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The purpose of this note is to record the results of our study of 

the spectrum of G, the space of stable homotopy equivalences of 

spheres. Because of the J homomorphism and the fibration of infinite 

loop spaces 

(i) o #> G ~ a/o 

one is reduced to studying G/0. We compute a summand of the cohomology 

of the spectrum of G/0. We also establish a fibration of infinite 

loop spaces 

BU ~ X ~ IB0 

where X = G/0 with a possibly different infinite loop space structure 

and IB0 is the fiber of the unit map QS 0 ~ B0 × Z. Finally we formu- 

late a stable version of the real Adams Conjecture the truth of which 

is shown to imply that X is G/0 with the standard infinite loop 

space structure. Thus a proof of our conjecture will determine G in 

terms of more elementary infinite loop spaces. 
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§I. Preliminaries 

Let QX = lim nnznx. Then ~X is an infinite loop space; i.e., the 

zero space of the ~-spectrum [QZnX}. For X = S O , QS 0 has components 

Qk SO, k~Z, determined by the degree of self maps of spheres. 

Stable spherical fibration theory is classified by BG where 

G = __Q+ISO; for oriented theory one uses BSG where SG = QI S0. Both G 

and SG are infinite loop spaces under composition. On the other hand, 

reduced stable cohomotopy theory is classified by QO S0, itself an 

infinite loop space under loop sum. Since SG and ~S 0 are equivalent 

as spaces one would like to understand the relationship between these 

two basic (and apparently very different) infinite loop structures. 

We remind the reader that in the case of oriented real (or com- 

plex) K-theory the zero and one components BS0~ and BSO~ are actually 

equivalent as infinite loop spaces when localized at any prime [AP]. 

Certainly nothing so simple is true for SG and QO SO because their 

Pontryagin algebras differ. 

To give all of this a focus the reader may wish to keep in mind 

the old problem of computing the homology of the spectrum sg associated 

to SG 

H. sg = lim H +nBnSG 

Throughout this note we shall use (co-)homology with coefficients 

in ~/2. All spaces will be localized at 2. The case of odd primes is 

fundamentally different as we shall indicate in 42. 

We recall that any infinite loop space has Dyer-Lashof homology 

operations; in the case of QS 0 

Qk: H.~S 0 ~ H.+kQ2nSO 

Let [n]~HoQnS0 = ~2 denote the generator. Then Browder [B] computed 
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G % s  ° = z / 2 [  qz[ 1 ] .  [ -2 6(z)  ] ] 

where * denotes the Pontryagin product (under loop sum) and 

I = (il,...,i6) runs over those sequences of positive integers with 

ij ~ 2ij+l, i I > i 2 + ... + i 6 and 6(1) ~ i. Such sequences are called 

allowable. The length of I, ~(I), is defined to be ~. 

Later, Milgram [Mg] described H.SG in terms of the Dyer-Lashof 

operations for QS 0 as 

H.sG = E[Qk[1].[-1]] ® ~JS[QkQk[1] . [-3]] 

® ~/2[QZ[ib[1-2 6(I) ]] 

where k > i and I runs over the same sequences as above except 

6(I) > i. The exterior classes Qk[l]*[-1] are easily shown to come 

from SO u/qder the J-homomorphism. Further, fibration (i) and the 

Eilenberg-Moore spectral sequence show that 

with 

~so = ~[Qk[1]~[ 1]] 

H.G/0 : ~/2[QkQk[l]*[-3]] ® ~/2[QI[1].[l-2 6(I) ]] 

Thus one may naively explain the difference between the Pontryagin 

algebras H. Q0 SO and H. SG by saying that the exterior classes Qk[l]* [-i] 

force the existence of new generators QkQk[l]*[-3] to compensate for 

the fact that the ranks must be equal. It is important to note that 

these elements are decomposable in Q0 SO, i.e. 
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~2 QkQk[1].[-~] = (Qk[l]~[-2]) . 

The rest of H.SG looks like H~QoS0 (superficially at least). 

By using the Dyer-Lashof operations of SG (derived from the com- 

position product) a stronger statement is possible. We denote these 

operations by 

•k H.SG ~ H.+kSG 

On SO, Koehman [K] has determined these operations while on G/O one 

has Madsen's formula [Md]: let x I = QI[I]*[I-2~(1)] then 

(2) ~x I = X(k,l ) + Z xj + ~-decomposables 
~(J)<~(k,l) 

where o denotes the Pontryagin product. Thus modulo lower length 

terms and decomposables the Q operations correspond precisely to the 

Q operations. This strongly suggests some geometric relation between 

SG and Q0 S0 as infinite loop spaces. We shall return to this in §3. 

§2. A summand of ~g/0 

In studying G/0 it is natural to consider the Adams Conjecture 

(3) G/0 ~ BSO BJ > BSG 
A 

<, ¢3_~ 
\ 

BO 

According to Quillen and Sullivan [Q,S] BJ.(~3-1) = 0 and so one has 

the indicated lift ~. However, Madsen [Md] using (2) has shown that 

no choice of a is an H-map and so ~ is of little use in studying 

G/0 as an infinite loop space. It appears that the most one can say is 
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that the infinite loop map 

~o(2)  -~> G/o 

(induced by ~ restricted to BO(2)) splits up to homotopy [P2]. The 

deviation of ~ from additivity has recently been analyzed by Tonehave; 

it involves the Bott map BO ~ > SO. 

In the complex case, there is no such obstruction to additivity 

and Friedlander and Seymour [FS] have recently solved the Stable Com- 

plex Adams Conjecture; i.e. 

BJ 
SG/U . BU 

~ A 

~ ¢ 3_ 1 
\ 

\ 

BU 

> BSG 

with BJ,(¢3-1) ~ 0 as infinite loop maps. (They prove the analogous 

assertion also at an odd prime. It follows that at an odd prime the 

analogue of ~ in (3) can be taken to be an infinite loop map). We 

define f to be the resulting infinite loop map 

f: Bu ~ ,>SG/U P,,,> G/O 

where p is the natural map. Recalling that H.BU = ~/2[ak], 

dim a k = 2k, we have 

Proposition. f.(ak) = Xkk in QH.G/O, the module of a-indecomposables 

(~ = QkQk[l].[_3]) • 

Proof: Consider the homotopy commutative diagram 
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so /u  P,, > a / o  

BU - > ......... r > BSO 

BSG ,,,,,,,,:'' BSG 

where the vertical maps form fiber sequences and r is realification. 
! 

Let a2¢H~(BU; ~) be a class which reduces (mod 2) to a 2. Then in 
! T 

integral homology, (~3-i).(a2) = 8a 2 [A2]. Let b2~H4(BSO; ~)/Torsion 
! 

b e  a g e n e r a t o r .  T h e n r . ( a 2 )  = n - b  2 w h e r e  n i s  o d d  [C ] .  L e t  

C2~H4(G/O; Z)/Torsion be a generator. Then using a solution of the 

r e a l  Adams C o n j e c t u r e  [@,S  ] 

G/O ~ > BSO BJ > BSG 
R A 

" 43 \ 

\ 
\ 

x 

BS@ 

I 

one can deduce that v.(c2) = 8k.b2, k odd. Hence f.(a2) = $.c 2, ~ odd. 

Thus, reducing mod 2 and using a standard Bockstein argument we find 

f.(a2) = x22 in QH.G/0 (in mod 9 homology). Also 

2 2 
f.(al) : f.(S%ap : s%x22 : Xll. 

Using this fact and examining the diagonal map it is easy to see 

that in QH.G/O 

f*(ak) : ~,k + Z 

for some (possibly empty) set of allowable sequences I with ~(I) > 2 

and I II = Zij even. We wish to show that E x I = O. 

o = sq}f. Iap = s~Is xp = S(irllXi_~l 
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where I = (il,...) and A I = (i,0 ..... 0). If i I is even then Xl_Al 

allowable, hence I appears only if i I is odd. However, let 

m = m a x [ ~ ( I )  ~x I i s  a summand o f  f . ( a k ) ]  

and suppose (il, i 2 .... ,im) occurs. Then 

2il-1 _2ii-i 
0 = f . ( O )  = f . ( Q  ak) = Q f . ( a k )  

~2ii-i ~2ii-I 

E Q z~ + E Q x I = E x(2il_l,l ) + ~(I) :m ~(I)<~ 

is 

terms of length ~ m (using (2)). Since each of the terms x(2il_l,l ) is 

allowable this completes the proof. 

This proposition has immediate implications for the (co-)homology 

of the ~-spectrum g/0 with zero space G/0. Let bu denote the ~-spec- 

trum with zero space BU; i.e. connective reduced complex K-theory. 

Adams [AI] has computed 

H*bu = E2A/A(Sq l,sq 3) 

where A denotes the mod 2 Steenrod algebra as usual. Now f 

a map of spectra 

induces 

f: bu ~ g/O 

and we have 

Corollary. H.bu is a Z/2-summand of H.g/0. 

Proof: Equivalently we show f* is surjective. Since H*bu is monogenic 
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over A we need only show that the generator in dimension 2 is in the 

image. But this is the Hurewicz dimension so the result follows from 

the Proposition. 

Remark: H*bu is not a summand over A because the 2 and 3 dimensional 

classes of H'g/0 are connected by Sq I. 

~3. Two Conjectures 

In this section we study the cokernel of the infinite loop map 

f: BU ~ G/0 of ~2. 

Let ko denote the n-spectrum representing connective unreduced 

real K-theory; i.e. the zero space of ko is BO × Z. The unit map 

S . ko gives rise to an infinite loop map 

u: QS 0 * B0 × 

Recalling that H.B0 = ~/2[~k] and u.(Qk[l].[-2]) = ~k [P2], we have an 

exact sequence of ~/2-modules 

f. u. 
QH.BU--> QH.G/0 Y > QII, Q0 S0 > QH.B0 -, 0 0 

where Q(.) is the algebra indecomposables functor. The map ¥ is de- 

fined on basis elements by x I ~ QI[I].[-2~(1)]. Since f. and u. are 

induced by infinite loop maps, both preserve Dyer-Lashof operations. 

By (2), y preserves Dyer-Lashof operations up to a length filtration. 

Of course, a priori, y is just an algebraic map, but the first author 

has a spectral sequence for computing the homology of a spectrum and 

the E 2 term depends on the homology indecomposables of the zero space 

as an unstable module over the Dyer-Lashof algebra. Thus it seems 

plausible to make the following conjecture. Let iBO denote the fibre 

of u: QS 0 ~ B0 × ~. 
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Conjecture A. There exists a fibration 

BU f > G/0 * IB0 

of infinite loop spaces. 

One consequence of this conjecture is a complete calculation of 

H*g/O. From the cofibration sequence 

... -~ z-l(ko/S) -~ s -~ ko-~ ko/S -~ ... 

= Sq,Sq ) we have and Stong's calculation [St], H*ko A/A( i 2 

H*~-l(ko/S) -- Z-If (A/A(Sql, Sq 2) ) 

Hence from the Corollary of 02 we have 

Corollary of Conjecture A 

mg/o = Z2(A/A(SqI, sq3)) ~ z-li(A/A(sql, sq2)) 

with the 2 and 3 dimensional generators connected by Sq I. 

We now construct a candidate for a solution to Conjecture A. 

BSpin is connected, the composite 

QS 0 ~> B0 × Z ~3-I > BSpin 

Since 

is null homotopic as an infinite loop map. Hence there is an induced 

map of infinite loop space fibrations 
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(4) IBO ~ Q~O ~ B0 × Z T,,It 
v + 

S p i n  -~ . ~ B S p i n  

Let X be the fiber of the composite IB0 ~ > Spin c > SU where c 

is complexiflcation. Then from the Bott sequence 

BS0 ~ > Spin c > SU we have an induced map of infinite loop space 

fibrations 

(5) BU 

H 
II 
BU 

> X 

e 

v 
r 

> BSO 

> IB0 > SU 

'n > S p i n  c > SU 

where r is realification. 

We have been unable to prove that 

(6) BU ~ X ~ IB0 

is a solution to Conjecture A. However in §4 we show that as a space 

X is equivalent to G/0 arid so X provides some delooping of G/0 

(possibly non standard). We also show that both X and G/O provide 

infinite loop space factorizations of r. Thus (6) seems a very good 

@andidate for Conjecture A. 

First we show how Conjecture A relates to the Stable Adams Conjec- 

ture. Consider the diagram. 
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(7) BU ~ X ---~--> G/0 

BSO ~3-I > 0 BJ ~ BSG 

where r is realification and ~ is inclusion of the fiber of BJ. 

By the Adams Conjecture BJ.(¢3-1) ~ 0 as maps of spaces but not 

H-spaces. By the Stable Adams Conjecture BJ.(¢3-1) wr ~ 0 as infinite 

loop space maps (see 92). We propose the intermediate conjecture. 

Conjecture B. BJ.(~3-1).¢ ~ 0 as infinite loop space maps. 

This immediately implies Conjecture A 

Lemma. Any infinite loop map ~ completing diagram (7) is an equiva- 

lence (at 2). 

Proof: In §4 we show X ~ G/O as a space, hence it is enough to prove 

q0. is surjective in mod-2 homology. Over the Dyer-Lashof algebra, 

QH.G/0 is generated by the coalgebra C with basis 

{Xa,b: a ~ 2b, a ~ b ~ O} (see [Md ]). Thus it suffices to show 

Xa, b~Im ~. modulo terms of higher length. As an algebra C* = ~/2[x,y] 

where x and y are dual to Xll and x21 respectively. Since 

X ~ G/O as a space, H*X is a polynomial algebra and thus it suffices to 

show Xll,X21~Im ~.. By the argument of the Proposition of §2, 

XllClm ~.. The relation S~ix = y implies x21¢Im q0.. This completes 

the proof. 

§4. Properties of X. 

Proposition. X = G/0 as spaces. 

Let ImJ x Z denote the fiber of ¢3-i: BOx Z ~ BSpin. Then from 
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diagram (4) and the 3 x 3 Lemma for infinite loop spaces (or spectra) 

we have the following homotopy commutative diagram of infinite loop 

spaces and maps. 

(8) C~ ~ QS 0 u > ImJ × Z 

Spin -~ * > BSpin 

where the vertical and horizontal sequences are fibrations and where 

the common fiber, C~, is called the (additive) coker J. A (multiplica- 

tire) coker J, C@, is defined as the fiber of the unit map 

u: QS 0 . ImJ × ~ restricted to the 1-components. As spaces C C@ 

Proof of Proposition: Combining diagrams (5) and (8) we have 

(9) C~ > C > * 

X .......... > iBO --9 SU 

BSO ~ > S p i n  c > SU 

Let IBO® be the fiber of u: QS 0 ~ BO × Z restricted to the 1-components. 

May [My ] has shown IBO® ~ C® × Spin as infinite loop spaces. Since 

IBO® ~ IBO as spaces and since KO*(C®) = 0 [Sn ] we have a splitting 

IBO ~ > Spin (as spaces) and thus from (9) a splitting X_3~--> BSO; 
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i.e. X = C e × BSO as spaces. However G/O = C® × BSO [~T] and so this 

completes the proof. 

From diagram (5) we see that X factors realification. Next we 

show that G/0 shares this property. The Atiyah-Bott-Shapiro orienta- 

tion of Spin bundles defines a K0-characteristic class e: G/O ~ BSO® 

which is an infinite loop map [MST]. The Adams cannibalistic class 

P3: BSO ~ BSO® is an infinite loop equivalence [MST]. 

Proposition. G/O factors realification; i.e. 

Buf > G/o 

BSO 

is homotopy commutative as infinite loop maps. 

First we establish 

Lemma. G/0 e > BSO® 

BSO < ~ 3-I BS0 

is homotopy commutative as infinite loop maps. 

Proof: The diagram 

G/0 e ~ BS0® 

I I 
BSO , ~3,> BSO® 
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is homotopy commutative on the space level [MST]. Let 

d = [(~3/l),eI/(p3,~): G/0 ~ BS0@. Since the set of homotopy classes 

of infinite loop maps C@ * BSO® is trivial [MST] there is an infinite 

loop map 6 factoring d 

C® -~ G/0 e > BSO® 

L,//¢ /J ,'"6 
BSO® 

An infinite loop self map of BSO is determined by its restriction to 

the zero space [MST]. (BS0® is equivalent to BSO [AP].) Similarly a 

self map of BS0 is determined by its induced morphism in rational 

homology [My]. Since d = 0 and e is a rational equivalence it 

follows that 5 = 0 as an infinite loop map. 

The lemma now follows from the homotopy commutativity of 

Bso ~3/i > Bso_ 
A ® A ~ 

P3 P3 

Bs0 ~3-l-> Bs0 

as infinite loop maps [My]. This completes the proof. 

Proof of Proposition: Consider the diagram 



:345 

SG/U 

B > BU 

> G/o 

-,..5<o 

r > BS0 < ~ -I BS0 

BS0 

By definition the unlabeled squares commute up to homotopy as infinite 

loop maps. Similarly for square i by the preceding lemma and for 

square 2 by Adams [A2]. This completes the proof. 

Finally we mention another 

Corollary of Conjecture B: C~ = C® as infinite loop spaces. 

Proof: By the Lemma of §3, ~ is an equivalence. Since 93 is also an 

equivalence, it suffices to show that ~ fits into a map of infinite 

loop space fibrations 

x • > G/O 

BSO P3 > BSO® 

Let d = ee~/p3.¢: X ~ BSO@. Since the set of homotopy classes of 

infinite loop space maps C~ * BSO® is trivial [MST] there is an infinite 

loop map 8 factoring d 
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C e ~ X ¢ > BSO 

i; /" 6 " 

s ,  
\ J 

BS0® 

Now as in the proof of the preceding lemma it suffices to show 8. = 0 

in rational homology. 

Consider the diagram 

x ~ > G/O 

/ p 

BS© 

Square i corm~utes up to homotopy by the preceding leraraa. The outer 

diagram commutes up to homotopy by definition of ~. Since P3 and 

¢3-1 are rational equivalences the result follows. 

Remark: P. May has made some low dimensional calculations with 

homology operations which support this corollary. 
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