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Introduction 

The purpose of this paper is to establish criteria for freeness and for the existence 
of a vanishing line for modules over sub-Hopf algebras of the modp Steenrod 
algebra. Here, a left module M over a connected K-algebra A is said to have a 
vanishing fine over A of slope d provided that there exists an intercept -c such that 
To&K, M) = 0 for all (s, t) satisfying t< u’s - c. The criteria for freeness considered 
here have been dealt with by Adams and Margolis [3] in the case p =2, and by 
Moore and Peterson 1131 in case p is odd. For p = 2, the existence of these vanishing 
lines was proved independently by Adams, Anderson, and Mahowald, in special 
cases, and by Anderson and Davis [5] in general. For p odd, special cases were 
obtained by Liulevicius [9] and May [unpublished]. The general case has remained 
open and represents the main new result presented here. 

To state the result, give the dual Steenrod algebra the basis of monomials in 
Milnor’s generators [12]. Let P: be dual to <<, and (if p#2) let Q, be dual to rr. 
Then (Q[)‘=O, and (Pf)p=O for SC f, so we can define for a module M the groups 

Main Theorem. Let A be a sub-Hopf algebra of the modp Steenrod algebra, and let 
M be a (k - I)-connected A-module. 

(i) [3, 131. If H(M; P:) = 0 for all P:E A with s < t, and (ifp # 2) H(M; QI) = 0 for 
all Q( E A, then M is A-free. 

* Partially supported by NSF grant MCS 77-05414. 

** Alfred P. Sloan Fellow and partially supported by NSF grants .LlCS 78-02253 and TICS 77-18723 

(02). 

0022-4049/81/0000-0000/$02.50 0 1981 North-Holland 



294 H. .Miller. C. U’ilkerson 

(ii) ([j] for p = 2). If H(M; P:) = 0 for all P:E A such that SC t and p lPj < 2d 
(where / / denotes dimension), and (ifp # 2) H(M; Q,) = 0 for all QI E A such that 
/ Q,I < d, then M has a vanishing line of slope d, with intercept -c depending only on 
d and k. Furthermore, if M is of finite type, then Ext2’(M, IF,) = 0 for t < ds - c as 
well. 

Our proof closely follows the Anderson-Davis strategy [5]. In our extension top 
possibly odd, however, we have overcome two significant technical obstacles. The 
Anderson-Davis method requires a proof of the nilpotence of certain cohomology 
classes. In (51, this is accomplished by direct computation in the bar construction. 
This is unpleasant for p = 2, and seems intractible for p odd. We show that for all p, 
the required nilpotence follows from a simple calculation with Steenrod operations 
in the cohomology of a cocommutative Hopf algebra (see Proposition 4.1 below). 
Second, certain arguments for which long exact sequences sufficed in [5] must be 
replaced for p odd by manipulations with the spectral sequence associated to an 
extension of algebras in which the quotient is a polynomial algebra truncated at 
height p. We have been inspired here by the paper [14] of Quillen and Venkov. 

Our use of Steenrod operations allows us to avoid the considerable amount of 
computation in the Steenrod algebra or its bar construction present in [3,5, 131, and 
in this respect represents a simplification even in the proof of the freeness result and 
even at p=2. We have tried to present a complete account of the proof of the 
Theorem, relying whenever possible on general properties of Hopf algebras and of 
the (co)homology groups of algebras. In Section 1 we recall cap and cup products 
and the spectral sequence of an extension, and in Section 2 we study the 
(co)homology of modules over certain elementary algebras. Section 3 is the heart of 
the paper; there we establish three conditions under which a vanishing line over a 
sub-algebra BCA extends to a vanishing line over A. The hypothesis that A is a sub- 
Hopf algebra of the Steenrod algebra is fitted together with these extension results 
in an inductive argument in Section 4. 

Our decision to express the results and proofs in this paper in terms of 
To&N,M) represents a compromise. On the one hand we could have dealt with 
coalgebras, comodules, and Cotor; these notions are less familiar but for many 
purposes more convenient. On the other hand, we could have stuck with algebras 
but used Ext:(M,K); this certainly has a higher level of recognition, but is only of 
interest for M of finite type, and furthermore has awkward variance properties. The 
disadvantage of our choice is that the familiar notion of a nilpotent action by a 
polynomial generator must be replaced by the dual concept of a conilpotent action 
(Definition 2.3) appropriate to the cap product pairing between cohomology and 
homology. 
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1. Preliminaries 

We begin by establishing notational conventions concerning algebras, modules 
over algebras, and the homology and cohomology of an algebra with coefficients in 
a module. 

We will always work within the category of Z-graded modules over a fixed ground 
field K. If XEM”, we write 1x1= n. The k-fold suspension of a module ,M is the 
module ZkM such that (ZkM)n=Mn-k. 

All our algebras will be assumed connected, associative and defined over K. The 
augmentation E : A +K of an algebra gives K its unique A-module structure. 

A module M is (k- I)-connected provided M’= 0 for i< k, and is connective 
(bounded below in the terminology of [3]) provided it is (k- I)-connected for some 
k. An algebra is (k- I)-connected provided its augmentation ideal is (k - l)- 
connected as a module. 

Given a left A-module M, we shall write 

H:(M) =Tor!(K,M) 

and for a right A-module N, we write 

H;(N) = Ext;(K, N). 

Thus, if P, : O+-PO+Pl +Pzc... is a projective resolution of M by left A-modules, 
with augmentation E : P,-*M, and Q* is a projective resolution of K by right A- 
modules, then 

H:‘(M)=H(KO,P,)=H(Q,O,M), H:(N) = H(HomA(Q,, N)). 

These modules are of course bigraded, but we suppress the second grading - 
internal degree - except when required for clarity. Given a left A-module M, we can 
form the dual right A-module M*=HomK(M, K), where the action is given by 

(Joa) = LU(am) f or E f H om,&M, K), a EA, m EM. There are natural duality 
homomorphisms defined: 

Lemma 1.1 [6, VI.51. Let M be a left A-module. 
(i) There is a natural duality isomorphism 

,Q : Ext:(K, HomK(M, K))+ Horn&To&K, M), K), 

i.e. Q : H:(M*)-HomK(H!(M),K). 
(ii) If M and A have finite type over K, and M is connective, then the natural map 

Ext,*(M, K)+Ext,*(K, M*) = ffA(M*) is an isomorphism and the dual of Q reduces to 

Q*: Tor!(K,M)*Hom,(Ext,*(M, K), K). 

Lemma 1.2. Let M be a connective A-module. 
(i) M is A-free if and only if H?(M) = 0. 
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(ii) Given sr0, suppose H:,(M) =Tor$(K,M) =Ofor all t < T. If ~Visany (k- l)- 
connected right A-module, then Tor;,(N, $2) = 0 for all t c T+ k. 

Proof. Let E: K@,M-+Msplit the natural surjection, and extend E to an A-module 
map E : A Oh.(K@M)-M. Then K@E is an isomorphism; and since a connective A- 
module M’ is 0 if and only if K@,M’=O, we find that E is surjective. This 
observation allows the construction of a minimal resolution P, of M, for which 
H$M)=K@, P,. Thus if H;‘(M)=O, the augmentation E in this resolution is an 
isomorphism, and M is free. For (ii) just use a minimal resolution of &I to compute 
To&N, M). 0 

We shall write simply H’;’ and H: for Hi(K) and H,*(K). H: is a (bigraded) 
algebra, and it acts naturally on H,*(N) and on H?(M) by U- and n-products. Since 
the n-product may be unfamiliar, we review these constructions. 

Given projective resolutions P, and Qt of K by right A-modules, letf: P,-Q?K 
and g : QI +.Z”N be cocycles representing a, E Hi” and p E Hi”(N). The map f lifts 
to an A-module map fO: PS+C”‘QO and hence to a chain map with components 
f,: PS+r-+.FQr. The composite .Y”gofi is then a cocycle representing /?U~E 
Hy &n +‘“(N). 

Next, given a cycle XE(P,+~@~M),,+. representing ycHA s c r, ,,I + n W), the 

element df,OA l)(x) E (P,OA M), represents ofl y E H&(M). 

One can show that these actions are compatible under the Kronecker pairing 

( , ) : H~“‘(M*)@H&#‘)+K 

induced by Lemma 1.1: 

A diagram 
I n 

B-A-C 

of algebras is called an extension provided TIN factors through K, Cz KOBA under 
the natural map, and A is free over B. In particular, if A is a connected co- 
commutative coassociative Hopf algebra, and B is a normal sub-Hopf algebra, 
B+A+ANB is an extension of algebras [I 1, 4.91. 

There is then a spectral sequence [6, p. 3493 

E: l= H,cH%O) = H,A, ,WO 

If we let Hz act on H!(M) via the map IC*: H:-H,, this becomes a spectral 
sequence of H,&modules. 

Finally, we recall the change of rings isomorphism: 

Lemma 1.3 [6, p. 1171. Let B be a subalgebra of A such that A is B-free. If M is a 

ieft A-module and N a right B-module, then 

Tor ‘I(N, M) z To&N&A, M). 
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2. Modules over ‘elementary’ algebras 

From now on K will have characteristic p#O. In Section 3 we shall study Hopf 
algebras and their (co)homology by building them up from Hopf algebras having 
one of the following simple algebra structures: 

Type E: E = E[x] = K[x]/x2, 1x1 odd or p = 2. 

Type D: D = D[x] = K[x]/xS 1x1 even and p # 2. 

We study the (co)homology of finite tensor products of these algebras in this 
section. 

Lemma 2.1. (i) Hz= K[v] for VE Hi!“‘. 

(ii) Hz= E[h]@K[b] for hc HblXi, 6~ Hylx. 

Proof. Standard; see for example [8]. 0 

Lemma 2.2. (i) For any E-module M, v: Hf+ ,(M)-H:(M) is a monomorphism 
for s 2 0 and an isomorphism for s > 0. 

(ii) For any D-module M, b : Hf+ 2(M)+ H:(M) is a monomorphism for s L 0 and 
an isomorphism for s > 0. 

Proof. Let C be either E or D. The result is true by Lemmas 1.1 and 2.1 if C acts on 
M via E : C-K. For M finite-dimensional, the proof is by induction on dimKM. 
Consider the short exact sequence 

O-+N--+Mn K&M+0 

of C-modules, where C acts on K&M via E and n is the natural map. The five- 
lemma and the inductive hypothesis applied to N then give the result for M. The 
general case follows since homology commutes with direct limits. 0 

Definition 2.3. An element a of an algebra A acts conifpotently on an A-module M 
provided that 

n a”M= 0. 
” 

Corollary 2.4. (i) If v acts conilpotently on H:(M), and M is connective, then M is 
E-free. 

(ii) If b acts conilpotently on H:(M), and M is connective, then M is D-free. 

Proof. Combine Lemmas 1.2 and 2.2. q 
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If 1M is an E = E[x]-module, define 

If M is a D = D[x]-module, define 

H,(M; x) = 
ker(x 1 M’) 

im(xp- t) n hzf’ 

Lemma 2.5. (i) For s>O, 

HE,(M) = H&SIX; (M; x). 

(ii) [13, Prop. 3.41. For s>O, 

H:,,(M)=H,-ps/xj(M;XP-‘), H~+r,I(M)=H,-(p~+1).r(‘M;x). 

Proof. These are easy computations with a minimal resolution, which we leave to 
the reader. Cl 

We remark that ‘chain complexes’ with dp=O appear to have first been 

considered by Meyer [ 161. 

Corollary 2.6. (i) If M is a connective E- or D-module such that H(M; x) = 0, then 
M is free. 

(ii) If M is a (k - l)-connected E-module then H:,(M) = 0 for t <s ‘si + k. 
(iii) If M is a (k - 1)-connected D-module, then H&(M) = 0 for t <ps 1x1 + k and 

H;+,,,(M)=0 for t<(ps+ 1)/x/ +k. 

Proof. Combine Lemmas 1.2 and 2.5. 0 

Corollary 2.6 forms the foundation for the next proposition. For precursors, see 
[3, Thm. 2.11 and [13, Lemmas 5.2 and 5.31. 

Proposition 2.7. Let A be a tensor product of algebras of types E and D, generated 

by elements xl, . . . , x,. Assume that the sequence sending i to 2 ,xij if jx;! is odd, and 
to p jxi/ if [xi/ is even, has no repetitions. Then a connective A-module Xi is A-free if 
and only if H(M; xi) = 0 for ah i. 

Proof. By Lemmas 2.5 and 1.2, the proposition is true for r= 1. We proceed by 
induction on r. If B is the subalgebra generated by x,, then the extension 

B-A-C 

gives rise to a spectral sequence 

E:, = H$W:WN = H,A, ,Wh 
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Since M is B-free by assumption, the spectral sequence collapses to the equality 

H,CK&M) = H:‘(M). 

We claim that K&M= M/x,M is C-free; then H:(M) = 0 for s> 0, so A4 is A free 
by Lemma 1.2. 

It remains to check the claim. By the inductive hypothesis, it suffices to show that 

H(M/X,M; Xj) = 0 for 15 j < r. 

We suppose that Ix,1 and Ix,] are both even, and leave the other cases to the reader. 
The short exact sequences 

O--+~lGM/xP-‘MX’- r M-M/x,M-0, 

O-c(P- I)‘.r>M/x,M xf-’ b M+M/xf- ‘M-+0 

give rise to boundary homomorphisms [13, Prop. 3.21 

H,(M/xrM; Xj)‘H,+ ix,, _ ,,,;(M/x~- ‘M; XJ”- ‘) 

+H, +p+,i - i.,/,(M/xrM; xi). 

Now H(M;xj) =0 by assumption, SO H(M;x, p- ‘) = 0 by Lemma 1.2, and it follows 

that both boundary maps are isomorphisms. Since /Xjl f Ix,1 and M is connective, we 
conclude that H(M/x,M; Xj) = 0 as desired. 0 

3. Extension of vanishing lines 

We establish three key propositions guaranteeing a vanishing line for A4 over A 
given a vanishing line for M over a subalgebra B of A. The proofs are postponed 
until all three statements have been given. 

Proposition 3.0. Suppose that B-A+C is an extension of algebras with C= E[x] 
(respectively C = D[x]). Let M be a connective A-module, and assume that v E H> IX’ 
(respectively b E Hg I’ ) acts conilpotently on H;‘(M). 

(i) If M is B-free, then it is A-free. 
(ii) If d and c are integers such that dr 1x1 (respectively 2d rp 1x1) and H:,(M) = 0 

for t < ds - c, then H;,(M) = 0 for t < ds - c’, where c’ = c + Ix/ (respectively c’ = C-I- 

(P- l)I4). 

Part (ii) of Proposition 3.0 in case C= D[x] is an immediate consequence of the 
following sharper result, stated in terms of vanishing functions. 

Proposition 3.1. Suppose B-A-D is an extension of algebras with D=D[x]. Let 
M be a connective A-module, and assume that b E HF x acts conilpotently on 
H:‘(M). Let T be a function such that for all sz 0, H!,(M) = 0 for t < T(s), and 
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suppose that for all ~10, T(s+Z)r T(s)+plxl. Then H$(M)=Ofor ah t< T(s), 

where 
T’(s)=min{T(s)-(p- 1)1x\, T(s+ 1)-plx/>. 

Proposition 3.2. Let B be a subalgebra of A such that Bi= A’for i< d and A is B- 
free. Let M be an A-module. If H!,(M) = 0 for t < ds - c, then also H$,(M) = 0 for 
t<ds-c. 

Our third proposition is a special feature of Hopf algebras. For us, a Hopf 
algebra is always connected, with associative and commutative diagonal. 

Proposition 3.3. Let A be a finite-dimensional Hopf algebra, and let B c A be a 
sub-Hopf algebra. Let C = K@aA, and assume that C’= 0 for all i satisfying either 
0 <pi < 2d and i even or 0 < i< d and i odd. If an A-module M has a vanishing line 
over B of slope d, then it has a vanishing line over A of slope d as well; and the 
change in the intercept depends only on C. 

Proof of Proposition 3.0 in case C= E. We follow [5, Theorem 3.21: the short exact 
sequence of A-modules 

O-&M-A @aA4 A M-O, 

in which ~1 is multiplication, gives rise to a long exact sequence in Hi(-): 

. ..+H A 
s+l,,+i,rl(M) v H~,(M)-H~,+!.~~(M)~.... 

Here we have rewritten H!(A @aM) using Lemma 1.3. See [l, 2.6.11 for the 
identification of the map marked v as v-multiplication. 

(i) Since M is B-free, H:(M) = 0 for s>O, so the long exact sequence shows that 
VI Hf+ ,(M) is epimorphic for s>O. Since v acts conilpotently, we conclude that 
H:(M) = 0 for s>O. Thus M is A-free by Lemma 1.2. 

(ii) The long exact sequence shows that VI H,“, I,,t ,xi(M) is epimorphic for t+ /XI< 

ds- c. Iterating, using dz 1x1, we find that for t< ds- (c+ Ix;), 

H:,W) 5 fl v”H,A,n,r+njx,W). 
It20 

By the conilpotence of v we conclude that N;,(M) = 0. Cl 

Proof of Proposition 3.0(i) in case C=D. We no longer have such a long exact 
sequence, and must instead study the spectral sequence of the extension: 

Es: r = H:WtB@f> = H;+ 00 (*) 

Since M is B-free, this collapses to the equality 

H,D(K&M) = H,A(M). 
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Since b acts conilpotently, ffF(K@e M) = 0 for s > 0 by Corollary 2.4; and hence, by 

Lemma 1.2, M is A-free. 0 

Proof of Proposition 3.1. Again, we study the spectral sequence (*). The point of 

the proof is that the Quillen-Venkov induction argument [14; 15, (5.2)] shows that 

any change in 6-multiplication being epimorphic in the spectral sequence occurs 

because of a differential hitting El,, with s=O or 1; and the connectivities of these 

modules, for r = 2 and hence for rz 2, are controlled by Corollary 2.6. 

It suffices to show that 

bl&+2,/+p~,, (M) is onto for t < T’(s). (**) 

For, let UE H<,(M) with t< 7’(s). Then there exists K~EH~++,~+~~,~,(M) such that 

but = U. Since T(s + 2) 1 T(s) +p 1x1 implies that T’(s + 2) L 7”(s) +p /xl, we can iterate 

the procedure to find u, for all n such that b”u, = u. Thus u = 0 by conilpotence. 

We shall show by induction on r that in the spectral sequence (*), 

(1)’ bl E:+Ll,n+pixl is one-to-one for all sr0; 

(2X bjE:+r,,,,+pl,l is onto for: s=O: n< r(t), 

l<ssr-3: n< T’(s+ f), 

s=r-2: n<T(s+t)-(p- 1)/x1, 

szr- 1: n arbitrary. 

Since 7’(q)< T(q), we conclude that 61 @s_r=gE~_z,,.n+p,.rI is onto for nc T’(q), 
and (**) follows by induction over the filtration on H~+z,n+pix!(M). 

For r= 2, (I)? and (2): hold by Lemma 2.2, so we proceed to the inductive step. 

Proof of (1)‘. Let [~IEE:+~,~,,+~~./ have b[u] =O. By (l)‘-‘, either u=O or there 

exists YE E:;:_ I,,-r+2,n such that d'- ‘y = bu. By (2):;:_ ,, there exists z such that 

bz = y. Thus b(d’- ‘z - u) = 0; but, again by ( l)r-‘, this implies d’- ‘z = u, so [u] = 0. 

This proves (I)‘. 

Proof of (2): for SC r- 3. These cases follow from (2):-l and the triviality of 

d’-‘IE:;’ for scr- 1. 

Proof of (2):_,. Given [u] EE:,,. with s=r-3 and n< T(s+t)-(p- 1)1x1, (2):-l 

implies that thereexistsyE E:;i,.n+p,.v. such that by= U. Now d’-IyE E&\,+ I,n+p *, 
and this group is 0 for n +plxl c T(s+ t + l), so y is then a d’- l-cycle. Thus, in the 

presence of both conditions, 61 E:+2,1,.+p .v is onto as desired. 

Proof of (2):_?. Given [u] EE~,~,., with s=r-2, (2):-l implies that there exists 

YEE:;:,..,~, such that by = U. Now d’- ‘y E E&i I,n +p xI, and this group is 0 for 

n +p 1x1~ 1x1 + T(s+ t), so y is then a d’- l-cycle, and this case follows. 
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Proof of (2): for szr- 1. Given [u] E Es,; ‘, (2):- ’ implies that there exists YE 
E:;:, such that by=u. Thus bd’-‘y=d’-‘u=O. By (l)‘-‘, this implies that y is a 
d’-l-cycle, so b[yJ = [u], and 61 E:+L, is epic as desired. 

Proof of Proposition 3.2. The short exact sequence 

of right A-modules yields a long exact sequence in To~~(-, M): 

. ..~H.B(M)~H~(M)~Tor% ,(I,M)+.-. , (*I 

where we have used the change of rings isomorphism (Lemma 1.3) to rewrite 
Torf(KBsA,M). The proposition is clear for s = 0, and we proceed by induction on 
s. Since I is (d- I)-connected, Lemma 1.2 and the induction hypothesis imply that 
Tort_,,,(I,M)=O for t<d(s- l)-c+d=ds-c. By assumption, H$(M)=O for 
t<ds- c, so the middle term in (*) is 0 as desired. 0 

The proof of Proposition 3.3 requires several lemmas, which we state now and 
prove at the end of the section. 

Lemma 3.4. Every finite-dimensional Hopf algebra has a central sub-Hopf algebra 
C of type E or D. 

Lemma 3.5. If B is a proper sub-Hopf algebra of fhe finite-dimensional Hopf 
algebra A, then there is a sub-Hopf algebra N of A properly containing B as a 
normal sub-Hopf algebra. 

Lemma 3.6. Let C be a finite-dimensional Hopf algebra such that C’= 0 for all i 
satisfying either 0 <pi c 2d and i even or 0 < i < d and i odd. There exists an integer c 
such that for all (k - 1 )-connected C-modules M, H:,(M) = 0 for t < ds - c + k. 

Proof of Proposition 3.3. Suppose first that B is normal in A, with quotient Hopf 
algebra C, and consider the associated spectral sequence 

E:, = H:WflW) = H,q ,Wh 

Since H:(M) is (dt - c- I)-connected, and C satisfies the conditions of Lemma 3.6, 
there exists an integer c’ such that E: ,,” = 0 for n<ds-c’+dt-c=d(s+t)-(c’+c). 
The conclusion now follows from the convergence of the spectral sequence. If B is 
not normal in A, use induction over the chain of normal extensions guaranteed by 
Lemma 3.5. q 

Proof of Lemma 3.4 [ 151. Since A is finite-dimensional, there exists a primitive x of 
maximal dimension. Let C be the subalgebra generated by x; it is a sub-Hopf 
algebra since x is primitive. Furthermore, xP= 0 by maximality of 1x1, since xp is 



Yanishing lines for modules over rhe Sreenrod algebra 303 

primitive. Thus C is isomorphic to either E[x] or D[x]. If C were not central, there 
would exist y#O in A of minimal dimension such that [x.y] #O. A computation of 
d [x,~] shows that minimality of lyl forces y to be primitive; but then [x,~] = 0 by 
maximality of 1x1. 0 

Proof of Lemma 3.5. We proceed by induction on dimKA. Let C be a central sub- 
Hopf algebra of A of type E or D. Then either CC B or CnB =K. If Cc B, the 
inductive hypothesis guarantees a proper normal extension m of B//C in A//C, and 
the pull-back of m to A is the desired subalgebra N. If Ctl B = K, let N be the sub- 
algebra of A generated by B and C. Since B and C are sub-Hopf algebras, N is a sub- 
Hopf algebra, and since C is central, B is normal in N. 0 

Proof of Lemma 3.6. By Lemma 3.5 there is a filtration K=F,CF, C...CF,=A by 
sub-Hopf algebras such that F;- 1 is normal in Fi with quotient E[x;] or D[Xi]. We 
will show that the intercept c can be taken to be 

a number easily seen to be independent of the filtration. 
We prove Lemma 3.6 by induction on dimKA. For A = K, the result is trivial. For 

dimKA > 1, let B be a central sub-Hopf algebra of type E or D as in Lemma 3.4, 
with quotient C, and consider the resulting spectral sequence with 

If B= E[x], then the inductive hypothesis and Lemma 2.5 imply that E:,,=O for 
n<ds-co+(t\xl+k), and hence for n<d(s+t)-cC+k since Ixjzd. If B=D[x], 
then again the inductive hypothesis and Lemma 2.5 imply that ESt," = 0 for n c ds - 

cc+((jp(r-l)+l)Ixl+k), and hence for ncd(s+f)-((c~+(&cI-l)lxl)+k since 
p 1x1 z 2d. This completes the induction, by convergence of the spectral 
sequence. Cl 

4. Proof of the Main Theorem 

We now put the general considerations of Sections 2 and 3 together with the 
special structure of the sub-Hopf algebras of the Steenrod algebra d* in order to 
prove the Main Theorem stated in the introduction. The prime p continues to be 
arbitrary, but K is henceforth the prime field IF,. 

Recall [12] that the dual of the Steenrod algebra is 

as an algebra (omitting the r’s if p = 2). Give d* the basis of monomials in these 
generators, and let P: be dual to (7, and (if p# 2) let Qt be dual to T[. Then /Pj = 
2'(2'- 1) ifp=2 and IQ,1 =Zp’- 1. 
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According to [4], any sub-Hopf algebra of the Steenrod algebra is generated by 
the P:‘s and Q(‘s contained in it. Dually, any quotient Hopf algebra of .-J, is of the 
form 

-,*/((f”‘: g”: . . . , s;“‘“: r:““: . . . ) (*I 

where Ole(i) s 00 and Osk(i)< 1. The sequences e and k must satisfy certain 
obvious conditions imposed by the Milnor diagonal. 

It is easy to check, for example, that K[<,]/(<f’) is a quotient Hopf algebra of >-j, 
(by sending all other generators to 0). Thus the elements Pf for SC t lie in a divided 
polynomial sub-Hopf algebra of .‘i/*, and hence all have height p. 

The following proposition, whose proof will be given at the end of the section, 
plays a central role in the proof of the main theorem. 

Proposition 4.1((5] for p = 2). Let A be a sub-Hopf algebra of the Steenrod algebra 
such that the description (*) of its dual has 

e(i)=0 fori<t. 

Then there is a map A+D[P$ =D for s=e(t)- 1 (A+E[P:]=Eforp=2). Write 
x = Pi. Ifs 1 t, the pullback of the generator 

6, E Hip’,’ (h, E Hi Ix’ ifp = 2) 

to A is nilpotent. 

A Steenrod operation proof of this proposition appears in Lin [7] for p = 2. 

Proof of the Main Theorem. Any skeleton of the Steenrod algebra is contained in 
a finite-dimensional sub-Hopf algebra: for example, the duals of 

~*/(rC”&‘-I,..., &I+ I,... ;r,+,,rn+* ,...) 

for nr0 exhaust &*. The same is therefore true of the sub-Hopf algebra A of .z/*. 
To prove part (i), it suffices by Lemma 1.2 to show that H$(M) = 0 for all s> 0 and 
all t. Since this group agrees with the homology over a sufficiently large sub-Hopf 
algebra of A, we may assume that A is finite. For part (ii), Proposition 3.2 similarly 
lets us suppose that A is finite-dimensional. The proof is then by induction on 
dimKA. For clarity, we treat only part (ii), and let the reader make the minor 
modifications necessary to produce a proof of part (i). 

Write A in the form (*), and let 

t=min{j:e(j)>Oork(j-l)>O}. 

There are three cases to consider. 

Case I: e(t) = 0. Then there is an extension of Hopf algebras 
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where E=E[Q,_,]. If IQr-,l sd we apply Proposition 3.3 to the inclusion B c A to 
see that the assumed vanishing line over B of slope d extends to one over A. If 
IQI- ,I cd, we note that the extension splits (uniquely), and apply Proposition 3.3 to 
the resulting inclusion EGA, using the fact that M is E-free, since we assume 
H(M, Q,_ ,) = 0. This gives a vanishing line over A of slope greater than /QI_ ,/, so 
the generator v,_,~Hi Qr-li acts conilpotently on H?(M). Hence, by Proposition 
3.0, the vanishing line of slope d over B is passed on to A. 

If e(f) >O, we have an extension of Hopf algebras 

B+A-D 

in which D = D[Ps], with s= e(t) - 1. If p lP:I 2 2d, we apply Proposition 3.3 to the 
inclusion BG A to see that the vanishing line over B extends to one over A. 

Henceforth, therefore, we suppose that p jPj c 2d. 

Case 2: s< t. By assumption, H(M; Ps) = 0. Also, H(M; Pj) = 0 for all (i,j) such that 
PjcAandOri<j, t<j, andi+jss+t-1, and(ifp+2)H(M;Qj)=Oforalljsuch 
that Qjg A and t 5 j % s + t: for each of these elements has dimension less than lP:l. 
Together with Ps, they generate a subalgebra C of A isomorphic as an algebra to a 
tensor product of Hopf algebras of types E and D. The dimensions are such that we 
can conclude that M is C-free by Proposition 2.7. We now apply Proposition 3.3 to 
the inclusion CC A to obtain a vanishing line over A of slope greater than ipIP:/. 

Thus the generator b,~Hy;qI acts conilpotently on HA(M), and hence, by 
Proposition 3.0, the vanishing line of slope d over B is passed on to A. 

Case 3: SI t. Under the Hopf algebra map A -0, the generator b,~ HP J? pulls 
back to a nilpotent element, by Proposition 4.1. Hence 6, acts conilpotently on 
H:‘(M), so Proposition 3.0 again finishes the proof. 

The assertion about cohomology vanishing lines follows by Lemma 1.1. 0 

Proof of Proposition 4.1. Let C be the dual of K[r,]/(rTJc’), and consider the 
obvious Hopf algebra map A + C. Suppose first that p is odd. As an algebra, 

Cz 6 D[Pf], 

so that 
t=O 

H$aE[h,, . . . ,h,]@K[bo, . . . . b,]. 
( 

The Steenrod operations [7, 8, 10, IS] act in the cohomology of the Hopf algebra C 

by 
P%;= h;, 1, P73’h;=bi, 

for Olils, with hs+,= 0. Furthermore, the action is unstable with respect to 
homological degree (prx=xP if XE Hz: and p’x=O if XEH* with 2s<r), and 
satisfies the usual Cartan formula. Thus, writing P’= C,“,,P’ for the total Steenrod 
operation, fsbi= b;, , + bf’. 
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Since hi is the class of [<$“I in the cobar construction [ 1, 81, the reduced diagonal 

J&Z &&$-’ 

in the dual of A yields the relation 

h,h,_,=O 

in HA*. Applying fi’/~%‘~, we obtain a relation among the b’s: 

b$‘b,_,+, =O. 

Now apply pP’-’ .a. @“pP to find 

bf lb, = 0, 

so b, is nilpotent as claimed. 
For p = 2, we have 

CG 6 E[P;] 
i=O 

as algebras, so Hz = K[ho, . . . , h,], with Steenrod operations given by Ss”h;= hi+ I for 
Olils, with hs+,= 0. As before, h,h,_,=O in HA*, and the Steenrod operation 
c&2(” ... S>’ applied to this relation yields 

h,2’h, = 0, 

so h, is nilpotent as claimed. 0 
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