see that $D_{p} s^{2 n}=$ $\Sigma^{2 n} \mathrm{P}_{\mathrm{qn}}$ and $\mathrm{D}_{\mathrm{p}} \mathrm{S}^{2 \mathrm{n}-1}=\Sigma^{2 \mathrm{n}-1} \mathrm{P}_{\mathrm{qn}-1}$ for $\mathrm{n}>0$, and this holds for $\mathrm{n} \leq 0$ as well. There is a natural map

$$
\varphi_{\mathrm{K}}: \mathrm{K} \wedge \mathrm{D}_{\mathrm{p}} \mathrm{X} \longrightarrow \mathrm{D}_{\mathrm{p}}(\mathrm{~K} \wedge \mathrm{X})
$$

for K a pointed space and X a spectrum. If X is a space this given by

$$
\mathrm{k} ; \mathrm{e}, \mathrm{x}_{1}, \ldots \mathrm{x}_{\mathrm{p}} \longmapsto \mathrm{e},\left(\mathrm{k}, \mathrm{x}_{1}\right) \ldots\left(\mathrm{k}, \mathrm{x}_{\mathrm{n}}\right) .
$$

If $K=S^{1}$ and $X=S^{n}$, this is the "collapse map," $\Sigma^{n+1} P_{n} \longrightarrow \Sigma^{n+1} P_{n+1}$ when $p=2$, and analogously for $\mathrm{p} \neq 2$.

For $\mathrm{p}=2$ and $\alpha \in \pi_{\mathrm{t}}$ define $\mathrm{Q}(\alpha): \mathrm{P}_{\mathrm{t}} \rightarrow \mathrm{S}^{-\mathrm{t}}$ as the desuspension of the composite

$$
\begin{equation*}
\Sigma^{\mathrm{t}} \mathrm{P}_{\mathrm{t}}=\mathrm{D}_{2}\left(\mathrm{~S}^{\mathrm{t}}\right) \xrightarrow{\mathrm{D}_{2}(\alpha)} \mathrm{D}_{2}\left(\mathrm{~S}^{0}\right)=\mathrm{P}_{0} \xrightarrow{\pi} \mathrm{~S}^{0} \tag{2.1}
\end{equation*}
$$

The quadratic filtration of π_{t} is given by

$$
\begin{equation*}
\mathrm{F}^{\mathrm{n}} \pi_{\mathrm{t}}=\left\{\alpha ; \mathrm{Q}(\alpha) \mid \mathrm{P}_{\mathrm{t}}^{\mathrm{t}+\mathrm{n}-1} \simeq *\right\} \tag{2.2}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\mathrm{F}^{0} \pi_{\mathrm{t}}=\pi_{\mathrm{t}} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{F}^{1} \pi_{\mathrm{t}}=\left\{\alpha: \alpha^{2}=0\right\} \tag{2.4}
\end{equation*}
$$

We will see that

$$
\begin{equation*}
\underset{\mathrm{n}}{n \mathrm{~F}^{\mathrm{n}} \pi_{\mathrm{t}}=0} \tag{2.5}
\end{equation*}
$$

If $\alpha \in \mathrm{F}^{\mathrm{n}} \pi_{\mathrm{t}}-\mathrm{F}^{\mathrm{n}+1} \pi_{\mathrm{t}}$, we define the cup-n construction to be

Thus for example if $\alpha \not \not \mathrm{F}^{1} \pi_{\mathrm{t}}$ then $\mathrm{C}(\alpha)=\left\{\alpha^{2}\right\}$.
It is useful to extend this definition by considering the composite

$$
\mathrm{P}_{-\mathrm{S}} \xrightarrow{\mathrm{c}} \mathrm{P}_{\mathrm{t}} \xrightarrow{\mathrm{Q}(\alpha)} \mathrm{S}^{-\mathrm{t}}
$$

for $s \geq-t$, where c is the collapse map. We then have a modified quadratic filtration

$$
\begin{equation*}
\mathrm{F}_{\mathrm{s}}^{\mathrm{n}} \pi_{\mathrm{t}}=\left\{\alpha:(\mathrm{Q}(\alpha) \circ \mathrm{c}) \mid \mathrm{P}_{-\mathrm{s}}^{\mathrm{t}+\mathrm{n}-1} \simeq *\right\} \tag{2.7}
\end{equation*}
$$

Then

$$
\begin{equation*}
\mathrm{F}^{\mathrm{n}} \pi_{\mathrm{t}}=\mathrm{F}_{-\mathrm{t}}^{\mathrm{n}} \pi_{\mathrm{t}} \subseteq \mathrm{~F}_{-\mathrm{t}+1}^{\mathrm{n}} \pi_{\mathrm{t}} \subseteq \cdots \tag{2.8}
\end{equation*}
$$

and $\mathrm{F}_{\mathrm{s}}^{\mathrm{n}} \pi_{\mathrm{t}}$ is independent of s for $\mathrm{s} \geq \mathrm{t}+1$. We call this last the stable quadratic filtration and write $F_{\infty}^{n} \pi_{t}$ for it.

For $s \geq-t$ and $\alpha \in \mathrm{F}_{\mathrm{S}}^{\mathrm{n}} \pi_{\mathrm{t}}-\mathrm{F}_{\mathrm{S}}^{\mathrm{n}+1} \pi_{\mathrm{t}}$ we may define the modified cup-n construction

For $s \geq t+1, \mathrm{C}_{\mathrm{s}}(\alpha)$ is independent of s ; it is the stable cup-n construction $\mathrm{C}_{\infty}(\alpha)$.
For $\mathrm{p} \neq 2$ and $\alpha \in \pi_{\mathrm{t}}$, define $\mathrm{Q}(\alpha)$ analogously as the composite

$$
\Sigma^{2 k-\epsilon} P_{q k-\epsilon}=D_{p}\left(S^{t}\right) \xrightarrow{D_{p}(\alpha)} D_{p}\left(S^{o}\right) \xrightarrow{\pi} S^{0}
$$

if $t=2 k-\epsilon$ with $\epsilon \in\{0,1\}$. If $t=2 k$ then $Q(\alpha) \mid S^{p t}=\alpha^{p}$. If $t=2 k-1, Q(\alpha) \mid S^{2 p k-2}$ is the "restricted p-fold Massey product" $<\alpha>^{\mathrm{p}}$, depending not just on the product in the
sphere-spectrum but on the commuting homotopies as well. For example, in [7] Toda proves $\left.<\alpha_{1}\right\rangle^{\mathrm{P}}=\beta_{1}$ up to a unit in \mathbb{F}_{p}. The proof uses little more than the non-existence of elements of $\bmod p$ Hopf invariant one corresponding to P^{p}.

The rest of the definitions go just as for $p=2$; we have the p-adic filtration and the stable p-adic filtration, the cup-construction and the stable cup-construction. For instance, if $|\alpha|$ is odd and $\langle\alpha\rangle^{\mathrm{p}} \neq 0$, then $\mathrm{C}(\alpha)=\left\{\langle\alpha\rangle^{\mathrm{p}}\right\}$; otherwise $\alpha \in \mathrm{F}^{1} \pi_{\mathrm{t}}$.
§3. The proof.
Jones's key observation is the

Lemma 3.1. Let $\alpha \in \pi_{\mathrm{t}}$, with $\mathrm{t}=2 \mathrm{k}-\epsilon$, let $2 \ell+\delta \geq \mathrm{t}+1$, and let $\mathrm{r}=\mathrm{q} \ell+\delta$. Then

commutes.
This lemma relates the Mahowald filtration to the stable quadratic filtration, and the root invariant to the stable cup-construction. To see this we note that for any $s \equiv 0$ or $-1 \operatorname{modq}$ and any $\beta \in \pi_{\mathrm{s}+\mathrm{t}}$,

commutes iff

does. By (1.1), together with the fact that the dual of α is α, this commutes iff

does. But by (3.1), this commutes iff

does. Thus (taking $\beta=0$) $\mathrm{S}^{\mathrm{t}-1} \xrightarrow{\alpha} \mathrm{~S}^{-1} \xrightarrow{\iota} \mathrm{P}_{-\mathrm{s}-1}$ is null iff $\mathrm{P}_{-\mathrm{r}}^{\mathrm{s}} \longrightarrow \mathrm{P}_{\mathrm{qk}-\epsilon} \xrightarrow{\mathrm{Q}(\alpha)} \mathrm{S}^{-\mathrm{t}}$ is null. The latter is surely null if $\mathrm{s}<\mathrm{qk}-\epsilon$; and this is Jones's theorem (1.5) and its extension
to odd primes, (1.6). In fact this shows (as Jones notes) that

$$
\begin{equation*}
\mathrm{M}^{\mathrm{s}} \pi_{\mathrm{t}}=\mathrm{F}_{\infty}^{\mathrm{s}-\mathrm{t}} \pi_{\mathrm{t}} \tag{3.2}
\end{equation*}
$$

and that the root invariant coincides with the stable cup construction:

$$
\begin{equation*}
\mathrm{R}(\alpha)=\mathrm{C}_{\infty}(\alpha) . \tag{3.3}
\end{equation*}
$$

Since $M^{s} \pi_{t}=F_{\infty}^{s-t} \pi_{t} \supseteq F^{s-t} \pi_{t}$, Lin's theorem leads via (1.7) to (2.5), which may be restated as:
(3.4) The p -adic construction (with $\mathrm{t}=2 \mathrm{k}-\epsilon$)

$$
\mathrm{Q}: \pi^{-\mathrm{t}} \longrightarrow \pi^{-\mathrm{t}} \mathrm{P}_{\mathrm{qk}-\epsilon}
$$

is injective.
The proof of (3.1) is quite simple. Let $s=2 \ell+\delta$. Since $s \geq t+1, \alpha \in \pi_{\mathrm{t}}$ is represented by a map $\bar{\alpha}: S^{S+t} \longrightarrow S^{\xi}$. The following diagram then commutes by naturality in K of φ_{K}, and this proves (3.1).

§4. Two examples.

Let $\alpha_{0}=\iota$, and for $s>0$ let $\alpha_{3} \in \pi_{*}$ be a minimal dimensional nonzero p-torsion element of Adams filtration s. These are represented in Adams' E_{2} along Adams' edge. The element α_{s} is well-defined up to a unit in \mathbb{F}_{p}.

For $s>0$, the dimension of α_{s} is $q(s)-1$, where if $p>2, q(s)=q s$; if $q=2$, $q(s+4)=q(s)+8$ and

s	0	1	2	3
$\mathrm{q}(\mathrm{s})$	0	2	3	4

Theorem (Mahowald). $\alpha_{\mathrm{S}} \in \mathrm{R}\left(\mathrm{p}^{\mathrm{s}} \iota\right)$.
This says that the diagram

commutes, and that the common composite is essential.
Since $E_{2}^{\mathrm{s}, \mathrm{s}-1}\left(\mathrm{~S}^{-\mathrm{q}(\mathrm{s})}\right)=\mathbb{Z} / \mathrm{p}$ maps isomorphically to $\mathrm{E}_{2}^{\mathrm{s}, \mathrm{s}-1}\left(\mathrm{P}_{-\mathrm{q}(\mathrm{s})}\right)$, and $E_{2}^{r, r-1}\left(P_{-q(s)}\right)=0$ for $r>s$, it will suffice to show that $0 \neq p^{\mathrm{s}} \iota \in \pi_{-1} P_{-q(s)}$.

Take $p=2$. When $s \equiv 1$ or $2 \bmod 4$, this may be checked by projecting on into bo $\wedge P_{-q(s)}$, which is not hard to compute [6]. In the other cases, one may detect the class in J-theory. Using James periodicity to translate Mahowald's analysis in [6] of $J_{*}\left(\mathbb{R P}^{\mathrm{n}}\right)$ to stunted projective spaces, one finds

$$
\mathrm{J}_{-1}\left(\mathrm{P}_{-\mathrm{q}(\mathrm{~s})}\right)=\mathbb{Z} / 2^{\mathrm{s}+1}
$$

generated by the Hurewicz image of l.
When $p>2$, a similar but simpler analysis shows that $J_{-1}\left(P_{-q s}\right)=\mathbb{Z} / p^{s+1}$, and the result again follows.

In our second example, we will use Toda's computation of $\mathrm{C}\left(\alpha_{1}\right)$; as recalled above, it is a unit multiple of β_{1}. Thus by Lemma 3.1

commutes. If the horizontal composite is nonzero for large s, then $u \beta_{1} \in \mathrm{R}\left(\alpha_{1}\right)$. The dual of the bottom composite is

$$
\mathrm{S}^{\mathrm{q}-2} \xrightarrow{\beta_{1}} \mathrm{~S}^{-(\mathrm{p}-1) \mathrm{q}} \longrightarrow \mathrm{P}_{-(\mathrm{p}-1) \mathrm{q}}
$$

(after dropping the unit, suspending, and including into the infinite projective space). To see this is essential one checks that it is nonzero at Adams' E_{2}. Since $E_{2}^{0, q-1}\left(P_{-(p-1) q}\right)=0$, this element survives.

References

1. R. R. Bruner, J. P. May, J. E. McClure, and M. Steinberger, H_{∞} ring spectra and their applications, Springer Lecture Notes in Math. 1176 (1986).
2. J.D.S. Jones, Root invariants, cup-r-products and the Kahn-Priddy theorem, Bull. Lon. Math. Soc. 17 (1985) 479-483.
3. J.D.S. Jones and S. A. Wegmann, Limits of stable homotopy and cohomology groups, Math. Proc. Camb. Phil. Soc. 94 (1983) 473-482.
4. W. H. Lin, On conjectures of Mahowald, Segal and Sullivan, Math. Proc. Camb. Phil. Soc. 87 (1980) 449-458.
5. M. E. Mahowald, The metastable homotopy of S^{n}, Mem. A.M.S. 72 (1967).
6. M. E. Mahowald, The image of J in the EHP sequence, Ann. of Math. 116 (1982), 65-112.
7. H. Toda, Extended $p^{\text {th }}$ powers of complexes and applications to homotopy theory, Proc. Japan Acad. 44 (1968), 198-203.

[^0]: ${ }^{1}$ Supported in part by the NSF.

