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Let D be a small category. We define a variety of cohomology objects. Each starts
with a functor to a category of “coefficents,” and produces a different sort of object as
output. The coefficient categories are: sets Set, groups Gp, abelian groups Ab, and
“bands” HGp, that is, the category whose objects are groups and whose morphisms are
conjugacy classes of homomorphisms.

Let S : D → Set be a contravariant functor. A 0-cocycle is a system wa ∈ S(a) of

elements such that for all a
α−→ b, α∗wb = wa. The set of 0-cocycles coincides with the

zero-dimensional cohomology set H0(D; S), and is just the inverse limit of the functor S.

If D is a group, S is a D-set and H0(D; S) is the subset of fixed points.

Let G : D → Gp be a contravariant functor. We define the groupoid of 1-cocycles,
Z1(D; G), as follows. An object is a choice of f(α) ∈ G(a) for each a

α−→ b, such that for

all a
α−→ b

β−→ c,

f(βα) = α∗f(β) · f(α).

(Note that in particular f(1a) = f(1a) · f(1a), which implies that f(1a) = 1 ∈ G(a) for

all a.) A morphism f → f ′ is a choice of h(a) ∈ G(a) for each a, such that for all a
α−→ b

h(a) · f(α) = f ′(α) · α∗h(b).

Composition is given by (hk)(a) = h(a) · k(a).

As an example, the trivial cocycle is f0 given by f0(α) = 1 ∈ G(a) for all a
α−→ b.

H1(D; G) is the set of components of Z1(D; G). It is a pointed set, with distinguished
point given by the class of the trivial cocycle.

If D is a group, an object of Z1(D; G) is a crossed homomorphism from D to G.
Isomorphism in Z1(D; G) is the usual equivalence relation, and those equivalent to f0 are
“principal.”

Let Φ : D → HGp be a contravariant functor. We define the groupoid of 2-cocycles,
Z2(D; Φ), as follows. An object is a pair (F, f), where F is a choice of F (α) ∈ Hom(Φ(b), Φ(a))

for each a
α−→ b, and f is a choice of f(α, β) ∈ Φ(a) for each a

α−→ b
β−→ c, which satifies

the following conditions.

(0) For all a, F (1a) = 1Φ(a) and f(1a, 1a) = 1 ∈ Φ(a).

(1) For all a
α−→ b, F (α) is a representative of Φ(α).

(2) For all a
α−→ b

β−→ c,

F (α) ◦ F (β) = cf(α,β) ◦ F (βα) ∈ Hom(Φ(c), Φ(a)),

where for an element g of a group cg denotes conjugation by that element.

(3) For all a
α−→ b

β−→ c
γ−→ d,

F (α)(f(β, γ)) · f(α, γβ) = f(α, β) · f(βα, γ) ∈ Φ(a).
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These conditions imply that for all a
α−→ b, f(α, 1b) = 1 ∈ Φ(a), and for all b

β−→ c,
f(1b, β) = 1 ∈ Φ(b).

A morphism (F, f) → (F ′, f ′) of 2-cocycles is a choice of h(α) ∈ Φ(a) for each a
α−→ b

such that

(0) For all a, h(1a) = 1 ∈ Φ(a).

(1) For all a
α−→ b,

F (α) = ch(α) ◦ F ′(α) ∈ Hom(Φ(b), Φ(a)).

(2) For all a
α−→ b

β−→ c,

h(βα) · f ′(α, β) = f(α, β) · F (α)(h(β)) · h(α) ∈ Φ(a).

Composition is given by (h ◦ k)(α) = h(α) · k(α) for all a
α−→ b.

H2(D; Φ) is the set of components of Z2(D; Φ).

A 2-cocycle (F, f) is split if f(α, β) = 1 ∈ Φ(a) for all a
α−→ b

β−→ c. Note that if (F, f)
is split cocycle then F gives us a functor D → Gp lifting Φ. A cohomology class is split
if it contains a split 2-cocycle. The set of split classes forms a distinguished (possibly
empty) subset H2

s (D; Φ) ⊆ H2(D; Φ), which thus naturally has the structure of a pair of
sets.

If Φ(a) is abelian for all a, then F is unique, and the only nontrivial conditions are
(3), which form the usual definition of a normalized 2-cocycle. H2(D; Φ) is thus just the
usual second cohomology group, as defined below. There is a split class and only one,
namely 0.

The category ∆ is the full subcategory of Cat generated by the ordered sets [n] =
{0, 1, . . . , n}, n ≥ 0. It is generated by the morphisms di : [n] → [n − 1] and si : [n] →
[n + 1], where di is the injection which omits the value i and si : [n] → [n − 1] is the
surjection which assumes the value i twice. A cosimplicial object in some category C is
a functor ∆ → C.

Let W : D → C be a contravariant functor to a category with products. We define a
cosimplicial object C•(D; W ) by setting

Cn(D; W ) =
∏

σ:[n]→D

W (σ0)

where the value of the functor σ at j ∈ [n] is denoted by σj. An order-preserving map
φ : [n] → [m] induces a map φ∗ : Cn(D; W ) → Cm(D; W ) defined by declaring, for each
τ : [m] → D, that

prτ ◦ φ∗ = α∗ ◦ prτ◦φ,

where the morphism α : τ0 → τφ(0) = (τ ◦ φ)0 in D is induced from 0 ≤ φ(0) in [m]. This
is the cosimplicial replacement of W .

The normalized cochain complex N• associated to a cosimplicial abelian group C• has

Nn =
n⋂

i=0

ker (si|Cn),
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and differential the given by the restriction of
∑

(−1)idi. When C• = C•(D; W ) for a
functor W : D → Ab, the homology groups of this cochain complex form the sequence
of derived functors of inverse limit evaluated at W : D → Ab: Hs(D; W ) = lims

D W .

Now let W : D → Top be a contravariant functor to the category of fibrant spaces. For
example, one might have W = Map(X, Z), where Z is a fixed space and X : D → Top
is a covariant functor to fibrant spaces. We wish to study

T = holim
a

W (a).

If W = Map(X, Z), then T = Map(hocolim X, Z). By [1], this space is the inverse limit

of the tot tower T • of the cosimplicial space Y • = C•(D; X) associated to the diagram.
By [1], p. 303, Y is a fibrant cosimplicial space and hence the tot tower is a tower of
fibrations.

The nth space in the tot tower of a cosimplicial space Y • is defined by

T n = Map(Skn∆•, Y •)

where ∆• is the standard cosimplicial space (the identity functor), and Skn is the n-
skeleton functor.

For a start let’s study π0(T ). We will focus on vertices and remain silent about higher
simplices.

Starting at the bottom, T 0 =
∏

a W (a). Thus T is empty whenever some W (a) is
empty. Assume henceforth that they are all nonempty.

Since the tot tower is a tower of fibrations, all elements of a component of T n lift to
T n+s whenever any one of them does. Let F sπ0(T

n) be the set of components of T n

which lift to T n+s.

For each a pick wa ∈ W (a). This choice defines an element w ∈ T 0, which lifts to T 1

exactly when it defines an element [w] of

H0(D; Φ0) = lim
a

π0(W (a)) ⊆
∏

a

π0(W (a)) ,

where Φ0(a) = π0(W (a)).

Giving a lift of w ∈ T 0 to w′ ∈ T 1 is equivalent to giving, for each a
α−→ b, a path uα in

W (a) from wa to α∗wb (i.e. uα : ∆1 → W (a) such that uα ◦ d0 = α∗wb and uα ◦ d1 = wa),
with the proviso that u1a = 1wa for each a. Denote by gα the path class of uα.

Next we wish to know whether some choice of lift to T 1 lifts further to T 2. For each

a
α−→ b

β−→ c, w′ determines a map φ̇ : ∆̇2 → W (a) characterized by

φ̇ ◦ d0 = α∗uβ, φ̇ ◦ d1 = uβα, φ̇ ◦ d2 = uα.

A lifting of w′ to T 2 amounts to a choice of 2-simplex φ : ∆2 → W (a) extending φ̇, with
the proviso that φ = yβ ◦ s0 if α = 1a and φ = uα ◦ s1 if β = 1b.

The obstruction to the existence of such extensions can be measured using a loop class
in W (a) at wa given by the composition of path classes:

f(α, β) = g−1
βα · α

∗gβ · gα

where we use the “functional order” convention, starting with the rightmost path. The
element w′ ∈ T 1 lifts to T 2 if and only if each of these loop classes is trivial.
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We can express this question in the following terms. For any a, let

Φ1(a) = π1(W (a), wa).

For any a
α−→ b, define F (α) ∈ Hom(Φ1(b), Φ1(a)) by

π1(W (b), wb)
α∗−→ π1(W (a), α∗wa)

g−1
α#−→ π1(W (a), wa).

Up to conjugacy in π1(W (a), wa) this is independent of choice of path gα, and it extends
Φ1 to a functor Φ1 : D → HGp which depends only on [w] ∈ lima π0(W (a)).

The pair (F, f) is then a 2-cocycle, (F, f) ∈ Z2(D; Φ1). It does depend upon the
choice of path classes gα’s, of course, but any other such choice—say g′α, giving rise to
the 2-cocycle (F ′, f ′)—differs from gα by premultiplication by some (uniquely defined)
h(α) ∈ π1(W (a), wa): g′α = gα · h(α). The association α 7→ h(α) constitutes a morphism
from (F, f) to (F ′, f ′):

(ch(α) ◦ F ′(α))(x) = h(α) · g′−1
α · α∗(x) · g′α · h(α)−1 = g−1

α · α∗(x) · gα = F (α)

and
h(βα) · f ′(α, β) = h(βα) · g′−1

βα · α
∗(g′β) · g′α =

g−1
βα · α

∗(gβ) · α∗(h(β)) · gα · h(α) = f(α, β) · F (α)(h(β)) · h(α).

The cohomology class ow = [F, f ] ∈ H2(D; Φ1) depends also only on [w] ∈ lima π0(W (a)).
We thus have a configuration naturally associated to [w] consisting of a set H2(D; Φ1),
its subset of split classes, and an element ow. The class [w] lifts to π0(T

2) if and only if
ow lies in the subset of split classes.

Next, fix a choice of uα : ∆1 → W (a) for each a
α−→ b which determines a split 2-

cocycle (F, f0). Thus we have w′ ∈ T 1 which lifts w ∈ T 0 and which lifts to T 2. We
ask when w′ lifts further to w(3) ∈ T 3. A lift of w′ to w′′ ∈ T 2 consists of a choice of

2-simplex φα,β : ∆2 → W (a) for each a
α−→ b

β−→ c, as described above. The four coface
maps from codegree 2 to codegree 3 lift these 2-simplices to 2-simplices which, for each

a
α−→ b

β−→ c
γ−→ d, fit together to give a map from the boundary of the 3-simplex into

W (a). A lift of w′′ to T 3 consists in an extension to a map from the full 3-simplex, with
certain restrictions if one of the maps α, β, or γ, is an identity map. As before, one
considers a functor on D, which I will write Φ2, assigning to a the group π2(W (a), wa).
These are abelian groups, but there is a potential basepoint issue nevertheless. One may
worry that Φ2(βα) will differ from Φ2(α)Φ2(β) by some automorphism of π2(W (a), wa)
(determined by a class in π1(W (a), wa), so presumably not even an inner automorphism
now). However, the assumption that the 2-cocycle is split provides exactly what is
needed to guarantee that this doesn’t happen. For a start, F is a choice of lift of Φ to a
functor F : D → Gp. The obstruction to this is given by conjugation by the elements
f(α, β), and not only are these elements central in π1(W (a), wa), they are actually trivial
there. This triviality implies that we also have determined a natural structure of functor
Φ2 : D → Ab. Moreover, the resulting cohomology group is just H3(D; Φ2). This is an
abelian group, and it is determined by the choice of element w′ ∈ T 1. This element lifts
to T 3 if and only if the obstruction in H3(D; Φ2) is 0. This pattern continues; the element
w′ ∈ T 1 determines functors Φn : D → Ab for all n > 1, and a class w(n−1) ∈ T n−1 lifting
w′ determines an obstruction in Hn+1(D; Φn) such that w(n−1) lifts to T n+1 if and only
if the obstruction class vanishes.
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Now we address uniqueness of liftings. A necessary and sufficient condition for w and
x to lie in the same component of T 0 is that their components wa and xa lie in the same
component of W (a) for every a.

Next suppose that w′ and x′ are two elements of T 1, and assume that w′ lifts to T 2 and
that their images w and x are in the same component of T 0. If follows that x′ is liftable
to T 2 as well. We ask for conditions guaranteeing that they are in the same component
of T 1. For a start, wa and xa must lie in the same component of W (a) for each a. Pick a

path class ka in W (a) from wa to xa. The elements w′ and x′ determine, for each a
α−→ b,

path classes gα and hα. Together these path classes determine a loop class at wa:

f(α) = g−1
α · α∗(kb)

−1 · hα · ka.

The problem of lifting the path from from w to x to a path in T 1 from w′ to x′ amounts
to the problem of finding a null-homotopy of this loop, with the proviso that the null-
homotopy of f(1a) is given by composing ka with the projection to one factor of the
square. This proviso can be arranged by virtue of the agreement that g1a = 1 and
h1a = 1.

Since w′ lifts to T 2, for any a
α−→ b

β−→ c, gβα = α∗(gβ) · gα and the rules Φ1(a) =

π1(W (a); wa) for all a and Φ1(α)(x) = g−1
α · α∗(x) · gα for all a

α−→ b determine a functor
Φ1 : D → Gp. Since x′ also lifts to T 2, hβα = α∗(hβ) · hα as well, and this implies that
f ∈ Z1(D; Φ1):

Φ1(α)(f(β)) · f(α) = g−1
α · α∗(g−1

β · β∗(kc)
−1 · hβ · kb) · g−1

α · (gα · α∗(kb)
−1 · hα · ka)

= ((α∗(gβ) · gα)−1 · α∗β∗(kc)
−1 · α∗(hβ) · α∗(kb) · α∗(kb)

−1 · hα · ka

= g−1
βα · (βα)∗(kc)

−1 · hβα · ka = f(βα).

Suppose we choose different path classes, k′a, joining wa to xa. Together they determine
a different 1-cocycle, f ′. The loop classes la = ka · k′a−1 constitute a morphism from f to

f ′: f ′(α) = F (α)(la)
−1 · f(α) · la, for all a

α−→ b. Thus the pair (w′, x′) (each liftable to
T 2) determines a “difference” class

δw′,x′ ∈ H1(D; Φ1),

which is trivial if and only if they are in the same component of T 1.

This construction can be reversed, too: given a component [w′] of T 1 which is liftable to
T 2, there is a bijective corresondance between elements δ ∈ H1(D; Φ1) and components
of T 1 which lift [w] ⊆ T 0.

This process continues. Given classes w′′, x′′ in T 2 such that w′′ is liftable to T 3,
and a path in T 0 from w to x which is liftable to a path in T 1 from w′ to x′, the
obstruction to lifting that path in T 0 to a path from w′′ to x′′ in T 2 lies in H2(D; Φ2),
where Φ2(a) = π2(W (a), wa). This gives a bijection between the set of components of T 2

which contain lifts of w′ and the set H2(D; Φ2).
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