Rack modules

Haynes Miller
July 2016
A rack is a set X together with a binary operation (written $x y$) such that

$$
x(y z)=(x y)(x z) \quad \text { and } \quad x \cdot: X \rightarrow X \quad \text { is bijective } .
$$

An X module is a collection of abelian groups A_{x} together with maps

$$
A_{y} \xrightarrow{\alpha_{x}} A_{x y} \stackrel{\beta_{y}}{\leftrightarrows} A_{x}
$$

such that each α_{x} is an isomorphism and the following diagrams commute.

where the last diagram signifies that the diagonal is the sum of the two edges. That is,

$$
\alpha_{x} \alpha_{y}=\alpha_{x y} \alpha_{x}, \quad \alpha_{x} \beta_{z}=\beta_{x z} \alpha_{x}
$$

and

$$
\beta_{y z}=\alpha_{x y} \beta_{z}+\beta_{x z} \beta_{y} .
$$

A derivation of a rack X with values in an X-module A is a choice of $\sigma_{x} \in A_{x}$ for each $x \in X$ satisfying

$$
\sigma_{x y}=\alpha_{x} \sigma_{y}+\beta_{y} \sigma_{x}
$$

The abelian group of derivations from X with values in A forms an abelian group $\operatorname{Der}(X, A)$.

There is a canonical X-module, the "Kähler differentials" Ω_{X}. It is the abelianization of X as a rack over itself, characterized by

$$
\operatorname{Hom}_{X-\bmod }\left(\Omega_{X}, A\right)=\operatorname{Der}(X, A)
$$

It comes equipped with the "universal derivation" $\sigma: X \rightarrow \Omega_{X}$.
Example. The singleton set $*$ admits a unique rack structure, and a module for it is simply a module over the ring

$$
R=\mathbb{Z}\left[\alpha^{ \pm 1}, \beta\right] / \beta \beta^{\prime}, \quad \beta+\beta^{\prime}=1-\alpha
$$

The group of derivations from $*$ into an R-module M is

$$
\operatorname{Der}(*, M)=\operatorname{ker}\left(\beta^{\prime} \mid M\right)
$$

so the R-module of Kähler differentials is

$$
\Omega_{*}=R /\left(\beta^{\prime}\right)
$$

and the universal derivation sends $*$ to $1 \in R /\left(\beta^{\prime}\right)$.
An X-module is automorphic if $\beta_{y}=0: A_{x} \rightarrow A_{y}$ for every x, y. For example an automorphic $*$-module is an abelian group equipped with an automorphism α.

More generally, suppose that we are given an abelian group A together with a map $\alpha: X^{2} \rightarrow \operatorname{Aut}(A)$ such that

$$
\alpha_{x, y z} \alpha_{y, z}=\alpha_{x y, x z} \alpha_{x . z} .
$$

Then we can take $A_{x}=A$ for every x, and $\alpha_{x}: A_{y} \rightarrow A_{x y}$ given by $\alpha_{x, y}$. This gives us an automorphic X-module. In particular, if $\alpha_{x, y}$ is independent of y, this is equivalent to an action on A of the group G_{X} associated to X :

$$
G_{X}=\left\langle X: x \cdot y=x y x^{-1}\right\rangle
$$

where we have written • for the rack operation and juxtaposition for the group operation.

A differential into an automorhic X-module is an assignment $\sigma_{x} \in A$ for each $x \in X$ such that

$$
\sigma_{x y}=\alpha_{x} \sigma_{y}
$$

An X-module is differential if there is an abelian group A and isomorphisms $A \simeq A_{x}$ for every x under which $\alpha_{x}: A_{y} \rightarrow A_{x}$ corresponds to the identity map on A for every x, y. The relations then imply that the structure of an X-module is completed by giving an endomorphism β_{x} of A for every $x \in X$, with the property that for all x, y, z,

$$
\beta_{x(y z)}\left(1-\beta_{x y}\right)=\beta_{x z}
$$

For example, a differential $*$-module is an abelian group equipped with a differential β.

A derivation into a differential X-module A is a function $\sigma: X \rightarrow A$ such that

$$
\sigma_{x y}=\sigma_{y}+\beta_{y} \sigma_{x}
$$

Given a morphism of racks $f: X \rightarrow X^{\prime}$, there are functors

$$
f_{*}: X-\bmod \leftrightarrows X^{\prime}-\bmod : f^{*}
$$

The pull-back functor f^{*} is easy to describe. Given an X^{\prime}-module (A, α, β),

$$
\left(f^{*} A\right)_{x}=A_{f(x)} \quad \text { for all } x \in X
$$

and for all $x, y \in X$

The functor f_{*} is the left adjoint to f^{*}, and is harder to describe. But sometimes we can.

An X-module is constant if it is pulled back from a module over the trivial rack. So if M is an R-module, the corresponding constant X module M_{X} has

$$
\left(M_{X}\right)_{x}=M \quad \text { for all } x \in X
$$

and

$$
\alpha_{x}=\alpha, \quad \beta_{y}=\beta \quad \text { for all } x, y \in X .
$$

A derivation from X to a constant module M is a function $\sigma: X \rightarrow M$ such that

$$
\sigma_{x y}=\alpha \sigma_{y}+\beta \sigma_{x} \quad \text { for all } x, y \in X .
$$

The adjunction shows that if $\pi: X \rightarrow *$ then

$$
\pi_{*} \Omega_{X}=R\langle X\rangle /(x y=\alpha y+\beta x)
$$

Now let's try to construct a "Hochschild complex." For a start, what should "free" mean? Here's the proposal. There is a functor u from X-mod to sets over X, simply forgetting all the structure. This functor has a left adjoint, which I will write F_{X}. It is characterized by

$$
\operatorname{Hom}_{X}\left(F_{X} S, A\right)=\prod_{x \in X} \operatorname{Map}\left(S_{x}, A_{x}\right) .
$$

For example, if $X=*, F_{X}$ is the free R-module functor. Write

$$
\iota: S \rightarrow u F S
$$

for the unit of the adjunction; it is a map over X.
The universal derivation $\sigma: X \rightarrow \Omega_{X}$ is a map over X and hence extends to an X-module surjection

$$
\Omega_{X} \stackrel{\bar{\sigma}}{\leftarrow} F_{X} X
$$

where X is regarded as a set over itself by the identity map.
How do we reflect the identity satisfied by the universal (and hence any) derivation? Regard X^{2} as a set over X via the rack multiplication. Then there are three maps $X^{2} \rightarrow u F_{X} X$ in Set/ X, given by

$$
(x, y) \mapsto \alpha_{x} \iota_{y} \quad, \quad \iota_{x y} \quad, \quad \beta_{y} \iota_{x}
$$

and the identity specifies that their alternating sum is zero in Ω_{X}. So we have a presentation

$$
0 \longleftarrow \Omega_{X} \stackrel{\bar{\sigma}}{\longleftarrow} F_{X} X \stackrel{\partial}{\longleftarrow} F_{X} X^{2} .
$$

We want to extend this presentation to an exact complex, and based on the example provided by associative algebras we hope that the next term will be $F_{X} X^{3}$. It seems that the appropriate thing to do is to specify that X^{n} is to be regarded as a set over X by means of the map

$$
\pi_{n}:\left(x_{1}, \ldots, x_{n}\right) \mapsto x_{1}\left(x_{2} \cdots\left(x_{n-1} x_{n}\right) \cdots\right)
$$

Note that it is not possible to give meaning to X^{0}; there is no way to present Ω_{X} as a kernel. Andruskiewitch and Graña insist on unnaturally building something by choosing a basepoint at this point.

There are five natural maps $X^{3} \rightarrow F_{X} X^{2}$ over X. Fix $w \in X$ and restrict to

$$
\pi_{3}^{-1} w=\{(x, y, z): w=x(y z)=(x y)(x z)\}
$$

The maps send (x, y, z) to

$$
\alpha_{x} \iota_{y, z} \quad, \quad \alpha_{x y} \iota_{x, z} \quad, \quad \beta_{x z} \iota_{x, y} \quad, \quad \iota_{x, y z} \quad, \quad \iota_{x y, x z}
$$

Apply $\partial: F X^{2} \rightarrow F X$ to these five elements:

$$
\begin{aligned}
\alpha_{x} \iota_{y, z} & \mapsto \alpha_{x}\left(\alpha_{y} \iota_{z}-\iota_{y z}+\beta_{z} \iota_{y}\right) \\
\alpha_{x y} \iota_{x, z} & \mapsto \alpha_{x y}\left(\alpha_{x} \iota_{z}-\iota_{x z}+\beta_{z} \iota_{x}\right) \\
\beta_{x z} \iota_{x, y} & \mapsto \beta_{x z}\left(\alpha_{x} \iota_{y}-\iota_{x y}+\beta_{y} \iota_{x}\right) \\
\iota_{x, y z} & \mapsto \alpha_{x} \iota_{y z}-\iota_{x(y z)}+\beta_{y z} \iota_{x} \\
\iota_{x y, x z} & \mapsto \alpha_{x y} \iota_{x z}-\iota_{(x y)(x z)}+\beta_{x z} \iota_{x y} .
\end{aligned}
$$

Applying the three identities satisfied by the α 's and the β 's, we see that choosing signs,,,,+--+- produces a signed sum of zero.

So define $\partial: F X^{3} \rightarrow F_{X} X^{2}$ by

$$
\iota_{x, y, z} \mapsto \alpha_{x} \iota_{y, z}-\alpha_{x y} \iota_{x, z}-\beta_{x, z} \iota_{x, y}+\iota_{x, y z}-\iota_{x y, x z} .
$$

Then $\partial^{2}=0$.
Perhaps contracting homotopies can be built using the fact that x. is bijective. So there's an operator $x \mapsto x^{\prime}$ on X characterized by $x x^{\prime}=x$. Notice then that $X \rightarrow X^{2}$ by $x \mapsto\left(x, x^{\prime}\right)$ is a map over X.

A\&G effectively describe the rest of this complex.
We use a variant of the useful notation introduced by Andruskiewitch and Graña:

$$
x_{1} \cdots x_{n}=x_{1}\left(x_{2} \cdots x_{n}\right)
$$

They observe that for $i<n$,

$$
\left(x_{1} \cdots x_{i}\right)\left(x_{1} \cdots x_{i-1} x_{i+1} \cdots x_{n}\right)=\left(x_{1} \cdots x_{n}\right) .
$$

To see this note that it's the definition for $i=1$. Then use self-distributivity:

$$
\left(x_{1} \cdots x_{i}\right)\left(x_{1} \cdots x_{i-1} x_{i+1} \cdots x_{n}\right)=\left(x_{1}\left(x_{2} \cdots x_{i}\right) x_{2} \cdots x_{i-1} x_{i+1} \cdots x_{n}\right)
$$

which, by induction on i, is $x_{1} \cdots x_{n}$.

Define maps $d_{i}: X^{n} \rightarrow F_{X} X^{n-1}$ over X :

$$
\begin{aligned}
d_{1}\left(x_{1}, \ldots, x_{n}\right) & =\left(x_{1} x_{2}, \ldots, x_{1} x_{n}\right) \\
d_{2}\left(x_{1}, \ldots, x_{n}\right) & =\left(x_{1}, x_{2} x_{3}, \ldots, x_{2} x_{n}\right) \\
& \ldots \\
d_{n-1}\left(x_{1}, \ldots, x_{n}\right) & =\left(x_{1}, \ldots, x_{n-2}, x_{n-1} x_{n}\right)
\end{aligned}
$$

Also

$$
\begin{aligned}
a_{1}\left(x_{1}, \ldots, x_{n}\right) & =\alpha_{x_{1}}\left(x_{2}, \ldots, x_{n}\right) \\
a_{2}\left(x_{1}, \ldots, x_{n}\right) & =\alpha_{x_{1} x_{2}}\left(x_{1}, x_{3}, \ldots, x_{n}\right) \\
& \ldots \\
a_{n-1}\left(x_{1}, \ldots, x_{n}\right) & =\alpha_{x_{1} \cdots x_{n-1}}\left(x_{1}, \ldots, x_{n-2}, x_{n}\right)
\end{aligned}
$$

and

$$
b\left(x_{1}, \ldots, x_{n}\right)=\beta_{x_{1} \cdots x_{n-2} x_{n}}\left(x_{1}, \ldots, x_{n-1}\right) .
$$

Reminder: The operators α and β here are the ones in the free X-module construction F_{X}.

For example, with $n=2$ we have

$$
d_{1}\left(x_{1}, x_{2}\right)=x_{1} x_{2}, \quad a_{1}\left(x_{1}, x_{2}\right)=\alpha_{1} x_{2}, \quad b\left(x_{1}, x_{2}\right)=\beta_{2} x_{1} .
$$

With $n=3$,

$$
\begin{gathered}
a_{1}\left(x_{1}, x_{2}, x_{3}\right)=\alpha_{x_{1}}\left(x_{2}, x_{3}\right), \quad a_{2}\left(x_{1}, x_{2}, x_{3}\right)=\alpha_{x_{1} x_{2}}\left(x_{1}, x_{3}\right), \\
d_{1}\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1} x_{2}, x_{1} x_{3}\right), \quad d_{2}\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}, x_{2} x_{3}\right),
\end{gathered}
$$

and

$$
b\left(x_{1}, x_{2}, x_{3}\right)=\beta_{x_{1} x_{3}}\left(x_{1}, x_{2}\right) .
$$

The rack axioms and the identities involving α and β imply relations among these operators. For example as maps $X^{3} \rightarrow F_{X} X$,

$$
a_{1} d_{1}=d_{1} a_{2}, \quad a_{1} d_{2}=d_{1} a_{2}, \quad b d_{1}=d_{1} b
$$

are just true;

$$
d_{1} d_{2}=d_{1} d_{1}
$$

follows from the rack axiom; and

$$
a_{1} a_{1}=a_{1} a_{2}, \quad a_{1} b=b a_{1}, \quad b d_{2}=b a_{2}+b b
$$

follow from the three relations.
The last relation indicates that we are not trying to describe an indexing category; rather an indexing ringoid, and then we study additive functors from it into, for example, X-modules.

Next step is to write down the general relations among these operators. A\&G's proof that $\partial^{2}=0$ should carry over. What about maps going in the other direction, "degeneracies"? For example, while we don't have a unit element, we do have a function ' $: X \rightarrow X$ characterized by $x x^{\prime}=x$. (Sometimes $x^{\prime}=x$.) So I can define $X \rightarrow F_{X} X^{2}$ by sending x to (x, x^{\prime}).

And there should be an operator $F X^{n-1} \rightarrow F X^{n}$ that is only a map of objects over X but hopefully at least additive, providing us with a contracting homotopy.

Here's the "face" structure of the ringoid \mathcal{R} over which $F_{X} X$ " is a module. The objects form the set $\{1,2, \ldots\}$. For all $n>1$ there are operators

$$
d_{i}, a_{i}, b \in \mathcal{R}(n, n-1), \quad 1 \leq i<n .
$$

They satisfy the following relations in $\mathcal{R}(n+1, n-1)$.

$$
\begin{gather*}
d_{i} d_{j}=d_{j-1} d_{i} \text { for } i<j \tag{1}\\
a_{i} a_{j}=a_{j-1} a_{i} \text { for } i<j \tag{2}\\
d_{i} a_{j}=\left\{\begin{array}{lll}
a_{j-1} d_{i} & \text { for } i<j \\
a_{j} d_{i+1} & \text { for } \quad i \geq j
\end{array}\right. \tag{3}\\
b d_{i}=d_{i} b \text { and } b a_{i}=a_{i} b \text { for } 1 \leq i<n \tag{4}\\
b d_{n}=b a_{n}+b b \tag{5}
\end{gather*}
$$

These are painfully derived using the following information. (1) uses the rack axioms. (2) uses the $\alpha \alpha$ identity. (3) is the most painful one. It uses the rack identity on subscripts when $i<j-1$. (4) uses the rack identity on subscripts in the d_{1} case, and the $\alpha \beta$ identity for the $b a_{i}$ case. (5) of course uses the last identity.

Maybe it's nicer to write these relations like this: for $i<j$,

$$
d_{i} d_{j}=d_{j-1} d_{i}, \quad a_{i} a_{j}=a_{j-1} a_{i}, \quad a_{i} d_{j}=d_{j-1} a_{i}, \quad d_{i} a_{j}=a_{j-1} d_{i}
$$

Also, for $i<n$,

$$
d_{i} b=b d_{i} \quad \text { and } \quad a_{i} b=b a_{i},
$$

while

$$
b\left(d_{n}-a_{n}\right)=b b .
$$

The symmetry between a and d in these relations is amazing.
There is an additive functor from this pre-additive category into the additive category of functors from racks to abelian groups, taking n to the functor $X \mapsto F_{X} X^{n}$. It's augmented to the functor $X \mapsto \Omega_{X}$.

An \mathcal{R}-module A determines a chain complex as follows. Define operators $A_{n+1} \rightarrow A_{n}$ by

$$
\partial^{\prime}=d_{n}-d_{n-1}+\cdots+(-1)^{n} d_{1} \quad, \quad \partial^{\prime}=a_{n}-a_{n-1}+\cdots+(-1)^{n} a_{1} .
$$

Then the usual calculation shows that

$$
\partial^{\prime} \partial^{\prime}=\partial^{\prime} \partial^{\prime \prime}=\partial^{\prime \prime} \partial^{\prime}=\partial^{\prime \prime} \partial^{\prime \prime}=0
$$

while

$$
b \partial^{\prime}=b d_{n} \quad, \quad b \partial^{\prime \prime}=b a_{n} .
$$

So

$$
\partial=\partial^{\prime}-\partial^{\prime \prime}-b: A_{n+1} \rightarrow A_{n}
$$

defines a differential.
For example, with $X=*$, this is the complex of modules over the ring $R=\mathbb{Z}\left[\alpha^{ \pm 1}, \beta\right] /(\beta(1-\alpha-\beta))$ given by

$$
R \stackrel{1-\alpha-\beta}{\longleftarrow} R \stackrel{-\beta}{\leftarrow} R \stackrel{1-\alpha-\beta}{\longleftarrow} R \stackrel{-\beta}{\longleftarrow} \cdots .
$$

In this case at least, the complex is exact.
The chain complex associated to an \mathcal{R}-module has a maximal augmentation

$$
M\left(A_{\bullet}\right)=A_{1} / \partial A_{2}
$$

In the case of the free resolution, $M\left(F\left(X^{\bullet}\right)\right)=\Omega_{X}$.
FGG prove the following important result. Suppose we have a map $X \rightarrow$ G from a set to a group. The set $X \times G$ becomes a rack under the operation

$$
(x, f)(y, g)=\left(y, g f^{-1} x f\right)
$$

(where we leave the map $X \rightarrow G$ undenoted). Proof: $(x, f)(z, h)=\left(z, h f^{-1} x f\right)$, so
$((x, f)(y, g))(x, f)(z, h))=\left(z,\left(h f^{-1} x f\right)\left(f^{-1} x^{-1} f g^{-1}\right) y\left(g f^{-1} x f\right)\right)=\left(z, h g^{-1} y g f^{-1} x f\right)$
while

$$
(x, f)((y, g)(z, h))=(x, f)\left(z, h g^{-1} y g\right)=\left(z,\left(h g^{-1} y g\right) f^{-1} x f\right) .
$$

Theorem. (FGG) The free rack on a set X is given in terms of the inclusion of X into the free group $G X$ by

$$
F X=X \times G X
$$

For example, the free rack on a singleton is \mathbb{Z} with rack structure given by $x y=y+1$ for all $x, y \in \mathbb{Z}$ and inclusion sending $*$ to 1 .

The free X-module functor F_{X} may be expressed in terms of the free rack functor F : Given a rack X, a set $S \downarrow X$ over X, and a rack $Y \downarrow X$ over X, consider

Both columns are equalizers, so the top sets are canonically isomorphic. If Y is in fact an abelian object in Rack/ X, then this isomorphism leads to

$$
\operatorname{Map}_{\text {Set } / X}(S, Y)=\operatorname{Hom}_{X-\bmod }\left(A b_{X}(F S), Y\right)
$$

so

$$
F_{X} S=A b_{X}(F S)
$$

