Rack modules

Haynes Miller July 2016

A rack is a set X together with a binary operation (written xy) such that

x(yz) = (xy)(xz) and $x \cdot : X \to X$ is bijective.

An X module is a collection of abelian groups A_x together with maps

$$A_y \xrightarrow{\alpha_x} A_{xy} \xleftarrow{\beta_y} A_x$$

such that each α_x is an isomorphism and the following diagrams commute.

where the last diagram signifies that the diagonal is the sum of the two edges. That is,

$$\alpha_x \alpha_y = \alpha_{xy} \alpha_x \,, \quad \alpha_x \beta_z = \beta_{xz} \alpha_x \,,$$

and

$$\beta_{yz} = \alpha_{xy}\beta_z + \beta_{xz}\beta_y \,.$$

A derivation of a rack X with values in an X-module A is a choice of $\sigma_x \in A_x$ for each $x \in X$ satisfying

$$\sigma_{xy} = \alpha_x \sigma_y + \beta_y \sigma_x \,.$$

The abelian group of derivations from X with values in A forms an abelian group Der(X, A).

There is a canonical X-module, the "Kähler differentials" Ω_X . It is the abelianization of X as a rack over itself, characterized by

$$\operatorname{Hom}_{X-mod}(\Omega_X, A) = \operatorname{Der}(X, A).$$

It comes equipped with the "universal derivation" $\sigma : X \to \Omega_X$. **Example.** The singleton set * admits a unique rack structure, and a module for it is simply a module over the ring

$$R = \mathbb{Z}[\alpha^{\pm 1}, \beta]/\beta\beta', \quad \beta + \beta' = 1 - \alpha.$$

The group of derivations from * into an *R*-module *M* is

$$Der(*, M) = \ker \left(\beta' | M\right),$$

so the R-module of Kähler differentials is

$$\Omega_* = R/(\beta')$$

and the universal derivation sends * to $1 \in R/(\beta')$.

An X-module is *automorphic* if $\beta_y = 0 : A_x \to A_y$ for every x, y. For example an automorphic *-module is an abelian group equipped with an automorphism α .

More generally, suppose that we are given an abelian group A together with a map $\alpha: X^2 \to \operatorname{Aut}(A)$ such that

$$\alpha_{x,yz}\alpha_{y,z} = \alpha_{xy,xz}\alpha_{x.z} \,.$$

Then we can take $A_x = A$ for every x, and $\alpha_x : A_y \to A_{xy}$ given by $\alpha_{x,y}$. This gives us an automorphic X-module. In particular, if $\alpha_{x,y}$ is independent of y, this is equivalent to an action on A of the group G_X associated to X:

$$G_X = \langle X : x \cdot y = xyx^{-1} \rangle$$

where we have written \cdot for the rack operation and juxta position for the group operation.

A differential into an automorphic X-module is an assignment $\sigma_x \in A$ for each $x \in X$ such that

$$\sigma_{xy} = \alpha_x \sigma_y \,.$$

An X-module is *differential* if there is an abelian group A and isomorphisms $A \simeq A_x$ for every x under which $\alpha_x : A_y \to A_x$ corresponds to the identity map on A for every x, y. The relations then imply that the structure of an X-module is completed by giving an endomorphism β_x of A for every $x \in X$, with the property that for all x, y, z,

$$\beta_{x(yz)}(1-\beta_{xy})=\beta_{xz}.$$

For example, a differential *-module is an abelian group equipped with a differential β .

A derivation into a differential X-module A is a function $\sigma: X \to A$ such that

$$\sigma_{xy}=\sigma_y+eta_y\sigma_x$$
 .

Given a morphism of racks $f: X \to X'$, there are functors

$$f_*: X - mod \leftrightarrows X' - mod : f^*$$

The pull-back functor f^* is easy to describe. Given an X'-module (A, α, β) ,

$$(f^*A)_x = A_{f(x)}$$
 for all $x \in X$

and for all $x, y \in X$

$$(f^*A)_y \xrightarrow{\alpha_x} (f^*A)_{xy} \xleftarrow{\beta_y} (f^*A)_x$$
$$\| \qquad \| \qquad \| \qquad \| \qquad \| \qquad \\ A_{f(y)} \xrightarrow{\alpha_{f(x)}} A_{f(x)f(y)} \xleftarrow{\beta_{f(y)}} A_{f(x)}$$

The functor f_* is the left adjoint to f^* , and is harder to describe. But sometimes we can.

An X-module is *constant* if it is pulled back from a module over the trivial rack. So if M is an R-module, the corresponding constant X module M_X has

$$(M_X)_x = M$$
 for all $x \in X$

and

$$\alpha_x = \alpha$$
, $\beta_y = \beta$ for all $x, y \in X$.

A derivation from X to a constant module M is a function $\sigma: X \to M$ such that

$$\sigma_{xy} = \alpha \sigma_y + \beta \sigma_x$$
 for all $x, y \in X$.

The adjunction shows that if $\pi: X \to *$ then

$$\pi_*\Omega_X = R\langle X \rangle / (xy = \alpha y + \beta x).$$

Now let's try to construct a "Hochschild complex." For a start, what should "free" mean? Here's the proposal. There is a functor u from X-mod to sets over X, simply forgetting all the structure. This functor has a left adjoint, which I will write F_X . It is characterized by

$$\operatorname{Hom}_X(F_X S, A) = \prod_{x \in X} \operatorname{Map}(S_x, A_x).$$

For example, if $X = *, F_X$ is the free *R*-module functor. Write

$$\iota: S \to uFS$$

for the unit of the adjunction; it is a map over X.

The universal derivation $\sigma: X \to \Omega_X$ is a map over X and hence extends to an X-module surjection

$$\Omega_X \xleftarrow{\overline{\sigma}} F_X X$$

where X is regarded as a set over itself by the identity map.

How do we reflect the identity satisfied by the universal (and hence any) derivation? Regard X^2 as a set over X via the rack multiplication. Then there are three maps $X^2 \rightarrow uF_X X$ in \mathbf{Set}/X , given by

$$(x,y) \mapsto \alpha_x \iota_y , \quad \iota_{xy} , \quad \beta_y \iota_x ,$$

and the identity specifies that their alternating sum is zero in Ω_X . So we have a presentation

$$0 \longleftarrow \Omega_X \xleftarrow{\overline{\sigma}} F_X X \xleftarrow{\partial} F_X X^2$$

We want to extend this presentation to an exact complex, and based on the example provided by associative algebras we hope that the next term will be $F_X X^3$. It seems that the appropriate thing to do is to specify that X^n is to be regarded as a set over X by means of the map

$$\pi_n: (x_1,\ldots,x_n) \mapsto x_1(x_2\cdots(x_{n-1}x_n)\cdots).$$

Note that it is not possible to give meaning to X^0 ; there is no way to present Ω_X as a kernel. Andruskiewitch and Graña insist on unnaturally building something by choosing a basepoint at this point.

There are five natural maps $X^3 \to F_X X^2$ over X. Fix $w \in X$ and restrict to

$$\pi_3^{-1}w = \{(x, y, z) : w = x(yz) = (xy)(xz)\}$$

The maps send (x, y, z) to

$$\alpha_x \iota_{y,z}$$
 , $\alpha_{xy} \iota_{x,z}$, $\beta_{xz} \iota_{x,y}$, $\iota_{x,yz}$, $\iota_{xy,xz}$

Apply $\partial: FX^2 \to FX$ to these five elements:

$$\alpha_{x}\iota_{y,z} \mapsto \alpha_{x}(\alpha_{y}\iota_{z} - \iota_{yz} + \beta_{z}\iota_{y})$$

$$\alpha_{xy}\iota_{x,z} \mapsto \alpha_{xy}(\alpha_{x}\iota_{z} - \iota_{xz} + \beta_{z}\iota_{x})$$

$$\beta_{xz}\iota_{x,y} \mapsto \beta_{xz}(\alpha_{x}\iota_{y} - \iota_{xy} + \beta_{y}\iota_{x})$$

$$\iota_{x,yz} \mapsto \alpha_{x}\iota_{yz} - \iota_{x(yz)} + \beta_{yz}\iota_{x}$$

$$\iota_{xy,xz} \mapsto \alpha_{xy}\iota_{xz} - \iota_{(xy)(xz)} + \beta_{xz}\iota_{xy}$$

Applying the three identities satisfied by the α 's and the β 's, we see that choosing signs +, -, -, +, - produces a signed sum of zero. So define $\partial: FX^3 \to F_XX^2$ by

$$\iota_{x,y,z} \mapsto \alpha_x \iota_{y,z} - \alpha_{xy} \iota_{x,z} - \beta_{x,z} \iota_{x,y} + \iota_{x,yz} - \iota_{xy,xz} \, .$$

Then $\partial^2 = 0$.

Perhaps contracting homotopies can be built using the fact that x is bijective. So there's an operator $x \mapsto x'$ on X characterized by xx' = x. Notice then that $X \to X^2$ by $x \mapsto (x, x')$ is a map over X.

A&G effectively describe the rest of this complex.

We use a variant of the useful notation introduced by Andruskiewitch and Graña:

$$x_1 \cdots x_n = x_1(x_2 \cdots x_n)$$

They observe that for i < n,

$$(x_1 \cdots x_i)(x_1 \cdots x_{i-1} x_{i+1} \cdots x_n) = (x_1 \cdots x_n)$$

To see this note that it's the definition for i = 1. Then use self-distributivity:

$$(x_1 \cdots x_i)(x_1 \cdots x_{i-1} x_{i+1} \cdots x_n) = (x_1(x_2 \cdots x_i) x_2 \cdots x_{i-1} x_{i+1} \cdots x_n)$$

which, by induction on i, is $x_1 \cdots x_n$.

Define maps $d_i: X^n \to F_X X^{n-1}$ over X:

$$d_1(x_1, \dots, x_n) = (x_1 x_2, \dots, x_1 x_n)$$

$$d_2(x_1, \dots, x_n) = (x_1, x_2 x_3, \dots, x_2 x_n)$$

$$\dots$$

$$d_{n-1}(x_1, \dots, x_n) = (x_1, \dots, x_{n-2}, x_{n-1} x_n)$$

 Also

$$a_{1}(x_{1},...,x_{n}) = \alpha_{x_{1}}(x_{2},...,x_{n})$$

$$a_{2}(x_{1},...,x_{n}) = \alpha_{x_{1}x_{2}}(x_{1},x_{3},...,x_{n})$$

$$...$$

$$a_{n-1}(x_{1},...,x_{n}) = \alpha_{x_{1}\cdots x_{n-1}}(x_{1},...,x_{n-2},x_{n})$$

and

$$b(x_1,\ldots,x_n)=\beta_{x_1\cdots x_{n-2}x_n}(x_1,\ldots,x_{n-1})$$

Reminder: The operators α and β here are the ones in the free X-module construction F_X .

For example, with n = 2 we have

$$d_1(x_1, x_2) = x_1 x_2$$
, $a_1(x_1, x_2) = \alpha_1 x_2$, $b(x_1, x_2) = \beta_2 x_1$.

With n = 3,

$$a_1(x_1, x_2, x_3) = \alpha_{x_1}(x_2, x_3), \quad a_2(x_1, x_2, x_3) = \alpha_{x_1x_2}(x_1, x_3),$$
$$d_1(x_1, x_2, x_3) = (x_1x_2, x_1x_3), \quad d_2(x_1, x_2, x_3) = (x_1, x_2x_3),$$

and

$$b(x_1, x_2, x_3) = \beta_{x_1 x_3}(x_1, x_2)$$
.

The rack axioms and the identities involving α and β imply relations among these operators. For example as maps $X^3 \to F_X X$,

$$a_1d_1 = d_1a_2, \quad a_1d_2 = d_1a_2, \quad bd_1 = d_1b$$

are just true;

$$d_1 d_2 = d_1 d_1$$

follows from the rack axiom; and

$$a_1a_1 = a_1a_2$$
, $a_1b = ba_1$, $bd_2 = ba_2 + bb$

follow from the three relations.

The last relation indicates that we are not trying to describe an indexing category; rather an indexing ringoid, and then we study additive functors from it into, for example, X-modules.

Next step is to write down the general relations among these operators. A&G's proof that $\partial^2 = 0$ should carry over. What about maps going in the other direction, "degeneracies"? For example, while we don't have a unit element, we do have a function ': $X \to X$ characterized by xx' = x. (Sometimes x' = x.) So I can define $X \to F_X X^2$ by sending x to (x, x').

And there should be an operator $FX^{n-1} \to FX^n$ that is only a map of objects over X but hopefully at least additive, providing us with a contracting homotopy.

Here's the "face" structure of the ringoid \mathcal{R} over which $F_X X^{\bullet}$ is a module. The objects form the set $\{1, 2, \ldots\}$. For all n > 1 there are operators

$$d_i, a_i, b \in \mathcal{R}(n, n-1), \quad 1 \le i < n.$$

They satisfy the following relations in $\mathcal{R}(n+1, n-1)$.

$$d_i d_j = d_{j-1} d_i \quad \text{for} \quad i < j \tag{1}$$

$$a_i a_j = a_{j-1} a_i \quad \text{for} \quad i < j \tag{2}$$

$$d_i a_j = \begin{cases} a_{j-1} d_i & \text{for } i < j \\ a_j d_{i+1} & \text{for } i \ge j \end{cases}$$

$$\tag{3}$$

$$bd_i = d_i b$$
 and $ba_i = a_i b$ for $1 \le i < n$ (4)

$$bd_n = ba_n + bb \tag{5}$$

These are painfully derived using the following information. (1) uses the rack axioms. (2) uses the $\alpha\alpha$ identity. (3) is the most painful one. It uses the rack identity on subscripts when i < j - 1. (4) uses the rack identity on subscripts in the d_1 case, and the $\alpha\beta$ identity for the ba_i case. (5) of course uses the last identity.

Maybe it's nicer to write these relations like this: for i < j,

$$d_i d_j = d_{j-1} d_i$$
, $a_i a_j = a_{j-1} a_i$, $a_i d_j = d_{j-1} a_i$, $d_i a_j = a_{j-1} d_i$.

Also, for i < n,

$$d_i b = b d_i$$
 and $a_i b = b a_i$,

while

$$b(d_n - a_n) = bb.$$

The symmetry between a and d in these relations is amazing.

There is an additive functor from this pre-additive category into the additive category of functors from racks to abelian groups, taking n to the functor $X \mapsto F_X X^n$. It's augmented to the functor $X \mapsto \Omega_X$.

An \mathcal{R} -module A determines a chain complex as follows. Define operators $A_{n+1} \to A_n$ by

$$\partial' = d_n - d_{n-1} + \dots + (-1)^n d_1$$
, $\partial' = a_n - a_{n-1} + \dots + (-1)^n a_1$.

Then the usual calculation shows that

$$\partial'\partial' = \partial'\partial'' = \partial''\partial' = \partial''\partial'' = 0$$

while

$$b\partial' = bd_n$$
 , $b\partial'' = ba_n$

 So

$$\partial = \partial' - \partial'' - b : A_{n+1} \to A_n$$

defines a differential.

For example, with X = *, this is the complex of modules over the ring $R = \mathbb{Z}[\alpha^{\pm 1}, \beta]/(\beta(1 - \alpha - \beta))$ given by

$$R \stackrel{1-\alpha-\beta}{\longleftarrow} R \stackrel{-\beta}{\longleftarrow} R \stackrel{1-\alpha-\beta}{\longleftarrow} R \stackrel{-\beta}{\longleftarrow} \cdots$$

In this case at least, the complex is exact.

The chain complex associated to an \mathcal{R} -module has a maximal augmentation

$$M(A_{\bullet}) = A_1 / \partial A_2 \, .$$

In the case of the free resolution, $M(F(X^{\bullet})) = \Omega_X$.

FGG prove the following important result. Suppose we have a map $X \to G$ from a set to a group. The set $X \times G$ becomes a rack under the operation

$$(x, f)(y, g) = (y, gf^{-1}xf)$$

(where we leave the map $X \to G$ undenoted). Proof: $(x, f)(z, h) = (z, hf^{-1}xf)$, so

$$((x,f)(y,g))(x,f)(z,h)) = (z,(hf^{-1}xf)(f^{-1}x^{-1}fg^{-1})y(gf^{-1}xf)) = (z,hg^{-1}ygf^{-1}xf)$$

while

$$(x, f)((y, g)(z, h)) = (x, f)(z, hg^{-1}yg) = (z, (hg^{-1}yg)f^{-1}xf)$$

Theorem. (FGG) The free rack on a set X is given in terms of the inclusion of X into the free group GX by

$$FX = X \times GX$$
.

For example, the free rack on a singleton is \mathbb{Z} with rack structure given by xy = y + 1 for all $x, y \in \mathbb{Z}$ and inclusion sending * to 1.

The free X-module functor F_X may be expressed in terms of the free rack functor F: Given a rack X, a set $S \downarrow X$ over X, and a rack $Y \downarrow X$ over X, consider

Both columns are equalizers, so the top sets are canonically isomorphic. If Y is in fact an abelian object in \mathbf{Rack}/X , then this isomorphism leads to

$$\operatorname{Map}_{\operatorname{\mathbf{Set}}/X}(S,Y) = \operatorname{Hom}_{X-\operatorname{mod}}(Ab_X(FS),Y)$$

 \mathbf{SO}

$$F_X S = Ab_X (FS) \,.$$