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Abstract

We begin by showing that in a triangulated category, specifying a projective class is equiva-
lent to specifying an ideal I of morphisms with certain properties, and that if 3 has these prop-
erties, then so does each of its powers. We show how a projective class leads to an Adams
spectral sequence, and give some results on the convergence and collapsing of this spectral
sequence. We use this to study various ideals. In the stable homotopy category we exam-
ine phantom maps, skeletal phantom maps, superphantom maps, and ghosts. (A ghost is a
map which induces the zero map of homotopy groups.) We show that ghosts lead to a sta-
ble analogue of the Lusternik-Schnirelmann category of a space, and we calculate this stable
analogue for low-dimensional real projective spaces. We also give a relation between ghosts
and the Hopf and Kervaire invariant problems. In the case of A, modules over an A, ring
spectrum, the ghost spectral sequence is a universal coefficient spectral sequence. From the
phantom projective class we derive a generalized Milnor sequence for filtered diagrams of
finite spectra, and from this it follows that the group of phantom maps from X to Y can al-
ways be described as a m' group. The last two sections focus on algebraic examples. In the
derived category of an abelian category we study the ideal of maps inducing the zero map
of homology groups and find a natural setting for a result of Kelly on the vanishing of com-
posites of such maps. We also explain how pure exact sequences relate to phantom maps in
the derived category of a ring.
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1. INTRODUCTION

Let 8 be a triangulated category, such as the stable homotopy category or the derived cat-

egory of a ring. One often tries to study an object X in 8 by building it up from a class of

better understood pieces. When this is done, there may be maps X -+ Y that aren't seen by

the pieces (this is made precise below). Obvious questions arise, such as how efficiently X

can be built from the given class of pieces, and how the unseen maps behave under composi-

tion. This paper presents a systematic way of studying such phenomena, namely by showing

that they are captured in the notion of a "projective class". We then apply this formalism to

various interesting examples.

If P is a collection of objects of 8, denote by TP-null the collection of all maps X -+ Y

such that the composite P -+ X -+ Y is zero for all objects P in TP and all maps P -+ X.

These are the maps that the objects of TP fail to "see". If 3 is a collection of maps of 8, denote

by J-proj the collection of all objects P such that the composite P -+ X -+ Y is zero for all

maps X -+ Y in 3 and all maps P -+ X. A projective class is a pair (TP, 3) with TP-null = 3

and 3-proj = TP, such that for each object X there is a cofibre sequence P -+ X -+ Y with

P in P and with X -+ Y in 5. The objects of TP are referred to as projectives.

This definition of "projective class" appears on the surface to be different from other defi-

nitions that have appeared, but in the next section we show that it is in fact equivalent. How-

ever, when working in a triangulated category, we claim that the above definition is more

natural than the others. For example, the collection 3 of maps is automatically an ideal in 8.

That is, if f and g are parallel maps in 3, then f + g is in J. And if f, g and h are compos-

able and g is in 3, then both fg and gh are in 3. (All of our ideals will be two-sided.) Many

commonly occurring ideals in fact form part of a projective class.

Our definition also has the feature that it leads to a sequence of "derived" projective

classes. The powers gn of the ideal 3 form a decreasing filtration of the class of maps of

8. Let P1, = TP and inductively define Tn to be the class of all retracts of objects Y that sit

in a cofibre sequence X -+ Y -+ P with X in TP,_1 and P in TP. In this way we get an

increasing filtration of the class of objects of 8, and we have the following result.

Theorem 1.1. For each n, the pair (Pn, gn) is a projective class.

This result is a special case of the "product" operation on projective classes. Both are

discussed in more detail in Section 3.

Theorem 1.1 forms the cornerstone of our investigations of various ideals in the stable

homotopy category and the derived category of an abelian category, investigations which

occupy us in the later sections of the paper. But before getting to these examples, we show
7



in Section 4 how a projective class leads to an Adams spectral sequence, and we prove that

this spectral sequence is conditionally convergent [5] if the projective class is generating,

i.e., if for each non-zero X there is a projective P and a non-zero map P -+ X. The length

of an object X is the smallest n such that X is in Pn, and is infinite if X is not in any TJn. If X

has finite length and we have a generating projective class, then the Adams spectral sequence

abutting to [X, Y] is strongly convergent [5]. Our next observation is that when dealing with

a generating projective class (which we always do), an upper bound on the length of an object

X is given by 1 + proj. dim X, where the projective dimension of X is of course measured

with respect to the given projective class.

The remaining sections deal with examples of projective classes. Section 5 studies phan-

tom maps in any category which has a generating phantom projective class (Definition 5.2).

A phantom map is a map which is zero when restricted to any "finite" object (Definition 5.1).

A necessary tool is the introduction of weaker variants of colimits, such as weak colimits and

minimal cones. We conclude that if our category satisfies "Brown Representability" (Defini-

tion 5.3), then every object has projective dimension at most one, the composite of any two

phantoms is zero, and the Adams spectral sequence degenerates into a generalized Milnor

sequence. In Section 6 we examine various types of phantom maps in the stable homotopy

category. We begin with ordinary phantom maps, drawing on the abstract work done in the

previous section. As a special case of the generalized Milnor sequence, we get the following

result.

Theorem 1.2. Let X be a CW-spectrum and let {X}, be the filtered diagram offinite CW-

subspectra of X. For any spectrum Y there is a short exact sequence

0 ---+ 4M[EXa, Y] --+ [X, Y] - [X, Y] --+ 0.

The kernel consists precisely of the phantom maps. Moreover, i[E Xa, Y] vanishes for

i > 2.

This result is straightforward when X has finite skeleta, but is more delicate in general. It

was also proved by Tetsusuke Ohkawa [34]. For further historical comments, see the para-

graph following Theorem 6.1.

In the next part of Section 6 we study skeletal phantom maps, maps which are zero when

restricted to any "skeleton" of the source (Definition 6.2). And in the final part we prove that

"superphantoms" exist, answering a question of Margolis [31, p. 81]. A superphantom is a

map which is zero when restricted to any (possibly desuspended) suspension spectrum.

We turn to the study of maps which induce the zero map in homotopy groups in Section 7.

(We dub these maps "ghosts".) Here things are much more interesting in that our ideal has
8



infinite order. If a spectrum X has length k with respect to this ideal, then any composite of

k Steenrod operations in the mod 2 cohomology of X is zero. For this reason, we view the

length of a spectrum with respect to the ideal of ghosts as a stable analogue of the Lusternik-

Schnirelmann category of a space. In the second part of the section we focus on calculating

the lengths of real projective spaces. We give upper and lower bounds on the length of •RP"

which agree for 2 < n < 19, and we show that the filtration of the Steenrod squares is

closely related to the Hopf and Kervaire invariant problems. In the third and final part of the

section, we show that the Adams spectral sequence with respect to the ghost projective class

in the category of A, modules over an A. ring spectrum is a universal coefficient spectral

sequence, and we show how this gives another theoretical lower bound on the length of a

spectrum.

The last two sections deal with the algebraic analogues of phantoms and ghosts. In the

derived category TD of an abelian category, a ghost is a map which induces zero in homology,

and the ideal of ghosts is a natural ideal to study. We show that if our abelian category has

enough projectives and satisfies Grothendieck's AB 5 axiom, then the ideal of ghosts is part

of a projective class, and we prove the following result.

Theorem 1.3. Let X be a complex such that the projective dimensions of BnX and H,X

are less than k for each n. Then the projective dimension of X with respect to the ideal of

ghosts is less than k. In particular, X has length at most k, and a k-fold composite

X --- y ___+ .. __ Yk

of maps each zero in homology is zero in VD.

One can deduce from this a result of Max Kelly [25] whose work provided the inspiration

for the general framework presented in this paper. See Section 8 for details.

In the last section we discuss phantom maps in the derived category of an associative ring.

It turns out that a map X -- Y is phantom if and only if the composite W -+ X -+ Y is zero

(in the derived category) for each bounded complex W of finitely generated projectives. Our

main result here is a relation between phantom maps and pure extensions of R-modules. We

reproduce an example which shows that when R = C[z, y], Brown representability doesn't

hold in the derived category.

I have had the pleasure of discussing this work with many mathematicians, to whom I

owe a great debt. I mention in particular my advisor Haynes Miller, who never let me forget

about the examples; Mike Hopkins, for help with the result that 11 forms part of a projective

class; and Mark Mahowald, for the efficient construction of IRP'.



2. PROJECTIVE CLASSES

This section has three parts. In the first part we recall the definition of a projective class

given by Eilenberg and Moore [9]. This definition focuses on the relation between "projec-

tive" objects and three-term "exact" sequences. It appears to be the most general notion in

that it allows one to do rudimentary homological algebra in any pointed category. In the sec-

ond part we show that the more familiar relation between projectives and "epimorphisms"

can be used to define "projective class" as long as the pointed category in which we are work-

ing has weak kernels. Finally, in the third part, we show that it is equivalent to use the rela-

tion between projectives and "null maps" as long as our pointed category has weak kernels

and in addition has the property that every map is a weak kernel. Any triangulated category

satisfies these conditions.

A reader who is more interested in the examples may move on to the next section, using

the definition of "projective class" from the introduction.

We mention everything we say can be dualized to give a discussion of injective classes.

2.1. Projective classes in pointed categories. We recall the notion of a projective class

in a pointed category. We will be brief; the elegant original paper [9] leaves no room for

improvement.

A category 8 is pointed if it contains an object which is both initial and terminal. If such

an object exists, it is unique up to isomorphism and is denoted 0. For any two objects X and

Y of 8, there is a unique map from X to Y that factors through 0, and we denote this map

by 0 as well. By using the zero map as a basepoint, the hom functor 8(-, -) takes values in

the category of pointed sets.

For the rest of this section we assume that 8 is pointed.

A composable pair of maps X -+ Y -+ Z is said to be a (length two) complex if the

composite is zero.

A complex X f Y -- Z in the category of pointed sets is exact if f(X) = g-1

where * denotes the basepoint in Z.

Definition 2.1. Let TP be a collection of objects of 3. A complex X -- Y -+ Z such that

8(P, X) -- + 8(P, Y) -- + (P, Z)

is an exact sequence of pointed sets for each P in TP is said to be P-exact, and the collection

of all such complexes is denoted TP-exact

Now let e be any collection of length two complexes. An object P such that

8(P, X) ---+ (P, Y) -+ 8(P, Z)
10



is an exact sequence of pointed sets for each complex X -4 Y -4 Z in C is said to be e-

projective, and the collection of all such objects is denoted e-proj.

Note that the class of C-projectives is closed under coproducts and retracts.

Definition 2.2. Let TP be a collection of objects in 8 and let C be a collection of length two

complexes. The pair (P, C) is complementary if T-exact = C and e-proj = P, and is a

projective class if, in addition, for each morphism X -+ Y in 8 there is a morphism P -+ X

such that P is in P and P -4 X -+ Y is in e.

It is easily checked that (TP-exact-proj, T-exact) is a complementary pair for any collec-

tion T of objects of 8. Similarly, (C-proj, e-proj-exact) is complementary for any collection

e of length two complexes.

If 8 is an additive category, then all of the usual results about projective resolutions may

be proved. See [9] or [22] for details.

2.2. Projective classes in categories with weak kernels. We show that in a category with

weak kernels we can define "projective class" by using epimorphisms instead of exact se-

quences. This observation was made in [9] for a category with strict kernels.

Given a map f : X -4 Y in a pointed category 8, a weak kernel for f is a map W -+ X

such that

8(V, W) -- 8(V, X) -- S(V, Y)

is an exact sequence of pointed sets for each V in S. This says that a map V -+ X factors

through W if and only if the composite V -4 X -+ Y is zero. In particular, the composite

W -+ X -4 Y is zero. We say that 8 has weak kernels if every map in 8 has a weak kernel.

Definition 2.3. Let TP be a collection of objects of S. A map X -+ Y such that

S(P, X) - (P, Y)

is an epimorphism for each P in P is said to be JP-epic, and the collection of all such maps

is denoted P-epi.

Now let F be any collection of maps of 8. An object P such that

8(P, X) --+ 8(P, Y)

is an epimorphism for each map X -+ Y in E is said to be E-projective, and the collection

of all such objects is denoted E-proj.

Note that the class of E-projectives is closed under coproducts and retracts.

II



Proposition 2.4. Let 8 be a pointed category with weak kernels. Let TP be a collection of

objects and , a collection of morphisms such that TP-epi = E and E-proj = TP. Assume also

that for each X there is a map P -+ X in 8 with P E TP. Then (TP, TP-exact) is a projective

class. Moreover, every projective class is of this form for a unique pair (TP, E) satisfying the

above conditions.

Proof Suppose that we are given a pair (P, E) with TP-epi = E and E-proj = P such that

for each X there is a map P -+ X in , with P in TP. Let e = J-exact. First we will prove

that (P, e) is complementary. By definition e = TP-exact, and it is clear that TP C e-proj, so

all that remains to be shown is that e-proj C JP. Let X be a e-projective object, and choose

a map P -+ X in E with P in TP. The sequence P -+ X -+ 0 is P-exact and so it is exact

under S(X, -). Thus X is a retract of P and therefore is in P.

To finish the proof of the first part of the proposition, we must show that there are enough

projectives. Let f : Y -+ Z be a map and choose a weak kernel X -+ Y for f. Let P -+ X

be a map in E with P in TP. Then it is clear that P -+ Y -+ Z is TP-exact, and therefore

(P, P-exact) is a projective class.

Now we prove the converse. Suppose (TP, e) is a projective class. If this projective class

is obtained from a pair (P, E) as above, then we have , = TP-epi, so uniqueness is clear.

Thus our task is to show that taking this as a definition of , we have that (TP, E) satisfies the

hypotheses of the first part of the proposition. By definition E = TP-epi, and it is clear that

P C E-proj, so we must show that E-proj C TP. Let X be in E-proj. Choose a map P -+ X

with P in TP so that P -+ X -+ 0 is in e. It is easy to see that P -+ X is in E, and since X

is in E-proj, X is a retract of P. Therefore X is in TP.

All that is left to be done is to show that for each X there is a map P -+ X in 8 with P

in P. As above, simply choose a map P -+ X so that P -4 X -+ 0 is in e. O

Let TP be a class of objects. If X -+ Y -+ Z is a complex and K -+ Y is a weak kernel

of Y -+ Z, then the map X -+ Y factors as X -+ K -+ Y for some f : X -+ K. If f is

P-epic then it is easy to see that X -+ Y -+ Z is TP-exact. And if K -+ Y is a strict kernel,

then TP-exactness of X -+ Y -+ Z implies that f is P-epic. However, when all one has is

weak kernels, there might be TP-exact sequences such that no choice of weak kernel allows

a choice of f which is P-epic. Thus, when passing from a pair (TP, E) as in the proposition

to a projective class (TP, e), one must define e to be the class of ?P-exact sequences, and not

(as one might have guessed) to be the class of those complexes X -+ Y -+ Z for which the

map X -+ Y factors as X -+ K -+ Y with X -+ K in 8 and with K Y a weak kernel

of Y - Z.



2.3. Projective classes in triangulated categories. In this section we assume that our

pointed category 8 has weak kernels and in addition has the property that every map is a

weak kernel. Another way to say this is that every map X -+ Y lies in a sequence

W- X - Y - Z

which is exact under S(U, -) for all objects U. A triangulated category satisfies this con-

dition with W the fibre of X -4 Y and Z the cofibre (so Z r EW). There are various

references for triangulated categories. The reader already looking at Margolis' book [31]

will find Appendix 2 to be a handy reference. A standard (and good) reference is Verdier's

portion of SGA 41 [38].

Definition 2.5. Let T be any collection of objects of S. A map X -+ Y such that

8(P, X) ---+ (P, Y)

is the zero map for each P in T is said to be f-null, and the collection of all such maps is

denoted T-null.

Now let 3 be any collection of maps of S. An object P such that

8(P, X) --+ 8(P, Y)

is the zero map for each map X -+ Y in 3 is said to be 3-projective, and the collection of

all such objects is denoted J-proj.

Note that the class of J-projectives is closed under coproducts and retracts, and that the

class of P-null maps is a two-sided ideal. Recall that this means that if f and g are parallel

maps in P-null, then f + g is in P-null. And if f, g and h are composable and g is in P-null,

then both fg and gh are in P-null.

Proposition 2.6. Let 8 be a pointed category with weak kernels such that every map is a

weak kernel. Let P be a collection of objects and 3 a collection of morphisms such that

T-null = J and J-proj = P. Assume also that for each X there is a projective P and a

map P -4 X which is a weak kernel of a map in 3. Then (9, P-exact) is a projective class.

Moreover every projective class is of thisform for a unique pair (9, I) satisfying the above

conditions.

Proof This can be proved directly, paralleling the proof of the analogous result in the previ-

ous part of this section, but it is simpler and more illuminating to show how this formulation

relates to the epimorphism formulation and then to apply Proposition 2.4.



Let T be a class of objects, and let X -+ Y -+ Z be a sequence exact under S(U, -) for

each U in T. Then X -+ Y is T-epic if and only if Y -+ Z is T-null. Using this, and the

facts that every T-epic map can be detected in this way (since every map is a weak kernel)

and that every T-null map can be detected in this way (since every map has a weak kernel), it

is easy to see that pairs (T, J) as described in the hypotheses correspond bijectively to pairs

(T, 8) as described in the previous part of this section. O

For the rest of the paper we will be working in a triangulated category and will freely

make use of the equivalent ways of thinking of a projective class. Also, in a triangulated

category we can replace the condition

to any X we can associate a projective P and a map P -+ X which is a weak

kernel of a map in 2

with the condition

any X lies in a cofibre sequence P -+ X -+ Y with P in T and X - Y in 3.

Indeed, the latter clearly implies the former. And given a weak kernel P - X of a map in

3, it is easy to check that the cofibre X - Y of P -+ X is in 3.

3. OPERATIONS ON PROJECTIVE CLASSES

For the rest of this paper, 8 will be a triangulated category containing all set-indexed co-

products. We will sometimes slip and call a coproduct a "wedge", and we will write X V Y

for the coproduct of X and Y. All of our projective classes will be stable. That is, both T

and 3 are assumed to be closed under suspension and desuspension. If (T, 2) is a projective

class in 8, we will call the objects of T projective.

3.1. Meets and products. There is a natural ordering on the class T2e() of projective

classes in 8. For projective classes (T, 3) and (Q, 3), write (T, 3) _< (Q, 3) if 3 is contained in

3. The projective class 0 = (obj 8, 0), whose ideal contains only the zero maps, is the small-

est projective class. The projective class 1 = (0, mor 8), whose ideal contains all maps, is

the largest projective class.

Proposition 3.1. Let {(TP,, 2 a))} be a set of projective classes. Then the intersection

na

is an ideal which forms part of a projective class. The projectives are precisely the retracts

of wedges of objects from the union

U Tt.
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Note that not every ideal forms part of a projective class, so there is some content to this

proposition.

The following lemma will be used to prove the proposition. In fact, it will be used just

about every time we prove that we have an example of a projective class.

Lemma 3.2. Let TP be a class of objects closed under retracts and let 3 be an ideal. Assume

that TP and 3 are orthogonal, i.e., that the composite P -+ X -+ Y is zero for each P in P,

each map X -+ Y in 2, and each map P -+ X. Also assume that each object X lies in a

cofibre sequence P -+ X -+ Y with P in TP and X -+ Y in 2. Then (P, 1) is a projective

class.

Proof of Lemma. All that we have to show is that 3-proj C T and that P-null C 2. For the

former, assume that X is in 3-proj and choose a cofibre sequence P -+ X -+ Y with P in

TP and X -+ Y in 3. Since X is in J-proj, the map X -+ Y is zero, and so X is a retract of

P. Hence X is in ?, as we have assumed that the latter is closed under retracts.

To show that T-null C 3 is equally easy, using that J is an ideal. O

Proof of Proposition 3.1. Let 2 denote the intersection of the ideals 9, and let TP denote the

collection of retracts of wedges of objects each of which lies in some ,Pa. It is clear that P

and 3 are orthogonal, so we must verify that each object X lies in a cofibre sequence P -+

X -+ Y with P in P and X -+ Y in 3. Let X be an object of S. For each a choose a cofibre

sequence Pa - X -+ Y,. Consider the map VPa, - X. The cofibre of this map is zero

when restricted to each Pa and so must lie in each a,. Thus we have a cofibre sequence

P -+ X - Y with P in ? and X -+ Y in J. O

The projective class (P, 3) constructed in the proposition is the meet of the set { (•a, 2a) }.

That is, it is the greatest lower bound.

I don't know whether any set of projective classes has a join (i.e., a least upper bound).

If A is a set of projective classes and the collection of all projective classes which are upper

bounds for A has a meet, then this is the join of A. However, the collection of all projective

classes which are upper bounds for A might not be a set, and so might not have a meet. (The

proof above involved a coproduct over all a.)

There is also a product on CPe(8).

Proposition 3.3. If the ideals 2 anda are parts ofprojective classes (P, 3) and (Q, a), then so

is theirproduct 3g, which consists of all composites f g with f in 3 and g in a. The projectives

are precisely those objects which are retracts of objects X which lie in cofibre sequences

Q -+ X -+ P with Q in Q and P in P.



Proof Write JZ for the collection of retracts of objects X which lie in cofibre sequences Q -+

X -4 P with Q in Q and P in 3'. Then JZ is closed under retracts and coproducts. Using the

fact that in an additive category coproducts are biproducts, one can show that 90 is in fact

an ideal. (The point is that it is automatically closed under sums of parallel maps.) We will

show now that R and 32 are orthogonal, i.e., that any composite

W--4 X - -+ Z

is zero if W is in JR, f is in a, and g is in 3. We can assume without loss of generality that W

lies in a cofibre sequence Q -+ W -4 P with Q in Q and P in T. In the following diagram

Q

W - X --- Y • Z

P

the dashed arrow exists because Q and a are orthogonal. The map P -+ Y -+ Z is zero

because TP and 3 are orthogonal, so the map W -+ X -+ Y -4 Z is zero. This shows that -T

and 3g are orthogonal.

It remains to show that any X lies in a cofibre sequence W -+ X -+ Z with W in 3Z and

X -4 Z in oa. To do this, choose a cofibre sequence Q -+ X -+ Y with Q in Q and X -+ Y

in a. Now choose a cofibre sequence P -+ Y 4 Z with P in TP and Y -+ Z in 3, giving a

diagram

X Y - Z

Q P.

(A circle on an arrow A -+ B denotes a map A -4 B.) Let W be the fibre of the composite

X -4 Y - Z. Using the octahedral axiom, one sees that W lies in a cofibre sequence

Q -4 W -+ P. Thus W -+ X -+ Z is the sequence we seek.

With the help of the lemma, we have proved that (R, 90) is a projective class. O

Here are some formal properties of the intersection and product operations, all of which

are easy to prove.

Proposition 3.4. Let (3P, 3), (0, a) and (3Z, XC) be projective classes. Then

(i) 03 = 0 = 30 and 0 n 3 = =0 3 n 0. (Recall that 0 = (obj 8, 0).)

(ii) 13 = 3 = 31 and 1 n 3 = 3 = 3 n 1. (Recall that 1 = (0, mor 8).)



(iii) 3 n 3 = 3 and 3 n a = a n 3.

(iv) 3oa 3 n and a 3 n 3.
(v) If30 X, then 30 L5 X, 3o < XI, 3 n _ 3 • X and n 3 X n. O

To make the proposition readable, we have blurred the distinction between a projective

class and the ideal that it corresponds to. We hope that by now the reader has been con-

vinced that the ideal is the most natural part of a projective class. Indeed, it is usually easier

to describe the ideal than the projectives, and it is through the ideal that the operations on

projective classes arise naturally.

We next describe the two filtrations that a projective class determines.

3.2. Two filtrations. Fix a stable projective class (TP, :). Define 91 to be the collection of all

n-fold composites of maps in J. The ideals in form a decreasing filtration of the class of mor-

phisms of 8; write 31O for the intersection. We will use the notation 9 (X, Y) for 3 n S(X, Y),

and more generally in(X, Y) for nn n 8(X, Y), 1 < n < oo00.

By the results of the previous part of this section, each of these ideals forms part of a

projective class. To fix notation and terminology, we will explicitly describe the increasing

filtration of the class of objects. Let ,P1 = •P and inductively define Pn to be the class of

all retracts of objects Y which sit in cofibre sequences X -+ Y -4 P with X in TPn-1 and

P projective. If X is in Tn but not in Pn-1 we say that X has length n with respect to the

projective class (TP, 3). We also say that X can be built from n objects of TP. Write TP, for

the class of all retracts of wedges of objects of finite length. We write Po for the collection

of zero objects of 8, and say that they have length 0. For symmetry, we write 10 for the

collection of all morphisms in 8.

The next theorem follows immediately from Propositions 3.1 and 3.3.

Theorem 3.5. For 0 < n < oo, the pair (Pn, gn) is a projective class. O

We say that the projective classes (Pn, in) are derived from (T, 3).

Note 3.6. If there is a cofibre sequence

X -+ Y -+ Z

with X of length m and Z of length n, then Y has length at most m + n. For if we have a

composite

Y -4+ Yi --4" --+ Ym+n



of m + n maps each in 3, the composite of the first m maps is zero when restricted to X,

and so factors through Z. But then the composite Y -+ Z -+ Ym - ... -- Ym+n is zero

because Z has length n. So, by the theorem, Y is in Tm+n.

Note 3.7. Suppose 3 and a are projective classes with 3 < 8. Since products respect order

(Proposition 3.4), we have that Yn < an . Therefore the length of an object X with respect

to 3 is no more than the length of X with respect to a. In contrast, the projective dimension

of an object X (the length of the shortest projective resolution of X) might not respect the

order.

Much of this paper will focus on studying these filtrations, both abstractly and in partic-

ular examples.

4. THE ADAMS SPECTRAL SEQUENCE

Associated to a projective class (TP, 3) in a triangulated category is an Adams spectral se-

quence which we now describe. The Adams spectral sequence was discussed in the same

generality in [32].

Let X be an object. By repeatedly using the fact that there are enough projectives, one

can form a diagram

X = Xo X1 --- X2 - X3

(4.1)

Po P1  P2

with each Pn projective, each map X, -- X,+ 1 in 3, and each triangle exact. We call such

a diagram an Adams resolution of X with respect to the projective class (T, 3). Let Wn be

the fibre of the composite map X -+ Xn. Then Wo = 0, W1 = Po and Wn sits in a cofibre

sequence Wn- 1 -+ Wn - Pn- 1, as one sees using the octahedral axiom. In particular,

Wn is in TPn for each n and so our Adams resolution provides us with choices of cofibre

sequences Wn -+ X -4 Xn with Wn in TPn and X -+ Xn in 3n.

If we apply the functor 8(-, Y). for some object Y we get an exact couple, which we

display in unraveled form:

$(X, Y). --- 8(X1, Y). -- (X2, Y). < 8(X3, Y).

(4.2) N •0

8(Po, Y). S(Pl, Y). 8(P2, Y)

(We write $(X, Y)n for S(EnX, Y).) This exact couple leads to a spectral sequence that we

call the Adams spectral sequence associated to the projective class.



A dual construction using an injective class also leads to a spectral sequence. For exam-

ple, one can obtain the original Adams spectral sequence in this way by taking X = So,

the injectives to be retracts of products of (de)suspensions of mod 2 Eilenberg-Mac Lane

spectra, and the maps in the ideal to be those which induce the zero map in mod 2 singular

cohomology.

For many results we will need to assume that our projective class "generates", as de-

scribed in the following definition.

Definition 4.3. A projective class is said to generate iffor each non-zero X there is a pro-

jective P such that 8(P, X) # 0, or, equivalently, if the ideal 3 contains no non-zero identity

maps. A third equivalent way to say this is that a map Y -+ Z is an isomorphism if and only

if it is sent to an isomorphism by the functor 8(P, -) for each projective P.

One can show that a projective class (T, 3) is generating if and only if one of its derived

projective classes (Tn, 9 n) is generating.

The following result uses terminology from [5].

Proposition 4.4. The Adams spectral sequence abutting to S(X, Y) is conditionally con-

vergent for all X and Y if and only if the projective class is generating.

Proof. Assume that the projectives generate and consider the unraveled exact couple pic-

tured in (4.2). There is an exact sequence

0 -+ ý_(Xk, Y). - s(Xk, Y). ---+ S(Xk,lY) -- ml(Xk, Y). - +0

in which the middle map is induced by the (1 - shift) map VXk -+ VXk. This map induces

the identity map under S(P, -) for each projective P, since each Xk -+ Xk+ 1 induces the

zero map. Therefore VXk -+ VXk is an isomorphism, since the projectives generate. This

shows that

_ 8 (Xk, Y), = 0 = m18(Xk, Y),,

and this is what it means for the associated spectral sequence to be conditionally convergent.

It isn't hard to see that if the projective class does not generate, for example if the identity

map X -+ X is in 3 for some non-zero X, then the spectral sequence abutting to 8(X, X)

isn't conditionally convergent. O

When our projective class generates, we can characterize the objects in TPn by the be-

haviour of the Adams spectral sequence.



Proposition 4.5. If X has length at most n, then for each Y, the Adams spectral sequence

abutting to S(X, Y) collapses at En+1 and has En+1 = E, concentrated in the first n

rows. If the projective class generates, then the converse holds, and the spectral sequence

converges strongly.

We index our spectral sequence with the "Adams indexing", so that the rows contain

groups of the same homological degree and the columns contain groups of the same total

degree.

Proof. If X is in Tn, then one can easily see that each X8 appearing in an Adams resolution

of X is also in TP. Therefore, the n-fold composites X, -+ ... -+ X 8+n are each zero. But

this implies that for each r > n the differential d, is zero, and so En+1 = E,. Moreover,

if X is in Tn, then gn(X, Y) = 0. But Eo is the associated graded of this filtration, and so

it must be zero except in the first n rows.

Now we prove the converse. If the projective class generates, then by Proposition 4.4 the

Adams spectral sequence is conditionally convergent. Therefore, if it collapses, it converges

strongly. And if E, is concentrated in the first n rows, then the nth stage of the filtration on

8(X, Y) must be zero. That is, 3n(X, Y) = 0. This is true for all Y, so X is in PT. [

From an Adams resolution, one can form the sequence

0 -- X ---- Po - P1 ---- P2  '

This is a projective resolution of X with respect to the projective class, i.e., each P, is projec-

tive and the sequence is T-exact at each spot. Therefore the E2-term of the Adams spectral

sequence consists of the derived functors of 8(-, Y) applied to X. By the usual argument,

these are independent of the choice of resolution, and we denote them by Extk (-, Y), k > 0.

In fact, it is easy to see that from the E2-term onwards the spectral sequence is independent

of the choice of Adams resolution. The Adams filtration on S(X, Y) is the 3-adic filtration,

i.e., that given by intersecting with the powers gn of the ideal J.

We note the following facts about the derived functors Extk (-, Y). First, there is no

reason to suspect that Exto(-, Y) = 8(-, Y). Indeed, the kernel of the natural map

8(X, Y) -+ Exto(X, Y) is 3(X, Y), and differentials in the Adams spectral sequence can

prevent this map from being surjective. Second, it is clear that if X has projective dimension

n, then the groups Extk (X, Y) vanish for k > n. To prove the converse, we need to assume

that the projective class generates.

Proposition 4.6. If the projective class generates, then X has projective dimension at most

n if and only if Extk (X, -) vanishes for k > n.
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Proof. Assume that Extk (X, Y) vanishes for each Y and each k > n. Consider an Adams

resolution

X = Xo --a X -X , X -- Xn+1 - Xn+2 Xn+3

Po P1  Pn Pn+1 Pn+2

of X. Since the functors Extk (X, -) vanish for k > n, the sequence Pn +- Pn+1 +-

Pn+ 2 is exact at Pn+1 after applying the functor 8(-, Y) for any Y. In particular, the map

P,+1 -, Xn+1 factors through Pn giving a map Pn -+ Xn+1.The composite Pn+1 -+

Xn+1 -1 Pn -+ Xn+1 is equal to the map Pn+ 1 -+ Xn+1. This shows that the composite

Xn+1 -+ Pn -+ Xn+1 is sent to the identity by the functor S(P, -) for any projective

P. But since the projective class was assumed to generate, this implies that the composite

X,+ 1 -+ Pn -+ Xn+1 is an isomorphism. Therefore Xn+1 is a retract Pn, and so X, is as

well. Thus X, is projective, and

0 -- X -- Po -  P1 -o - " -e-- P,1 n --- e Xn --- 0

displays that X has projective dimension at most n.

The converse was noted above. O

So when our projective class generates, saying that X has projective dimension at most n

is equivalent to saying that for each Y the E2 -term of the Adams spectral sequence abutting

to S(X, Y) is concentrated in the first n + 1 rows.

Here is another result that illustrates the importance of assuming that our projective class

generates.

Proposition 4.7. If the projective class generates, then proj. dim X + 1 is an upper bound

for the length of X.

Proof. This follows from Proposition 4.5, but we give a separate proof, since it is so simple.

If

0 ---- X - Po -E-- P1 --- P2  e ...

is a projective resolution of X with respect to the projective class then it can be filled out to

an Adams resolution

X = X --. , -- x 2 --- x

Po P1 P2



in which the composites Pn -+ X -+ Pn-1 equal the maps Pn -+ Pn- 1 appearing in

the first diagram. If the projective resolution is finite, say with P, = 0 for n > k, then

S(P, X,) = 0 for all projectives P and all n > k. Because the projective class generates,

X, = 0 for n > k. Thus Xk has length at most one, Xk-1 has length at most two, and

inductively, X = X0 has length at most k + 1, completing the argument. O

In general the projective dimension of X will be larger than its length; the difference

comes about because when we measure the length by building up X using projectives, we

don't insist that the connecting maps Xk -+ Xk+1 be in 3.

5. ABSTRACT PHANTOM MAPS

In this section we discuss phantom maps in an axiomatic setting. We begin in the first

part by defining phantom maps and describing some assumptions that we will need to state

our results. The second part is a short study of various flavours of weak colimits. This is

essential material for the third part of the section, which gives our results on phantom maps.

We remind the reader that S denotes a triangulated category.

5.1. The phantom projective class. We begin with a definition.

Definition 5.1. An object W in S is finite iffor any set-indexed collection {X, } of objects

of 8, the natural map

8 (W, Xa) S(W, V ,)

is an isomorphism.

To illustrate that this is a reasonable definition, we describe the finite objects in the cate-

gories that we study in the last few sections of the paper. In the stable homotopy category, an

object is finite if and only if it is isomorphic to a (possibly desuspended) suspension spectrum

of a finite CW-complex. In the derived category of a ring, an object is finite if and only if it is

isomorphic to a bounded complex of finitely generated projectives. In both cases, the finite

objects are precisely those that can be built from a finite number of copies of the spheres (S"

and EnR, respectively) using cofibrations and retracts.

Write TP for the collection of retracts of wedges of finite objects.

A map X -+ Y is a phantom map if for each finite W and each map W -+ X the

composite W - X -+ Y is zero. Write 3 for the collection of phantom maps.



Definition 5.2. We say that 8 has a phantom projective class if ((P, 3) is a projective class.

We say that S has a generatingphantom projective class if it has a phantom projective class

and this projective class generates.

That the projective class generates says that if S(W, X) = 0 for each finite W, then

X = 0. In other words, this says that S is compactly generated, in the terminology of

Neeman [33].

Requiring that (TP, 3) is a projective class is equivalent to requiring that for each X there

is a set {X, } of finite objects such that every map W -+ X from a finite object to X factors

through some X,. In particular, if there is a set of isomorphism classes of finite spectra, then

S has a phantom projective class. Thus we have replaced a set-theoretic condition with the

slightly more general and natural condition that (TP, 3) be a projective class.

The stable homotopy category and the derived category of a ring are examples of trian-

gulated categories with generating phantom projective classes.

Our strongest results will be possible when S is a "Brown" category:

Definition 5.3. We say that S is a Brown category if the following holds for any two objects

X and Y. Regarding S(-, X) and 8(-, Y) asfunctorsfromfinite objects to abelian groups,

any natural transformation S(-, X) - S(-, Y) is induced by a map X -+ Y.

In familiar settings, this can be rephrased as the assumption that natural transformations

between representable homology theories are representable. This is true in the stable homo-

topy category and also in the derived category of a countable ring.

In order to prove results about the phantom projective class, we need a digression on weak

colimits.

5.2. Weak colimits. Colimits rarely exist in a triangulated category, so in this section we

introduce weaker variants that turn out to be quite useful.

Definition 5.4. A category C is small if its class of objects forms a set. A diagram in S is a

functor Ffrom a small category e to S. A cone from a diagram F to an object X is a natural

transformation from F to the constant diagram at X. In other words, for each a in e we are

given a map fe : F(a) -+ X such that for each map a -+ 3 in C the triangle

F(a)

I X
F(0)



commutes. A weak colimit of a diagram F is a cone through which every other cone factors.

If we require the factorization to be unique, this is the definition of a colimit.

If F is a diagram, then a weak colimit of F always exists. It will not be unique, but there is

a distinguished choice of weak colimit defined in the following way. Writing Xa for F(a),

there is a natural map

V x" - VXY.

The first coproduct is over the non-identity morphisms of e, and the second is over the ob-

jects. (We omit the identity morphisms for reasons explained in Note 5.8.) The restriction

of this map to the summand Xa indexed by a - /3 is

Xa (1,-F(a--+)) inclusion VX,.

Let X be the cofibre of the natural map, so that X sits in a cofibre sequence

V X -+,Vx, - X --+ V xoa.
a-403 a7,

The map V7 X, - X gives a cone i to X, and it is easily checked that X and i form a weak

colimit of the diagram F. Also, given another weak colimit (X', i') constructed in the same

way, there is an isomorphism h : X -+ X' such that ih = i'. (This isomorphism might not

be unique.) We call X the standard weak colimit of F.

The virtue of standard weak colimits is that they always exist and are easy to describe.

However, in many cases they are too large, and there are other types of cones that are more

useful.

Definition 5.5. A cone i : F -+ X is a minimal cone if the natural map

lip S(W, X -) 8S(W, X)

is an isomorphism for each finite W. We say that a cone to X is a minimal weak colimit if

it is a minimal cone and a weak colimit.

When they exist, minimal weak colimits behave well, as we will see in the following

proposition. The reason for introducing the weaker notion of a minimal cone is that one

is often able to verify that a cone is minimal without being able to prove that it is a weak

colimit. And we will find that minimal cones share some of the nice properties of minimal

weak colimits.

Proposition 5.6. (i) Assume that S has a phantom projective class. Then any object X is

a minimal cone on afiltered diagram offinite objects.
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(ii) Assume that 8 is a Brown category. Then any minimal cone is a weak colimit.

(iii) Assume that the finite objects generate. Then a minimal weak colimit is unique up to

(non-unique) isomorphism and is a retract of any other weak colimit.

Proof. We begin by proving (i). Choose a set {Xa} of finite objects such that every map

W -+ X from a finite object to X factors through some Xa. Consider the thick subcat-

egory e generated by the Xa. In other words, consider the smallest full subcategory that

contains each Xa and is closed under taking cofibres, desuspensions and retracts. Since the

collection of X,'s is a set, one can show that there is a set e' containing a representative of

each isomorphism class of objects in e. Let A(X) denote the category whose objects are

the maps W -+ X with W in C' and whose morphisms are the obvious commutative trian-

gles. One can check that this is a filtered diagram, using the fact that e is a thick subcategory.

There is a natural functor A(X) -+4 sending an object W -+ X to W. And there is a natu-

ral cone from this diagram to X. Consider a finite object V. We must show that the natural

map

liP S(V, W) - X
W-+XEA(X)

is an isomorphism. Surjectivity is easy, since any map from V to X factors through some

Xa. Now we prove injectivity. Since the diagram is filtered, a general element of the colimit

can be represented by a map V -4 W for some W -+ X E A(X). Suppose that such an

element is sent to zero, i.e., that the composite V -+ W -+ X is zero. Define V' to be the

cofibre of the map V -+ W. The map from W to X factors through V'. Now V' might

not be in e, but the map from it to X factors through an object W' in C. The composite

V - W -- V' -+ W' is zero, since the first three terms form a cofibre sequence, so the

element of S(V, W) given by the map V -+ W goes to zero under the map W -+ W'. Thus

V -+ W represents the zero element of the colimit, and we have proved injectivity.

Next we prove (ii). Let X be a minimal cone on a diagram {Xa}. Given another cone

Y we must show that there exists a map X --+ Y commuting with the cone maps. To con-

struct this map, we will produce a natural transformation from 8(-, X) to 8(-, Y), regarded

as functors on finite objects. Since there is a cone to Y, there is a natural transformation

li 8(-, Xa) -8 3(-, Y). And since X is a minimal cone, we have a natural isomorphism

li (-, X,) 8 8(-, X). The composite of the inverse of the isomorphism with the map

to 8(-, Y) is the natural transformation we said that we would produce. Thus there is a map

X -+ Y inducing this natural transformation, as we have assumed that 8 is a Brown cate-

gory. This is the map we seek.



Finally, we prove (iii). Let {X,} be a diagram with minimal weak colimit X and min-

imal cone Y. Because X is a weak colimit, there is a map X -+ Y commuting with the

cone maps. Because both cones are minimal, this map is an isomorphism under 8(W, -) for

each finite W. Since the finite objects generate, we can conclude that the map X - Y is

an isomorphism. In particular, if X and Y are both minimal weak colimits, then they are

isomorphic.

For the second part of (iii), assume that X is a minimal weak colimit and that Y is a weak

colimit of a diagram {X,}. Since both cones are weak colimits, there are maps X - Y and

Y -+ X commuting with the cone maps. Because X is minimal, the composite X -+ Y -4

X is an isomorphism. O

Minimal weak colimits earned their name by way of part (iii) of this Proposition. As far

as I know, they were first defined by Margolis [31, Section 3.1].

Next we consider some examples. Let e be the non-negative integers, where there is one

map m -+ n when m < n, and no maps otherwise. A functor F : e -+ 8 is a diagram of

the form

Xo -+ Xx ---+ X 2 --+ ...

The minimal weak colimit is the cofibre of the usual (1 - shift) map

VXk -- Vxk.
Thus the minimal weak colimit is what is usually called the telescope of the sequence. The

standard weak colimit is in this case much less manageable.

Our second example concerns the weak pushout.

Lemma 5.7. Given a commutative diagram

V V

I I
H - W - X ->EH

H -- Y - Z --- > H

I 1
EV EV C



with exact rows and columns, the centre square is both a weak pushout and a weak pullback.

Moreover, the standard weak pushout of the diagram

W --- + X

Y

fits into a diagram of the above form.

The proof is omitted, as we will not make use of this result.

Note 5.8. In the definition of the standard weak colimit, the coproduct

VXa

was taken over the non-identity morphisms of the indexing category. Had we instead taken

the coproduct over all of the morphisms, we would have obtained a different distinguished

weak colimit, but the second half of Lemma 5.7 would no longer be true.

Note 5.9. For a weak pushout it turns out that the minimal weak colimit is less useful than

the standard weak colimit. For example, the standard weak colimit of the diagram

W -- 0

0

is EW, while the minimal weak colimit is 0.

5.3. Consequences. With the work we have done, we can immediately prove the following

theorem.

Theorem 5.10. Assume that 8 has a phantom projective class. If X is a minimal cone on

a filtered diagram {Xa} offinite objects, then the E2 -term of the phantom Adams spectral

sequence abutting to S(X, Y) is given by

E2 = ýM_ S(X, Y),

where IM_ denotes the ith derived functor of the inverse limit functor.

Proof. We prove this by constructing a specific Adams resolution of X with respect to the

phantom projective class. Consider the sequence

S+- X +-- V x --- V X,- V X,-....
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The wedges are over sequences of morphisms in the category over which the diagram {X) }

is indexed (and here identity morphisms are included). Because X is a weak colimit of the

Xa, there are given maps i, : X, -+ X. The map VaXa -+ X is equal to in on the

a summand. The map VapXa - VaX sends the summand X,, indexed by the map

a -+ p to the a summand of the target using the identity map and to the 3 summand of the

target using the negative of the map Xa -+ Xp. In general, one gets an alternating sum.

When we apply the functor S(W, -) for finite W we get the sequence used for computing

the derived functors of li [12, Appendix II, Section 3]. Since these vanish (because we

have a filtered colimit) and since li 8 (W, Xa) = 3(W, X) (because we have a minimal

cone), the sequence obtained is exact. That is, the sequence above is a phantom projective

resolution of X. Therefore it is part of an Adams tower for X. The E2 -term of the Adams

spectral sequence obtained by applying 8(-, Y) is the cohomology of the sequence

0 -+ e (Xa, Y) -+ e 3(X, Y) -8+ ..

But the cohomology at the ith place is just __m'i(Xa, Y), again by [12, App. II]. O

Under the assumptions described in the first part of the section, the phantom projective

class is very well behaved.

Theorem 5.11. If 8 is a Brown category with a generating phantom projective class, then

any X has projective dimension at most one.

This result was proved independently by several people [34, 33, 8]. The proofs by Nee-

man and Christensen-Strickland are essentially the same, and both are phrased in an ax-

iomatic setting similar to that presented here. On the other hand, Ohkawa's proof was written

in the context of the stable homotopy category and makes use of CW-structures, so it is not

clear whether it goes through in the same generality. Ohkawa also noticed the consequence

for the Adams spectral sequence, which is our Corollary 5.12.

Proof Let X be an object of 8. We saw in Proposition 5.6 (i) that X is a minimal cone

on a filtered diagram {Xa} of finite objects. Consider the standard weak colimit Y of this

diagram. Y lies in a cofibre sequence

V x -+ V x, - - Y - V x.
a-4 7 a-

By Proposition 5.6 (ii) and (iii), X is a retract of Y. This implies that the fibre P of the natural

map VyX, -+ X is a retract of Va,,Xac and thus is projective. Moreover, the connecting



map X -+ EP is phantom because X is a minimal cone, so we have constructed a projective

resolution

0 ---+ P ---4 Q -- + X -+ 0.

Therefore, X has projective dimension at most one. O

Corollary 5.12. If 8 is a Brown category with a generating phantom projective class, then

the Adams spectral sequence collapses at the E2 -term and the composite of two phantom

maps is zero. Moreover; if {Xa } is afiltered diagram offinite spectra with minimal cone X,

then there is a short exact sequence

0 -- ('8(EcXa, Y) -+ 8(X, Y) - S 8(Xa, Y) - 0

natural in Y. The kernel consists of the phantom mapsfrom X to Y, and _8 m(FXa, Y) is

zerofor i > 2.

Proof. Consider the Adams spectral sequence abutting to 8(X, Y). By Theorem 5.11, X

has projective dimension at most one. Since the E 2-term of the Adams spectral sequence

consists of the derived functors of 8(-, Y) applied to X, it must vanish in all but the first

two rows. There being no room for differentials, it collapses at E 2 , degenerating into the

displayed Milnor sequence.

By Proposition 4.7, we see that each object has length at most two, and so the composite

of two phantoms must be zero. O

6. TOPOLOGICAL PHANTOM MAPS

In this section 8 denotes the stable homotopy category and we usually write [X, Y] for

the set of morphisms from X to Y. There are many descriptions of this category; a good one

can be found in the book by Adams [2].

There are three parts to this section. In the first we discuss phantom maps, i.e., maps which

are zero when restricted to any finite spectrum, and we use the results of the previous section

to conclude that there is a generalized Milnor sequence. In the second part of this section we

discuss skeletal phantom maps, i.e., maps which are zero when restricted to each skeleton of

the source. And in the third we discuss superphantom maps, i.e., maps which are zero when

restricted to any (possibly desuspended) suspension spectrum.

6.1. Phantom maps and a generalized Milnor sequence. In the stable homotopy cate-

gory, a finite spectrum is one isomorphic to a (possibly desuspended) suspension spectrum

of a finite CW-complex. As in the previous section, a map f : X -+ Y is said to be phantom



if the composite W -+ X -+ Y is zero for each finite spectrum W and each map W -+ X.

Phantom maps form an ideal which we denote I. Write TP for the collection of all retracts of

wedges of finite spectra. One can show that there exists a set T' of finite spectra containing

a representative of each isomorphism class [31, Prop. 3.2.11], and it follows that (TP, J) is a

projective class. Since P contains the spheres, it is in fact a generating projective class. Also,

it is well-known that the stable homotopy category is a Brown category (Definition 5.3).

We should point out that there do exist non-zero phantom maps. For example, if G is any

non-zero divisible abelian group, then the Moore spectrum S(G) is not a retract of a wedge

of finite spectra. If it was, then applying integral homology would show that G is a retract

of a sum of finitely generated abelian groups, which is impossible. So there is a non-zero

phantom map with source S(G).

For another example, consider the natural map

VX" --+ HX x
for some indexed collection of spectra. For finite W, [W, VXa] = e[W, Xa], so we get a

monomorphism

[w, V x] -- [W, wi xo].
Thus the fibre of the map VXa -+ fl X,, is phantom. It is non-zero if and only if the map

from the wedge to the product is not split. This is the case for the map

V HZ - 11HZ
from the countable wedge of integral Eilenberg-Mac Lane spectra to the countable product.

Indeed, if this map splits, then so does the map

ez IHz
of abelian groups. But the cokernel of this map contains the element [1, 2, 4, 8,... ]. This

element is divisible by all powers of 2, so the cokernel is not a subgroup of the product.

Other examples will appear in the second and third parts of this section.

The stable homotopy category is a Brown category with a generating phantom projective

class. Thus, the results of Section 5.3 hold and we find that every spectrum has projective

dimension at most one and length at most two, and that the composite of two phantom maps

is zero. Also, a minimal cone is automatically a minimal weak colimit and leads to a gener-

alized Milnor sequence.

Minimal cones arise in practice. If a diagram is filtered, then to check that a cone is mini-

mal, it suffices to check that it becomes a colimiting cone in homotopy groups. This is proved



using the fact that a finite spectrum is built from a finite number of spheres using cofibra-

tions. One uses induction on the number of cells, that filtered colimits are exact, and the

five-lemma. For this reason, all of our examples will involve filtered diagrams.

First of all, if X is a CW-spectrum (in the sense of Adams [2]) and {Xa} is a filtered

collection of CW-subspectra whose union is X, then X is the minimal weak colimit of the

X,,. More generally, a filtered homotopy colimit is a minimal weak colimit. This is because

homotopy groups commute with filtered homotopy colimits.

For another example, let {Ga} be a filtered diagram of abelian groups with colimit G.

Then the Eilenberg-Mac Lane spectrum HG is the minimal weak colimit of the diagram

{HGa}. By construction, this cone becomes a colimiting cone in homotopy groups.

From the first example and Corollary 5.12, we can state the following theorem.

Theorem 6.1. Let X be a CW-spectrum and let {Xa } be a diagram offinite CW-subspectra

whose union is X. For any spectrum Y there is a short exact sequence

0 -- $[EX, Y] -4 [X, Y] --+ m[Xa, Y] -- 0.

The kernel consists precisely of the phantom maps. Moreover i [ Xa, Y] vanishes for

i > 2. O

This generalizes results of Pezennec [35], Huber and Meier [21], and Yosimura [41].

Pezennec and Huber-Meier make the assumption that Y has finite type, while Yosimura

makes the weaker assumption that Y is the "Anderson dual" of another spectrum. Our point

is that no restriction on Y is necessary; this was proved independently, and earlier, by Tet-

susuke Ohkawa [34].

Using a slightly more elaborate proof (and a slightly different projective class), one can

show that the assumption that each X, is finite can be replaced by the assumption that there

are no phantom maps from Xa to Y for each a.

6.2. Skeletal phantom maps. There is a related but smaller ideal of maps which have also

been called phantom maps in the literature. We begin with some background on cellular

towers. We treat cellular towers in this abstract manner because we want to define and use

them without stepping outside of the homotopy category. One reason for this is that we want

to make it clear that our results do not depend on a particular choice of model for the category

of spectra. But more importantly, we would like our arguments to go through in any nice

enough triangulated category.



Definition 6.2. Let X be a spectrum. A cellular tower for X is a diagram

•... X(n) : X(n+l) X(n+2) ..

(6.3)

satisfying:

(i) X is the telescope of the sequence ... -* X (n ) - X(n+l) .

(ii) The fibre of the map X (n ) -+ X (n +l ) is a wedge of n-spheres.

(iii) The inverse limit of abelian groups m H.(X (n)) is zero, where H. denotes integral

homology.

We say that X (n) is an n-skeleton of X.

The first condition says that the sequence

VX(n ) -- + VX (n ) -- X

is a cofibre sequence, where the first map is the (1 - shift) map.

The above definition is taken from Margolis' book [31, Section 6.3], which is also the

source of the results below whose proofs are omitted.

Proposition 6.4. A diagram (6.3) is a cellular tower for X if and only if all of the following

conditions hold:

(i) The map 7ri(X (n)) -+ 7ri(X) is an isomorphism for each i < n.

(ii) Each Hn(X(")) is afree abelian group and Hn(X(n)) -+ Hn(X (n+)) is an epimor-

phism.

(iii) Hi(X(")) = 0 fori > n. O

Proposition 6.5. Each spectrum X has a cellular tower. O

Proposition 6.6. Let - -- + X (n ) - X (n +l ) - . -+ X be a cellular tower for X and

let... -- y(n) _ y(n+l) ... --+ Y be a cellular tower for Y. Given any map X -+ Y,

there exist maps X (n ) - y(n) making the following diagram commute:

•- " X (n )  j X(n+1) -~ "· X

I I I
.. -• y(n) D y(n+l) :0. ... . y

Definition 6.7. We say that a spectrum X is an n-skeleton if it is an n-skeleton of some

spectrum Y. We say that X is a skeleton, or is skeletal, if X is an n-skeleton for some n.
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It is easy to see that if X is an n-skeleton, then X is an n-skeleton of itself.

Proposition 6.8. A spectrum X is an n-skeleton if and only if Hi (X) = 0 for i > n and

Hn(X) is a free abelian group (possibly zero). In particular, X is skeletal if and only if it

has bounded above integral homology. O

We call a map f : X -- Y a skeletal phantom map if the composite W -+ X -4 Y

is zero for each skeleton W and each map W -+ X. By Proposition 6.6, it suffices to test

this for the skeleta X ( n ) of a fixed cellular tower for X. This shows that skeletal phantoms

form part of a projective class, because it allows us to restrict to a set of test objects. In

this case the projectives are retracts of wedges of skeletal spectra. In the cofibre sequence

VX (n ) 4 X -+ VEX(n ), VX( n ) is projective and X -+ VEX(n ) is a skeletal phantom.

Since skeletal phantoms are phantoms, it follows from the previous part of this section

that the composite of two skeletal phantoms is zero. In fact, this is obvious because the cofi-

bre sequence VX (n ) -4 X -+ VEX (n ) shows that every X has length at most two. That

the composite of two skeletal phantoms is zero has been known for some time. (See [13]

and [15].)

Applying the functor [-, Y] to the cofibre sequence VX (n ) - X -4 VEX (n ) immedi-

ately reveals the Milnor sequence

0 _ Im [-X(n), y] _-4 [X, Y] -+4 [X( n ), Y] - 0.

It is clear that the kernel consists precisely of the skeletal phantoms, and that, for i > 2,

•mi[X ( n ), Y] = 0 (since, for i > 2, _mi is zero for a diagram indexed by the integers).

If X is a spectrum with finite skeleta, then a map X -4 Y is phantom if and only if it is

a skeletal phantom. But in general the ideal of skeletal phantoms is strictly smaller than the

ideal of phantom maps. For example, we saw above that for G a non-zero divisible abelian

group, S(G) is the source of a non-zero phantom map. But S(G) is skeletal, since it has

bounded above integral homology, and so S(G) is not the source of a non-zero skeletal phan-

tom.

On the other hand, there are non-zero skeletal phantoms. Consider HZ/p, the mod p

Eilenberg-Mac Lane spectrum. This spectrum has finite skeleta, so it suffices to show that

there is a non-zero phantom with source HZ/p. This is equivalent to showing that HZ/p is

not a retract of a wedge of finite spectra. If it was and HZ/p -+ VWe was the inclusion, then

we would look at the composite HZ/p -4 VW, -+ HJ W,, which is a monomorphism in

homotopy groups. But any such map is zero because there are no maps from HZ/p to a finite

spectrum (see [30], [28], or [361) and so we would conclude that HZ/p has no homotopy.

This type of argument will appear repeatedly in what follows.
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A non-zero phantom from HZ/p is also an example of a phantom map which is not di-

visible by p, since p kills [HZ/p, Y] for any Y.

6.3. Superphantom maps. There is another special class of phantom maps. We call a map

f : X - Y a superphantom map if the composite W - X -4 Y is zero for each (pos-

sibly desuspended) suspension spectrum W and each map W -+ X. Again the superphan-

toms form an ideal which is part of a projective class. The projectives here are all retracts

of wedges of (possibly desuspended) suspension spectra. To see that we have a projective

class, one uses the following lemma, which allows us to use a set of objects in order to test

whether a map X -+ Y is superphantom.

Lemma 6.9. A map X -+ Y is a superphantom if and only iffor each n the composite

E-no0 0 onEnX -- + X -+ Y

is zero.

Recall that EO is left adjoint to 60. The map E-n•foo EnX -- X is the nth desus-

pension of the counit of the adjunction.

Proof The "only if" direction is clear. So suppose f : X -+ Y is a map such that each

composite E-nFoooEonX -+ X -+ Y is zero, and let W be a space. Consider a map

E-nP°"W -+ X. This map factors through E-nym -)nX - X, as one sees by sus-

pending everything n times and using that OO is left adjoint to Q0. Thus the composite

E-nEOOW -+ X - Y is zero, and we have shown that f : X -+ Y is a superphantom. [

Margolis states in his book [31, p. 81] that whether there exist non-zero superphantoms

is an open question. We answer this question now.

Proposition 6.10. The mod p Eilenberg-Mac Lane spectrum HZ /p is the source of a non-

zero superphantom map.

Proof. We note that by the main result of [18] there are no maps from HZ/p to a suspen-

sion spectrum. Therefore, by the argument in the previous part of this section, HZ/p is not

a retract of a wedge of suspension spectra. Therefore HZ/p is the source of a non-zero su-

perphantom map. O

There are skeletal phantoms which are not superphantoms. For example, following

Gray [14] one can show that there are uncountably many skeletal phantoms from CP ° to

S3 . But CP' is a suspension spectrum, and so none of these maps is a superphantom. We

don't know if there is an example of a superphantom which is not a skeletal phantom.

34



7. TOPOLOGICAL GHOSTS

In this section we continue to work in the stable homotopy category. Again, there are three

parts. In the first, we describe the ghost projective class and give its elementary properties.

In the second part, which is a little bit longer, but lots of fun, we calculate the length of RPn

for small n. And in the third part, we show that the Adams spectral sequence with respect to

the ghost projective class in a category of A. modules over an A, ring is in fact a universal

coefficient spectral sequence, and we explain how this gives new lower bounds on the ghost-

length of a spectrum.

7.1. The ghost projective class. A map X -+ Y is called a ghost if the induced map

7r, (X) - 7r, (Y) of homotopy groups is zero. Let 3 denote the ideal of ghosts. Let TP denote

the class of all retracts of wedges of spheres. It is easy to see that (TP, 3) is a projective class

(use Lemma 3.2) and that it generates (as TP contains the spheres).

Let's begin by noticing that there are spectra of arbitrarily high length with respect to this

projective class. For example, the length of R P 2 is at least k + 1. One sees this by noticing

that if u E H 1(I1RP2 ; Z/2) is the non-zero class, then Sq2k- '1 
. Sq4 Sq2 Sq' u is non-zero.

But the composite

-- P!+ EHZ/2 S 2 .2HZ/2 -s kHZ/2

is in jk and thus would be zero if ]RP 2k had length k or less.

On the other hand, by constructing R]P n one cell at a time, it is clear that the length of IP n

is no more than n. We will see in the next part of this section that it is possible to improve

on both of these bounds.

The filtration of the morphisms of 8 is also interesting. Again by looking at composites

of Steenrod operations, one sees that the powers Ik are all non-trivial. Also, every phantom

map is a ghost. The ghost-filtration of a phantom map is analogous to what Gray called the

"index" of a phantom map, so we'll use that terminology here. Every non-zero phantom

map from the Moore spectrum S(G) has index 1, since S(G) has length 2 with respect to

the ghost ideal. And we saw in Section 6.1 that for G non-zero and divisible, such phantom

maps exist.

The Lusternik-Schnirelmann category of a space X is an upper bound for the "cup

length" of the reduced cohomology H*X. That is, if the cup product ul ... un is non-zero

for some ui E H*X, then the Lusternik-Schnirelmann category of X is at least n. Stably

there are no products in cohomology, but we have instead the action of the Steenrod algebra.

And we saw above that if there is a chain of Steenrod operations acting non-trivially on the



mod 2 cohomology of a spectrum X, say Sqi' ... Sqi" u : 0, then the ghost-length of X

is at least n. Thus we think of ghost-length as a stable analogue of Lusternik-Schnirelmann

category.

If for a pair X and Y of spectra the Adams spectral sequence abutting to [X, Y] is strongly

convergent, then 300 (X, Y) is zero. Call a non-zero map in 3Y a persistent ghost. We saw

in Theorem 3.5 that (P., 310) is a projective class, but for all we know at this point, it could

be that P, contains all of the objects of the stable homotopy category and that 3jO is zero.

Our first goal is to show that this is not the case.

Proposition 7.1. Let X be a non-zero connective spectrum such that there are no maps from

X to a connective wedge of spheres. Then there is a persistent ghost X -+ Y for some Y.

If X is a dissonant spectrum, such as HZ/p, then there are no maps from X to a connec-

tive wedge of spheres. Indeed, a connective wedge of spheres is a (possibly desuspended)

suspension spectrum, and by a result of Hopkins and Ravenel [18] suspension spectra are

harmonic.

Proof If X is connective, the projectives Pn in a ghost Adams resolution for X can be cho-

sen to be connective wedges of spheres. Let Wn be the fibre of the map X -+ X,. There

is a natural map VW,. -+ X whose cofibre is a persistent ghost. So if there is no persistent

ghost with X as its source, then X is a retract of VW,. We saw at the beginning of Section 4

that Wn lies in the cofibre sequence W,_ 1 - W, -+ Pn-1. It follows inductively that if

there are no maps from X to a connective wedge of spheres, then there are no maps from X

to W, for each n. Thus the map X -+ VW, -+4 I Wn is zero. But this map is also monic

in homotopy groups, and so we conclude that X is zero. O

Example 2.6 in the paper [27] also implies that 300 is non-zero, but I have been unable to

follow the argument.

Along the same lines, we can also obtain the next result.

Proposition 7.2. If X is a connective spectrum of length n, then X can be built using n

connective wedges of spheres.

We use the word "built" to mean "built using cofibrations and retracts", as in the definition

of Pn-

Proof Form an Adams resolution (4.1) of X with the Pn chosen to be connective wedges

of spheres. Since X has length n, the composite X = Xo -+ - -- -+ Xn is zero. Thus X

is a retract of Wn, the fibre of this composite. But we saw at the beginning of Section 4 that

Wn can be built from Po,... , Pn- 1, n connective wedges of spheres. O
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Similarly, one can show that a spectrum of finite type (7riX a finitely generated abelian

group for each i) and length n can be built using n wedges of spheres with only a finite num-

ber of spheres of each dimension.

Corollary 7.3. If X is a connective spectrum offinite length, then X is harmonic.

Proof We saw in the proof of Proposition 7.1 that a spectrum built from a finite number of

connective wedges of spheres is harmonic, so the result follows from Proposition 7.2. O

Question 7.4. Is every spectrum of finite length harmonic? It would suffice to show that

any wedge of spheres is harmonic.

Another related question is whether every finite spectrum of finite length can be built from

a finite number of finite wedges of spheres. We don't know the answer to either question.

7.2. On the ghost-length of real projective spaces. In this part of the section we give upper

and lower bounds on the ghost-length of IRP'. The upper bound is obtained by building R]Pn

carefully using a cofibre sequence involving CP ' and a Thom spectrum. Our first lower

bound is simply the length of the longest chain of non-zero Steenrod operations acting on the

mod 2 cohomology of R]1Pn. This bound agrees with the upper bound for n < 20, providing

us with a calculation of the length of ]P n in this range. However, we will show that while the

squares Sq I , Sq 2 , Sq 4 and Sq8 have ghost filtration 1, the squares Sq2k for k > 4 have ghost

filtration at least 2, and using this we obtain a significantly better lower bound. The ghost

filtration of the Steenrod squares is closely connected with the Hopf and Kervaire invariant

problems, and we give theorems explaining this relation.

We work localized at the prime 2. The 2-local category is triangulated, so all of our gen-

eral theory applies. We will write H*X for the mod 2 cohomology of X.

We begin by recalling the action of the Steenrod algebra on H* RP = F2 [z], with Izx =

1. The Steenrod square Sq2k acts non-trivially on Xn if and only if the kth bit in the binary

expansion of n is 1. The diagram on page 39 illustrates.

Now we describe a construction of IJRP that was explained to us by Mahowald. The

double cover map S1 -+ S1 , with fibre Z/2, can be extended to a fibre sequence of spaces
S1 2 S1 _+ ]po p o

by applying the classifying space functor. Thus IRP' is the circle bundle of the complex line

bundle 77 77 over CP'. (Here 77 denotes the tautological line bundle.) The Thom space of a

vector bundle is the sphere bundle modulo the disk bundle, and the disk bundle is homotopy

equivalent to CPc° , so there is a cofibre sequence

1RP 0 -- CP ---+ Th.
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Writing T for the desuspension of the Thornm space, we get a stable cofibre sequence

T -- RP °P -- CP°

which we will use to build RP" efficiently. The Thornm isomorphism tells us that T can be

built with a single cell in each odd non-negative dimension, and no other cells. So H*T =

H*ECPo, where CPo denotes CP' VSo. In fact, the map H*T +- H*IRP ° is surjective,

so we can deduce the action of the Steenrod algebra on H*T. The diagram on the next page

displays the low degree part of the short exact sequence of modules over the Steenrod algebra

that we obtain. Each circle represents a basis element over F2 and the vertical arrows give

the action of the Sq2k 's. To make the pattern as nice as possible, we have replaced ]RP"

with BRPo = ]RP• V SO, and similarly with CP'.

The essential point is that RP' can be built up odd cells first. That is, we can first build

T completely, and then attach the even cells. By looking at the cofibre sequence of skeleta,

we see that R]pn can also be built by building up the odd part, and then the even part. We

will use this to deduce an upper bound on the length of 1RP n .

Let us begin by considering RP P3. The length of RP 3 is at least two, because Sq' x = X2 .

And since RP3 has only three cells, it has length at most three. In fact, it has length two.

One way to see this is to notice that the 3-skeleton of T is S1 V S3, and so lRP 3 is formed

by attaching a 2-cell to this wedge.

Both ]P 4 and lP 5 can similarly be seen to have length three because the 4- and 5-cells

can to added to lIP 3 simultaneously. (A connection between them would be detected by a

non-zero Sq 1 on x4 .) But what about ]IP 6 ? This is trickier and will reveal the power of the

decomposition into odd and even cells. We just mentioned that the 5-cell can be added after

the 1-, 2- and 3-cells have been added. But even cells are never needed for the attachment

of odd cells, so the 5-cell can actually be attached at the same time as the 2-cell. And this

means that the 6-cell can be attached at the same time as the 4-cell. So IPP6 also has length

three.

With this under our belt, we now prove the following theorem

Theorem 7.5. The length of IRPn is no more than [n/4] + 2. Here [xJ denotes the greatest

integer less than x.

Proof We prove this inductively by showing that we can add four cells at a time, if we are

careful about the order. To make the pattern work from the start, we build lPp = lIP n V SO

instead of IPn. This makes little difference as both have the same length. We start with

S1 V S3. To this we can add the 5-cell, since an odd cell only needs the odd cells below it.



0 : - H*T - H*1RPo < H*CPo- -- 0

Now in T there is no Sq 2 from the 5-cell to the 7-cell, and this implies that the 7-cell is not

attached to the 5-cell. So we can attach the 7-cell to S 1 V S3 . And we can of course attach

the 0- and 2-cells. Call the resulting complex W. W has cells in dimensions 0, 1, 2, 3, 5

and 7, and has length 2. To W we can attach the 9- and 11-cells, since they only require the

odd cells below them and are not connected in T. At the same time we can attach the 4- and

6-cells, because they are not connected in CP". (Again, because there is no Sq 2 .) Thus we

can add the 4-, 6-, 9- and 11-cells to W to get a length 3 complex X. In a similar way we
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see that we can add the 8-, 10-, 13- and 15-cells to X. Thus &RP8, IRP9, IRPo10 and RP11 all

have length at most 4. This pattern continues, proving the theorem. O

We saw in the previous part of this section that if there is a chain of Steenrod operations

acting non-trivially on the cohomology of a spectrum X, say Sqil ... Sq i" au 5 0, then the

ghost-length of X is at least n. Letting St. l(]•P') denote one more than the length of the

longest such chain in the cohomology of ]RP', one obtains the following sequence of num-

bers,

n -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

St.I1(RPn) 0 1 1 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 6,

where we regard ]1RPo 1 as the zero object, which has length 0. If we count the number of

consecutive O's, then the number of consecutive l's, and so on, we obtain the sequence 1, 2,

2, 4,4, 4, 8, 8, 8, 8,....

Theorem 7.6 (Vakil [37]). The sequence obtained in this way consists of the powers of 2, in

order with k + 1 repetitions of 2k
.

This theorem completely determines the sequence St. 1( nP"). The proof of the theorem

has a striking feature. Vakil studies a more fundamental sequence defined in the following

way. The nth term of the sequence is one more than the length of the longest chain of non-

zero Steenrod operations in RP' which ends at the nth cell. Starting with n = 1, this se-

quence goes 1, 2, 1, 3, 2, 3, 1, .... The nth term of the sequence displayed in the table above

is obtained by taking the supremum of the first n terms of the fundamental sequence. The

method of proof that Vakil uses to determine where the jumps in the values of the suprema

occur is to explicitly define certain "canonical moves". More explicitly, given an n, Vakil

determines a non-zero Steenrod operation Sq2k which is the last step in a longest chain end-

ing at the n-cell (if there are any Steenrod operations hitting the n-cell). Using this, one can

quickly compute the nth term in the fundamental sequence by following the canonical moves

downwards until one reaches a cell not hit by a Steenrod operation. And one can also use

the canonical moves to prove Theorem 7.6.

Note 7.7. For 2 < n < 19, St. I(]EP n ) = Ln/4] + 2. Thus we know the length of 1RPn for

such n. But St. l1(]P 20 ) = 6 and L20/4J + 2 = 7, and for larger n this just get worse. For

example, St. l(1taP 220) = 136 and [220/4] + 2 = 218 + 2.

One might wonder whether the lower bound is correct. It is not. For example, the length

of • P220 is actually at least 264. This is deduced from the following result.



Theorem 7.8. The Steenrod operations Sq1, Sq2 , Sq4 and Sq8 have ghost-filtration exactly

one. The Steenrod operations Sq' 6 , Sq3 2 , ... have ghost-filtration at least two.

This allows us to count a higher Steenrod square occurring in the cohomology of RPn as

two maps. Using a computer to do the computation, this is how we obtained the improved

lower bound on the length of P 22o. It turns out that the improved lower bound is still wrong

in general. For example, the improved lower bound tells us that the length of IRP 127 is at least

17. But it also tells us that the length of IR128 is at least 19, hence the length of 1P 127 must

be at least 18.

Proof of Theorem 7.8. The (non-identity) Steenrod squares all have filtration at least one.

It is well-known that Sq', Sq 2 , Sq4 and SqW act non-trivially on the length two complexes

]BP 2, CP 2, ] 2 and OP 2 respectively, so these operations must have filtration exactly one.

To show that the higher squares can be factored into two pieces, each zero in homotopy,

we make use of Adams' result on the Hopf invariant one problem [1]. Adams shows that no

complex with only two cells supports a non-zero Sq2k with k > 4. Consider the beginning

of a ghost Adams resolution of H, the mod 2 Eilenberg-Mac Lane spectrum:

So P

Here P is a large wedge of spheres. The fibre W of the map H -+ H has length two--it lies

in a cofibre sequence So -+ W -+ P. If the composite

W -- H Sq E2 H

is zero, then Sq2k factors through H -+ H -+ H and thus has filtration at least two. So

we have reduced the problem from checking that Sq 2 vanishes on all cohomology classes

of all length two spectra to checking that it is zero on a particular cohomology class in a

particular length two spectrum. To do this, notice that the composite W -4 H - E2k H

factors (uniquely) through the map W -+ P. To show that the map P --+ 2k H is zero, it

suffices to check this on each 2k - dimensional sphere appearing as a summand of P. Choose



such a summand, and consider the following diagram

E2kH

Sq2hk

H

SO Do W - P - S 1

S - W' S 2k S 1 ,

in which W' is defined to be the fibre of the map from S2k to S 1 and the map W' -+ W

is some choice of fill-in map. We must show that the composite from S2
k to E 2 k H is zero.

Well, by Adams' result, it is zero when restricted to W'; so it factors through S1; but there

are no maps from S 1 to E2k H; so it must be null. O

Now we quote a theorem which relates the filtration of the Steenrod squares to the Ker-

vaire invariant problem.

Theorem 7.9 (W.-H. Lin). If for k > 4, the Kervaire class Ok-1 exists and has order 2,

then Sq 2k has filtration exactly 2. O

We refer the reader to [29].

7.3. A universal coefficient spectral sequence. In this part of the section we need to briefly

step outside of the homotopy category. Given a ring spectrum R, we would like to have a tri-

angulated category of R-modules. Unfortunately, this isn't possible if R is simply a monoid

object in the homotopy category. So by an "A, ring spectrum" R we mean any notion of

structured ring spectrum such that the homotopy category R-Mod of "Am module spectra"

satisfies the following formal properties. There is a "free module" functor F : 8 -+ R-Mod

which is left adjoint to a "forgetful" functor U : R-Mod -4 8. Both F and U preserve tri-

angles and commute with suspension, and the composite UF is naturally isomorphic to the

functor sending X to R A X. We will usually omit writing U, and will write R A X for both

FX and UFX, with the context making clear which is intended.

There are various notions of structured ring spectra available to us today [11, 19, 26]. Un-

fortunately, we know of no published proof that the formal properties hold in these settings.

It is certainly expected that they do.



Fix an A, ring spectrum R. Write R for FSo. R is the "sphere" in the category of A,

R-modules. Indeed, by adjointness, [R, M]R = [So , M] = 7roM, where we write [M, N]R

for maps from M to N in R-Mod.

Because F preserves triangles, commutes with suspension, and preserves retracts, it is

clear that if a spectrum X can be built from n wedges of spheres, then FX can be built from

n wedges of suspensions of R. To make this more precise, we note that in R-Mod there is

a projective class (PR, JR), where TPR is the collection of retracts of wedges of suspensions

of R and Rn is the collection of maps zero in homotopy groups. To put it another way, PR

is the image of T under F (with retracts thrown in), and 3R is U-13. And our claim is that

the length of FX with respect to (TPR, JR) is no more than the length of X with respect to

(Tp).
So it would be useful to give a lower bound for the length of an A, R-module. This is

accomplished in the remainder of the section.

Theorem 7.10. Let M and N be A, modules over the Ao ring spectrum R. Then there is

a conditionally convergent spectral sequence

E*'*= Ext *(M, N,) = [M,N]* .

If M has length at most n with respect to ( PR, JR), then En+1 = E,.

By taking M = R A X we get the following consequence.

Corollary 7.11. If X is a spectrum and N is an A, module over an A, ring spectrum R,

then there is a conditionally convergent spectral sequence

E*'* = Ext**(RX,N*) =- N*X.

If X has length at most n with respect to (TP, J), then En+1 = E,. O

This is called the universal coefficient spectral sequence. For another account of it,

see [10].

Proof of Theorem. The spectral sequence is simply the Adams spectral sequence with re-

spect to the projective class (PR, JR). The E2-term consists of the derived functors of

[-, NIR applied to M. A projective resolution of M is a sequence

0 +- M +- Po +- P1 +-- ...

of A, R-modules with each P, in TPR and which is exact in homotopy. Thus applying 7r (-)

gives a projective resolution of M,. One can check that [Ps, N]R = HomR. (r,* P,, N,) and

thus that the E2 -term is Ext"* (M,, N,).



That the spectral sequence collapses at E,+1 when M has length at most n is Proposi-

tion 4.5. O

Thus the existence of a non-zero differential d, implies that X has length at least n. We

suspect that for X = IPn, R = J or KO, and N = KO, this gives a very good lower bound

for the ghost-length of lRP n . However, while in some cases we have been able to compute

the E2- and Eoo-terms, we haven't been able to conclude anything about the differentials.

We finish this section by mentioning the following example of Theorem 7.10. Take R =

SO and M = N = H, the mod 2 Eilenberg-Mac Lane spectrum. Then we get a spectral

sequence with E2 -term

E2* = Ext*s0 (Z/2, Z/2)

converging to the Steenrod algebra. This has been called the dual or reverse Adams spectral

sequence and has been studied by various authors [29, 27]. An unstable version is described

in [3] and [4].

8. ALGEBRAIC GHOSTS

We now discuss a projective class which provided the motivation for this work. Indeed,

an old result of Kelly [25] (presented here as Theorem 8.5) concludes that under certain con-

ditions a composite of maps vanishes. We wondered whether there was more than just a su-

perficial similarity between this result and the fact that in the stable homotopy category a

composite of two phantoms is zero. It turns out that the arguments do have a common part.

They both prove that the ideals in question are parts of projective classes, and then they apply

Theorem 3.5.

We work in the derived category of an abelian category in this section, and so we begin

with a brief overview of the derived category. Good references are [40] and [23].

Let A be an abelian category with enough projectives. We mean this in the usual sense-

that is, we are assuming that the categorical projectives and the categorical epimorphisms

form a projective class. We also assume that A satisfies Grothendieck's AB 5 axiom which

says that set-indexed colimits exist and filtered colimits are exact [16]. We write Ch for the

category of Z-graded chain complexes of objects of A and degree 0 chain maps. To fix no-

tation, assume the differentials have degree -1. For an object X of Ch, define ZnX :=

ker(d : Xn, -+ X,_ 1) and BnX := im(d : X,+ 1 -+ X,), and write HnX for the quotient.

Write X for the quotient category in which we identify chain homotopic maps. It is well-

known that the category X is triangulated, so we will only briefly describe the triangulation.

There is an automorphism E of Ch which is defined on objects by (EX)n = Xn-_1 and
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dr x = -dx, and on morphisms by (Ef)n = fn-1; this induces an automorphism E of X

which serves as the suspension for the triangulated structure. A short exact sequence

0 -- XW X-- Y-+ 0

of chain complexes is weakly split if for each n the sequence

0 -4 Wn -~- Xn 2- Y, -- + 0

is split. Given a weakly split short exact sequence of chain complexes as above, choose for

each n a splitting of the nth level, i.e., choose maps qn : Xn - Wn and jn : Yn -4 Xn

such that pjn = 1, qnin = 1 and inqn + jnPn = 1. Define hn : Yn -+ Wn-_ to be

qn-ldxjn. One easily checks that h is a chain map Y -+ EW and that up to homotopy h

is independent of the choice of splittings. A triangle in X is a sequence isomorphic (in X)

to one of the form W -+ X -+ Y -+ FW constructed in this way from a weakly split short

exact sequence. See [23] for details.

One fact we use about the triangulation is that the homology functors Hn : X -+ A send

triangles to long exact sequences.

A chain map f : X -+ Y is a quasi-isomorphism if it induces an isomorphism of ho-

mology modules. The derived category 9D is the category obtained from Ch by formally

inverting the quasi-isomorphisms. (It is equivalent to invert the quasi-isomorphisms in X.)

With our hypotheses on A, this category of fractions exists [40, Exercise 10.4.5]. In fact, it is

equivalent to the full subcategory of X containing the cofibrant complexes. A complex X is

cofibrant if it can be written as an increasing union X = Un>0 oC n of subcomplexes Cn with

CO = 0 and Cn/C n - 1 a complex of projectives with zero differential. To prove the equiv-

alence of categories, one shows that for any X there is a cofibrant complex W and a quasi-

isomorphism W -4 X, and that when X is cofibrant, the natural map X(X, Y) -+ D(X, Y)

is an isomorphism for all Y.

The derived category is a triangulated category. The automorphism E of Ch induces an

automorphism E of 1). There is a natural functor X -+ 2D, and a sequence X -+ Y -+ Z -+

EX is a triangle in 2D if and only if it is isomorphic (in ID) to the image of a triangle in X.

One important fact about the triangulation is that if f : X -+ Y is a chain map which is an

epimorphism in each degree, then the fibre of f in 2 is given by the degreewise kernel.

We record the following lemma, whose proof is straightforward.

Lemma 8.1. Let X be an object of X. Then the following are equivalent:

(i) X is isomorphic in X to a complex of projectives with zero differential.



(ii) X is isomorphic in X to a complex Y with Yn, ZnY, B,Y and HnY projective for

each n.

(iii) X is isomorphic in X to a complex Y with BnY and HnY projective for each n. O

Since the homology of a complex is analogous to the homotopy of a spectrum, we call

a map which is zero in homology a ghost. Let J denote the ideal of ghosts in §D. Call an

object P of D ghost projective if it is isomorphic (in D) to an object satisfying the equivalent

conditions of Lemma 8.1. Write TP for the collection of ghost projective complexes. One can

check that TP is closed under retracts.

As the reader has no doubt guessed, we have the following result.

Proposition 8.2. The pair (P, 3) forms a projective class.

Proof. We begin by showing that TP and 3 are orthogonal. Let P be a ghost projective com-

plex. Without loss of generality, we may assume that P is a complex of projectives with zero

differential. Since a complex with zero differential is a coproduct of complexes concentrated

in a single degree, we may even assume that P is a projective object concentrated in degree

zero, say. Such a complex is cofibrant, so D(P, Y) = X(P, Y) for any Y. Now suppose

that f : P - Y is a map. That is, we have a map f : Po -+ Yo such that the composite

Po -4 Yo - Y- 1 is zero; so f factors through the kernel to give a map P - ZoY. If f

is zero in homology, then the composite Po - ZoY - HoY is zero; so f factors through

the inclusion of BoY into ZoY. And because Po is projective, f lifts over the epimorphism

YI - BoY. That is, f is null homotopic. We conclude that if P is ghost projective and

g : P - X and h : X - Y are maps in D with h zero in homology, then the composite is

zero in D.

Now, given a chain complex X, we construct a cofibre sequence P - X - Y with P

ghost projective and with X -- Y zero in homology. First we choose projectives pB" and

PH- and epimorphisms pB, - BnX and PH- - H,X. It is easy to see that we can now

choose a projective Pz- and an epimorphism PZ -+ ZnX which fit into a diagram

0 o pBn - pzn - pHný - 0

O -- BnX ZnX - HnX -- 0 O

with exact rows. Similarly, one can form a diagram

O - PZn pXn . pBn - 0

O -~- ZnX Xn BX - 0
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with exact rows and with PXn projective. Defining Pn := pXn and using the composite

pX-+, _+ pB -+ pz~ + pX- as a differential, we get a chain complex P. By definition,

Z,P = pzn. The same holds for Bn and Hn, so, by Lemma 8.1, P is ghost projective. The

maps PX- -+ X, piece together to give a chain map P -4 X. Under the functor Hn this

map induces the chosen epimorphism PH, -- HnX, and since Hn is an exact functor, the

cofibre map X -+ Y is zero in homology.

Thus by Lemma 3.2 we have a projective class. O

The main result of this section is the following theorem.

Theorem 8.3. Let X be a complex such that the projective dimensions of BnX and HnX

are less than k for each n. Then the projective dimension of X with respect to the ideal of

ghosts is less than k. In particular, X has length at most k, and a k-fold composite

X _ y- _ - .. __ yk

of maps each zero in homology is zero in 'D.

Proof. Let Xo = X. As in the proof of the previous proposition, one can construct a map

PO -+ Xo such that each of the maps Po -+ X o , Hnpo -) HnX o, BnPO -+ BnX o

and ZnP -- ZnXo is an epimorphism from a projective. Let X 1 be the suspension of the

degreewise kernel, which is a choice of cofibre, and inductively continue this process. For

any exact sequence

0 -- + A --- Qk-2 '"' Q1 -+ HnX -- 4 0

in A with each Qi projective, the object A is projective because of the assumption on HnX.

The same holds with HnX replaced with BnX, ZnX and Xn, for each n, so applying

Lemma 8.1 one finds that Xk - 1 is ghost projective. Thus X k- 1 has length at most one,

Xk - 2 has length at most two, and inductively, X = X 0 has length at most k. O

Corollary 8.4. If every object in A has projective dimension less than k, then every object

of D has projective dimension less than k with respect to the ideal of ghosts. O

Note that the projective dimension of HnX is a lower bound for the projective dimension

of X.

By assuming that X is a complex of projectives, we can strengthen the conclusion of the

theorem and obtain the following result of Kelly [25].

Theorem 8.5. Let X be a complex of projectives such that for each n the modules BnX

and HnX have projective dimensions less than k. Then the projective dimension of X with



respect to the ideal of ghosts in X is less than k. In particular, X has length at most k, and

a composite

X __+ yl . . yk

of k maps in Ch, each zero in homology, is null homotopic.

We emphasize that we are claiming that the composite is null homotopic, not just zero in

the derived category.

Sketch of proof One begins by showing that the collection of retracts (in X) of complexes

satisfying the conditions of Lemma 8.1 along with the ideal of maps in X which are zero in

homology is a projective class. Then one imitates the proof of Theorem 8.3, making use of

the fact that if Z is a complex of projectives and Y -+ Z is a map in Ch which is degreewise

surjective, then the complex X of degreewise kernels is the fibre (since the sequence X -+

Y -+ Z is degreewise split). O

Corollary 8.6. Let X be a complex ofprojectives such thatfor each n the modules BnX and

HX have projective dimensions less than k. Then X has the homotopy type of a cofibrant

complex. That is, X is isomorphic in X to a cofibrant complex.

Proof This follows from Theorem 8.5 and the following lemma. O

Lemma 8.7. A complex in X offinite length has the homotopy type of a cofibrant complex.

Proof A complex X has the homotopy type of a cofibrant complex if and only if the natural

map X(X, Y) -+ D(X, Y) is an isomorphism for all Y. A complex of projectives with zero

differential is cofibrant, and so a retract in X of such a complex has the homotopy type of

a cofibrant complex. The functors X(-, Y) and 2D(-, Y) are exact and send coproducts

to products, so the collection of complexes of the homotopy type of a cofibrant complex is

closed under coproducts and cofibre sequences. Thus this collection contains all complexes

of finite length. O

One can also prove Corollary 8.6 directly and then deduce Theorem 8.5 from Theo-

rem 8.3.

9. ALGEBRAIC PHANTOM MAPS

In this section we study phantom maps in the derived category of an associative ring R.

We restrict attention from a general abelian category to the category of R-modules because it

is in this setting that one can easily discuss the notion of purity. We provide such a discussion



in the first part of this section. In the second part we describe the finite objects in the derived

category of R and the phantom projective class that results. Under some assumptions on R

we show that there is a relation between pure extensions and phantom maps. In the third

part we recount an example of Neeman's that shows that phantom maps can compose non-

trivially and hence that Brown representability can fail in the derived category of R-modules.

In this section Ch denotes the category of chain complexes of R-modules, X denotes the

category obtained from Ch by identifying chain homotopic maps, and 'D denotes the derived

category formed by inverting the quasi-isomorphisms in Ch. See Section 8 for descriptions

of these categories.

Unless otherwise stated, we take our modules to be left R-modules.

9.1. Purity. A sequence K -- + L -+ M of modules is said to be pure exact if it is

exact after tensoring with each right module E. A submodule N of M is said to be a pure

submodule if the natural map E 0 N -+ E 0 M is a monomorphism for each right module

E, or, equivalently, if 0 -+ N - M is pure exact. The notion of a pure epimorphism is

defined similarly. A module P is pure projective if Hom(P, -) sends pure exact sequences

to exact sequences. (Throughout, Horn = HomR and 0 = OR.)

We recall some standard facts about purity. A good reference here is [39].

Proposition 9.1. The pure projectives, pure exact sequences and pure epimorphisms form

a projective class as described in Sections 2.1 and 2.2. A module is pure projective if and

only if it is a summand of a coproduct offinitely presented modules; a sequence is pure exact

if and only if it is exact under Hom(P, -) for each finitely presented module P; and a map

is a pure epimorphism if and only if it is sent to a surjection by Hom(P, -) for each finitely

presented module P. O

An extension

0 --- N --- A, -- , .-- ,Ak ---+ M ---+ 0O

is pure if it is pure exact. A morphism of extensions is a commutative diagram of the form

E: O --0 N--- A, -- >t ---- ' Ak -+ M -- O

E' O0 - N - A' - . .. -- A'k - M -t O .

We say that two pure extensions E and E' are equivalent if they are connected by a chain

of morphisms of pure extensions, with the morphisms going in either direction. We write

PExtk (M, N) for the equivalence classes of pure extensions and set PExto(M, N) =



Hom(M, N). The group PExtk(M, N) is a functor of M and N: the induced maps

are given by pullback and pushforward of extensions. There is a natural transformation

PExtk -+ Extk which is not always a monomorphism.

Extensions a E PExtk (K, L) and / E PExt' (L, M) can be spliced together to give

their Yoneda product, an element of PExt k+ 1 (K, M) which we denote /a. We also use

this composition notation when one or both of k and I are zero. Similarly, one can compose

extensions in Ext.

As one might expect, PExt* (M, N) can be calculated by forming a pure projective reso-

lution of M, applying Hom(-, N), and taking homology. In fact, associated to each filtered

diagram {M, } of finitely presented modules with colimit M there is a natural pure projec-

tive resolution of M. (That every M is in fact a filtered colimit of finitely presented modules

is proved below.) Consider the following sequence:

(9.2) ... M --4 M, -- + M --- M -- + O.

The sums are over sequences of morphisms in the filtered diagram. Write i, : Ms - M

for the colimiting cone to M. The map EDaM -- M is equal to i, on the a summand. A

summand of s-,,OMs is indexed by a triple (a, /, u), where u is a map Ma -4 MO such

that i, = iou. The map ±a(si-Ma -+ SaMa sends the summand Ma indexed by such a

triple to the M. summand using the identity map and to the M,3 summand using the map

-u. In general, one gets an alternating sum. Taking cohomology gives the derived functors

of colimit (see [12, App. II]) and because colimits of filtered diagrams are exact the sequence

is exact. Since tensor products commute with colimits, it is in fact pure exact and hence can

be used to compute PExt* (M, -).

As promised in the previous paragraph, we now show that every module M is a filtered

colimit of finitely presented modules. To avoid set theoretic problems, fix a set of finitely

presented modules containing a representative from each isomorphism class. Let A(M) be

the category whose objects are maps P -+ M where P is in our set of finitely presented

modules. The morphisms are the obvious commutative triangles. This category is filtered,

and there is a natural functor A(M) -4 R-Mod sending P -+ M to P. The colimit of this

diagram is M. A smaller but less canonical filtered diagram of finitely presented modules

with colimit M is described in [7, Exercise 1.2.10].

The exact sequence (9.2) leads to a spectral sequence

(9.3) E p 'q = •Pm Extq(M', N) ==> ExtP+q(M, N)



involving the derived functors of the inverse limit functor. One way to construct this spectral

sequence is as follows. Break the exact sequence displayed above into short exact sequences,

defining modules Mi in the process:

M = Mo M M M2 M3

(D ma (D a M

Applying Ext* (-, N) produces an unraveled exact couple:

Ext*(M, N) t<- Ext*(M, N) < Ext*(M2, N) < Ext*(M3, N)

IExt*(Ma, N) Ext*(Ma, N) I Ext*(Ma,N)

This exact couple leads to a spectral sequence abutting to Ext* (M, N), and the E2 -term is

the cohomology of the bottom row which, by [12, App. II], is imP Ext q(Mo, N). The same

construction works if the sequence (9.2) is replaced by any pure projective resolution of M.

The spectral sequences produced in this way agree from the E2 -term onwards.

The spectral sequence determines a decreasing filtration of Extk (M, N). We write

P'Extk(M, N) for the lth stage, so PoExtk(M, N) = Extk (M, N). The next stage,

P'Extk (M, N), consists of those extensions a in Extk (M, N) which can be factored into

a product /7 with 3 in Extk-1(K, N) and 7 in PExt' (M, K) for some K. Indeed, the

map Extk- 1 (M 1 , N) -+ Extk(M, N), whose image is P'Extk (M, N), is given by com-

position with the pure extension 0 -+ M -+ aMa -+ M -+ 0. In general, for

0 < I < k, P'Extk(M, N) consists of those extensions a in Extk(M, N) which can be

factored into a product /y with 3 in Ext k- l (K, N) and y in PExt t (M, K) for some K.

Note that pkExtk(M, N) is exactly the image of PExtk (M, N) in Extk(M, N), and that

P'Extk(M, N) is zero for 1 > k.

Question 9.4. From the exact couple it is clear that P Extk (M, N) can also be described as

those extensions which pullback to zero under any map from a finitely presented module to

M. Is it true that P1Extk (M, N) consists of those extensions which pullback to zero under

any map from a module of pure projective dimension at most 1 - 1 to M?

9.2. The relation between phantom maps and pure extensions. Recall that R is an asso-

ciative ring and that 2D denotes the derived category of (left) R-modules. We begin by char-

acterizing the finite objects in 2D, i.e., those objects X such that D(X, SYa) = EDD(X, Ya).



We first note that R is finite. Indeed, regarded as a complex concentrated in degree 0, R is

cofibrant. Therefore, D(R, X) -- X(R, X), and it is easy to see that X(R, X) - HoX.

Since Ho(eY,) = EHoY0 , we see that R is finite, as claimed. This also shows that R is a

weak graded generator for 9, i.e., that a complex X is zero if and only if §D(EnR, X) = 0

for all n.

The following concept will be of use to us. An R-module M is FL if there is a finite

resolution of M by finitely generated projectives. (It is equivalent to assume that M has a

finite resolution by finitely generatedfree modules and indeed the notation comes from the

Frenchfinie libre.)

We will also need the following terminology. A full subcategory 7 of a triangulated cat-

egory 8 is a thick subcategory if it is closed under cofibrations, retracts and desuspensions.

The thick subcategory generated by a collection U of objects is the full subcategory deter-

mined by all objects which can be built from a finite number of objects of U using cofibra-

tions, retracts and desuspensions. It is the smallest thick subcategory containing U.

Proposition 9.5. Let X be an object of D. Then the following are equivalent:

(i) X is finite.

(ii) X is in the thick subcategory generated by R.

(iii) X is isomorphic to a bounded complex offinitely generated projectives.

Moreover; if HnX is FL and is zero for all but finitely many n, then X is finite.

Note 9.6. The converse of the last statement doesn't hold in general. For example, if R =

k[x]/x 2 for some field k, then the chain complex

... -o -+ k[x]l/ 2 -_-x k[]/x2 -4 0 -- ...

is finite, but has homology modules of infinite projective dimension.

Proof of Proposition 9.5. Since R is a finite weak graded generator of D, it follows from [20,

Corollary 2.3.12] that (i) and (ii) are equivalent. (That (ii) implies (i) is straightforward, but

the other direction is less so.)

We next prove that (iii) implies (ii): The thick subcategory generated by R is closed un-

der finite coproducts and retracts, and so it contains all finitely generated projective modules

(considered as complexes concentrated in one degree). A bounded complex of finitely gen-

erated projectives can be built from such complexes using a finite number of cofibrations and

thus is also contained in the thick subcategory generated by R.

Now we prove that (ii) implies (iii): Let T be the collection of complexes isomorphic to a

bounded complex of finitely generated projectives. Since R is in 7, it suffices to prove that T
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is a thick subcategory. Given objects X and Y in 7 and a map f : X -+ Y we must show that

the cofibre of f is in T. We can assume without loss of generality that X and Y are bounded

complexes of finitely generated projectives. A choice of cofibre has as its nth module the

direct sum Yn e Xn- 1 . Thus the cofibre is again in Tr. The subcategory 7 is clearly closed

under desuspension, so it remains to show that T is closed under retracts. This is proved as

Proposition 3.4 of [6].

Finally, we prove that if X is a complex such that each HnX is FL and only finitely many

are non-zero, then X is finite. If X has no homology, then X 2 0 in VD, so X is finite. If X

has homology concentrated in one degree, and this module has a finite resolution by finitely

generated projectives, then X is isomorphic to this finite resolution and is thus finite (since

(iii) implies (i)). Assume now that X has non-zero homology only in a range of k degrees,

with k > 1. Without loss of generality, assume that HnX = 0 for n < 0 and n > k. Choose

a finitely generated projective P and a map P -- X inducing an epimorphism P -+ HoX

with FL kernel K. Let X' be the cofibre of the map P - X. Then one finds that HnX'

is zero for n < 0 and n > k. Moreover, we have that HnX' = HnX for 1 < n < k and

that there is a short exact sequence 0 -+ H 1X -+ HIX' - K - 0. Since H 1X and K

are FL, so is HIX', and so by induction we can conclude that X' is finite. The complex P

is certainly finite; therefore X is finite as well (since (iii) implies (i)). O

Note 9.7. If R is a coherent ring over which every finitely presented module has finite pro-

jective dimension, then the above result simplifies. First, over such a ring, a module is fi-

nitely presented if and only if it is FL. Second, over a coherent ring, finitely presented mod-

ules form an abelian subcategory of the category of all modules, and this subcategory is

closed under retracts and extensions. This allows one to show that a complex X is finite

if and only if each HnX is finitely presented and only finitely many are non-zero. In ad-

dition, in this situation, the reliance on the result of B6kstedt and Neeman can be removed

from the above proof. (See [7, Exercise 1.2.11] for a brief discussion of coherence. Note that

Noetherian rings are coherent.)

The proposition implies that there is a set of isomorphism classes of finite objects and

therefore that 'D has a phantom projective class (see Definition 5.2 and the subsequent dis-

cussion). The class TP of projectives consists of all retracts of coproducts of finite objects,

and we write 9 for the ideal of phantom maps. Since R is finite, the phantom projective class

generates.

We recall a standard fact which is easily proved.



Proposition 9.8. Let M and N be R-modules. Then

TD(M, EkN) - Ext'(M, N). [

We can now prove the main result of this section.

Theorem 9.9. Let M be a filtered colimit of FL modules. Then the phantom spectral se-

quence abutting to D(M, N) is the same as the spectral sequence (9.3) described in the

previous part of this section. In particular, the filtrations agree:

jt (M, k N) f PlExtk(M, N).

When we say that the spectral sequences are the same, we mean that they agree from the

E2 -term onwards.

Proof. Let {Ma } be a filtered diagram of FL modules with a colimiting cone to M. Then,

regarding these modules as complexes concentrated in degree zero, the cone is a minimal

cone. Indeed, the cone from the complexes {Ma} to the complex M becomes a colimiting

cone under DD(R, -) = Ho(-). And since filtered colimits are exact, one can use the five-

lemma to show that it becomes a colimiting cone under 2D(W, -) for each finite W. This is

what it means for the cone to be a minimal cone.

By Proposition 9.5, the complexes Mc are finite.

We saw in Theorem 5.10 that from a minimal cone on a filtered diagram of finite objects,

one can construct a phantom resolution. In fact, the construction corresponds exactly to the

construction of a pure resolution of M in the previous part of this section. Moreover, to get

the spectral sequence (9.3) we apply the functor Ext* (-, N). To get the phantom spectral

sequence we apply the functor D (-, N).. By Proposition 9.8, these agree. Thus the spectral

sequences agree. O

9.3. An example. Let R be a coherent ring over which finitely presented modules are FL.

Suppose that 2D is a Brown category (see Definition 5.3). (It is proved in [20, Theorem 4.1.5]

and in [33, Section 5] that when R is a countable ring, 0D is a Brown category.) Let M be an

R-module. By Theorem 5.11, there is a phantom exact sequence

0 -- + P -+ Q -- + M -- + 0

with P and Q retracts of sums of finite complexes. By Note 9.7, HoP and HoQ are finitely

presented. And since a finitely presented module is finite when regarded as a complex con-

centrated in degree zero, it is easy to see that

0 - HoP -- HoQ -+ M -- O
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is a pure projective resolution of M. Thus, in this setting, every R-module has pure projec-

tive dimension at most one.

(We have shown in particular that a countable coherent ring over which finitely presented

modules are FL has pure global dimension at most one. In fact, any countable ring has pure

projective dimension at most one [17, Proposition 10.5].)

We now present an example of a coherent ring R over which finitely presented modules

are FL and which has a module of pure projective dimension at least two. I learned this

example from [33] and Neeman credits it to Bernhard Keller. It follows that in this case 'D

is not a Brown category.

Let k be an uncountable field. Write k[x, y] for the polynomial ring and k(x, y) for its field

of fractions. A theorem of Kaplansky [24] states that the projective dimension of k(x, y) as

a k[z, y]-module is at least two. Since k(x, y) is a flat k[x, y]-module, its pure projective

dimension equals its projective dimension, as we now prove.

Proposition 9.10. Let M be aflat R-module. Then any projective resolution of M is a pure

projective resolution. Moreover, the projective dimension of M equals the pure projective

dimension of M.

Proof. A projective resolution of M is an exact sequence

0 +- M -- Po - PI ~-.

with each Pi projective (and hence pure projective). We must show that this sequence is pure

exact. Write Mi for the image of the map P_-1 +- Pi. For each right module E, the sequence

0 +- M +- Po +- M1 +- 0 is exact under E 9 - since M is flat. And since M and Po are

flat, so is M1. Thus we can inductively conclude that each sequence Mi +- Pi + Mi+l is

pure exact. Therefore, the resolution is pure exact, and we have proved the first part of the

proposition.

From what we have proved, it is clear that the pure projective dimension of M is no

greater than the projective dimension of M. We must show that it is no less. Suppose that

the pure projective dimension of M is n. Then the nth kernel Mn must be pure projective

and therefore must split off of Pn. This implies that Mn is projective and therefore that M

has projective dimension at most n. O

We conclude with a conjecture.

Conjecture 9.11. If R has global pure projective dimension at most n, then every object of

9D has phantom projective dimension at most n. In particular I~n+l vanishes. (Compare with

Corollary 8.4.)
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