Toda's realization theorem

Haynes Miller June, 2007

 \mathcal{A} is the Steenrod algebra. Let M be an \mathcal{A} module which is bounded below and of finite type. I want to know whether there is a spectrum with this as its cohomology.

Let

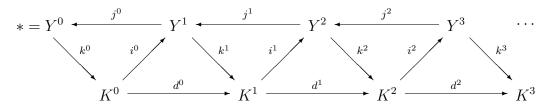
$$M \leftarrow F_0 \xleftarrow{d_0} F_1 \xleftarrow{d_1} \cdots$$

be a free resolution. We may assume that F_s is trivial below dimension s more than the connectivity of M. If M is Bockstein-acyclic, the connectivity of F_{s+1} can be chosen to be 2(p-1) larger than the connectivity of F_s .

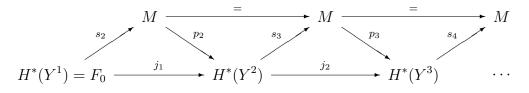
Let K^s be the GEM with $H^*(K^s) = \Sigma^{1-s} F_s$. We have a diagram

$$K_0 \xrightarrow{d^0} K^1 \xrightarrow{d^1} K^2 \xrightarrow{d^2} \cdots$$

where each d has degree -1, which induces the resolution in cohomology. We wish to embed it into a diagram



where the arrows labelled i and d have degree -1. In cohomology, the maps j will fit into a commutative diagram



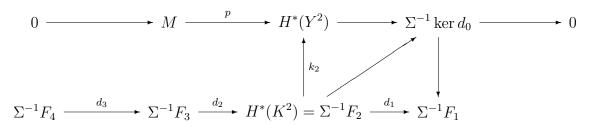
 $Y^1 = \Sigma^{-1} K^0$, and the map $k^1 : Y^1 \to K^1$ is d^0 . Let Y^2 be the fiber of k^1 .

We want to factor $d^1: K^1 \to \Sigma K^2$ through $i^1: K^1 \to \Sigma Y^2$. This can be done since $k^1: Y^1 \to K^1$ is just $d^0: \Sigma^{-1}K^0 \to K^1$, and $d^1d^0 = 0$. The map $k^2: Y^2 \to K^2$ can be varied by adding a map of the form $Y^2 \xrightarrow{j^1} Y^1 \longrightarrow K^2$.

Let $Y^3 \to Y^2$ be the fiber of k^2 and let $i^2 : K^2 \to \Sigma Y^3$ be the boundary homomorphism.

Next we want to factor $d^2: K^2 \to \Sigma K^3$ through the map $i^2: K^2 \to \Sigma Y^3$. So I want to know that k^2 can be chosen so that $Y^2 \xrightarrow{k^2} K^2 \xrightarrow{d^2} \Sigma K^3$ is null. Since the target is a GEM, it is equivalent to ask that this map be zero in cohomology.

Since $\operatorname{coker}(F_1 \to F_0) = M$, the long exact sequence for the cofibration sequence $Y^2 \to Y^1 \to K^1$ gives exactness of the top row in the diagram



The composite d_1d_2 is zero, and the right vertical is a monomorphism, so the composite k_2d_2 factors through the inclusion $p: M \to H^*(Y^2)$ by a map $c: \Sigma^{-1}F_3 \to M$. Since $pcd_3 = k_3d_2d_3 = 0$, the map c is a cocycle representing a class in

$$\operatorname{Ext}_{\mathcal{A}}^{3,1}(M,M)$$

If we assume that this group is zero, then c is a coboundary, which is to say that it factors through $d_2: \Sigma^{-1}F_3 \to H^*(K^2) = \Sigma^{-1}F_2$ by a map $b: H^*(K^2) \to M$. The map $pb: \Sigma^{-1}F_2 \to H^*(Y^2)$ is the effect in cohomology of exactly the sort of map by which we are allowed to alter k^2 ; and $pbd_2 = pc = k_2d_2$, so if we replace k_2 by $k_2 - pb$, then $k_2d_2 = 0$, as desired.

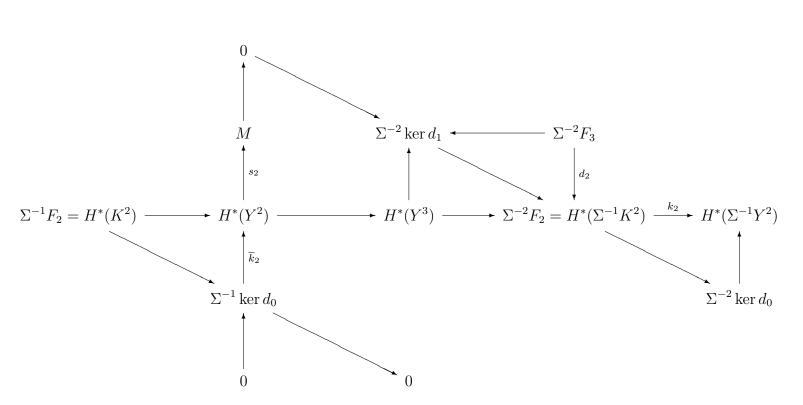
Notice that this choice of k_2 then factors through the surjection $\Sigma^{-1}F_2 \to \Sigma^{-1} \ker d_0$, and thus splits the top sequence in the diagram. Let $s_2 : H^*(Y^2) \to M$ be the corresponding splitting of p.

So d^2 factors as $d^2 = k^3 i^2$. The map $k^3 : Y^3 \to K^3$ can be varied by any map of the form $Y^3 \xrightarrow{j^2} Y^2 \longrightarrow K^3$.

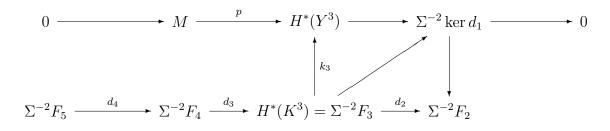
Let $j^3: Y^4 \to Y^3$ be the fiber of $k^3: Y^3 \longrightarrow K^3$.

Next we want to factor $d^3: K^3 \longrightarrow \Sigma K^4$ through $i^3: K^3 \longrightarrow \Sigma Y^4$; that is, we want to know that k^3 can be chosen so that $Y^3 \xrightarrow{k^3} K^3 \xrightarrow{d^3} \Sigma K^4$ is null.

For this we need to analyze the cohomology of Y^3 . We have a diagram



in which the straight lines are exact. Chasing it around, we find that the top row in the following sequence is exact.



We are at the inductive step; the composite k_2d_3 factors as $\Sigma^{-1}F_4 \xrightarrow{c} M \xrightarrow{p} H^*(Y^3)$, and c is a cocyle, determining an element of

$$\operatorname{Ext}_{\mathcal{A}}^{4,2}(M,M)$$

If this cohomology class vanishes, the map k_3 can be altered so that $k_3d_3 = 0$, and the process continues.