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The objective of today’s lecture is to introduce the Steenrod operations and establish some of their basic
properties. We will work over the finite field F2 ' Z/2Z with two elements.

To this end, we will study the homotopy theory of cochain complexes

. . . → V n−1 dn−1→ V n dn→ V n+1 → . . .

in the category of F2-vector spaces. We will refer to these objects simply as complexes. To each complex V
we can associate cohomology groups

Hn V = ker(dn)/ Im(dn−1).

Remark 1. It is possible to take a more sophisticated point of view: we can identify cochain complexes V
over the field F2 with module spectra over F2. The cohomology groups Hn(V ) should then be viewed as the
homotopy groups π−n of the corresponding spectra.

Given a pair of F2-module spectra V and W , we can form their tensor product V ⊗W . This is given by
the usual tensor product of complexes of vector spaces:

(V ⊗W )n = ⊕n=n′+n′′V
n′ ⊗Wn′′ ,

with the usual differential (note that, since we are working over the field F2, we do not even have to worry
about signs). In particular, we can form the tensor powers

V ⊗n = V ⊗ V ⊗ . . .⊗ V

of a fixed F2-module spectrum. The tensor power V ⊗n inherits a natural action of the symmetric group Σn,
by permuting the tensor factors.

One of the most important examples of an F2-module spectrum is the cochain complex

C∗(X;F2)

of a topological space X. The cohomology groups of this F2-module spectrum are simply the cohomology
groups of X. The cohomology H∗(X;F2) has the structure of a graded commutative ring. The multiplication
on H∗(X;F2) arises from a multiplication which exists on the cochain complex C∗(X;F2). Namely, we can
consider the composition

C∗(X;F2)⊗ C∗(X;F2) → C∗(X ×X;F2) → C∗(X;F2).

Here the first map is the classical Alexander-Whitney morphism, and the second is given by pullback along
the diagonal inclusion X → X ×X. The Alexander-Whitney map is not compatible with the action of the
symmetric group Σ2 on the two sides. Consequently, the resulting multiplication

m : C∗(X;F2)⊗ C∗(X;F2) → C∗(X;F2)
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is not commutative until passing to homotopy. The failure of m to be strictly commutative turns out to be
a very interesting phenomenon, which is responsible for the existence of Steenrod operations.

In the above situation, the multiplication m is not commutative. However, it does induce a commutative
multiplication after passing to cohomology. In fact, more is true: the map m satisfies a symmetry condition
up to coherent homotopy. The following definitions allow us to make this idea precise:

Definition 2. Let V be an F2-module spectrum and n ≥ 0 a nonnegative integer. The nth extended power
of V is given by the homotopy coinvariants

V ⊗n
hΣn

.

This is a complex which we will denote by Dn(V ).

Remark 3. In concrete terms, Dn(V ) may be computed in the following way. Let M denote the vector
space F2, with the trivial action of Σn. Choose a resolution

. . . → P−1 → P 0 → M

by free F2[Σn]-modules. We let EΣn denote the complex P •. (We can think of EΣn as a contractible
complex with a free action of Σn.) The extended power Dn(V ) of a complex V can then be identified with
the ordinary coinvariants

(V ⊗n ⊗ EΣn)Σn
.

Definition 4. Let V be a complex. A symmetric multiplication on V is a map

D2(V ) → V.

Example 5. If X is any topological space, then the cochain complex C∗(X;F2) can be endowed with
a symmetric multiplication. If X is equipped with a base point ∗, then the reduced cochain complex
C∗(X, ∗;F2) also inherits a symmetric multiplication.

Example 6. Let X be an infinite loop space. Then the chain complex C∗(X;F2) can be endowed with a
symmetric multiplication.

Examples 5 and 6 are really special cases of the following:

Example 7. Let A be an E∞-algebra over the field F2. Then A has an underlying F2-module spectrum,
which is equipped with a symmetric multiplication.

Our goal in this lecture is to study the consequences of the existence of a symmetric multiplication on a
complex V .

Notation 8. Let n be an integer. We let F2[−n] denote the complex which consists of a 1-dimensional
vector space in cohomological degree n, and zero elsewhere. Let en denote a generator for the F2-vector
space Hn F2[−n], so we have isomorphisms

Hk F2[−n] '

{
F2en if k = n

0 otherwise.

Our first goal is to describe the extended squares of complexes of the form F2[−n]. This is easy: we
observe that F2[−n]⊗2 is isomorphic to F2[−2n], with the symmetric group Σ2 acting trivially (since we are
working in characteristic 2, there are no signs to worry about). Consequently, we can identify D2(F2[−n])
with the tensor product

F2[−2n]⊗ (EΣ2)Σ2 .

The second tensor factor can be identified with the chain complex of the space BΣ2 ' RP∞. Consequently,
we get canonical isomorphisms

Hk(D2(F2[−n]) ' H2n−k(BΣ2;F2)e2n.
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We now recall the structure of the homology and cohomology of the space BΣ2 ' RP∞. There is a
(unique) isomorphism

H∗(RP∞;F2) ' F2[t],

where the polynomial generator t lies in H1(RP∞;F2). We have a dual description of the homology
H∗(RP∞;F2): this is just a one-dimensional vector space in each degree m, with a unique generator which
we will denote by xm.

Definition 9. Let V be a complex, and let v ∈ Hn V , so that v determines a homotopy class of maps

η : F2[−n] → V.

For i ≤ n, we let
Sq

i
(v) ∈ Hn+i D2(V )

denote the image of
xn−i ⊗ e2n ∈ Hn−i(RP∞;F2)e2n ' Hn+i D2(F2[n])

under the induced map

D2(F2[−n])
D2(η)→ D2(V ).

By convention, we will agree that Sq
i
(v) = 0 for i > n.

If V is equipped with a symmetric multiplication D2(V ) → V , we let Sqi(v) denote the image of Sq
i
(v)

under the induced map
Hn+i D2(V ) → Hn+i V.

The operations Sqi : H∗ V → H∗+i V are called the Steenrod operations, or Steenrod squares.

Example 10. Let V be an F2-module spectrum equipped with a symmetric multiplication, and let v ∈ Hn V .
Then Sqn(v) ∈ H2n V is simply the image of v ⊗ v under the composite map

V ⊗ V → D2(V ) → V.

In other words, Sqn acts on Hn V by simply “squaring” the elements with respect to the multiplication on
V . This is why the operations Sqi are called “Steenrod squares”.

Example 11. Let X be a topological space, and let V = C∗(X;F2) be the cochain complex of X, equipped
with its usual symmetric multiplication. Then Definition 9 yields operations

Sqi : Hn(X;F2) → Hn+i(X;F2).

These are the usual Steenrod operations.

Remark 12. The operations v 7→ Sq
i
v completely account for the cohomology groups of any extended

square D2(V ). More precisely, let us suppose that V is an F2-module spectrum, and that {vi}i∈I is an
ordered basis for π∗V , where vi ∈ Hni V . Then the collection

{vivj}i<j ∪ {Sqn vi}n≤ni

is a basis for π∗D2(V ). The proof of this is easy. Using the fact that D2 commutes with filtered colimits, we
can reduce to the case where only finitely many generators are involved. We then work by induction, using
the formula

D2(V ⊕W ) ' (V ⊕W )⊗2
hΣ2

' V ⊗2
hΣ2

⊕ (V ⊗W )⊕W⊗2
hΣ2

to reduce to the case of a single basis vector. The result is then obvious.
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Proposition 13. The Steenrod squares are additive operations. Let V be a complex, and let v, v′ ∈ Hn V .
Then, for each integer k, we have

Sq
k
(v + v′) = Sq

k
(v) + Sq

k
(v′) ∈ Hn+k D2(V ).

In particular, if V is equipped with a symmetric multiplication, we have

Sqk(v + v′) = Sqk(v) + Sqk(v′) ∈ Hn+k V.

Proof. If k > n, then both sides are zero and there is nothing to prove. If k = n, then

Sq
k
(v + v′) = (v + v′)2 = Sq

k
(v) + Sq

k
(v′) + (vv′ + v′v).

Since the multiplication map
V ⊗ V → D2(V )

is commutative on the level of homotopy, we have vv′ + v′v = 2vv′ = 0.
Now suppose that k < n. By functoriality, it will suffice to treat the universal case where V ' F[−n]⊕

F[−n]. Using Remark 12, we observe that the canonical map

Hm D2(V ) → Hm D2(F2[−n])×Hm D2(F2[−n])

is injective for m < 2n. We may therefore reduce to the case where either v or v′ vanishes, in which case the
result is obvious.
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