Nishida relations and Singer construction

Steenrod began the analysis of the cohomology of an extended square, by means of the diagram

He showed that the map

$$
\begin{equation*}
H^{*}\left(E \pi \times_{\pi} X^{2}\right) \xrightarrow{\left(i^{*}, \delta^{*}\right)} H^{*}\left(X^{2}\right) \oplus\left[H^{*}(B \pi) \otimes H^{*}(X)\right] \tag{1}
\end{equation*}
$$

is injective. He also described an operation

$$
P: H^{p}(X) \rightarrow H^{2 p}\left(E \pi \times_{\pi} X^{2}\right)
$$

characterized by the equation

$$
i^{*} P x=x \times x \in H^{2 p}\left(X^{2}\right)
$$

One way to obtain this is to consider the universal example, $X=K_{p}$, and contemplate the Serre spectral sequence for the Borel construction of the pair $\left(K_{p} \times K_{p}, K_{p} \vee K_{p}\right)$. Analogously, one may construct an operation

$$
[-,-]: H^{p}(X) \otimes H^{q}(X) \rightarrow H^{p+q}\left(E \pi \times_{\pi} X^{2}\right)
$$

characterized by requiring $[x, y]$ to restrict to $x \times y+y \times x \in H^{p+q}\left(X^{2}\right)$. To construct it one again considers the universal example, now $K_{p} \times$ K_{q}. Now you should work modulo a certain equivariant subspace of $\left(K_{p} \times K_{q}\right)^{2}$. To describe it, indicate the first pair of Eilenberg Mac Lane spaces with primes and the second pair with double primes. Then the relevant subspace is

$$
\left(K_{p}^{\prime} \times K_{q}^{\prime} \vee K_{p}^{\prime \prime} \times K_{q}^{\prime \prime}\right) \cup_{K_{p}^{\prime} \vee K_{q}^{\prime} \vee K_{p}^{\prime \prime} \vee K_{q}^{\prime \prime}}\left(K_{p}^{\prime} \times K_{p}^{\prime \prime} \vee K_{q}^{\prime} \times K_{q}^{\prime \prime}\right)
$$

Then $\iota_{p}^{\prime} \times \iota_{q}^{\prime \prime}+\iota_{q}^{\prime} \times \iota_{p}^{\prime \prime}$ is in the bottom dimension and so survives, to a unique class written $\left[\iota_{p}, \iota_{q}\right]$. It is killed by the diagonal map δ.

Using the projection map $p: E \pi \times_{\pi} X^{2} \rightarrow B \pi, H^{*}\left(E \pi \times_{\pi} X^{2}\right)$ becomes an $H^{*}(B \pi)$-module over A. Write t for the generator of $H^{1}(B \pi)$. In terms of this action, Steenrod operations are defined by

$$
\begin{equation*}
\delta^{*} P x=\sum_{\substack{i \\ 1}} t^{|x|-i} \mathrm{Sq}^{i} x \tag{2}
\end{equation*}
$$

Claim. The action of the Steenrod algebra on the class $[x, y]$ is given by

$$
\mathrm{Sq}^{n}[x, y]=\sum_{i+j=n}\left[\mathrm{Sq}^{i} x, \mathrm{Sq}^{j} y\right]
$$

and on $P x$ by

$$
\begin{equation*}
\mathrm{Sq}^{n}(P x)=\sum_{j}\binom{|x|-j}{n-2 j} t^{n-2 j} P\left(\mathrm{Sq}^{j} x\right)+\sum_{2 i<n}\left[\mathrm{Sq}^{i} x, \mathrm{Sq}^{n-i} x\right] \tag{3}
\end{equation*}
$$

We can use (1) to check these claims. The first claim is immediate. For the second, note that restricting to X^{2} kills t, so the sum is zero if n is odd and has only the term $j=\frac{n}{2}$ if n is even. The restriction is then checked using the Cartan formula.

If we apply δ^{*} to (3) we get

$$
\delta^{*}\left(\mathrm{Sq}^{n} P x\right)=\sum_{i, j}\binom{|x|-i}{n-2 i} t^{|x|+n-i-j} \mathrm{Sq}^{j} \mathrm{Sq}^{i} x
$$

while

$$
\mathrm{Sq}^{n}\left(\delta^{*} P x\right)=\sum_{i, j}\binom{|x|-i}{n-j} t^{|x|+n-i-j} \mathrm{Sq}^{j} \mathrm{Sq}^{i} x
$$

So we hope that

$$
\sum_{i, j}\binom{|x|-i}{n-2 i} \mathrm{Sq}^{j} \mathrm{Sq}^{i}=\sum_{i, j}\binom{|x|-i}{n-j} \mathrm{Sq}^{j} \mathrm{Sq}^{i}
$$

This is precisely the identity Nick Kuhn showed me how to prove in Lemma 1.3 of [1].

More generally, modulo brackets we have

$$
\begin{equation*}
\mathrm{Sq}^{n}\left(t^{j} P x\right) \equiv \sum_{i}\binom{j+|x|-i}{n-2 i} t^{j+n-2 i} P\left(\mathrm{Sq}^{i} x\right) \tag{4}
\end{equation*}
$$

To see this use the Cartan formula and $\mathrm{Sq}^{k} t^{j}=\binom{j}{k} t^{j+k}$ to write

$$
\mathrm{Sq}^{n}\left(t^{j} P x\right) \equiv \sum_{k, i}\binom{j}{n-k}\binom{|x|-i}{k-2 i} t^{j+n-2 i} P\left(\mathrm{Sq}^{i} x\right)
$$

Then use $(1+t)^{j}(1+t)^{|x|-i}=(1+t)^{j+|x|-i}$ to see that

$$
\sum_{k}\binom{j}{n-k}\binom{|x|-i}{k-2 i}=\binom{j+|x|-i}{n-2 i}
$$

and (4) follows.

Nishida [2] works in homology, not cohomology. He works with elements in $H_{*}\left(E \pi \times_{\pi} X^{2}\right)$ of the form $e_{k} \otimes P y$ where $y \in H_{*}(X)$ and $k \geq 0$, of dimension $k+2|y|$, with the property that

$$
\left\langle[w, x], e_{k} \otimes P y\right\rangle=0 \quad, \quad\left\langle t^{j} P x, e_{k} \otimes P y\right\rangle=\delta_{k}^{j}\langle x, y\rangle
$$

He asserts that the right action of the Steenrod algebra is given by

$$
\left(e_{k} \otimes P y\right) \mathrm{Sq}^{n}=\sum_{i}\binom{|y|+k-n}{n-2 i} e_{k-n+2 i} \otimes P\left(y \mathrm{Sq}^{i}\right)
$$

To check this, we pair the equation against $t^{j} P x$. The terms in the resulting sum are zero except possibly when $j=k-n+2 i$, when we get

$$
\binom{|y|+k-n}{n-2 i}\left\langle x, y \mathrm{Sq}^{i}\right\rangle
$$

On the other hand,

$$
\left\langle\mathrm{Sq}^{n}\left(t^{j} P x\right), e_{k} \otimes P y\right\rangle=\sum_{i}\binom{|x|+j-i}{n-2 i}\left\langle t^{j+n-2 i} P\left(\mathrm{Sq}^{i} x\right), e_{k} \otimes P y\right\rangle
$$

The terms in this sum are again zero except when $k=j+n-2 i$, when we get

$$
\binom{|x|+j-i}{n-2 i}\left\langle\mathrm{Sq}^{i} x, y\right\rangle
$$

These terms are equal, since $|y|+k-n=|x|+j-i$.
The Singer construction is the functor R from unstable A-modules to unstable A-modules with a compatible action of $H^{*}(B \pi)$, given by

$$
R M=H^{*}(B \pi) \otimes \Phi M
$$

with Steenrod action described by (4). If we write $\mathrm{Sq}^{|x|+j+1} \otimes x$ in place of $t^{j} P x$, (4) is (1.5) of [3]. (The sum in the top case in (1.5) is automatically zero if $a>2 i$ by instability.)

The considerations above show that the map

$$
\delta^{*}: R M \rightarrow H^{*}(B \pi) \otimes M
$$

defined by (2) determines an $H^{*}(B \pi)$-module map over A. This map is injective. To see this, filter M by declaring $F^{d} M=\{x \in M:|x| \geq d\}$, and filter ΦM by declaring $F^{d} \Phi M=\Phi F^{d} M$. Extend this to filtrations of $H^{*}(B \pi)$ modules. Then δ^{*} is filtration preserving, and $\delta^{*}\left(t^{j} x\right) \equiv$ $t^{|x|+j} x$ modulo smaller filtration.

This shows that $R M$ is an A-module and is unstable as such.
The unstable condition can also be verified directly. We write $t^{j} P x$ for a decomposable tensor; then we define an A-action by equation (3).

Suppose there is a nonzero term in the sum; say the i th term. Then $i \leq|x|$ since M is unstable. Thus in order for the binomial coefficient to be nonzero we must have $n-2 i \leq|x|-i$. Adding these two inequalities gives $n \leq 2|x|$, so $R M$ is again unstable.

In any case, we now have the pullback square

of algebras over the Steenrod algebra.

References

[1] H. Miller, An algebraic analogue of a conjecture of G. Whitehead, Proc. Amer. Math. Soc. 84 (1982) 131-137.
[2] G. Nishida, Cohomology operations in iterated loop spaces, Proc. Japan Acad. 44 (1968) 104-109.
[3] W. M. Singer, The construction of certain algebras over the Steenrod algebra, Journal of Pure and Applied Algebra 11 (1977) 53-59.

