On G and the Stable Adams Conjecture
by
Haynes R. Miller and Stewart B. Priddy

The purpose of this note is to record the results of our study of the spectrum of G, the space of stable homotopy equivalences of spheres. Because of the J homomorphism and the fibration of infinite loop spaces

$$
\begin{equation*}
\mathrm{O} \xrightarrow{J} G \rightarrow \mathrm{G} / \mathrm{O} \tag{1}
\end{equation*}
$$

one is reduced to studying $G / 0$. We compute a summand of the cohomology of the spectrum of G / O. We also establish a fibration of infinite loop spaces

$$
\mathrm{BU} \rightarrow \mathrm{X} \rightarrow \mathrm{IBO}
$$

where $X=G / 0$ with a possibly different infinite loop space structure and IBO is the fiber of the unit map $Q S^{\circ} \rightarrow B O \times \mathbb{Z}$. Finally we formulate a stable version of the real Adams Conjecture the truth of which is shown to imply that X is G / O with the standard infinite loop space structure. Thus a proof of our conjecture will determine G in terms of more elementary infinite loop spaces.

We would like to thank Mark Mahowald for his interest and for numerous helpful conversations during the course of this research. We also thank the NSF for its support under MCS76-07051. The first author wishes to thank Northwestern University for its hospitality during his very enjoyable year's visit.

81. Preliminaries

Let $Q X=\lim \Omega^{n} \Sigma^{n} X$. Then $Q X$ is an infinite loop space; i.e., the zero space of the Ω-spectrum $\left\{Q \Sigma^{n} X\right\}$. For $X=S^{\circ}, Q S^{0}$ has components $Q_{k} S^{\circ}, k_{\mathcal{E}} \mathbb{Z}$, determined by the degree of self maps of spheres.

Stable spherical fibration theory is classified by $B G$ where $G=Q_{ \pm 1} S^{\circ}$; for oriented theory one uses $B S G$ where $S G=Q_{1} S^{\circ}$. Both G and $S G$ are infinite loop spaces under composition. On the other hand, reduced stable cohomotopy theory is classified by $Q_{O} S^{\circ}$, itself an infinite loop space under loop sum. Since $S G$ and $Q_{0} S^{0}$ are equivalent as spaces one would like to undexstand the relationship between these two basic (and apparently very different) infinite loop structures.

We remind the reader that in the case of oriented real (or complex) K-theory the zero and one components BSO_{\oplus} and $\mathrm{BSO}^{\text {are actually }}$ equivalent as infinite loop spaces when localized at any prime [AP]. Certainly nothing so simple is true for $S G$ and $Q_{O} S^{\circ}$ because their Pontryagin algebras differ.

To give all of this a focus the reader may wish to keep in mind the old problem of computing the homology of the spectrum sg associated to SG

$$
H_{*} S g=\lim H_{*+n} B^{n} S G
$$

Throughout this note we shall use (co-)homology with coefficients in $\% / 2$. All spaces will be localized at 2. The case of odd primes is fundamentally different as we shall indicate in 82.

We recall that any infinite loop space has Dyer-Lashof homology operations: in the case of $Q S^{\circ}$

$$
Q^{k}: H_{*} Q_{n} S^{O} \rightarrow H_{*+k} Q_{2 n} S^{O}
$$

Let $[n] 6 H_{0} Q_{n} S^{\circ}=\mathbb{Z} / 2$ denote the generator. Then Browder [B] computed

$$
H_{*} Q_{0} S^{\circ}=\mathbb{Z} / 2\left[Q^{I}[1] *\left[-2^{\ell(I)}\right]\right]
$$

where * denotes the Pontryagin product (under loop sum) and $I=\left(i_{1}, \ldots, i_{\ell}\right)$ runs over those sequences of positive integers with $i_{j} \leq 2 i_{j+1}, i_{1}>i_{2}+\cdots+i_{\ell}$ and $\boldsymbol{\ell}(I) \geq 1$. Such sequences are called allowable. The length of $I, 4(I)$, is defined to be $\boldsymbol{4}$.

Later, Milgram [Mg] described H_{*} SG in terms of the Dyer-Lashof operations for $Q S^{\circ}$ as

$$
\begin{aligned}
H_{*} S G= & E\left[Q^{k}[1] *[-1]\right] \otimes \mathbb{Z} / 2\left[Q^{k} Q^{k}[1] *[-3]\right] \\
& \otimes \mathbb{Z} / 2\left[Q^{I}[1] *\left[1-2^{\ell(I)}\right]\right]
\end{aligned}
$$

Where $k \geq 1$ and I runs over the same sequences as above except $\boldsymbol{\ell}(I)>1$. The exterior classes $Q^{k}[1] *[-1]$ are easily shown to come from $S O$ under the J-homomorphism. Further, fibration (1) and the Eilenberg-Moore spectral sequence show that

$$
\mathrm{H}_{*} \mathrm{SG}=\mathrm{H}_{*} \mathrm{SO} \otimes \mathrm{H}_{*} \mathrm{G} / \mathrm{O}
$$

with

$$
\begin{gathered}
H_{*} S O=E\left[Q^{K}[1] *[-1]\right] \\
H_{*} G / O=\mathbb{Z} / 2\left[Q^{k} Q^{k}[1] *[-3]\right] \otimes \mathbb{Z} / 2\left[Q^{I}[1] *\left[1-2^{\ell(I)}\right]\right]
\end{gathered}
$$

Thus one may naively explain the difference between the Pontryagin algebras $H_{*} Q_{O} S^{\circ}$ and $H_{*} S G$ by saying that the exterior classes $Q^{k}[1] *[-1]$ force the existence of new generators $Q^{k} Q^{k}[1] *[-3]$ to compensate for the fact that the ranks must be equal. It is important to note that these elements are decomposable in $Q_{0} S^{\circ}$, i.e.

$$
Q^{k} Q^{k}[1] *[-4]=\left(Q^{k}[1] *[-2]\right)^{* 2}
$$

The rest of $H_{*} S G$ looks like $H_{*} Q_{O} S^{\circ}$ (superficially at least).
By using the Dyer-Lashof operations of SG (derived from the composition product) a stronger statement is possible. We denote these operations by

$$
\tilde{Q}^{\mathrm{K}}: \mathrm{H}_{*} \mathrm{SG} \rightarrow \mathrm{H}_{*+k} \mathrm{SG}
$$

On SO, Kochman [K] has determined these operations while on $G / 0$ one has Madsen's formula $[M d]$: let $X_{I}=Q^{I}[1] *\left[1-2^{(I)}\right]$ then

$$
\begin{equation*}
\tilde{Q}^{k} x_{I}=x_{(k, I)}+\underset{2(J)<\boldsymbol{l}(k, I)}{\Sigma} X_{J}+\text {-decomposables } \tag{2}
\end{equation*}
$$

where denotes the Pontryagin product, Thus modulo lower length terms and decomposables the \tilde{Q} operations correspond precisely to the Q operations. This strongly suggests some geometric relation between $S G$ and $Q_{O} S^{O}$ as infinite loop spaces. We shall return to this in 83.
82. A summand of $H_{*} g / 0$

In studying G / O it is natural to consider the Adams Conjecture

According to Quillen and Sullivan $[Q, S] B J \cdot\left(\psi^{3}-1\right)=0$ and so one has the indicated lift a. However, Madsen [Md] using (2) has shown that no choice of α is an $H-m a p$ and so α is of little use in studying G/O as an infinite loop space. It appears that the most one can say is
that the infinite loop map

$$
Q B O(2) \xrightarrow{\overline{\mathrm{E}}} \mathrm{G} / 0
$$

(induced by a restricted to $B O(2)$) splits up to homotopy [P2]. The deviation of a from additivity has recently been analyzed by Tonehave; it involves the Bott map $\mathrm{BO} \xrightarrow{m}$ SO.

In the complex case, there is no such obstruction to additivity and Friedlander and seymour [FS] have recently solved the stable Complex Adams Conjecture; i.e.

with BJ: $\left(\psi^{3}-1\right)=0$ as infinite loop maps. (They prove the analogous assertion also at an odd prime. It follows that at an odd prime the analogue of a in (3) can be taken to be an infinite loop map). We define f to be the resulting infinite loop map

$$
f: \mathrm{BU} \xrightarrow{\beta} \mathrm{SG} / \mathrm{U} \xrightarrow{\rho} G / 0
$$

where p is the natural map. Recalling that $H_{*} B U=\mathbb{Z} / 2\left[a_{K}\right]$, $\operatorname{dim} a_{k}=2 k$, we have

Proposition. $f_{*}\left(a_{k}\right)=x_{k k}$ in $Q H_{*} G / O$, the module of o-indecomposables $\left(x_{k k}=Q_{Q}^{k_{k}^{k}}[1] *[-3]\right)$.

Proof: Consider the homotopy commutative diagram

where the vertical maps form fiber sequences and r is realification. Let $\mathrm{a}_{2}^{\prime} \mathrm{H}_{4}(\mathrm{BU} ; \mathbb{Z})$ be a class which reduces (mod 2) to a_{2}. Then in integral homology, $\left(\psi^{3}-1\right) *\left(a_{2}^{\prime}\right)=8 a_{2}^{\prime}$ [A2]. Let $b_{2} \in H_{4}$ (BSO; 吕)/Torsion be a generator. Then $r_{*}\left(a_{2}^{\prime}\right)=n \cdot b_{2}$ where n is odd $[C]$. Let $c_{2} \in \mathrm{H}_{4}(\mathrm{G} / \mathrm{O}$; Z)/Torsion be a generator. Then using a solution of the real Adams Conjecture $[Q, S]$

one can deduce that $\pi_{*}\left(c_{2}\right)=8 k \cdot b_{2}$, k odd. Hence $f_{*}\left(a_{2}^{\prime}\right)=2 \cdot c_{2}$, $\&$ odd. Thus, reducing mod 2 and using a standard Bockstein argument we find $f_{*}\left(a_{2}\right)=X_{22}$ in $Q H_{*} G / O($ in $\bmod 2$ homology). Also $f_{*}\left(a_{1}\right)=f_{*}\left(S q_{*}^{2} a_{2}\right)=S q_{*}^{2} x_{22}=x_{11}$.

Using this fact and examining the diagonal map it is easy to see that in $\mathrm{QH}_{*} \hat{6} / 0$

$$
f_{*}\left(a_{k}\right)=x_{k, k}+\Sigma x_{I}
$$

for some (possibly empty) set of allowable sequences I with $\&(I)>2$ and $|I|=\Sigma I_{j}$ even. We wish to show that $\Sigma X_{I}=0$.

$$
0=S q_{*}^{I} f_{*}\left(a_{K}\right)=S q_{*}^{I}\left(\Sigma X_{I}\right)=\Sigma\left(i_{I}-1\right) x_{I-\Delta_{1}}
$$

where $I=\left(i_{1}, \ldots\right)$ and $\Delta_{1}=(1,0, \ldots, 0)$. If i_{1} is even then $X_{I-\Delta_{1}}$ is allowable, hence I appears only if i_{1} is odd. However, let

$$
m=\max \left\{h(I) \mid X_{I} \text { is a summand of } f_{*}\left(a_{k}\right)\right\}
$$

and suppose $\left(i_{1}, i_{2}, \ldots, i_{m}\right)$ occurs. Then

$$
\begin{aligned}
& 0=f_{*}(0)=f_{*}\left(Q^{2 i_{1}} l^{-1} a_{K}\right)=\tilde{Q}^{2 i_{1}}{ }^{-1} f_{*}\left(a_{K}\right) \\
= & \sum_{\ell(I)=m^{2 i_{1}}} \tilde{Q}^{-1} x_{I}+\sum_{\ell(I)<\mathbf{w}^{2}} \tilde{Q}^{2 i_{1}-1} x_{I}=\sum x_{\left(2 i_{1}-I, I\right)}+
\end{aligned}
$$

terms of length $\leq m$ (using (2)). Since each of the terms $x_{\left(2 i_{1}-1,1\right)}$ is allowable this completes the proof.

This proposition has immediate implications for the (co-)homology of the Ω-spectrum $g / 0$ with zero space G / O. Let bu denote the \boldsymbol{n}-spectrum with zero space $B U$; i.e. connective reduced complex K-theory. Adams [A1] has computed

$$
H^{*} b u=\Sigma^{2} A / A\left(S q^{1}, S q^{3}\right)
$$

where A denotes the mod 2 steenrod algebra as usual. Now f induces a map of spectra

$$
f: b u \rightarrow g / 0
$$

and we have

Corollary. H_{*} bu is a $\mathbf{Z} / 2$-summand of $H_{*} g / 0$.

Proof: Equivalently we show f^{*} is surjective. Since H^{*} bu is monogenic
over A we need only show that the generator in dimension 2 is in the image. But this is the Hurewicz dimension so the result follows from the Proposition.

Remark: H^{*} bu is not a summand over A because the 2 and 3 dimensional classes of $\mathrm{H}^{*} g / O$ are connected by Sq^{1}.
83. Two Conjectures

In this section we study the cokernel of the infinite loop map $f: B U \rightarrow G / O$ of $\$ 2$.

Let ko denote the n-spectrum representing connective unreduced real K-theory; i.e. the zero space of ko is $B O \times \mathbb{Z}$. The unit map $S \rightarrow$ ko gives rise to an infinite loop map

$$
u: Q S^{\circ} \rightarrow \mathrm{BO} \times \mathbb{Z}
$$

Recalling that $H_{*} B O=\mathbb{K}_{4} / 2\left[\bar{e}_{k}\right]$ and $u_{*}\left(Q^{k}[1] *[-2]\right)=\bar{e}_{k}$ [P2], we have an exact sequence of $\mathbb{Z} / 2$-modules

$$
\mathrm{O} \rightarrow \mathrm{QH}_{*} \mathrm{BU} \xrightarrow{\mathrm{f}_{*}} Q \mathrm{H}_{*} \mathrm{G} / \mathrm{O} \xrightarrow{\gamma} Q \mathrm{H}_{*} Q_{\mathrm{O}} \mathrm{~S}^{\mathrm{O}} \xrightarrow{\mathrm{u}_{*}} Q \mathrm{H}_{*} \mathrm{BO} \rightarrow 0
$$

where $Q(\cdot)$ is the algebra indecomposables functor. The map $\boldsymbol{\gamma}$ is defined on basis elements by $X_{I} \rightarrow Q^{I}[I] *\left[-2^{(I)}\right]$. Since f_{*} and u_{*} are induced by infinite loop maps, both preserve Dyer-Lashof operations. By (2), y preserves Dyer-Lashof operations up to a length filtration. Of course, a priori, γ is just an algebraic map, but the first author has a spectral sequence for computing the homology of a spectrum and the E^{2} term depends on the homology indecomposables of the zero space as an unstable module over the Dyer-Lashof algebra. Thus it seems plausible to make the following conjecture. Let IBO denote the fibre of $u: Q S^{\circ} \rightarrow B O \times \mathbb{Z}$.

Conjecture A. There exists a fibration

$$
\mathrm{BU} \xrightarrow{\mathrm{f}} \mathrm{G} / \mathrm{O} \rightarrow \mathrm{IBO}
$$

of infinite loop spaces.
One consequence of this conjecture is a complete calculation of $\mathrm{H}^{*} \mathrm{~g} / \mathrm{O}$. From the cofibration sequence

$$
\ldots \rightarrow \Sigma^{-1}(\mathrm{ko} / \mathrm{S}) \rightarrow S \rightarrow \mathrm{ko} \rightarrow \mathrm{ko} / \mathrm{S} \rightarrow \cdots
$$

and Stong's calculation [St], $H^{*} k o=A / A\left(S q{ }^{1}, S q^{2}\right)$ we have

$$
\mathrm{H}^{*} \Sigma^{-1}(\mathrm{ko} / \mathrm{S})=\Sigma^{-1} I\left(\mathrm{~A} / \mathrm{A}\left(\mathrm{Sq}^{1}, \mathrm{Sq}^{2}\right)\right)
$$

Hence from the Corollaxy of $\$ 2$ we have

Corollary of Conjecture A

$$
H^{*} g / 0=\Sigma^{2}\left(A / A\left(S q^{1}, S q^{3}\right)\right) \oplus \Sigma^{-1} I\left(A / A\left(S q^{1}, S q^{2}\right)\right)
$$

with the 2 and 3 dimensional generators connected by Sq^{1}. We now construct a candidate for a solution to Conjecture A. Since BSpin is connected, the composite

$$
\mathrm{QS}{ }^{\circ} \xrightarrow{u} \mathrm{BO} \times \mathrm{Z} \xrightarrow{\psi^{3}-1} \mathrm{BSpin}
$$

[^0](4)

Let X be the fiber of the composite $I B O \xrightarrow{\psi}$ Spin $\stackrel{C}{ }$ SU where c is complexification. Then from the Bott sequence BSO \rightarrow Spin \xrightarrow{c} SU we have an induced map of infinite loop space fibrations

Where r is realification.
We have been unable to prose that

$$
\begin{equation*}
\mathrm{BU} \rightarrow \mathrm{X} \rightarrow \mathrm{IBO} \tag{6}
\end{equation*}
$$

is a solution to Conjecture A. However in $\$ 4$ we show that as a space X is equivalent to G / O and so X provides some delooping of G / O (possibly non standard). We also show that both X and $G / 0$ provide infinite loop space factorizations of r. Thus (6) seems a very good aandidate for Conjecture A.

First we show how Conjecture A relates to the Stable Adams Conjecture. Consider the diagram

where r is realification and π is inclusion of the fiber of BJ. By the Adams Conjecture BJ. $\left(v^{3}-1\right)=0$ as maps of spaces but not H-spaces. By the stable Adams Conjecture BJ. $\left.\|^{3}-1\right) \cdot r \simeq 0$ as infinite loop space maps (see \$2). We propose the intermediate conjecture.

Conjecture B. BJ• $\left(\psi^{3}-1\right) \cdot \varepsilon=0$ as infinite loop space maps. This immediately implies Conjecture A

Lemma. Any infinite loop map φ completing diagram (7) is an equivaIence (at 2).

Proof: In $\$ 4$ we show $X \simeq G / O$ as a space, hence it is enough to prove φ_{*} is surjective in mod-2 homology. Over the Dyer-Lashof algebra, $Q H_{*} G / O$ is generated by the coalgebra C with basis $\left\{x_{a, b}: a \leq 2 b, a \geq b \geq 0\right\}$ (see [Ma]). Thus it suffices to show $x_{a, b} \in \operatorname{Im} \varphi_{*}$ modulo terms of higher length. As an algebra $C^{*}=\mathbb{Z} / 2[x, y]$ where x and y are dual to x_{11} and x_{21} respectively. Since $X \simeq G / 0$ as a space, $H^{*} X$ is a polynomial algebra and thus it suffices to show $x_{11}, x_{21} \in \operatorname{Im} \varphi_{*}$. By the argument of the Proposition of $\S 2$, $x_{11} \in \operatorname{Im} \varphi_{*}$. The relation $\operatorname{Sq}^{1}{ }_{x}=y$ implies $x_{21} \in \operatorname{Im} \varphi_{*}$. This completes the proof.

84. Properties of X .

Proposition. $X=G / O$ as spaces.
Let ImJ $x \mathbb{Z}$ denote the fiber of $\psi^{3}-1:$ BO $\times \mathbb{Z} \rightarrow$ BSpin. Then from
diagram (4) and the 3×3 Lemma for infinite loop spaces (or spectra) we have the following homotopy commutative diagram of infinite loop spaces and maps.
(8)

where the vertical and horizontal sequences are fibrations and where the common fiber, C_{\oplus}, is called the (additive) coker J. A (multiplicative) coker J, $C_{\&}$, is defined as the fiber of the unit map $u: Q^{\circ}{ }^{0} \rightarrow \operatorname{ImJ} \times \mathbb{Z}$ restricted to the l-components. As spaces $C_{\oplus} \simeq C_{\otimes}$. Proof of Proposition: Combining diagrams (5) and (8) we have

Let IBO_{\otimes} be the fiber of $\mathrm{u}: Q \mathrm{~S}^{\circ} \rightarrow \mathrm{BO} \times \mathbb{Z}$ restricted to the 1 -components. May [My] has shown $\mathrm{IBO}_{\mathcal{O}}=\mathrm{C}_{\infty} \times$ Spin as infinite loop spaces. Since $\mathrm{IBO}_{\otimes} \simeq \operatorname{IBO}$ as spaces and since $K 0^{*}\left(\mathrm{C}_{\otimes}\right)=0[\mathrm{Sn}]$ we have a splitting IBO \xrightarrow{H} Spin (as spaces) and thus from (9) a splitting $X \underset{\leftrightarrow}{\boldsymbol{\varepsilon}} \underset{\longrightarrow}{\longrightarrow}$ BSO;
i.e. $X \simeq C_{\oplus} \times B S O$ as spaces. However $G / O \simeq C_{\otimes} \times B S O$ [MST] and so this completes the proof.

From diagram (5) we see that X factors realification. Next we show that G / O shares this property. The Atiyah-Bott-Shapiro orientation of Spin bundles defines a KO-characteristic class $e: G / 0 \rightarrow B S O$ which is an infinite loop map [MST]. The Adams cannibalistic cless $\rho_{3}: B S O \rightarrow \mathrm{BSO}_{8}$ is an infinite loop equivalence [MST].

Proposition. G/O factors realification; i.e.

is homotopy commutative as infinite loop maps. First we establish

Lemma.

is homotopy commutative as infinite loop maps.

Proof: The diagram

is homotopy commutative on the space level [MST]. Let $\mathrm{d}=\left[\left(\psi^{3} / \mathrm{l}\right) \cdot \mathrm{e}\right] /\left(\rho_{3} \cdot \pi\right): \mathrm{G} / 0 \rightarrow \mathrm{BSO}_{8}$. Since the set of homotopy classes of infinite loop maps $C_{\otimes} \rightarrow \mathrm{BSO}_{\otimes}$ is trivial [MST] there is an infinite loop map δ factoring

An infinite loop self map of BSO is determined by its restriction to the zero space [MST]. (BSO_{8} is equivalent to BSO [AP].) Similarly a self map of BSO is determined by its induced morphism in rational homology [My]. Since $d \simeq 0$ and e is a rational equivalence it follows that $\delta=0$ as an infinite loop map.

The lemma now follows from the homotopy commutativity of

as infinite loop maps [My]. This completes the proof.

Proof of Proposition: Consider the diagram

By definition the unlabeled squares commute up to homotopy as infinite loop maps. Similarly for square I by the preceding lemma and for square 2 by Adams [A2]. This completes the proof.

Finally we mention another

Corollary of Conjecture $B: C_{\oplus} \simeq C_{Q}$ as infinite loop spaces.

Proof: By the Lemma of $83, \varphi$ is an equivalence. Since p_{3} is also an equivalence, it suffices to show that φ fits into a map of infinite loop space fibrations

Let $d=e \cdot p / \rho_{3} \cdot \varepsilon: X \rightarrow \mathrm{BSO}_{\otimes}$. Since the set of homotopy classes of infinite loop space maps $C_{\Theta} \rightarrow \mathrm{BSO}_{\beta}$ is trivial [MST] there is an infinite loop map of factoring d

Now as in the proof of the preceding lemma it suffices to show $\delta_{*}=0$ in rational homology.

Consider the diagram

Square 1 commutes up to homotopy by the preceding lemma. The outer diagram commutes up to homotopy by definition of φ. Since ρ_{3} and $4^{3}-1$ are rational equivalences the result follows.

Remark: P. May has made some low dimensional calculations with homology operations which support this corollary.

References

[AI] J. F. Adams, on Chern characters and the structure of the unitary group, Proc. Camb. Phil. Soc. 57 (1961), 189-199.
[A2] \qquad , Vector fields on spheres, Ann. of Math. 75 (1962), 603-632.
[AP] J. F. Adams and S. B. Priddy, Uniqueness of BSO, Math. Proc. Camb. Phil. Soc. 80 (1976), 475-509.
[B] W. Browder, Homology operations and loop spaces, III. J. Math. 4 (1960), 347-357.
[C] H. Cartan, Démonstration homologique des théoremes de periodicite de Bott II, Sem. H. Cartan (1959/60).
[FS] E. Friedlander and R. Seymour, Two proofs of the stable Adams Conjecture, Bull. Amer. Math. Soc. (to appear).
[K] S. O. Kochman, Homology of the classical groups over the DyerLashof algebra, Trans. Amer. Math. Soc. 185 (1973), 83-136.
[Md] I. Madsen, on the action of the Dyer-Lashof algebra in $H_{*}(G)$, Pacific J. Math. 69 (1975), 235-275.
[MST] I. Madsen, V. Snaith, and J. Tornehave, Infinite loop maps in geometric topology, Math. Proc. Camb. Phil. Soc. 81 (1977), 399-429.
[My] J. P. May (with contributions by F. Quinn, N. Ray, and J. Tornehave), E_{∞} ring spaces and E_{∞} ring spectra, Lecture Notes in Math. vol. 577, Springer-Verlag, Berlin and New York, 1977.
[Mg] R. J. Milgram, The mod 2 spherical characteristic classes, Ann. of Math. 92 (1970), 238-261.
[P1] S. B. Priddy, Dyer-Lashof operations for the classifying spaces of certain matrix groups, Quart. J. Math. 26 (1975), 179-193.
[P2] \qquad , Homotopy splittings involving G and G / O, (to appear).
[Q] D. G. Quillen, The Adams conjecture, Topology 10 (1971), 67-80.
[Sn] V. P. Snaith, Dyer-Lashof operations in K-theory, Lecture Notes in Math. vol. 496, Springer-Verlag, Berlin and New York, 1975.
[St] R. E. Stong, Notes on Cobordism Theory, Princeton University Press, Princeton, N. J., 1968.
[S] D. Sullivan, Genetics of homotopy theory and the Adams conjecture, Ann. of Math. (-2) 100 (1974), 1-79.

Harvard University
Northwestern University

[^0]: is null homotopic as an infinite loop map. Hence there is an induced map of infinite loop space fibrations

