
THE ADAMS SPECTRAL SEQUENCE:
COURSE NOTES

HAYNES MILLER

1. Triangulated categories

Definition 1.1. A triangulated category is an additive category C
equipped with an additive self-equivalence Σ and a class of distinguished
triangles X → Y → Z → ΣX, satisfying:

TR1a. Any triangle isomorphic to a distinguished triangle is distin-
guished.

TR1b. For any object X, X
id−→X −→ 0−→ΣX is distinguished.

TR1c. Any map X → Y participates in a distinguished triangle

X → Y → Z → ΣX .

TR2. If X
i−→Y

j−→Z
k−→ΣX is distinguished, then so is

Y
j−→Z

k−→ΣX
−Σi−→ΣY .

TR3. Given two distinguished triangles and maps f, g making the left
square below commute, there is a map h making the entire diagram
commute.

X //

f
��

Y //

g

��

Z //

h
��

ΣX

Σf
��

X ′ // Y ′ // Z ′ // ΣX ′

TR4. The octahedral or composition axiom.

Before giving the octohedral axiom we observe a few corollaries of the
first three axioms. These properties were observed in the the homotopy
category by Michael Barratt [1] in 1955, and written down as axioms
by Dieter Puppe [11] in 1962. The octahedral axiom was added by
Jean-Louis Verdier [12] in 1967. Because triangulated categories model
stable homotopy categories, we will use the notation X ∨ Y for the
coproduct, [A,X] for the abelian group C(A,X), and call Y → Z (or
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just Z) the cofiber of X → Y , and X → Y (or just X) the fiber of
Y → Z, when X → Y → Z → ΣX is distinguished.

First notice that the triangle obtained by negating any two arrows in
a distinguished triangle is isomorphic to the original triangle, using the
−1 automorphism of one of the objects, and so is again distinguished.

If we apply TR2 twice to X
i−→Y

j−→Z
k−→ΣX, we find that

Z
k−→ΣX

−Σi−→ΣY
−Σj−→ΣZ

is distinguished, and hence so is Z
k−→ΣX

Σi−→ΣY
Σj−→ΣZ. Shifting

again we find that ΣX
Σi−→ΣY

Σj−→ΣZ
−Σk−→Σ2X is also distinguished.

Lemma 1.2. If X
i−→Y

j−→Z
k−→ΣX is distinguished then for any

A ∈ C the sequences of abelian groups [A,X] → [A, Y ] → [A,Z] →
[A,ΣX] and [X,A]← [Y,A]← [Z,A]← [ΣX,A] are exact. �

Definition 1.3. A functor from a triangulated category to an abelian
category is homological if it is additive and sends distinguished triangles
to exact sequences.

So we have seen that [W,−] is a homological functor, for any object
W . In particular, any composite in a distinguished triangle is trivial.
Dually, a contravariant functor is cohomological if it sends distinguished
triangles to exact sequences; and [−,W ] is cohomological.

We can use the suspension functor to extend any homological functor
M to a functor M∗ to graded objects, by defining

Mn(X) = M(Σ−nX)

For example,
[W,X]n = [W,Σ−nX] = [ΣnW,X]

If we apply Lemma 1.2 to shifts, positive and negative, of the distin-
guished triangle, we find for any A a long exact sequence

· · · // [A,Σ−1Y ]
−Σ−1j// [A,Σ−1Z]

−Σ−1k

sshhhhhhhhhhhhhhhhhhhhhhh

[A,X]
i // [A, Y ]

j // [A,Z]
k

sshhhhhhhhhhhhhhhhhhhhhhhh

[A,ΣX]
−Σi // [A,ΣY ]

−Σj // · · ·

with alternating signs. Of course the sequence remains exact if the
signs are changed.
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The map h in TR3 is clearly not unique in general; for example if
Y = 0 = X ′ then h : ΣX → Y ′ is arbitrary. However, the preceeding
lemmas and the 5-lemma show:

Lemma 1.4. In the notation of the lemma above, if f and g are iso-
morphisms then so is h. �

As a result, the distinguished triangle completing a map is unique,
but only up to a non-unique isomorphism.

The composition axiom is a triangulated analogue of the isomor-
phism C/B ∼= (C/A)/(B/A) arising from inclusions A ⊆ B ⊆ C of
abelian groups.

For any composable pair of arrows X → Y → Z we may form
cofibers of the two arrows and of their composite.

Y ′

��
X //

��2
222222222222 Z

��2
222222222222

XX2222222222222

Z ′

EE

Yoo

FF�������������
X ′oo

Now notice that the composite Z ′ → ΣX → ΣZ is trivial, so the
first map factors though the fiber of the second by a map f : Z ′ → Y ′.
Also X → Z → X ′ is trivial, so the second map factors through the
cofiber of the first by a map g : Y ′ → X ′. The following depiction of
the octahedral axiom is due [6].

TR4. (Octahedral axiom) The two maps f and g can be chosen in such
a way that the outside triangle in the diagram at left is distinguished
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and the two squares with corners Y ′ and Y commute.

Y ′

��

g

		

X //

��2
222222222222 Z

��2
222222222222

XX2222222222222

Z ′

EE

f

11

Yoo

FF�������������
X ′oo

[[

The diagram is the 1-skeleton of an octohedron. If we write X ′ =
Z/Y , Y ′ = Z/X, and Z ′ = Y/X, then octahedron and the square
ending in Y ′ represent the isomorphism Z/Y = (Z/X)/(Y/X) and its
expected properties. The content of the square ending in Y is in a
sense dual to that of the other square. It compares boundary homo-
morphisms, and as such plays an important role in homotopy theory.

We can assemble most of the statement of the octahedral axiom
into a commutative diagram in which the rows and columns are all
distinguished:

X
= //

��

X

��
Y //

��

Z //

��

Z/Y
= //

��

ΣY

��
Y/X

f //

��

Z/X
g //

��

Z/Y // ΣY/X

ΣX
= //

−
��

ΣX

−
��

ΣY // ΣZ

Here I have employed the following convention: If the source and target
of two maps differ by a suspension, then the maps do too, unless the
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arrow is marked by a negative sign, in which case they differ by a
suspension and a sign. The diagram contains the four distinguished
triangles and the four commuting triangles present in the octahedron,
and also the first commuting square.

From this the usual proof of the Meyer-Vietoris theorem leads to a
long exact sequence in any homological functor M∗

· · · −→M∗(Y )−→M∗(Y/X)⊕M∗(Z)−→M∗(Z/X)−→M∗−1(Y )−→· · ·

The boundary map can be taken to be either M∗(Z/X)→M∗(Z/Y )→
M∗−1(Y ) or M∗(Z/X) → M∗−1(X) → M∗−1(Y ). The remaining part
of the octahedral axiom—commutativity of the second square—shows
that the two boundary maps coincide up to sign.

Diagrams of this type may be regarded as providing a triangulated
replacement for push-outs or pull-backs.

This admits an interesting generalization.

Lemma 1.5 (Verdier). Any commutative square

X ′ //

��

X

��
Y ′ // Y

embeds into a diagram

X ′

��

// X

��

// X ′′

��

// ΣX ′

��
Y ′

��

// Y

��

// Y ′′

��

// ΣY ′

��
Z ′

��

// Z

��

// Z ′′

��

//

−

ΣZ ′

−
��

ΣX ′ // ΣX // ΣX ′′
− // Σ2X ′

with distinguished rows and columns, which is commutative except
that the bottom right square is anti-commutative. Moreover, there is
an object V , three morphisms to it, and three morphisms from it, such
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that in the diagram

X

��

&&NNNNNNNNNNNNNNNNNNNNNNNNNN Y ′

X ′ //

xxrrrrrrrrrrrrrrrrrrrrrrrr

88qqqqqqqqqqqqqqqqqqqqqqqqq
Y

���������������

��3
3333333333333

X X ′′

EE

// V //

���������������

YY

Y ′′

OO

��

��

Y ′

ffLLLLLLLLLLLLLLLLLLLLLLLL

xxrrrrrrrrrrrrrrrrrrrrrrrr

Z

YYff

&&MMMMMMMMMMMMMMMMMMMMMMMMMM Z ′oo

XX2222222222222

Z ′′

OO

88

−

Z ′′

the triangles in the hexagon are alternately commutative and distin-
guished; the composites across the middle are the obvious ones; non-
obvious maps around the edge are composites of obvious maps; and of
the six kites forming the star five commute and one anti-commutes.

Proof. Complete arrows to distinguished triangles in the diagram

X ′ //

##FFFFFFFFF

��

X //

��

X ′′ // ΣX ′

Y ′ //

��

Y

�� ""EEEEEEEEE
// Y ′′ // ΣY ′

Z ′

��

Z

��

V

""EEEEEEEEE

ΣX ′ ΣX ΣX ′
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but resist the temptation to choose fill-ins. Instead, use these five
distinguished triangles in two instances of the octahedral axiom:

(1) V

��

		

X ′ //

��2
222222222222 Y

��1
111111111111

XX2222222222222

X ′′

EE

11

Xoo

FF�������������
Zoo

[[

(2) V

��

		

X ′ //

��3
333333333333 Y

��2
222222222222

YY2222222222222

Z ′

EE

11

Y ′oo

FF�������������
Y ′′oo

[[

Then complete the composite X ′′ → V → Y ′′ to a distinguished tri-
angle X ′′ → Y ′′ → Z ′′ → ΣX ′′ and embed this, the outer distinguished
triangle in (1), and the shift of the outer distingushed triangle in (2)
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into the octahedron

(3) Z ′′

��





X ′′ //

��44444444444444 Y ′′

��55555555555555

YY3333333333333

Z

EE

11

Voo

EE��������������
ΣZ ′

−oo

−

\\

The outside distinguished triangle is the shift of Z ′ → Z → Z ′′ →
ΣZ ′, which is therefore distinguished.

Now we fill in the 4 × 4 diagram with the maps available. Note
that final arrow of the right edge is the negative of the suspension of
Z ′ → ΣX ′, and the final arrow of the botton edge is the negative of
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the suspension of X ′′ → ΣX ′.

X ′

��

// X

��

// X ′′

���������

��

��???????
// ΣX ′

��

V

��??????? V

���������

??�������

Y ′

��

// Y

���������

��

��???????
//

??�������
Y ′′

�� ��??????????????????
// ΣY ′

��

V

��??????? V

���������

??�������

Z ′

��

��???????
//

??�������
Z

�� ��???????????????????
// Z ′′

��

// ΣZ ′

−

���������

−

��

V

���������

??�������
ΣV

��???????

ΣX ′ // ΣX // ΣX ′′
− //

??�������
Σ2X ′

Every square and every triangle commutes by reference to one of the
three octahedra, except for the triangle at the right end of the bottom
edge, which anti-commutes.

The properties of the object V are captured by the remaining dia-
gram in the statement. �

Remarks 1.6. (1) The hexagon expresses the fact that the cofibers of
parallel diagonals coincide, up to suspension, in a very coherent way.
We will call the structure occuring in the conclusion of Verdier’s lemma
a Verdier system.

(2) Observe that the proof did not use TR3; in fact it shows that TR3
is a consequence of the other axioms.
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(3) The hexagon may be replaced by

Y ′

��

&&NNNNNNNNNNNNNNNNNNNNNNNNNN X

X ′ //

xxrrrrrrrrrrrrrrrrrrrrrrrr

88pppppppppppppppppppppppppp
Y

����������������

��44444444444444

Y ′ Z ′

EE

// V //

���������������

YY

Z

OO

��

��

X

ffLLLLLLLLLLLLLLLLLLLLLLLLL

xxrrrrrrrrrrrrrrrrrrrrrrrr

Y ′′

YYffLLLLLLLLLLLLLLLLLLLLLLLL

&&NNNNNNNNNNNNNNNNNNNNNNNNNN X ′′oo

YY33333333333333

Z ′′

OO

88

−

Z ′′

in which the roles played by the composites through the center and the
non-obvious edges are reversed.

Here is an interesting corollary of the existence of a Verdier structure.
Let M be a homological functor, and suppose that x′ ∈ M(X ′) maps
to zero in M(Y ) under the diagonal map in the commutative square

X ′ //

��

X

��
Y ′ // Y

Let x′ map to x ∈ M(X) and to y′ ∈ M(Y ′). Suppose we have an
enlargement of the 2 × 2 square to a 4 × 4 square. Then x maps to
0 ∈M(Y ) so it lifts to an element z ∈M1(Z), and y′ maps to 0 ∈M(Y )
so it lifts to an element y′′ ∈M1(Y ′′).

Proposition 1.7. If the 4× 4 square admits a Verdier stucture, then
we can pick the lifts z and y′′ so that they map to the same element of
M1(Z ′′).
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Proof. One of the large triangles in the Verdier structure is

Y ′

X ′

77ppppppppppppppppppppppppppp

wwppppppppppppppppppppppppppp

X V

YY

��














// Y ′′

OO

��

Z

''OOOOOOOOOOOOOOOOOOOOOOOOOOO

ggOOOOOOOOOOOOOOOOOOOOOOOOOOO

Z ′′

Since x′ maps to zero in M(Y ), it pulls back to an element v ∈M1(V ).
If we choose the images of v in M1(Z) and M1(Y ′′), the lower right kite
gives us what we want. �
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2. Symmetric monoidal structure

Very frequently one has both a triangulated structure and a sym-
metric monoidal structure. These two should interact well. Hovey,
Palmieri, and Strickland [6] proposed some axioms, and Peter May [7]
proposed more. Our axioms form a subset of May’s. We will write
∧ for the symmetric monoidal structure, S for the unit object, and
T : X ∧ Y → Y ∧X for the symmetry. In the presence of both struc-
tures, we will write Sn = ΣnS.

We will assume that a symmetric monoidal structure on an additive
category is additive: the natural maps at the top and bottom of the
commutative diagram

(W ∧X) ∨ (W ∧ Y ) //

∼=
��

W ∧ (X ∨ Y )

∼=
��

(W ∧X)× (W ∧ Y ) W ∧ (X × Y )oo

are isomorphisms. This implies that the functors W ∧ − : C → C and
− ∧W : C → C are additive.

Definition 2.1. A symmetric monoidal structure and a triangulated
structure on an additive category are compatible provided:

TC1. We are given a natural isomorphism X ∧ S1 → ΣX such that
(with X = S1)

S1 ∧ S1 T //

��

S1 ∧ S1

��
ΣS1

−1 // ΣS1

commutes.

TC2. For any distinguished triangle X → Y → Z → ΣX and any
object W ,

W ∧X −→W ∧ Y −→W ∧ Z k−→Σ(W ∧X)

is distinguished, where k is the composite along the top in

W ∧ Z //// W ∧ ΣX // Σ(W ∧X)

W ∧ (X ∧ S1)

∼=

OO

∼= // (W ∧X) ∧ S1

∼=

OO

TC3. Smashing two distinguished triangles together extends to a
Verdier system.
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Before we elucidate TC3, we mention some easy consequences of the
first two axioms. The isomorphism X∧S1 → ΣX determines a natural
isomorphism X ∧ ΣY → Σ(X ∧ Y ), defined so that

X ∧ ΣY // Σ(X ∧ Y )

X ∧ (Y ∧ S1)
∼= //

∼=

OO

(X ∧ Y ) ∧ S1

∼=

OO

commutes. Using the symmetry, we also obtain a natural isomorphism
(ΣX) ∧ Y → Σ(X ∧ Y ) such that

(ΣX) ∧ Y //

T

��

Σ(X ∧ Y )

ΣT
��

Y ∧ ΣX // Σ(Y ∧X)

commutes.

Of course we also receive a natural isomorphism S1 ∧ Y → ΣY by
composing with the transposition T . Similarly, if X → Y → Z → ΣX

is distinguished then so is X ∧W −→Y ∧W −→Z ∧W TkT−→Σ(X ∧W ),
with k as in TC2. The natural isomorphism Sp ∧ Sq → ΣqSp =
Σp+qS = Sp+q is “skew-commutative”:

Sp ∧ Sq //

T
��

Sp+q

(−1)pq

��
Sq ∧ Sp // Sp+q

The meaning of TC3 is this: Given two distinguished triangles, A→
B → C → ΣA and X → Y → Z → ΣX, we may form the 4 × 4
commutative diagram

A ∧X //

��

A ∧ Y //

��

A ∧ Z //

��

Σ(A ∧X)

��

B ∧X //

��

B ∧ Y //

��

B ∧ Z //

��

Σ(B ∧X)

��

C ∧X //

��

C ∧ Y //

��

C ∧ Z //

��
−

Σ(C ∧X)

−
��

Σ(A ∧X) // Σ(A ∧ Y ) // Σ(A ∧ Z)
− // Σ2(A ∧X)
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in which the rows and columns are distinguished. (Check the sign of
the lower right square!) The axiom asserts that this 4×4 diagram may
be completed to a Verdier system, as in the conclusion of Verdier’s
lemma 1.5. The diligent reader may check that this is precisely the
content of May’s axiom TC3′.
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3. Ideals in triangulated categories

This material is taken largely from [4], which improved on [5] and
[9].

Definition 3.1. Let I be a class of objects and N a class of morphisms
in a pointed category C. The pair (I,N ) is orthogonal provided that
for all I ∈ I, all j : X → Y in N , and all f : Y → I, the composite fj
is trivial. The pair (I,N ) is complementary if it is an orthogonal pair
such that

• An object I is in I whenever fj = 0 for all j : X → Y in N and all
f : Y → I, and

• A morphism j : X → Y is in N whenever fj = 0 for all I ∈ I and
all f : Y → I.

The classes I and N in a complementary pair determine each other
and each is closed under retracts and in particular isomorphisms.

Lemma 3.2. The class of morphisms in a complementary pair is an
ideal: if j : X → Y is in N then so are jh and gj for any h : W → X
and any g : Y → Z.

Proof. Let I ∈ I. If f : Y → I, then fj = 0, so f(jh) = (fj)h = 0, so
jh ∈ N . If f : Z → I, then f(gj) = (fg)j = 0, so gj ∈ N . �

If C is additive, then N (X, Y ) is a subgroup of [X, Y ], and both
classes are closed under formation of direct sum.

Lemma 3.3. Suppose that (I,N ) is an orthogonal pair in a triangu-
lated category. Assume that

(a) I is closed under retracts.

(b) N is a right ideal.

(c) Any object X embeds in a distinguished triangle X ′
j−→X −→ I

with j ∈ N and I ∈ I.

Then (I,N ) is a complementary pair.

Proof. Let I be an object and assume that fj = 0 for any j : X → Y
in N and any f : Y → I. Take for example j to be the map in the

distinguished triangle X
j−→ I

g−→Z with j ∈ N and Z ∈ I guaranteed
by (c), and take f : I → I to be the identity. Then orthogonality
implies that j = 0, so g is a split monomorphism, and I ∈ I by (a).

Let j : X → Y be a morphism and assume that fj = 0 for any I ∈ I
and any f : Y → I. Let W

i−→Y
f−→Z be the distinguished triangle
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with i ∈ N and Z ∈ I guaranteed by (c). Since fj = 0, the map j
factors as j = ik for some k : X → W . (b) then implies that j ∈ N . �

Definition 3.4. Let C be a triangulated category. A complementary
pair is an injective class if every object X embeds in a distinguished

triangle X ′
j−→X −→ I in which j ∈ N and I ∈ I. An injective class

(I,N ) is stable if I and N are closed under suspension and desuspen-
sion.

We will refer to objects in I as injectives, morphisms in I as null
maps, and maps with injective target and null fiber as injective en-
velopes. We will write N (X, Y ) for the abelian group of null maps
from X to Y .

We will assume stability without further mention.

Example 3.5. Assume that C has a compatible symmetric monoidal
structure, and let suppose we have an object R with a two-sided unit
η : S → R:

S ∧R
η∧1 //

=
%%KKKKKKKKKK R ∧R

µ

��

R ∧ S
1∧ηoo

=
yyssssssssss

R

The unit map η determines, for any X, a distinguished triangle,

(4) X ∧R−→X
η−→X ∧R−→ΣX ∧R

Say that an object I is R-injective if I ∧ R → I is trivial, or equiv-
alently X → X ∧ R is a split monomorphism, or X ∧ R→ ΣX ∧ R is
a split epimorphism. This is equivalent to requiring that I is a retract
of some spectrum of the form W ∧ R, as shown by the commutative
diagram

I
η∧1 //

ι

��

I ∧R
ι∧1
��

// I

X ∧R
η∧1 //

1 ((QQQQQQQQQQQQ X ∧R ∧R
1∧µ
��

X ∧R

π

>>||||||||||||||||||||

Say that a map j : X → Y is R-null if 1∧j : X∧R→ Y ∧R is trivial.
This equivalent to requiring that the composist X → X ∧R→ Y ∧R
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is trivial, as shown by the commutative diagram

X ∧R
1∧η∧1//

1 ''NNNNNNNNNNN X ∧R ∧R
f∧1 //

1∧µ
��

Y ∧R ∧R
1∧µ
��

X ∧R
f∧1 // Y ∧R

Lemma 3.6. These form an injective class.

Proof. These classes are orthogonal: Let j : X → Y be R-null, let I
be an R-injective, and let f : Y → I be any map. Let s : I ∧ R → I
split the natural map. Then

X
j //

��

Y
f //

��

I

η

��

1

""EEEEEEEEEE

X ∧R 0 // Y ∧R // I ∧R s // I

shows that fj = 0.

The classes clearly satisfy (a) and (b) of Lemma 3.3, and (4) provides
the distinguished triangle required by (c). �

This injective class is multiplicative, in the sense that for any object
K if j is R-null then so is K ∧ j and if I is R-injective then so is K ∧ I.

Lemma 3.7. Let (I ′,N ′) and (I ′′,N ′′) be two injective classes in a
triangulated category C. Define I to be the class of retracts of objects
I for which there is a distinguished triangle I ′ → I → I ′′ with I ′ ∈ I ′
and I ′′ ∈ I ′′. Define N to be the class of morphisms k : X → Z which
factor as k = ij with j : X → Y in N ′ and i : Y → Z in N ′′. Then
(I,N ) is an injective class in C.

Proof. These classes are orthogonal: Suppose that k : X → Z is a

map which factors as X
i′−→Y

i′′−→Z with i′ ∈ N ′ and i′′ ∈ N ′′, and

that I is an object which sits in a distinguished triangle I ′
g′−→ I

g′′−→ I ′′

with I ′ ∈ I ′ and I ′′ ∈ I ′′, and let f : Z → I be any map. Then
g′′(fi′′) = (g′′f)i′′ = 0 since i′′ ∈ I ′′, so there exists f ′ : Y → I ′ such
that g′f ′ = gi′′. Then f ′i′ = 0 since i′ ∈ N ′, so g′′(i′′i′) = g′′g′(f ′i′) = 0,
and (I,N ) is orthogonal.

The class I is closed under retracts by definition, and N is a right
ideal since N ′ is.

To check the third condition of Lemma 3.3, let Y be any object. Let

W
i−→Y −→ I ′′ be a distinguished triangle with i ∈ N ′′ and I ′′ ∈ I ′′.

Let X
j−→W −→ I ′ be a distinguished triangle with j ∈ N ′ and I ′ ∈ I ′.
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Let k = ij : X → Y . The octahedral axiom guarantees that there are

distinguished triangles X
k−→Y −→ I and I ′ → I → I ′′. Thus k ∈ N

and I ∈ I. �

We can apply this in particular to a single injective class (I,N ) to
produce a sequence of injective classes (In,N n), in whichN n consists of
n-fold composites of maps in N . N 0 is the class of identity morphisms
in C, and I0 is the zero object; N 1 = N and I1 = I. In is defined
inductively by declaring it to be the class of retracts of objects I fitting
into a distinguished triangle I ′ → I → I ′′ with I ′ ∈ Ii and I ′′ ∈ Ij
where i+ j = n; this condition is independent of the choice of i, j with
sum n.

Clearly composition lifts to maps

N u(Y, Z)⊗N s(X, Y )→ N u+s(X,Z)

The injective class determines an enrichment of C over filtered abelian
groups.
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4. Resolutions and Adams systems

Definition 4.1. A sequence in a pointed category C is a diagram

X
j−→Y

k−→Z such that kj = 0. If I is a class of objects in C, this
sequence is I-exact if for every I ∈ I and every f : Y → I, fj = 0
implies that f factors through k.

Lemma 4.2. Let (I,N ) be an injective class in a triangulated category

C, and X −→Y −→Z
j−→ΣX a distinguished triangle. Then j ∈ N if

and only if 0→ X → Y → Z → 0 is I-exact.

Proof. Both conditions are equivalent to exactness of

0←−[X, J ]←−[Y, J ]←−[Z, J ]←− 0

for all J ∈ I. �

An I-injective resolution of an object X is a diagram

0−→X −→ I0 d−→ΣI1 d−→Σ2I2 d−→· · ·
such that each In ∈ I and each two-term sequence is I-exact. (The
suspensions are inserted for convenience in what follows.) That is to
say, each composite is trivial, and for any J ∈ I the sequence

0←−[X, J ]←−[I0, J ]←−[ΣI1, J ]←−[Σ2I2, J ]←−· · ·
is exact. With this definition, the usual fundamental theorem of homo-
logical algebra holds: Any object admits an I-injective resolution; if
f : X → Y is any map and 0→ Y → J0 → ΣJ1 → · · · is any injective
resolution, then there is a chain map f ∗ : I∗ → J∗ under f ; and f ∗ is
unique up to chain homotopy.

A resolution of X may be built by inductively constructing the dia-
gram

X X0

k0   AAAAAAAA
X1

k1   AAAAAAAA

j0oo X2

j1oo

k2

!!BBBBBBBB
· · ·

I0

i0

>>

d // I1

i1

>>

d // I2

in which the triangles are distinguished, the dotted arrows are of degree
1, the objects Is are in I, and the maps js are in N . If we map this
diagram into J ∈ I, the maps along the top of the diagram induce the
zero maps since they are in N , so each pair of maps Xs → Is → ΣXs+1

induces a short exact sequence. These splice together to give a long
exact sequence, showing that 0→ X → I0 → ΣI1 → · · · is an injective
resolution.
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We may thus use an injective class to define derived functors of any
additive functor M : C → A to an abelian category:

Rs
IM(X) = Hs(M(J∗))

The large diagram deserves a name.

Definition 4.3. Let (I,N ) be an injective class in a triangulated cat-
egory. An I-Adams system for X ∈ C is a diagram

X X0

k0   AAAAAAAA
X1

k1   AAAAAAAA

j0oo X2

j1oo · · ·

I0

i0

>>

I1

i1

>>

in which the triangles are distinguished, the dotted arrows are of degree
1, the objects Is are in I, and the maps js are in N .

The subdiagram

0→ X → I0 → ΣI1 → · · ·

is an I-injective resolution. Conversely:

Lemma 4.4. Any I injective resolution of X embeds in an Adams
system.

Proof. We use the fact that for any J ∈ I the sequence

0← [X, J ]← [I0, J ]← [I1, J ]← · · ·

is exact. Begin by setting X0 = X and completing X → I0 to a

distinguished triangle X1
j−→X0

k−→ I0 i−→ΣX1. Exactness at [X, J ]
implies that X1 → X0 lies in N . The composite X0 → I0 → ΣI1 is
trivial, so I0 → I1 factors through a map k1 : I0 → X1. Then in

[X1, J ]

��
[X0, J ] [I0, J ]oo [I1, J ]oo

ddIIIIIIIII

[X1, J ] embeds as the kernel of [X0, J ]← [I0, J ]. It follows from exact-
ness of the bottom row that the map [X1, J ]← [I1, J ] is surjective; so
d : I0 → ΣI1 factors as d = ki for some k : X1 → I1. Complete this to

a distinguished triangle X2
j−→X1

k−→ I1 i−→ΣX2 and continue. �
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Lemma 4.5. Suppose given another object Y and an Adams system

Y Y0

k0   AAAAAAA
Y1

k1   AAAAAAA

j0oo Y2

j1oo · · ·

J0

i0

>>

J1

i1

>>

under it, and let f : X → Y . Let f ∗ : I∗ → J∗ be any chain-map under
f . Then f ∗ extends to a map of Adams systems.

Proof. To see this, define f0 : X0 → Y0 to be f . There is a map
f1 : X1 → Y1 completing a map of distinguished triangles. We claim
that k1f1 = f 1k1. To see this note that since j0 ∈ N

[I0, J1]← [X1, J1]← 0

is exact, so it suffices to show this equality after composing with j1.
But k1f1j1 = k1j1f

1 = df 0 = f 1d = f 1k1j1. The same argument works
at later stages. �

If f ∗ is an isomorphism, then so is each map fs : Xs → Ys, by
induction and the 5-lemma. So the Adams system is determined up to
isomorphism by the resolution.

There is a dual presentation of an Adams system. Apply the octah-
dral axiom to the composite Xs+1 → Xs → X:

Xs

��





Xs+1
//

��66666666666666 X

��55555555555555

YY33333333333333

Is

DD

11

Xs
oo

EE��������������

Xs−1oo
]]
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This gives us a “tower” under X:

X

�� ((QQQQQQQQQQQQQQQ

++XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

· · · // X2 // X1 //

~~

X0 //

~~

0

��
I2

``BBBBBBBB

I1

``BBBBBBBB

I0

``BBBBBBBB

Remark 4.6. This notion of Adams system isn’t quite as general as I
would like. For example, I would like to say that the diagram

S S

  AAAAAAAA S

  AAAAAAAA
2oo S

2oo · · ·

S/2

>>

S/2

>>

is a Adams system. But there is no injective class that yields it: 2 :
S → S would have to be in N , and S/2 would have to be in I; but
the homotopy of S/2 is not killed by 2, so there are maps f : S → S/2
such that f ◦ 2 6= 0.
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5. The Adams filtration and the Adams spectral sequence

Let M be any homological functor C → A. Fix an Adams system
for X, and remember the corresponding tower under X. Define

F sM(X) = im (M(Xs)→M(X)) = ker (M(X)→M(Xs−1))

Let Y be another object with a chosen Adams system and define
F sM(Y ) similarly. Now let f : X → Y and pick a lift of f to a
map of Adams systems. Then

X

��

Xs
oo

��
Y Ysoo

so f∗ : M(X)→M(Y ) sends F sM(X) into F sM(Y ).

When applied to f = 1 : X → X this observation shows that
F sM(X) is independent of the chosen Adams system; and then when
applied to a general map it shows that F sM(X) is a natural subset of
M(X).

Thus an injective class in C determines a natural filtration on any
functor on C. For example, take the functor [X,−]. Since ju ∈ N for
all u the image of [X, Ys]→ [X, Y ] is a subgroup of N s(X, Y ). In fact,

Lemma 5.1. F s[X, Y ] = im ([X, Ys]→ [X, Y ]) = N s(X, Y ).

Proof. Let X → Zs−1 → · · · → Z1 → Y be a sequence of s null maps.
Since Ju ∈ I for all u and N is an ideal, we may inductively construct
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liftings in the following diagram. �

J0 J1 J2 Js−1

Y0

;;wwwwwwwww
Y1

oo

;;wwwwwwwww
Y2

oo

;;wwwwwwwww
· · ·oo Ys−1
oo

;;wwwwwwww
Ysoo

Z1

OO ;;

Z2

OO

;;

...

OO

Zs−1

OO

<<

X

OO

;;

Lemma 5.2. There are associative pairings

F u[X, Y ]⊗ F sM(X)→ F s+uM(Y )

compatible with the composition map [X, Y ]⊗M(X)→M(Y ).

Proof. Choose Adams systems (X•, I
•), (Y•, J

•). Suppose given a map
f : X → Y of Adams filtration s. Pick a lift of f to f : X0 → Ys. Since

Ys

  @@@@@@@@
Ys+1

oo

##FFFFFFFF
Ys+2

oo

##FFFFFFFF
· · ·oo

Js

==

Js+1

;;

Js+2

<<

is an Adams system for Ys, the map f can be lifted to a map f∗ of
Adams systems.

Now let x ∈ F uM∗(X). By definition of the Adams filtration, there
is x ∈ M∗(Xu) that projects to x. f∗(x) ∈ M∗(Y ) is then represented
by f∗(x) ∈M∗(Ys+u), so f∗x ∈ F s+uM∗(Y ). �

This filtration is associated to a spectral sequence. If we apply M∗ to
an Adams system for X. we get an exact couple and hence a spectral
sequence. In it,

Es,t
1 = Ft(Σ

sIs) = Mt−s(I
s)
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and d1 : Mt(Σ
sIs)→Mt(Σ

s+1Is+1) is induced by Is
is−→ΣXs+1 ks+1−→ΣIs+1.

The homology of this complex is by definition the sequence of I-right
derived functors of M∗:

Es,t
2 = Rs

IMt(X)

The observations above imply that this isomorphism is natural in X
and that the spectral sequence is functorial in X from E2 on, and
that the filtration of M∗ associated with it is the I-Adams filtation.
Without meaning to indicate convergence, we may say that the spectral
sequence abuts to M∗(X):

E2
s,t =⇒Mt−s(X)

For example we can fix an object W and define M(X) = [W,X], and
find

Rs
I [W,−]t(X) =⇒ [W,X]t−s
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