Toda's realization theorem

Haynes Miller
June, 2007
\mathcal{A} is the Steenrod algebra. Let M be an \mathcal{A} module which is bounded below and of finite type. I want to know whether there is a spectrum with this as its cohomology.

Let

$$
M \leftarrow F_{0} \stackrel{d_{0}}{\leftarrow} F_{1} \stackrel{d_{1}}{\longleftarrow} \cdots
$$

be a free resolution. We may assume that F_{s} is trivial below dimension s more than the connectivity of M. If M is Bockstein-acyclic, the connectivity of F_{s+1} can be chosen to be $2(p-1)$ larger than the connectivity of F_{s}.

Let K^{s} be the GEM with $H^{*}\left(K^{s}\right)=\Sigma^{1-s} F_{s}$. We have a diagram

$$
K_{0} \xrightarrow{d^{0}} K^{1} \xrightarrow{d^{1}} K^{2} \xrightarrow{d^{2}} \cdots
$$

where each d has degree -1 , which induces the resolution in cohomology. We wish to embed it into a diagram

where the arrows labelled i and d have degree -1 . In cohomology, the maps j will fit into a commutative diagram

$Y^{1}=\Sigma^{-1} K^{0}$, and the map $k^{1}: Y^{1} \rightarrow K^{1}$ is d^{0}. Let Y^{2} be the fiber of k^{1}.
We want to factor $d^{1}: K^{1} \rightarrow \Sigma K^{2}$ through $i^{1}: K^{1} \rightarrow \Sigma Y^{2}$. This can be done since $k^{1}: Y^{1} \rightarrow K^{1}$ is just $d^{0}: \Sigma^{-1} K^{0} \rightarrow K^{1}$, and $d^{1} d^{0}=0$. The map $k^{2}: Y^{2} \rightarrow K^{2}$ can be varied by adding a map of the form $Y^{2} \xrightarrow{j^{1}} Y^{1} \longrightarrow K^{2}$.

Let $Y^{3} \rightarrow Y^{2}$ be the fiber of k^{2} and let $i^{2}: K^{2} \rightarrow \Sigma Y^{3}$ be the boundary homomorphism.

Next we want to factor $d^{2}: K^{2} \rightarrow \Sigma K^{3}$ through the map $i^{2}: K^{2} \rightarrow \Sigma Y^{3}$. So I want to know that k^{2} can be chosen so that $Y^{2} \xrightarrow{k^{2}} K^{2} \xrightarrow{d^{2}} \Sigma K^{3}$ is null. Since the target is a GEM, it is equivalent to ask that this map be zero in cohomology.

Since coker $\left(F_{1} \rightarrow F_{0}\right)=M$, the long exact sequence for the cofibration sequence $Y^{2} \rightarrow Y^{1} \rightarrow K^{1}$ gives exactness of the top row in the diagram

The composite $d_{1} d_{2}$ is zero, and the right vertical is a monomorphism, so the composite $k_{2} d_{2}$ factors through the inclusion $p: M \rightarrow H^{*}\left(Y^{2}\right)$ by a map $c: \Sigma^{-1} F_{3} \rightarrow M$. Since $p c d_{3}=k_{3} d_{2} d_{3}=0$, the map c is a cocycle representing a class in

$$
\operatorname{Ext}_{\mathcal{A}}^{3,1}(M, M)
$$

If we assume that this group is zero, then c is a coboundary, which is to say that it factors through $d_{2}: \Sigma^{-1} F_{3} \rightarrow H^{*}\left(K^{2}\right)=\Sigma^{-1} F_{2}$ by a map $b: H^{*}\left(K^{2}\right) \rightarrow M$. The map $p b: \Sigma^{-1} F_{2} \rightarrow H^{*}\left(Y^{2}\right)$ is the effect in cohomology of exactly the sort of map by which we are allowed to alter k^{2}; and $p b d_{2}=p c=k_{2} d_{2}$, so if we replace k_{2} by $k_{2}-p b$, then $k_{2} d_{2}=0$, as desired.

Notice that this choice of k_{2} then factors through the surjection $\Sigma^{-1} F_{2} \rightarrow \Sigma^{-1}$ ker d_{0}, and thus splits the top sequence in the diagram. Let $s_{2}: H^{*}\left(Y^{2}\right) \rightarrow M$ be the corresponding splitting of p.

So d^{2} factors as $d^{2}=k^{3} i^{2}$. The map $k^{3}: Y^{3} \rightarrow K^{3}$ can be varied by any map of the form $Y^{3} \xrightarrow{j^{2}} Y^{2} \longrightarrow K^{3}$.

Let $j^{3}: Y^{4} \rightarrow Y^{3}$ be the fiber of $k^{3}: Y^{3} \longrightarrow K^{3}$.
Next we want to factor $d^{3}: K^{3} \longrightarrow \Sigma K^{4}$ through $i^{3}: K^{3} \longrightarrow \Sigma Y^{4}$; that is, we want to know that k^{3} can be chosen so that $Y^{3} \xrightarrow{k^{3}} K^{3} \xrightarrow{d^{3}} \Sigma K^{4}$ is null.

For this we need to analyze the cohomology of Y^{3}. We have a diagram

in which the straight lines are exact. Chasing it around, we find that the top row in the following sequence is exact.

We are at the inductive step; the composite $k_{2} d_{3}$ factors as $\Sigma^{-1} F_{4} \xrightarrow{c} M \xrightarrow{p} H^{*}\left(Y^{3}\right)$, and c is a cocyle, determining an element of

$$
\operatorname{Ext}_{\mathcal{A}}^{4,2}(M, M)
$$

If this cohomology class vanishes, the map k_{3} can be altered so that $k_{3} d_{3}=0$, and the process continues.

