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Introduction

I plan to take a rather direct and geometric approach to microlocal analysis in
these lectures. The initial goal is to define the space of pseudodifferential operators

(0.1) Ψm(X;E,F ) 3 A : C∞(X;E) −→ C∞(X;F ).

Here, m is the ‘order’ of the pseudodifferential operator, X is the compact manifold
on which it is defined and E and F are complex vector bundles over X between the
sections of which it acts. Thus, the first few lectures are devoted to the definition,
and investigation of the elementary properties, of these operators.

In the approach taken here, this space is defined in terms of another, more
general, object

(0.2) Ψm(X;E,F ) = Im(X2,Diag;Hom(E,F )⊗ ΩR).

Namely, the space on the right is the space of conormal distributions on the compact
manifold X2, with respect to the submanifold Diag, the diagonal, as sections of the
bundle Hom(E,F )⊗ΩR, where the precise definition of these bundles is discussed
later. So we will proceed to define the right side, but in general for any embedded
compact submanifold of a compact manifold and any complex vector bundle over
the latter

(0.3) C∞(X;E) ↪→ Im(X,Y ;E).

Here I have included the fact that smooth sections of the bundle are included in the
conormal space, for any order. In fact the elements of Im(X,Y ;E) are arbitrary
smooth sections away from Y, they are singular only at Y and then only in a very
special way.

To define the space we use the collar neighbourhood theorem to define a ‘normal
fibration’. This means identifying a neighbourhood of Y inX with a neighbourhood
of the zero section of the normal bundle to Y in X. We denote the latter NY (in
which the notation for X does not appear, perhaps it should, say as in N{Y ;X}
but that is a bit heavy-handed) and then, by definition,

(0.4) Im(X,Y ;E)/C∞(X;E) oo //ImS (NY ,ONY ;E)/S(NY,E).

The space on the top on the right hand side here is almost the same as the one
on the left, except that the total space of a vector bundle is not compact, so we
need to specify the behaviour of things at infinity and in this case they are required
to be ‘Schwartz’, meaning rapidly decaying with all derivatives; that is what the
subscript ‘S’ indicates.

0.7E; Revised: 29-11-2006; Run: November 29, 2006
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8 INTRODUCTION

Finally (going backwards) then we free ourselves of the origin of the bundle
NY and replace it by a general real vector bundle W over a compact manifold Y,
with E a vector bundle over Y (pulled back to W ) and we want to define

(0.5) ImS (W,OW ;E) ρ−mC∞(W ′;E ⊗ Ωfib).
F−1

oo

Here we use the fibrewise Fourier transform to identify distributions on W with dis-
tributions on the dual bundle, W ′ (they really have to be fibre-densities accounting
for the extra factor Ωfib) and ρ ∈ C∞(W ′) is a defining function for the boundary of
the radial compactification, W ′, which is a compact manifold with boundary made
up from W ′.

Of course we do all this in the opposite order, which corresponds to the first
four lectures. Namely, in the remainder of this first lecture I will first describe
various compactifications of a vector space and their invariance under linear trans-
formations, so that the fibrewise compactification of a vector bundle makes sense.
In particular the meaning of the notation for the compact manifold W ′ on the right
in (0.5) is fixed. Once we have that, and the properties of the Fourier transform
are recalled, we can define the left side of (0.5) in terms of the right and discuss
the main properties of these spaces. Enough information is needed to show that
the identification (0.4) makes sense independent of the choice of the normal fibra-
tion which underlies it, which is the main content of Lecture 3. Then (0.2) gives
a definition of Ψm(X;E,F ). Of course we need to discuss more of the properties,
in particular the way these act as operators and especially the ‘symbolic’ and the
composition properties; I hope most of this will be done by the end of Lecture 5.

A word is in order about why I have chosen to take this rather sophisticated
approach to pseudodifferential operators. The idea is that this approach allows
easy generalization. As we shall see below, there are many ‘variants’ of the space
Ψm(X;E,F ). A large class (namely the ‘geometric’ ones) of these variants can
be readily obtained by changing the compactification of the normal bundle to the
diagonal to a different one. Then the same procedure gives a class of operators and,
under certain conditions, composition properties can be proved the same way.

Now, my aim (this of course is written right at the beginning of the semester)
in the rest of the course is to cover the following topics.

(1) Pseudodifferential operators on compact manifolds.
(2) Hodge theorem.
(3) Hörmander’s theorem.
(4) Spectral asymptotics for the Laplacian.
(5) Dirac operators
(6) Isotropic algebra
(7) K-theory and classifying spaces.
(8) Chern forms.
(9) Fibrations and product-type operators.

(10) Index theorem.
(11) Eta invariant.
(12) Determinant bundle.
(13) Gerbes.
What will I assume? I hope this is at the level of graduate students with a bit

of background. By this I mean I will rather freely use the following
• Differential Geometry:
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Manifolds and vector bundles
Forms and deRham theorem
Lie groups
Local symplectic geometry

• Differential Analysis:
Schwartz distributions
Fourier transform
Borel’s lemma
Sobolev spaces on Rn
Operators on Hilbert space

Lack of knowledge of one or two of these things should not be taken as a bar
to preceeding!

In these lecture notes I will limit the ‘body’ of the notes, forming the first
section of each chapter, to the material I think is essential for the main line of
the course – and this will be pretty much the content of the lectures. On the
other hand I will try to include as addenda to each lecture some more background,
various extension and refinements, some indications of directions for further reading,
exercises and problems (by this I mean I claim to know the answer to the former
but not necessarily to the latter!) I hope to persuade participants in the course to
write something up for these addenda.

After a few lectures I will be able to indicate how the present treatment is
related to some of the many other treatments of this subject which are available
elsewhere.





CHAPTER 1

Compactifications of a vector space

Lecture 1: 8 September, 2005

We need to consider the spaces of functions we will insert in the right hand side
of (0.5); such functions are often called ‘symbols’ or (probably better) ‘amplitudes.’
To start, consider the case in which the submanifold Y is a point, so its normal
bundle is just a vector space. There is nothing special about the dual space to a
given vector space, so we just consider an arbitrary, real, finite-dimensional vector
space W. This is also a C∞ manifold so the space C∞(W ) of smooth functions is
well defined. However these functions are unconstrained near infinity. To intro-
duce appropriate classes of functions we introduce various compactifications of W.
Although these compactifications are introduced here for the specific purpose of
describing functions with ‘good behaviour at infinity’ they have many other uses –
some of which will be indicated later.

The general idea of compactification is that if U is a smooth manifold which
is not compact then we may be able to find a compact manifold, possibly with
boundary or with corners, X, and a smooth injection

(L1.1) U ↪→ X

which is a diffeomorphism of U onto an open dense subset of X. Since the pull-back
map is then injective (a smooth function being determined by its values on a dense
set), we may identify C∞(X) as a subset of C∞(U); these functions may be thought
of as ‘controlled at infinity’.

For a vector space we will define several different compactifications. To do so
we start with Rn, define a compactification and then check invariance under choice
of the basis which leads to the identification W ←→ Rn. If invariance under all
general linear transformations does not hold then the compactification depends on
some additional structure on W.

L1.1. One-point compactification. The first compactification I will discuss
is the 1-point compactification. In fact it will turn out that this is not used for quite
a while below, for reasons that will become apparent. However, its relation to the
compactifications that we will use is worth understanding and it will eventually
reappear in the proof of the Atiyah-Singer index theorem.

One way to define the 1-point compactificaton of Rn is to use a stereographic
projection. Thus we first identify Rn, with variable z, with a hyperplane in Rn+1,

(L1.2) Rn 3 z 7−→ (1, z) ∈ Rn+1
z0,z .

0.7E; Revised: 29-11-2006; Run: November 29, 2006
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12 1. COMPACTIFICATIONS OF A VECTOR SPACE

Now, consider the sphere of radius 1 centred at the origin in Rn+1 and draw the
line through (−1, 0) ∈ R × Rn and (1, z); it meets the sphere at the point P (z)
which we can easily find. Namely, the line is

(L1.3) R 3 t 7−→ (2t− 1, tz)

which meets the sphere at the solutions of

4t2 − 4t+ 1 + t2|z|2 = 1.

This has the trivial solution t = 0, just the South Pole, and the non-trivial solution
P (z) given by

(L1.4) t =
4

4 + |z|2
=⇒ P (z) =

(
4− |z|2

4 + |z|2
,

z

4 + |z|2

)
.

Thus P is a diffeomorphism from Rn into the complement of the South Pole in the
sphere. Indeed, the inverse is given by

(L1.5) (Z0, Z) 7−→ z =
8Z

1 + Z0
, |z|2 = 4

1− Z0

1 + Z0
,

which is smooth in Z0 > −1 on the sphere. This formula also shows that the
reflection in the equatorial plane, Z0 7−→ −Z0, on the sphere induces the inversion
z 7−→ z/|z|2. So, a smooth function on Rn is of the form P ∗f for f ∈ C∞(Sn), if
and only if there exists g ∈ C∞(Rn) such that f(z) = g(z/|z|2) outside the origin.

So, what is wrong with the 1-point compactification? For one thing, it does
not have enough invariance. Let me use the notation

(L1.6) 1Rn = Rn ∪ {SP}

for this set with the C∞ structure coming from P, so it is just the sphere. Then P
is the inclusion P : Rn −→ 1Rn. Certainly orthogonal transformations lift to this
manifold, so there is a commutative diagramme

(L1.7) Rn

O

��

P // 1Rn

Õ

��
Rn

P
// 1Rn

, for O ∈ O(n), Õ(Z0, Z) = (Z0, OZ).

On the other hand, not all elements of GL(n,R) lift smoothly in this way. To
see this, suppose G ∈ GL(n,R) lifts in the sense that there is a commutative
diagramme of smooth maps as in (L1.7). Then the smoothness of the inversion
means that |Gz|−2 must be a smooth function of the variables z/|z|2 near infinity.
Inverting again, and using the homogeneity of G this means that

(L1.8)
|z|2

|Gz|2
is a smooth function of z near 0.

Now, it is well known that this is only the case if |Gz|2 = s2|z|2 for some s > 0,
i.e. if G is conformal1. So, for instance the scaling in one variable, z = (z1, z′) 7−→
(sz1, z′), is not conformal, hence does not extend smoothly to the 1-point compact-
ification of Rn (if n > 1!)

1Exercise: Check this!
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L1.2. Radial compactification. Next we consider the most important com-
pactification in the sequel, the radial compactification. We use the same approach
as above for the 1-point compactification. So with the same embedding of Rn as
the hyperplane Z0 = 1 in Rn+1 as in (L1.2), consider the modifed sterographic
projection based on the line through the origin of the unit sphere, rather than the
South Pole. The intersection of [0, 1] 3 t −→ (t, tz) with the unit sphere in Z0 > 0
occurs at t = (1 + |z|2)− 1

2 . Thus the compactifying map is

(L1.9) R : Rn 3 z −→

(
1

(1 + |z|2) 1
2
,

z

(1 + |z|2) 1
2
) ∈ Sn,1 = {(Z0, Z);Z0 ≥ 0, Z2

0 + |Z|2 = 1}.

It is clearly a diffeomorphism, since the inverse can we written

(L1.10) z = Z/Z0 in Z0 > 0.

I will denote this radial compactification by Rn = Sn,1 with R used to identify the
interior with Rn.

Thus the radial compactification embeds Rn as the open upper half-sphere.
This is diffeomorphic to a closed ball and it is tempting to look at the projection
on the last n variables in (L1.9) and consider

(L1.11) Q : Rn 3 z −→ z

(1 + |z|2) 1
2
∈ Bn = {Z ∈ Rn; |Z| ≤ 1}.

This is the quadratic compactification. It is not the same as the radial compacti-
fication (L1.9) since the function Z0 = (1 + |z|2)− 1

2 is not smooth on it! Rather
(1 + |z|2)−1 is the pull back of a defining function for the boundary of the ball un-
der Q. This corresponds to the fact that the inverse of the projection of the upper
half-sphere to the ball has a square-root singularity. When it comes up, and it will,
the quadratic compactification will be denoted qRn.

So, returning to the radial compactification, observe as before that orthogonal
transformations lift to Rn. Indeed the orthogonal transformation can be extended
to act on the Rn factor of Rn+1 = R× Rn and then intertwines with the standard
action on Rn as in (L1.7).

To examine the lift of a general linear transformation we can proceed directly
using homogoneity. Subsequently I will proceed more indirectly, by considering
the Lie algebra of GL(n,R). The indirect approach has certain advantages as we
shall see below. However, if G : Rn −→ Rn is an invertible linear transformation
we can see directly that it lifts to a diffeomorphism of the radial compactification
G̃ : Rn −→ Rn. This just means showing that the diffeomorphism R−1GR induced
on the interior of the upper half sphere by its identification, through R, with Rn,
extends smoothly up to the boundary. Notice that a neighbourhood of the bound-
ary of Sn,1 can be identified with the product [0, 1

2 ) × Sn−1 using the variables
1
|z| ,

z
|z| . Indeed a smooth function on Rn extends to be smooth on Sn,1 under the

identification R if and only if it is a smooth function of |z|−1 and z
|z| ∈ Sn−1 outside

the origin. To see this, just note that

(L1.12) (1 + |z|2)− 1
2 = s(1 + s2)

1
2 , s = |z|−1
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is a smooth function of |z|−1, and conversely. Similarly
z

(1 + |z|2) 1
2

= (1 + |z|−2)−
1
2
z

|z|

is a smooth function of z/|z| and 1/|z| and conversely z/|z| is a smooth function of
z/(1 + |z|2) 1

2 and (1 + |z|2) 1
2 .

Thus the smoothness on the radial compactification is reduced to showing that

1
|Gz|

and
Gz

|Gz|
are smooth functions of

1
|z|
,
z

|z|
up to 1/|z| = 0. Since G is invertible, |Gz| > 0 on the sphere |z| = 1, so this the
smoothness holds there and by the linearity (hence homogeneity) of G,

|Gz| = |z|
∣∣∣∣G(

z

|z|
)
∣∣∣∣ =⇒ 1

|Gz|
=

1
|z|

1
|G( z

|z| )|
,
Gz

|Gz|
=

G z
|z |

|G z
|z| |

.

This proves the desired smoothness.
Let me show directly that the Lie algebra of GL(n,R) lifts to the radial com-

pactification, although this could also be shown by checking that the lift G̃ depends
smoothly on G ∈ GL(n,R). For the standard action on Rn, gl(n,R) is represented
by ‘linear’ vector fields with the basis

(L1.13) zi∂zj , i, j = 1, . . . , n.

Now we wish to show that zi∂zj lifts to a smooth vector field on Sn,1 under the
indentification R. Set s = 1/|z| and ω = z/|z|. Then outside the origin

(L1.14) zi∂zj = a(s, ω)∂s + V (s, ω)

where a(s, ω) ∈ C∞((0,∞)×Sn−1) and V is a smooth vector field on Sn−1 depending
smoothly on s ∈ (0, 1). We want to understand what happens as s ↓ 0. However,
observe that the linear vector field is constant under the homotheity, z → rz,
0 < r ∈ R. The decomposition (L1.14) is unique and so it must scale in the same
way. By the definition of these variables the homotheity becomes s→ r−1s, ω → ω,
so we must have

a(s, ω) = sa(1, ω), V (s, ω) = V (1, ω) =⇒ zi∂zj = a(ω)s∂s + V (ω)

where now a(ω) ∈ C∞(Sn−1) and V (ω) is a smooth vector field on Sn−1. This shows
that the linear vector fields lift to be smooth on Sn,1 and even that

(L1.15) zi∂zj is tangent to the boundary of Sn,1.

From this we can also deduce that GL(n,R) lifts to act smoothly under radial
compactification. Indeed, in any Lie group a neighbourhood of the identity is
given by exponentiation of the Lie algebra. Here exponentiation corresponds to
integration of the vector field on Rn, or of its extension to Sn,1. So the elements
in some neighbourhood of the identity extend smoothly to Sn,1. More generally,
any element of GL(n,R) is given by a finite composite of an element of O(n) (an
orthogonal transformation, needed if the orientation is reversed) and a finite number
of elements of some fixed neighbourhood of the identity. Thus the action of GL(n,R)
on Rn extends smoothly to Sn,1 under R.

It is also the case that translations extend to the radial compactification. Here
any translation is obtained by exponentiation of a linear combination of the vector
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fields ∂zi . Using the same argument as above, the smoothness near the boundary
of Rn can be examined in terms of s, ω and the unique decomposition

(L1.16) ∂zi = ai(s, ω)∂s + Vi(s, ω)

into a vector field on (0,∞)s × Sn−1
ω . Since ∂zi is homogeneous of degree −1 under

the homotheity z → rz it follows that

ai(s, ω) = s2ai(1, ω), Vi(s, ω) = sVi(1, ω)

and (L1.16) becomes

(L1.17) ∂zi = s(ai(ω)s∂s + Vi(ω))

for a smooth function and a smooth vector field on Sn−1. Thus for the translations
the generating vector fields actually lift to be Z0 times a smooth vector field tangent
to the boundary of Sn,1. This will turn out to be important! In any case the
translations also lift to smooth diffeomorphisms of Sn,1.

This is our basic compactification of a vector space. Why are we interested
in it? One very important reason is that the space C∞(W ) is well-defined and is
invariant under the general linear group (and translations). It is given many other
names in the literature, typically the ‘space of classical symbols of order 0’. More
generally we can set

(L1.18) Szcl(W ) =
{
u ∈ C∞(W ); ρ−zu ∈ C∞(W )

}
where ρ ∈ C∞(W ) is a boundary defining function. This is the space of ‘classical
symbols of (possibly complex) order z’ on W. I will not use this notation very much
because there are all sorts of confusions in the literature.

L1.3. Quadratic compactification. I introduced the quadratic compactifi-
cation of Rn in (L1.11) above. Essentially by definition, the canonical map between
the interiors (given by identification with Rn) extends to a smooth map from the
radial to the quadratic compactification, but not the reverse.

A neighbourhood of infinity in qRn may be smoothly identified with the product
(0, 1) × Sn−1 3 (t, ω) where ω = y/|y| ∈ Sn−1 and t = |y|−2. Since the generators
of the translations satisfy

∂yj t = −2
yj
|y|4

= −2t
3
2ωj

the translations do not lift to be smooth.
The radial vector field is ∑

i

yi∂yi = −2t∂t,

so the homotheity does lift to be smooth, namely it becomes t → r−2t. The ho-
mogeniety argument used above for the radial compactification then shows that all
general linear transformations lift to be smooth, since

(L1.19) zk∂zi = a(ω)t∂t + Ukj

where the Ukj are smooth vector fields on the sphere and a is a smooth function
on the sphere.

Thus the quadratic compactification is well-defined for a vector space, since it
is preserved under linear transformations, but not for an affine space since it is not
preserved by translations.
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1+. Addenda to Lecture 1

1+.1. Explicit models. It is useful to think of the radial compactification
of a vector space, W, as an explicit set with a C∞ structure. By abstract nonsense
one can do this from the embedding of Rn into Sn,1, but as I show below there is
also a more natural geometric approach.

First let me review in a more sophisticated way the construction of the manifold
W above. First, for Rn we have an explicit map into Sn,1 such that the action of
GL(n,R) extends smoothly

(1+.20) Rn

G

��

P // Sn,1

G̃

��
Rn

P
// Sn,1

, ∀ G ∈ GL(n,R).

Now, to a real vector space, W, of dimension n we can associate the set of all linear
ismorphisms to Rn

(1+.21) P = {T : W −→ Rn, linear and invertible}.
This is a principal GL(n,R) space. That is, the action of GL(n,R)

(1+.22) GL(n,R)× P 3 (G,T ) 7−→ GT ∈ P
is free and transitive. Then we can ‘recover’ the original vector space W as the
quotient, namely as the vector space associated to the standard action of GL(n,R)
on Rn

(1+.23) W̃ = (P × Rn)/ ∼, (T, v) ∼ (GT,Gv) ∀ G ∈ GL(n,R).

This is canonically isomorphic to to W with the map being

(1+.24) W̃ 3 [(T, v)] 7−→ T−1v ∈W
since this does not depend on the representative under (1+.23).

Now, what we have done above is to define the radial compactification W as
the manifold with boundary associated to P by the action of GL(n,R) on Sn,1

(1+.25) W = (P × Sn,1)/ ∼, (T, p) ∼ (GT, G̃p) ∀ G ∈ GL(n,R).

This is all very well, but it is a little nicer to have something a little lower-tech
in mind. If we consider the action of G ∈ GL(n,R) on Rn it also induces an action
on the associated (projective) sphere. That is, consider the set of half rays through
the origin

(1+.26) Sn−1 = (Rn \ {0})/R+, R+ × Rn 3 (s, z) 7−→ sz ∈ Rn.

This is a definition of the manifold Sn−1. For a general vector space we can similarly
define

(1+.27) SW = (W \ {0})/R+, R+ ×W 3 (s, w) 7−→ sw ∈W.
Here is an exercise for you:-

Lemma 1. The set W t SW (the disjoint union) has a unique C∞ structure
such that the elements of C∞(W ) which are homogeneous (for the R+ action in
(1+.27)), of non-positive integral degree, outside some compact neighbourhood of
the origin, lift to be smooth (with their asymptotic values on SW for homogeneity 0
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and 0 there for negative homogeneity) and generate the C∞ structure (i.e. this set
of functions contains a coordinate system at each point).

Thus we can identify W = W t SW as a set.

Exercise 1. Show that the quadratic compactification of a vector space can
be defined as a space associated to the principal GL(n,R) space P discussed above
and also that it is given in a manner similar to Lemma 1 as a different C∞ structure
on the same set.

Exercise 2. In the case of the 1-point compactification, formulate precisely
the notion of a conformal structure on a real vector space and show that the 1-point
compactification only depends on it.

1+.2. Inclusions. All three compactificaitons behave well under inclusion of
vector spaces – the inclusion extends to a smooth map of the corresponding com-
pactifications (with metric, or at least conformal, consistency required for the one-
point compactification).

Proposition 1. If i : V ⊂ W is a linear subspace of a vector space over the
reals then the inclusion map extends by continuity to a smooth map

(1+.28)
i : V ↪→ W

i : qV ↪→ qW.

Proof. It suffices to check this in a model case �

Exercise 3. In the case of the 1-point compactification, formulate the notion of
the conformal structure induced on a subspace V ⊂W by the choice of a conformal
structure on W and show that provided the compactifications are compatible in
this sense then

(1+.29) i : 1V ↪→ 1W

extends to be smooth.

Exercise 4. Show that an injective linear map between vector spaces always
extends to a smooth map between the radial or quadratic compactifications. For
non-trivial vector spaces (i.e. of positive dimensions) is there ever a map which is
not injective yet which has a smooth extension to (one of) these compactifications?
Show that there is always a linear map which does not have a smooth extension
between either the radial or quadratic compactifications.

1+.3. Relative compactification. If you have done Exercise 4 you will
know that the compactifications discussed above do not behave well with respect
to projections of vector spaces. The problem is that the points at infinity ‘do not
know where to go’. For this reason (and others as it turns out) there is more to be
done.

Suppose V ⊂ W is a subspace and we choose a complementary subspace and
hence a product decomposition, W = V ×U. Take metrics on V and on U and then
consider a map analogous to, but more complicated than, (L1.7)

(1+.30) RV : W 3 w = (v, u) 7−→ (t, s, v′, u′) =

(
1

(1 + |u|2) 1
2
,

(1 + |u|2) 1
2

(1 + |u|2 + |v|2) 1
2
,

v

(1 + |u|2 + |v|2) 1
2
,

u

(1 + |u|2) 1
2
) ∈ R2 ×W.
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On the image, t2 + |u′|2 = 1, s2 + |v′|2 = 1. These two ‘cylinders’ meet transver-
sally (their normals are independent) so the intersection is a smooth manifold. The
image of the map lies in
(1+.31)
VW =

{
(t, s, v′, u′) ∈ R2 × V × U ; t ≥ 0, s ≥ 0, t2 + |u′|2 = 1, s2 + |v′|2 = 1

}
which is a compact manifold with corners in which the image is precisely the dense
interior, s > 0, t > 0. Of course, in principle this depends on the metrics and the
choice of transversal subspace U, but in fact it does not.

Lemma 2. All translations on W lift to be smooth on VW as do all general
linear transformations of W which map V into itself.

Proof. The map

(1+.32) (t, s, v′, u′) 7−→ (v/st, u′/t), s, t > 0,

is a smooth inverse to RV in (1+.30) so RV is a diffeomorphism onto this set.
Moroever, orthogonal transformations on U and on V left to diffeomorphisms of
VW since they just act on the variables u′ and v′. A general linear transformation
of W leaving V fixed can be factored into G1 · G2 · G3 where G1 ∈ GL(V ) act as
the identity on U, G2 is of the form

(1+.33) G2(v, u) = (v, u+ Sv)

for a linear map S : V −→ U and G3 ∈ GL(U) acts as the identity on V. Then G1

is the product of an orthogonal transformation and a finite number of elements of
GL(V ) in any preassigned neighbourhood of the identity and similarly for G3. On
the other hand G2 is connected to the identity by scaling S to 0. Thus, it is enough
to show that the Lie algebra lifts to be smooth on VW, which is to say the vector
fields

(1+.34) vi∂vj , uk∂vj , uk∂ul

(which span the linear vector fields on W tangent to V ) lift to be smooth.
In the interior, i.e. where s > 0 and t > 0 these are certainly smooth. So we

consider the three regions near the boundary separately, where

(1+.35)

s ' 0, t > ε0 > 0
t ' 0, s > ε0 > 0 and

t, s ' 0.

Arguing as before that near x = 0 a smooth function of x(1+x2)−
1
2 is just a smooth

function of x, we may use as local generating functions (so including coordinates)
in these three regions

(1+.36)

1
|v|

(' 0),
v

|v|
, u

1
|u|

(' 0),
v

|u|
,
u

|u|
and

1
|u|

(' 0),
|u|
|v|

(' 0),
v

|v|
,
u

|u|
.

This allows us to apply homogeneity arguments much as above but now for
the two homogeneities in u and v separately. Note that each of the vector fields in
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(1+.34) is homogeneous of non-positive degree in both senses. It follows that all
these vector fields lift to be smooth on VW proving the Lemma. �

Lemma 3. A short exact sequence of linear maps

(1+.37) 0 //V //W //W/V //0

lifts to a sequence of smooth maps

(1+.38) V //VW //W/V .

Proof. We just have to do this for the ‘model’ as in (L1.8). The inclusion is
just v → (v, 0) and

(1+.39) RV (v, 0) = (1,
1

(1 + |v|2) 1
2
,

v

(1 + |v|2) 1
2
, 0) = (1, P (v), 0)

in terms of the map (L1.9). Similarly the map from VW to U = W/V extending
the projection (v, u) 7−→ u is just

(1+.40) VW 3 (t, s, v′, u′) 7−→ (t, u′) ∈ U = Sn,1.

�

Corollary 1. If A : V −→W is any linear map between real vector spaces V
and W, with null space null(A) ⊂ V, then A extends to a smooth map

(1+.41) A : null(A)V −→ W.

Exercise 5. Make sure you can give an elegant proof of this!

Exercise 6. Show that the second map in (1+.38) is a fibration. In fact, since
the base is contractible (being a ball) it is then necessarily reducible to a product.
Thus there exists a diffeomorphism F : V ×W/V −→ VW such that the composite
map

(1+.42) V ×W/V F //VW //W/V

is just the projection. However, there is no natural choice of F.

1+.4. Products. One thing we can certainly do is take the product of two
vector spaces, W = V × U. Then we can consider the compactification of W given
by V × U. The projection from W to U certainly extends to a smooth map from
V × U to U, namely the projection. However we still have the problem of the
relationship of W to V × U. The natural map between the interiors, both of which
are identified with W, does not extend to a smooth map either way. We are part of
the way to overcoming this difficulty with VW, but this is certainly not ‘symmetric’
in how it treats V and U so cannot be the full answer.

Exercise 7. Define the doubly-relative radial compactification of the product
of two vector spaces. Do so by choosing metrics on U and V and then taking the
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map

(1+.43) RU,V : W = (v, u) 7−→ (
1

(1 + |u|2) 1
2
,

1
(1 + |v|2) 1

2
,

(1 + |u|2) 1
2

(1 + |u|2 + |v|2) 1
2
,

(1 + |v|2) 1
2

(1 + |u|2 + |v|2) 1
2
,

v

(1 + |v|2) 1
2
,

(v, u)
(1 + |u|2 + |v|2) 1

2
,

u

(1 + |u|2) 1
2
)

∈ R4 × V ×W × U

and showing it to be a diffeomorphism onto its image. Then check that the closure
of the image is a manifold with corners (it has three boundary faces provided U
and V have dimension at least 2, more if one of them is one-dimensional). Show
that all translations on W lift to be smooth as do all linear transformations of W
mapping U and V into themselves (i.e. direct products of linear transformations
of U and of V.) Denoting the resulting compactifications by U,V U × V show that
both the inclusions of U and V extend to be smooth

(1+.44) i : U −→ U,V U × V , i : V −→ U,V U × V .

Show that the identity map extends to be smooth in two different ways

(1+.45) U,V U × V

&&LLLLLLLLLL

yyrrrrrrrrrr

U × V U × V .
The non-invertibility of these maps goes some way to explaining the difference
between the radial compactification of the product and the product of the radial
compactifications. Draw a picture!

1+.5. Blow up. If you go so far as to actually do Exercise 7 you will come
to look for a better way of doing such things. Fortunately there is – and it is
discussed in more detail starting in the addenda to the second lecture. For the
moment, consider the relationship between the 1-point compactfication of Rn and
its radial compactification. We know (or if you prefer have defined things so) that
a function is smooth near the point at infinity of the one-point compactification if
it is a smooth function of z/|z|2. On the other hand, a function is smooth near the
sphere at infinity of Rn if it is a smooth function of x = 1/|z| and ω = z/|z| ∈ Sn−1

near x = 0. Since z/|z|2 = xω we see that smoothness on 1Rn implies smoothness
on Rn. This of course means that the map sending the whole of infinity to the one
point is smooth

(1+.46) β : Rn −→ 1Rn, Rn = [1Rn, {∞}].

In fact we can see more. Namely, in the coordinates discussed above, the map β is
nothing other than the introduction of polar coordinates,

(1+.47) z/|z|2 = Z = xω

and this is what the final notation in (1+.46) indicates.

Definition 1. A manifold with boundaryX (denoted subsequently by [M, {p}]
is the blow-up at p ∈M of a manifold M if there is a smooth map

(1+.48) β : X −→M,
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which is a diffeomorphism of X \ ∂X to M \ {p}, maps ∂X to p and is such that
polar coordinates for some local coordinates aound p lift to a diffeomorphism of a
neighbourhood of ∂X to [0, 1)× Sn−1, n = dimM.

This definition just means that the blow-up of a point is the introduction of
polar coordinates. It would not make much sense if it depended on the choice of
local coordinates based at (i.e. vanishing at) p in which polar coordinates where
introduced.

Exercise 8. Confirm that change of local coordinates based at 0 ∈ Rn induces
a diffeomorphism on [0, ε)r×Sn−1 for some ε > 0. Hint: First do the linear case; for
which one can either use the linear invariance of radial compactification above, or
model the argument. Then check the case that the Jacobian is the identity directly.

1+.6. Radial and relative compactification. I will show below that the
blow up of a closed embedded submanifold of a manifold is always well-defined and
reduces locally to the introduction of polar coordinates in the normal variables.
The same notation as above, [M,Y ] is used for the blown-up manifold in this more
general case; it comes equipped with a smooth blow-down map β : [M,Y ] −→ M.
The reason I bring this up here is that the relative compactification introduced
above can also be defined through blow-up from the radial compactification. In this
case we are blowing up an embedded submanifold of the boundary of a manifold
with boundary.

Proposition 2. If V ⊂W is a non-trivial subspace of a real vector space then
there is a natural diffeomorphism

(1+.49) VW ≡ [W,SV ].

Exercise 9. See if you can check this in local coordinates – of course it is a
bit tricky since I have not explained what the blow-up map really is.

Exercise 10. See what happens in the ‘trivial cases’ excluded from Proposi-
tion 2, meaning V = {0} or V = W. Namely show that

(1+.50) {0}W ≡ W, WW ≡ qW.

A similar discussion applies to the double-relative compactification of a product.
Namely, in U × V the two bounding spheres, SU and SV, of the subspaces are
disjoint embedded submanifolds of the boundary. Since they are disjoint the blow-
ups of SU and SV are completely independent.

Proposition 3. For any real vector spaces, there is a canonical diffeomorphism

(1+.51) U,V U × V −→ [U × V ,SU,SV ]

We may also blow up embedded submanifolds of boundary faces of manifolds
with corners, provided they meet the other boundary faces in a ‘product manner’.
In particular we can blow up any boundary face.

Proposition 4. For any real vector spaces, there is a canonical diffeomorphism

(1+.52) U,V U × V −→ [U × V ,SU × SV ].

Notice that SU × SV is indeed the corner of U × V , since it is the product of the
boundaries.
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1+.7. Parabolic compactifications. If that wasn’t enough there are actu-
ally other compactifications, which are not obtained by blow up of the ones I have
already considered. What’s more they really do show up in analysis, in particular
in complex analysis – about which I will say nothing much in this course (but see
[2].)



CHAPTER 2

Conormal distributions at the origin

Lecture 2: 13 September, 2005

L2.1. Classical symbols. As indicated above, I will define the conormal dis-
tributions at the origin of a vector space, starting with Rn, as the inverse Fourier
transform of the spaces ρ−mC∞(Rn). Here ρ ∈ C∞(Rn) is any boundary defining
function. For a compact manifold with boundary X, a boundary defining function
ρ ∈ C∞(X) is any function such that ρ ≥ 0 everywhere, ∂X = {ρ = 0} and dρ 6= 0
on ∂X. Such a function always exists and any two are related by

(L2.1) ρ′ = aρ, 0 < a ∈ C∞(X).

For the radial compactification we know we can take as boundary defining function

(L2.2) Z0 = ρ =
1

(1 + |ξ|2) 1
2

for any metric.
Then the space ρ−mC∞(W ) for any real vector space W is defined by

(L2.3) u ∈ ρ−mC∞(W )⇐⇒ ρmu ∈ C∞(W ).

Traditionally this is called the space of ‘classical symbols or order m on W ’ and
denoted Smcl (W ). I will not use this notation (at least not much) because it is
redundant and also there is some confusion in the literature between closely related,
but different, spaces.

Now, for a little exercise in abstract nonsense, note that ρ−mC∞(W ) is the
space of all global sections of a trivial line bundle, which we denote N−m, so

(L2.4) ρ−mC∞(W ) = C∞(W ;N−m).

Indeed, this is a direct consequence of the relation (L2.1) between any two defining
functions. Thus, ρ−m is a global section of this bundle for any boundary defining
function ρ. If you want to be pedantic, the fibre at any point q ∈ W (including of
course boundary points) may be defined to be

(L2.5) (N−m)p = ρ−mC∞(W )/Ip · ρ−mC∞(W )

where Ip ⊂ C∞(W ) is the space of smooth functions which vanish at p. It is handy
to have the notation (L2.4), and it is little more than notation, since it lets us push
the ‘weight’ function ρ−m into a bundle and ‘hide’ it.

0.7E; Revised: 29-11-2006; Run: November 29, 2006
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There are some rather obvious properties of these symbol spaces. Namely they
multiply

(L2.6) C∞(W ;N−m) · C∞(W ;N−m′) = C∞(W ;N−m−m′), ∀ m,m′ ∈ R.

In particular they are all C∞(W )-modules, corresponding to the case m = 0 when
N−m is canonically trivial.

We also know that the action of GL(W ) on W, and of W acting by translations,
extends smoothly to W and necessarily maps the boundary onto itself. It follows
that these actions extend to C∞(W ), so G∗ acts on C∞(W ;N−m) for any m.

The name ‘symbols’ is related to the ‘symbol estimates’ that these functions
satisfy. In the case of Rn we know that (1+ |ξ|2)− 1

2 is a boundary defining function
on Rn. Thus if a ∈ C∞(Rn;N−m) then ρma is a bounded function and this reduces
to

(L2.7) |a(ξ)| ≤ C(1 + |ξ|2)m2 ⇐⇒ |a(ξ)| ≤ C ′(1 + |ξ|)m ∀ ξ ∈ Rn.

The second, simpler looking, form follows from the fact that (1 + |ξ|2) 1
2 and 1 + |ξ|

are of the ‘same size’, meaning each is bounded above and below by some positive
multiple of the other. The disadvantage of 1+ |ξ| is that it is singular at the origin,
but it is easier to write. Anyway we also know that ξα∂βξ a ∈ ρ−m+|α|−|β|C∞(Rn)
and hence

(L2.8) |ξα∂βξ a| ≤ Cα,β(1 + |ξ|)m−|β|+|α| if a ∈ C∞(Rn;N−m).

This is an explicit form of the statement that differentiation by ξ lowers the order by
1 and multiplication by a polynomial raises the order by the order of the polynomial,
i.e.

(L2.9)
∂ξi : C∞(Rn;N−m) −→ C∞(Rn;N−m+1)

ξi× : C∞(Rn;N−m) −→ C∞(Rn;N−m−1).

The symbol estimates (L2.8), even if valid for all α and β, do not imply that
a ∈ C∞(Rn;N−m). Some discussion of the extent to which they are weaker and why
they usually appear centrally in a treatment of microlocal analysis can be found in
the addenda below. The present treatment avoids the use of these larger spaces of
symbols ‘with bounds’, although they still have their place.

One thing that does follow easily from (L2.8) is that symbols of arbitrarily low
order are Schwartz functions

Lemma 4. On any real vector space and for any m ∈ R,

(L2.10)
⋂
N∈N

ρ−m+NC∞(W ) = S(W ).

Proof. Since we can always replce m in (L2.8) by m−N it follows that if a
is in the intersection in (L2.10) then

(L2.11) sup
ξ
|ξα∂βξ a| <∞ ∀ α, β =⇒ a ∈ S(W ).

The converse statement also follows, namely it suffices to show that S(W ) ⊂
C∞(W ). �
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Returning to the general properties of the classical symbol spaces, there is a
short exact sequence which will turn out to be of fundamental importance later.
Namely, for any m

(L2.12) 0 //C∞(W ;N−m+1) //C∞(W ;N−m) //C∞(SW ;N−m) //0.

In future I will often leave out the zeros at the ends of such short exact sequences.
The claim of exactness is just that the second map is injective, the third is surjective
and the range of the second is exactly the null space of the third. If we use ρ−m to
trivialize the bundle N−m then this just reduces to the short exactness1 of

(L2.13) ρC∞(W ) //C∞(W ) //C∞(SW ).

This in turn means the restriction map to the bounding sphere is surjective and
that a smooth function is of the form ρf for another smooth f if and only if it
vanishes at the boundary; this is a form of Taylor’s theorem.

There is an equally important but more complicated version of this called ‘as-
ymptotic completeness’ of the spaces or ‘asymototic summability’ of series of sym-
bols.

Proposition 5. [Asymptotic Completeness] If ak ∈ C∞(W ;N−m+k), is any
sequence then there exists an element a ∈ C∞(W ;N−m) such that

(L2.14) a−
N∑
k=0

ak ∈ C∞(W ;N−m+N+1) ∀ N ∈ N.

Proof. We can multiply everything by ρm to reduce to the casem = 0. Then it
is a form of Borel’s Lemma. Namely it follows from the fact that for any (compact)
manifold with boundary X and any sequence bk ∈ ρkC∞(X), k ∈ N0, there exists
an element b ∈ C∞(X) such that

(L2.15) b−
N∑
k=0

bk ∈ ρN+1C∞(X) ∀ N ∈ N.

This in turn can be reduced to the corresponding local statement for a hypersurface
z1 = 0 in Rn and then to the 1-dimensional case, with smoothness in parameters –
this is the setting for the original Lemma of É. Borel. Namely that the sequence of
derivatives of a smooth function at a fixed point is unconstrained, i.e. if ck is any
sequence of complex numbers then there exists a smooth function u ∈ C∞(R) such
that

(L2.16)
dku

dxk
(0) = ck ∀ k.

Let me at least remind you of how this is proved – an extension of this argument
leads to (L2.15). Namely one forces the Taylor series to converge, of course without
constraints on the ck’s in (L2.16) it will not converge of its own volition! So, choose
a cut-off function χ ∈ C∞c (R) which is 1 in |x| < 1

2 and vanishes in |x| > 1. Then
consider the series of smooth functions

(L2.17) b(x) =
∑
k

ckx
k

k!
χ(
x

εk
),

1Meaning supply your own zeroes at the ends.
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where εk > 0 is a sequence which tends to 0. It follows that the series is finite in
any region x ≥ x0 > 0 so converges to a smooth function in x > 0. In fact it is easy
to make it converge uniformily in x ≥ 0. Indeed, the size of the kth term is

(L2.18) |ck|εkk/k!
since the cutoff vanishes when x > εk. Now the εk just need to be chosen to vanish
rapidly enough and the series will converge uniformly and absolutely. A similar
choice allows the series for the derivatives of any order to be made to converge and
then a diagonalization arument gives convergence in C∞(R). It follows that the sum
satisfies (L2.16). �

The relationship (L2.14) is usually written

(L2.19) a ∼
∞∑
k=0

ak.

Notice that a ∈ C∞(W ;N−m) is not uniquely determined by this condition. Any
other element a′ satisfying (L2.14) in place of a is such that a′−a ∈ C∞(W ;N−m+N )
for all N which is to say a′ − a ∈ S(W ), so the ‘asymptotic sum’ is determined up
to a rapidly decreasing ‘error.’

L2.2. Classical conormal distibutions. Now, we are finally in a position
to define the ‘classical conormal distributions’ on Rn with respect to the origin

(L2.20) ImS (Rn, {0}) = F−1
(
ρ−m

′
C∞(Rn)

)
, m = m′ +

n

4
.

As promised these are just the inverse Fourier transforms of our symbol spaces.
Notice however that I have shifted the ‘order’ on the left by a constant that depends
on the dimension only. This ‘normalization’ is for reasons related to the ‘principle
of stationary phase’ that will not show up for quite a long time, but leaving it out
will cause more confusion than putting it in.

The simplest nontrivial example of a conormal distribution with respect to
the origin of Rn is the Dirac delta ‘function’, the inverse Fourier transform of
the constant function 1. According to (L2.20) it has ‘order n/4’ (however this is
just a choice of normalization and doesn’t correspond to a meaningful regularity
statement)

(L2.21) δ0 ∈ I
n
4
S (Rn, {0}).

However this is almost enough to allow one to remember the normalization (which
I have a hard time doing)!

So, what are the basic properties. Certainly (L2.20) defines a space of tempered
distributions

(L2.22) ImS (Rn, {0}) ⊂ S ′(Rn).
Since ρC∞(Rn) ⊂ C∞(Rn) it follows that

(L2.23) Im−kS (Rn, {0}) ⊂ ImS (Rn, {0}) if k ∈ N.
Now the estimate (L2.7) shows that for the Fourier transform

if u ∈ ImS (Rn, {0}) then a = F(u) ∈ ρ−m+n
4 C∞(Rn),

so −m+
n

4
> n =⇒ a ∈ L1(Rn)
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and then the inverse Fourier transform

u(z) = (2π)−1

∫
Rn
a(ζ)dζ, |u(z)| ≤ (2π)−n

∫
Rn
|a(ζ)|dζ

is bounded. It is in fact also continuous (by the continuity-in-the-mean of L1

functions) and vanishes at infinity so

(L2.24) ImS (Rn, {0}) ⊂ C00(Rn) if m < −3n
4
,

the space of continuous functions which vanish at infinity.
Since the right hand side in (L2.20) is a space of smooth functions with some

growth it is reasonable to expect the elements of the space on the left to be smooth
with some localized singularities. That is indeed the case and we will show that

(L2.25) ImS (Rn, {0})
∣∣
Rn\{0} ⊂ C

∞(Rn \ {0}),

so the only singularities in an element of ImS (Rn, {0}) are at the origin, i.e. sing supp(u) ⊂
{0}. We will actually prove something even stronger.

Lemma 5. If χ ∈ C∞c (Rn) is equal to 1 in a neighbourhood of the origin then

(L2.26) u ∈ ImS (Rn, {0}) =⇒ (1− χ)u ∈ S(Rn).

Proof. The Fourier transform has the property that

(L2.27) F(zαDβ
z u) = (−Dζ)α(ζβF(u))

where Dzk = 1
i ∂zk takes care of the factors of i. Recalling (L2.9) for the symbol

spaces (and of course (L2.20)) we see that

(L2.28) zαDβ
z : ImS (Rn, {0}) −→ I

m+|β|−|α|
S (Rn, {0}),

just the opposite of the symbols spaces, so that differentiation raises the order but
multiplication by a monomial lowers the order by the degree. Combining this with
(L2.24) we conclude that

(L2.29) u ∈ ImS (Rn, {0}) =⇒ zαDβ
z u ∈ C00(Rn) if |α| > m+ |β|+ 3n

4
.

So, adding a large number of terms we see that
(L2.30)

|z|2Nu ∈ Cp0 (Rn) is bounded with its first p derivatives if 2N > m+ p+
3n
4
.

Now, multiplying by the cutoff (1−χ) the same is true of (1−χ)u, However, |x|2N
then does not vanish on the support, so we conclude that

(L2.31) |Dβ
z ((1− χ)u) | ≤ CN,p(1 + |z|)−2N , 2N > m+ p+

3n
4
, |β| ≤ p.

Sincem is fixed, we can simply take N very large and hence conclude that (1−χ)u ∈
S(Rn) which was the claim. �

This is the reason for the suffix S in the definition (L2.20); these distributions
are rapidly decaying at infinity with all derivatives, it is just that they may be
singular in a very specific way at the origin.

Next time I will talk more about invariance, showing that for a vector space
there is an invariant version of the Fourier transform giving an isomorphism

(L2.32) F : S(W ) −→ S(W ′; ΩW ′)
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onto the Schwartz space of densities. In any case it is pretty clear that Im(Rn, {0})
is invariant under the action of GL(n,R) since

(L2.33) F(G∗u) = ((G−1)t)∗Fu · |detG|−1, G ∈ GL(n,R).

We will eventually need more invariance than this, namely that the nature of the
singularity at the origin is the same in any coordinates based at the origin.

2+. Addenda to Lecture 2

2+.1. Borel’s lemma. Let me go a little further with the proof of Borel’s
lemma. As noted above, the series (L2.17) converges uniformly, with all derivatives,
on compact subsets of in |x| > 0 if we simply require εk → 0. The estimates
(L2.18) can be extended to the derivatives. Namely for any j ≥ k (only to avoid
complications with indices)

(2+.34) Dj
x

(
ckx

k

k!
χ(
x

εk
)
)

=
j∑
p=0

(
j

p

)
ckx

k−j+p

(k − j + p)!
ε−pk χ(p)(

x

εk
) =⇒

|Dj
x

(
ckx

k

k!
χ(
x

εk
)
)
| ≤ Ck,jεk−jk

where Ck,j is a constant that does not depend on εk. It follows that if we choose

(2+.35) εk < 2−k/(1 + Ck,j) ∀ k > j, ∀ j

then the series of jth derivatives converges absolutely and uniformly for all x. The
important point here is that making (2+.35) hold for all j represents only a finite
number of conditions on each εk, namely there are conditions only for 0 ≤ j ≤ k.
Thus choosing each εk to be small enough the series (L2.17) converges uniformly,
will all its derivatives. The sum is therefore a smooth function and it satisfies
(L2.16).

A similar argument applies in more variables. If uj ∈ C∞c (Rn) is a sequence
with each element supported in a fixed compact set K then choosing εk > 0 small
enough ensures that

(2+.36) u(x, y) =
∑
k

uk(y)xk

k!
χ(
x

εk
) ∈ C∞c (Rn)

converges absolutely and uniformly with all its partial derivatives and satisfies

(2+.37) ∂kxu(0, y) = uk(y) ∀ k.

Indeed, we simply have to arrange that all the differentiated series, with both x and
y derivatives, converge absolutely and uniformly. The x derivatives behave exactly
as before and the y derivatives fall on the uk only. Thus we can arrange that the
series for ∂kx∂

α
y u converges by choosing

(2+.38) εk < εk,j,α ∀ k > j + |α|.

Here εk,j,α is the same constant as in (2+.35) except that the |ck|’s leading to the
bound are replaced by the supremums of the ∂αy uk. Again the important point is
that the convergence of each of the series is determined by what happens from
some (any) finite point onwards. Thus we only need impose the bound on εk for
k > j + |α| as in (2+.38). So again this is only a finite number of conditions on
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each εk but implies the uniform convergence of the series for all partial derivatives,
so (2+.37) follows.

The general case now follows by use of a partition of unity to reduce the problem
to a finite number applications of the construction above on Rn.

2+.2. Symbols with bounds. As remarked above, the ‘symbol estimates’
(L2.8) do not imply that a ∈ ρ−mC∞(Rn). To understand a little better what they
do mean, first observe that the case m = 0 is fundamental since

(2+.39) a satifies (L2.8) ⇐⇒ (1 + |ξ|2)−m/2a satifies (L2.8) with m = 0.

In fact the estimates with α 6= 0 in (L2.8) are redundant, since they follow from
those with α = 0. It is also possible to reorganize these estimates as follows.

Exercise 11. Show (probably using induction) that the estimates (L2.8) for
m = 0 are equivalent to the statements

(2+.40)

 N∏
j=1

Vkj lj

 a ∈ L∞(Rn), Vkl = ξk∂ξl

for all N and all integer sequences kj , lj (including implicitly the case of no factors
at all).

The operators Vkl are the linear vector fields on Rn and we know from § L1.2
that these lift to Rn to span, near infinity, all vector fields tangent to the boundary.

Definition 2. On any compact manifold with boundary X let Vb(X) denote
the Lie algebra of all those smooth vector fields on X which are tangent to the
boundary and define
(2+.41)
A(X) = {a ∈ C∞(intX) ∩ L∞(X);V1 · · ·VNa ∈ L∞(X), ∀ Vi ∈ Vb(X), ∀ N} .

Using the discussion of compactification last time, try your hand at a proof of

Proposition 6. The symbol estimates (L2.8) are equivalent to requiring a ∈
ρ−mA(Rn).

2+.3. Density and approximation. It is quite usual to replace the classical
spaces by the larger spaces (with weaker topology) introduced above

(2+.42) ρ−mC∞(W ) ⊂ ρ−mA(W ).

One reason for this is that it allows density arguments to be used.

Lemma 6. For any a ∈ ρ−mC∞(W ) there exists a sequence ak ∈ S(W ) such
that

(2+.43)
ak is bounded in ρ−mA(W ) and

ak −→ a in the topology of ρ−m
′
A(W ) ∀ m′ > m.

Proof. In fact we can take the sequence to be in C∞c (W ) ⊂ S(W ). Namely, if
ρ ∈ C∞(W ) is a defining function for ‘infinity’ and φ ∈ C∞c (0,∞) has ρ(x) = 1 in
x > 1 then

(2+.44) ak = φ(kρ)a ∈ C∞c (W )

has the desired properties. Indeed the result is equivalent to the special case m = 0
applied to ρma. Thus we may assume that a ∈ C∞(W ) in which case it follows
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directly from the definition, (2+.44), that ak is bounded in L∞(W ) and that for
any ε > 0, ρεak −→ ρεa in L∞(W ). These are the first estimates corresponding to
(2+.43), which is the same statement after applying any number of smooth vector
fields Vi tangent to the boundary of W. Thus it is enough to check that for such
vector fields and any ε > 0,
(2+.45)

V1 . . . VNak is bounded in L∞(W ) and ρεV1 . . . VNak −→ ρεa in L∞(W ).

This in turn follows by observing the boundedness of all the terms arising from
differentiating the cut-off φ(kρ) and the fact that they are supported arbitrarily
close to the boundary (so when multiplied by ρε each of them tends to zero). �

Note that you cannot do much better than this, namely S(W ) is certainly not
dense in ρ−mC∞(W ) in our ‘classical symbol topology’ (just the topology of C∞(W )
on ρma) – in fact it is a closed subspace!

2+.4. Asymptotic summation. If one wishes to use these larger symbol
spaces, ρ−mA(W ) (which by the way would normally be denoted Sm1,0(W ), with
the 1, 0 suffix being a special case of a more general ρ, δ notation) then one needs
to check various properties of it. Essentially by definition ξα∂βξ maps ρ−mA(Rn)
into ρ−(m+|α|−|β|) with |α| = α1 + · · · + αn. Slightly more serious is the analogue
of Borel’s lemma, which is

Proposition 7. [Asymptotic summability]. If aj ∈ ρ−mjA(W ) is a sequence
with mj → −∞ then there exists a ∈ ρ−MA(W ) where M = maxjmj such that

(2+.46) a−
∑
j≤N

∈ ρ−M(N)A(W ), M(N) = max
j>N

mj , ∀ N.

Sketch only. The same method as for Borel’s lemma, based on (2+.36),
works. �

2+.5. Homogeneity and conormality. It is natural to ask exactly what
these conormal distributions, both ‘classical’ and corresponding to symbols with
bounds, are like. In the classical case it is possible to see quite explicitly the local
behaviour of the singularity at the origin.

Lemma 7. If a ∈ ρ−m(Rn) with m /∈ Z then there exists a sequence of functions
uk ∈ C∞(Sn−1), k ∈ N0, such that the inverse Fourier transform
(2+.47)

u(x) = (2π)−n
∫

Rn
eix·ξa(ξ)dξ ∈ S ′(Rn) satisfies

u−
∑

0≤k≤N

|x|−m−n+kuk(
x

|x|
) = UN

∣∣
x6=0

, UN ∈ CN−n−[m](Rn), N > n+ [m]

where [m] is the integral part of m.

In fact the coefficients uk in the expansion (2+.47) are completely determined
by a (remember that m is not an integer here) and conversely they completely
determine the singularity of a in the sense that two classical symbols a and a′

giving the same expansions differ by an element of S(Rn). There is in fact no
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mystery about the uk, they can be computed by formally substituting the Taylor
series expansion of a at infinity, so

(2+.48) a−
∑

0≤k<N

|ξ|m−kak(
ξ

|ξ|
)| ≤ C|ξ|m−N in |ξ| > 1 =⇒

uk(µ) = (2π)−nγm−k
∫

Sn−1
eiµ·ωak(ω)dω, µ ∈ Sn−1

for certain constants γm−k which I leave you to evaluate.
In the case of integral m the result is almost the same, but a little more compli-

cated. The expansion of a, in (2+.48) is always the same. However the expansion
of u depends a little on how big the integer m is. If m ≤ −n, so m = −n − p for
some non-negative integer p, then we need to replace (2+.47) by

(2+.49) u− pN (x) log |x| −
∑

0≤k≤N

|x|−m−n+kv−m−n+k(
x

|x|
) = UN

∣∣
x6=0

,

UN ∈ CN−n−[m](Rn), N > n+ [m]

where pN is a fixed formal power series starting with terms of homogeneity at least
−m− n in x truncated at level N,

(2+.50) pN (x) =
∑

−m−n≤|α|<N

pαx
α

where the pα are constants independent of N, and the uk are smooth functions on
the sphere which satisfy the constraints

(2+.51)
∫

Sn−1
v−q(ω)ωαdω = 0, |α| ≤ q.

All such functions occur in, and are determined by, these expansions and again
the singularity of u is determined by then expansion. The normalization (2+.51)
means that there are no polynomials in the expansion in (2+.49), which is naturel
since these do not correspond to singularities at the origin for u. The corresponding
singular terms occur with the logarithmic coefficient.

When −n < m < 0 the expansion is the same, except there are additional terms
of homogeneity between 0 and −m− n which are subject to no constraints. When
m is a non-negative integer the are terms which do not appear in the expansion
(which is in x 6= 0 where u is smooth) but correspond to the delta functions at
the origin. Thus, the expansion of a has a unique polynomial part with inverse
Fourier transform a sum of derivatives of the delta function. So one can consider
a ∈ ρ−mC∞(Rn) without polynomial part. Then there is an expansion just as
in (2+.49) except that the terms now of non-negative integral homogeneity must
satisfy the same integral constraints as in (2+.51).

One way to make the relationship between homogeneity and conormality ex-
plicit is to check

Lemma 8. Any distribution on Rn which is smooth outside the origin and
‘homogeneous modulo C∞’ of some degree, i.e.

(2+.52) u(tx) = thu(x) + F (t, x), t > 0, x ∈ Rn with F ∈ C∞((0,∞)× Rn)

is equal to a (classical) conormal distribution in a neighbourhood of 0. Conversely,
finite sums ψkuk + ψ with the uk of this form and ’homogeneous’ of degree m − k
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with the ψk, ψ ∈ S(Rn) are dense in the space of classical conormal distributions
of order −m+ 3n

4 .

2+.6. Blow up of the origin. The operation of ‘blowing up a submanifold’
is in many senses dual to the process of compactification discussed last time. For
one thing it is related to maps into the space in question, rather than maps from
the space into a compactification. Thus for a vector space W, the space ‘[W, {0}]’,
which is ‘W blown up at the origin’ is associated to a map, namely polar coordinates

(2+.53) β : [0,∞)× Sn−1 3 (r, ω) 7−→ rω ∈ Rn.

Here we can think of the sphere as the usual ‘Euclidean sphere of radius 1’

(2+.54) Sn−1 = {z ∈ Rn; |z| = 1}.

At any point of Sn−1 there are ‘projective coordinates’. Namely at each point there
can be at most one component zj with z2

j = 1 and any n − 1 components, not
including one with z2

j = 1, give local coordinates. This is just the implicit function
theorem since

(2+.55)
∑
j

zjdzj = 0

is the only constraint on the differentials, so any n − 1 of them are independent
unless they include a dzj with zi = 0 for all i 6= j (which means z2

j = 1 and dzj = 0
on Sn−1).

Thus the smoothness of (2+.53) follows from the smoothness of the compo-
nents, as functions on Sn−1. It is surjective, since 0 ∈ Rn is the image of {0}×Sn−1

and any other point 0 6= z ∈ Rn is the image of (|z|, z/|z|). In fact this shows that β
is a diffeomorphism of (0,∞)× Sn−1 onto Rn \ {0}, with the inverse being r = |z|,
ω = z/|z|.

Now, the standard action of the orthogonal group on the sphere, which is
induced from the action on Rn, commutes with β

β(r,Oω) = Oβ(r, ω) ∀ r ∈ [0,∞), ω ∈ Sn−1.

Just as for the map defining radial compactification, it is important to know that
a general element of GL(n,R) lifts under β.

Lemma 9. There is a smooth action of GL(n,R) on [0,∞) × Sn−1 which is
intertwined with the standard action on Rn by β :

(2+.56) [0,∞)× Sn−1

Ã

��

β // Rn

A

��
[0,∞)× Sn−1

β
// Rn.

Proof. See the discussion in the case of radial compactification. The Lie
algebra of GL(N,R) consists of the linear vector fields zi∂j . Each of these is ho-
mogeneous of degree 0 under the homotheity z 7−→ sz, s ∈ (0,∞). Since β is a
diffeomorphism, there is a unique smooth vector field Vij on (0,∞) × Sn−1 such
that β∗(Vij) = zi∂j at each point. Thus Vij = a(r, ω)∂r + V ′ij(r) where V ′ij(r) is
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a smooth vector field on the sphere, depending smoothly on r ∈ (0, r). By the
homogeneity a(r, ω) = ra(1, ω) and V ′ij is independent of r. Thus

(2+.57) Vij = a(ω)r∂r + V ′ij(ω)

extends to be smooth down to r = 0 (and tangent to r = 0). As in the case
of compactification this shows that any element A ∈ GL(n,R) lifts to a smooth
diffeomorphism Ã of [0,∞)× Sn−1 and in fact gives a smooth action

(2+.58) GL(n,R)× [0,∞)× Sn−1 −→ [0,∞)× Sn−1.

�

Continuing to follow the discussion of the radial compactification, this shows
that we may define [W, {0}] as a manifold associated to the principal GL(n,R)-
space, P (W ), of bases of W. Thus GL(n,R) acts on P (W ) by replacing a basis
by the corresponding linear combination of its elements and GL(W ) acts on it by
acting on the elements of the basis. From this abstract point of view we may set

(2+.59) [W, {0}] =
(
P (W )× [0,∞)× Sn−1

)
/GL(n,R).

Exercise 12. Show that [W, {0}] is a manifold with boundary, diffeomorphic
to [0,∞)× Sn−1, that GL(W ) acts smoothly on it and that there is a smooth map
(the blow-down map)

(2+.60) β : [W, {0}] −→W

which intertwines the actions, maps the boundary to {0} and is a diffeomorphism
of the interior to W \ {0}.

As with conormal distributions, I will show later how to extend this notion to
blowing up an embedded submanifold of a given manifold, by passing through the
special case of blowing up the zero section of a vector bundle. It is also convenient
to have a concrete realization of the blown-up space.

Exercise 13. Define the sphere of W to be

(2+.61) SW = (W \ {0})/R+

where R+ acts by multiplication. Show that SW is a smooth compact manifold
diffeomorphic to Sn−1, n = dimW, that there is is a natural diffeomorphism SW −→
∂[W, {0}] and a unique C∞ structure on the disjoint union so that

(2+.62) [W, {0}] = (W \ {0}) t SW.





CHAPTER 3

Conormality at the zero section

Lecture 3: 15 September, 2005

Next we turn to the case of a real vector bundle W −→ Y over a compact
manifold Y and define the space of conormal distributions on the total space W of
the vector bundle with respect to (i.e. only singular at) the zero section 0W . The
latter is a compact embedded submanifold canonically isomorphic to Y.

Before I do this, I want to point out some further properties in the case of the
conormal distributions with respect to the origin of a vector space. In particular
there is another important invariance property, the proof of which I want to go
through. I will also indicate in a simple example how these spaces can be used.

First, these distibutions can be integrated

(L3.1)
∫

Rn
: ImS (Rn, {0}) −→ C.

The integral is well-defined on both distributions of compact support and on S(Rn)
and we know, using (L2.26), that any u ∈ ImS (Rn, {0}) can be written as a sum
u = χu + (1 − χ)u of one term of each type. The value of integral is independent
of the particular splitting since the definitions agree on the intersection, namely
C∞c (Rn). In terms of the Fourier transform a = F(u) the integral can be written
explictly:-

(L3.2)
∫

Rn
u(x)dx = a(0).

As we shall see this rather trivial observation is decidedly useful later.
For a general vector space we will only get a well-defined map analogous to

(L3.1) if we have chosen a volume form, which could be the Lebesgue form for
some identification with Rn. I will discuss densities, a better way to do this, later.

So, returning to the case of Rn recall that we have already shown that

(L3.3) zαDβ
z : ImS (Rn, {0}) −→ I

m+|β|−|α|
S (Rn, {0}).

This follows directly from the properties of the Fourier transform. It is also clear
that convolution behaves well

(L3.4) ImS (Rn, {0}) ∗ Im
′

S (Rn, {0}) ⊂ Im+m′+n
4

S (Rn, {0}).
Indeed, the Fourier transform of the convolution is the product of the Fourier
transforms so
(L3.5)
û ∗ v = ûv̂ ∈ ρ−m−m

′−n
2 C∞(Rn) if û ∈ ρ−m−n

4 C∞(Rn) and v̂ ∈ ρ−m
′−n

4 C∞(Rn).
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It is also the case that ImS (Rn, {0}) is a S(Rn)-module, that is multiplication
by a Schwartz function maps this space into itself

(L3.6) S(Rn) · ImS (Rn, {0}) ⊂ ImS (Rn, {0}).

Perhaps the obvious way to approach this is the opposite to (L3.5). That is, take
the Fourier tranform and then show that

(L3.7) S(Rn) ∗ ρ−mC∞(Rn) ⊂ ρ−mC∞(Rn).

This is not so hard, and may well be informative. However I will prove it in a
slightly different way, using an asymptotic completeness argument.

So we wish to show that if φ ∈ S(Rn) and u ∈ ImS (Rn, {0}) then φu ∈
ImS (Rn, {0}). We can simplify this a little by choosing a cutoff function χ ∈ C∞c (Rn)
which is identically equal to 1 near the origin and splitting u = χu+(1−χ)u into a
compactly supported term and a term in S(Rn); then we can ignore the latter since
it is in an algebra contained in ImS (Rn, {0}). Now, we can similarly split φ into a
part supported near, and a part supported away from, the origin. If the latter is
supported in the complement of the support of u (now compact) then the product
is zero. Thus we are reduced to the special case

(L3.8) C∞c (Rn) · Imc (Rn, {0}) ⊂ Imc (Rn, {0})

where the suffix ‘c’ indicates that supports are compact, as opposed to the Schwartz
property at infinity.

Now, let us replace φ by its Taylor series expansion, to high order and with
remainder, about the origin

(L3.9) φ(z) =
∑
|α|≤N

cαz
α +

∑
|α|=N+1

φα(z)zα, φα(z) ∈ C∞(Rn).

If you recall, this is proved by radial integration. Now, multiplying φ(z) by another
cutoff χ ∈ C∞c (Rn) which is equal to 1 in a neighbourhood of the support of u (so
χu = u) we find that

(L3.10) φ(z)u =
∑
|α|≤N

cαz
αu+

∑
|α|=N+1

φ(N)
α (z)zαu, φ(N)

α ∈ C∞c (Rn).

The advantage of doing this is that we know about all the terms in the first sum,
namely zαu ∈ Im−|α|S (Rn, {0}). Similarly the remainder terms are of the form

(L3.11)
∑

|α|=N+1

φ(N)
α (z)u(N)

α , u(N)
α ∈ Im−N−1

c (Rn, 0).

On the other hand from the estimates I did last time, we know that if N > m+n+p
then

(L3.12) u(N)
α ∈ Cpc (Rn), ∀ |α| = N + 1.

After multiplying by a smooth function of compact support this remains true. Note
that in the first sum in (L3.10) the term of order α is fixed once N ≥ |α|. Thus, by
asymptotic completeness we can find one element v ∈ ImS (Rn, {0}) such that

(L3.13) v −
∑
|α|≤N

cαz
αu ∈ Im−N−1

S (Rn, {0}) ∀ N.
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Combining this with (L3.10) and (L3.11), with the same estimate on the regularity
at the origin for the difference in (L3.13) we conclude that

(L3.14) φu− v ∈ S(Rn) + Cpc (Rn) ∀ p

and hence φu− v ∈ S(Rn) which proves (L3.8) and hence (L3.6).
Let me make an immediate application of this to a ‘baby’ problem which is

intended to illustrate how we can use these conormal distributions. Observe that
the constants are in the space C∞(Rn) so

(L3.15) δ ∈ I−
n
4

S (Rn, {0})

just to make you think of an example.
Now, combining (L3.3) and (L3.6) we see that if P is a differential operator

with Schwartz coefficients

(L3.16) P =
∑
|α|≤k

pα(z)Dα
z , pα(z) ∈ S(Rn)

then

(L3.17) P : ImS (Rn, {0}) −→ Im+k
S (Rn, {0}).

The project is to try to partially invert this map by showing that

(L3.18) Given f ∈ ImS (Rn, {0}) ∃ u ∈ Im−kS (Rn, {0})
s.t. Pu = f + g, g ∈ S(Rn) provided P is elliptic at 0

Of course I have not said what the condition of ellipticity means, but we will find
out in the proof. We only ‘partially’ solve the problem in the sense that there is a
Schwartz error, but at least we can remove the singularity.

As in the discussion above, we do not get to our goal immediately, but we
proceed by steps. Suppose u0 ∈ Im−k(Rn, {0}) then we know from (L3.17) that
Pu ∈ Im(Rn, {0}) but we can get more information about the ‘leading singularity’.
Namely, the part of the sum in (L3.16) over |α| < k maps u into Im−1(Rn, {0}).
Similarly, any part of the coefficients which vanishes at the origin has a factor of
zj in it and so, even after k differentiations, this part maps into Im−1(Rn, {0}) as
well. Thus

(L3.19) Pu0 =
∑
|α|=k

pα(0)Dα
z u0 + f ′, f ′ ∈ Im−1(Rn, {0}).

Taking the Fourier transform of this ‘leading term’ we get

(L3.20) pk(0, ξ)û0(ξ) ∈ ρ−m−k+
n
4 C∞(Rn), pk(0, ξ) =

∑
|α|=k

paα(0)ξα.

So we want to solve

(L3.21) pk(0, ξ)û0(ξ) = f̂(ξ)

just as though we were solving a constant coefficient operator. Of course in general
this does not have a smooth solution because of the zeros of pk(0, ξ). We say that

(L3.22) P is elliptic at 0 if pk(0, ξ) 6= 0 in ξ ∈ Rn \ {0}.
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Even assuming this we cannot quite solve (L3.21) since (unless we are in the com-
pletely trivial case where k = 0) pk(0, ξ) does vanish at the origin. However we can
choose

(L3.23) û0(ξ) =
(1− χ(ξ))f̂(ξ)

pk(0, ξ)
∈ ρ−m−k+n

4 C∞(Rn).

where χ ∈ C∞c (Rn) is equal to 1 near zero. Since pk is homogeneous of degree k
(and non-vanishing) (1−χ)/pk ∈ ρkC∞(Rn) from which (L3.23) follows. Moreover
then we get

(L3.24) pk(0, ξ)û0 = f̂ + g, g ∈ S(Rn).

Inserting this in (L3.19) we have made progress, namely we have shown that

(L3.25) Given f ∈ Im(Rn, {0}) ∃ u0 ∈ Im−k(Rn, {0}) s.t.

Pu = f + f ′′, f ′′ ∈ Im−1(Rn, {0})

provided P satisfies the ellipticity condition (L3.22).
Now we can proceed by induction. Namely the order m in (L3.25) is arbitrary

and the inductive statement is that we have constructed

(L3.26) uj ∈ Im−k−j(Rn, {0}), j = 0, . . . , l

s.t. P (
l∑

j=0

uj) = f − fl+1 where fl+1 ∈ Im−l−1(Rn, {0}).

Then we use (L3.25) with m replaced by m − l − 1 and f replaced by fl+1 to
construct ul+1 and then define fl+2 = fl+1−Pul+1 ∈ Im−l−2

S (Rn, {0}). This proves
the inductive statement for all l.

Finally we use asymtotic completeness, which shows that there exists one fixed
u ∈ Im−kS (Rn, {0}) such that

(L3.27) u−
l∑

j=0

uj ∈ Im−k−l−1
S (Rn, {0}) ∀ l

and from this (L3.18) follows.
This argument is a model for quite a few arguments below.
Now, what I really want to do today is to define conormal distributions on a

vector bundle. What we need here is the invariance under linear transformations,
which we have already checked. However we also want to be able to write things
in an invariant form and to do so it is convenient to use the language of densities.

Recall that given a vector space over the reals there are many ‘associated’
vector spaces. The dual W ′, tensor powers and in particular exterior powers –
the totally antisymmetric parts of the tensor powers. If dimW = n then the
maximal (non-trivial) exterior power is ΛnW. Its elements are n-multilinear and
totally antisymmetric forms

µ : (W ′)×n = W ′ ×W ′ × . . .W ′ −→ R

where multilinearity is linearity in each of the n variables separately and antisym-
metry reduces to oddness under the exchange of any neighbouring pair of variables.
This is a 1-dimensional vector space and by standard linear algebra its dual is
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canonically isomorphic to Λn(W ′). That is, µ can be identified (canonically so we
use the same name) with a linear map

(L3.28) µ : Λn(W ′) −→ R.

The fundamental property of these forms is that on Rn, for the action of GL(n,R),

(L3.29) (G∗µ)(w1, . . . , wn) = µ(Gw1, . . . , Gwn) = detG · µ(w1, . . . , wn)

in terms of (3). Of course it has to be a multiple since the space is 1-dimensional.
Now, in place of (L3.28) we can consider more general maps

(L3.30)
ΩtW = {ν : Λn(W ′) \ {0} −→ R, ν(cv) = |c|tν(v) ∀ c ∈ R \ {0}, v ∈ Λn(W ′)}.

Instead of being linear these are absolutely homogeneous of degree t. If t = 0 we just
have constants but in all cases, for each t ∈ R, these are linear spaces of dimension
1. In the special case t = 1 we just use the notation ΩW. Observe that if µ ∈ ΛnW
then |µ| ∈ ΩW and any element is equal to ±|µ| for some such µ. Thus the only
real difference between ΛnW and ΩW is to do with orientation. Anyway, it follows
from this observation that in the case of Rn,

(L3.31) G∗ν = |detG|ν
in terms of the same action of GL(n,R) on ΛnRn. This is the reason densities are
important, because they transform in such a way that integration becomes invariant
(for the moment under linear transformations).

Let us apply this discussion directly to the Fourier transform. For Schwartz
functions on Rn

(L3.32) Ĝ∗u(ζ) =
∫
e−iz·ζu(Gz)dz, G ∈ GL(n,R).

Changing the variable of integration from z to y = Gz we ‘know’ (from integration
theory) that

(L3.33) Ĝ∗u(ζ) =
∫
e−iy·(G

−1)tζu(y)dy|detG|−1

where I have used the definition of the transpose to write G−1y · ζ = y · (G−1)tζ.
Thus

(L3.34) Ĝ∗u(ζ) = |detG|−1.((G−1)t)∗û

The action via the transpose of the inverse is exactly what we expect on the dual
space but there is an extra factor of the determinant, admittedly just a constant
but annoying nevertheless! We can remove this and get complete invariance by
redefining the Fourier transform as a density

(L3.35) Fu(ζ) = û(ζ)|dζ| ∈ S(Rn; Ω).

Now, from the discussion above this transforms in precisely the correct way so that
we have a map which is independent of the choice of linear coordiantes

(L3.36) F : S(W ) −→ S(W ′; ΩW ′)

where the image space is just the space of Schwartz functions valued in ΩW ′ (which
is just a 1-dimensional vector space.)

As a consequence of this we can now identify, independent of the choice of basis

(L3.37) Im(W,OW ) = F−1
(
ρ−m−

n
4 C∞(W ′; ΩW ′)

)
.
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Then

(L3.38) Im−1(W,OW ) //Im(W,OW )
σm //C∞(SW ′;N−m−n

4
⊗ ΩW ′)

is a short exact sequence.
One advantage of this definition, or the coordinate version for Rn, is that we

can immediately see what it means for such a distribution to ‘depend smoothly on
parameters.’ Said another way, these spaces come with topologies, since the Fourier
transform is used as an isomorphism, we can use the topology (uniform convergence
of all derivatives on compact sets) on C∞(W ′) to give a toplogy on

ρ−mC∞(W ′; ΩW ′) = C∞(W ′;N−m ⊗ ΩW ′)

for any m and hence we have a topology on Im(W, 0W ).
So, if Y is a compact manifold, what is C∞(Y ; Im(W,OW )) for a vector space

W? It is a space of distributions on Y ×W which is identified by Fourier transform
with C∞(Y ; ρ−m−

n
4 C∞(W ′; ΩW ′)). Again the definition of the topology just given

means that we remove the weight factor and take a basis of the vector space and
so identify this with C∞(Y ; C∞(Sn,1)). Now, it is a standard analytic fact that (for
any manifolds)

(L3.39) C∞(Y ; C∞(Sn,1)) = C∞(Y × Sn,1) = C∞(Y × Sn)
∣∣
Y×Sn,1

is just the space of smooth functions on the product manifold, itself a compact
manifold with boundary. Or, backing up a little with the identifications it is the
same thing as

(L3.40) ρ−m−
n
4 C∞(Y ×W ′; ΩW ′).

For reasons that might seem trivial compared to the resulting annoyance, we
identify this space, as a space of distributions on Y ×W with

(L3.41) ImS (Y ×W,Y × {0}) = F−1
(
ρ−m+ d

4−
n
4 C∞(Y ×W ′; ΩW ′)

)
,

d = dimY, n = dimW.

Here F is to be interpreted as in (L3.36).
Now, suppose that rather than a product with a vector space, W is a smooth

real vector bundle over the compact manifold Y. We want to define ImS (W,OW ) so
that it reduces to (L3.41) in case the bundle is trivial.

Let me start with the radial compactification of the real vector bundle W. I
will, for just this once, take the ‘high road’ of associated bundles, but then give a
transition-map description.

A real vector bundle over Y is a manifold W with a smooth surjective map
π : W −→ Y which is a submersion (has surjective differential at each point),
is such that, for each y ∈ Y, π−1(y) = Wy has a linear structure (over R) and
which is also locally trivial in the sense that Y has a covering by open sets U such
that for each U ∈ U , there is a diffeomorphism TU : π−1(U) −→ U × Rn giving a
commutative diagramme with the projections

(L3.42) π−1(U)
FU //

π
##F

FF
FF

FF
FF

U × Rn

πU
{{xxxxxxxxx

U
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and which is linear on the fibres.
From a vector bundle we can construct a principal bundle. Namely for each

y ∈ Y set

(L3.43) Py = {T : Wy −→ Rn a linear isomorphism.}
This is a principal GL(n,R)-space since if T ∈ Py then GT ∈ Py for each G ∈
GL(n,R) and this action of GL(n,R) is simple and transitive. Putting these spaces
together set

(L3.44) P =
⋃
y∈Y Py

πP

��
Y.

The local trivializations (L3.42) of W provide sections over the sets U ∈ U of P
giving corresponding maps

(L3.45) π−1
P (U) //

π
""F

FF
FF

FF
FF

U ×GL(n,R)

πU
yysssssssssss

U

which fix a consistent C∞ structure on P.
The vector bundle W can be recovered from the principal bundle P as

(L3.46) W = P × Rn/GL(n,R), G(p, v) = (Gp,Gv).

In this way we can easily define the radial compactification of W by taking the
extension of the GL(n,R) action to Sn,1 and so setting

(L3.47) W = P × Sn,1/GL(n,R), G(p, q) = (Gp,Gq), W ↪→ W

embeds W as the interior of a compact manifold with boundary. Thus we have
defined the corresponding ‘symbol spaces’

(L3.48) ρ−mC∞(W ; Ωfib), Ωfib = ΩW.

where ρ is as before a defining function for the boundary (which always exists
globally).

Thinking in terms of transition maps for local trivializations suppose that Ui, Uj
are elements of U (and a finite number of its elements must cover by the compactness
of Y ) the two maps (L3.42) combine over Uij = Ui∩Uj , assuming this is non-empty,
to give a smooth map

(L3.49) hij : Uij −→ GL(n,R), hij(y) = FUi ◦ F−1
Uj
.

Then the vector bundle can be thought of as the union of the Ui × Rn with these
identifications over Uij . The fact that the spaces (L3.48) are well defined reduces
to the GL(n,R)-invariance of the radial compactification, which of course we used
in the ‘high road’ definition above.

Now we can extend the definition (L3.41) from the product case to the general
bundle case by setting

(L3.50) ImS (W, 0W ) = F−1
fib

(
ρ−m+ d

4−
n
4 C∞(W ′; Ωfib)

)
,

d = dimY, n = dimW.
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I am being a little casual about the fibrewise Fourier transform but we can see that
it all makes sense by the local trivialization approach. In fact the global behaviour
in the base is not a big issue. I have done it this way so that the bookkeeping is
fairly straightforward.

What bookkeeping? Well, the important property here, that we used repeatedly
in the construction at the beginning of the lecture, is the short exact sequence which
became (L3.38) in the invariant notation for a vector space. Now we get

(L3.51) Im−1
S (W,OW ) //ImS (W,OW )

σm //C∞(SW ′;N−m′ ⊗ ΩW ′) ,

m′ = m− d

4
+
n

4
, d = dimY, n = dimWy

is exact.

Exercise 14. Check that you do understand what (L3.51) means and how to
prove it. In a nutshell, the space SW ′ is the boundary of the radial compactifi-
cation of W ′ and the surjectivity of the second map corresponds to the fact that
every element of ρ−m+ d

4−
n
4 C∞(Y × W ′; Ωfib) corresponds to a (unique) conormal

distribution by (L3.50). The injectivity on the right is almost by definition and
the exactness in the middle is precisely the fact that an element of C∞(W ′) which
vanishes on SW ′ is an element of ρC∞(W ′) and conversely.

Finally let me review what we need for the next step, to define Im(X,Y ) where
Y is a compact embedded submanifold of a compact manifold X using the Collar
Neighbourhood theorem. From the definition above it is immediate, or rather built
into the definition that if g : W −→W is a bundle isomorphism then

(L3.52) g∗ : Im(W, 0W ) −→ Im(W, 0W ).

This is true whether g projects to the identity on the base (the usual meaning of a
bundle isomorphism) or projects to a non-trivial diffeomorphism of the base.

The point is that this is by no means strong enough for what we want. Indeed
we will need to consider a diffeomorphism between neighbourhoods of the zero
section, N and N ′, of W but which need not preserve the fibres and even if it
does, need not be linear. Of course it will be assumed to map the zero section into
itself, otherwise (L3.52) could not possibly hold. Moreover, because of the known
invariance under bundle isomorphisms we can assume a bit more. First we shall
require that

(L3.53) g : 0W −→ 0W is the identity.

Now, this means that at each point y ∈ 0W (which is just Y ) the tangent space to
0W is mapped into itself as the identity too. The quotient

(L3.54) TyW/Ty0W = TyWy = Wy

is naturally identified with the fibre of W through the point. So it makes sense to
add a second condition to (L3.53) on the differential (i.e. the Jacobian) of g at each
point of 0W :

(L3.55) g∗ : Wy −→Wy is the identity.

Lemma 10. Any diffeomorphism of a neighbourhood of 0W onto its image in
W which maps 0W onto itself pointwise can be factorized as g ·h where h is a bundle
isomorphism and g satisfies (L3.53) and (L3.55).
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So, we want to show that (L3.52) holds for g as in (L3.53), (L3.55). Of course
it only makes sense to apply g∗ to functions or distributions with support in the
image set N ′ but this is no problem since outside any given neighbourhood of 0W
we already know that our conormal distributions are smooth.

Let me check what (L3.53) and (L3.55) mean in local coordinates. If we take
a local trivialization of W over some open set U ⊂ Y and use coordinates y in U
and fibre coordinates z in WU = U × Rn then

(L3.56) g(y, z) = (y +
∑
j

zjmj(y, z), z +
∑
ij

zizjaij(y, z))

where the mj and aij are just some smooth functions. This follows by writing
g(y, z) = (Y (y, z), Z(y, z)). The fact that 0W = {z = 0} is mapped into itself
means Z(y, 0) = 0, the fact that this map on Y is the identity means Y (y, 0) = y
which gives the first part of (L3.56) and then the part of the Jacobian in (L3.55)
is just ∂Z/∂z(y, 0) = Id which gives the second part of (L3.56).

Now, to show (L3.52) we will use ‘Moser’s method’. This is based first on the
fact that the map in (L3.56) is connected to the identity by a curve of diffeomor-
phisms (possibly in a smaller neighbourhood of the zero section) of the same type.
Locally (and that is all that really matters) this is clear since we can consider

(L3.57) gs(y, z) = (y + s
∑
j

zjmj(y, z), z + s
∑
ij

zizjaij(y, z)).

So we want to show that g∗1u = v ∈ ImS (W, 0W ) if u ∈ ImS (W, 0W ) (and has support
sufficiently close to 0W ). Now, the clever idea of Moser (not in this context) is to
try to construct a smooth curve

(L3.58) us ∈ C∞([0, 1]s; ImS (W, 0W )) s.t. u1 = u and
d

ds
g∗sus = 0.

If we could do this (and actually we can) then we conclude that g∗sus is constant,
so

(L3.59) g∗u = g∗1u1 = g∗0u0 = u0 ∈ ImS (W, 0W ).

So, why might we expect to be able to do this? Well, the ‘trick’ here is the
identity

(L3.60)
d

ds
g∗sus = g∗s (

du

ds
+ Vsus)

where Vs is a vector field determined by gs. Once we work out what this vector field
is, we need to choose us to satify, in addition to (L3.58),

(L3.61)
du

ds
+ Vsus = 0.

The remarkable thing is that gs has disappeared, we only need to consider its
‘infinitesmal generator’ Vs.

3+. Addenda to Lecture 3

3+.1. Densities. If U is any finite dimensional (complex) vector space we set

(3+.62) ImS (W, {0};U) = ImS (W, {0})⊗C U

and identify it as the ‘space of conormal distributions with values in U.’ (Of course
you can do this with all distributions, etc).
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Exercise 15. Check that the Fourier transform gives an isomorphism

(3+.63) cF : ImS (W, {0};U) −→ ρ−m
′
C∞(W ′;U ⊗ ΩW ′), m′ = m+

n

4
.

Show further that there is a canonical isomorphism ΩU ′ = (ΩU)′ for any vector
space, and hence that ΩU ′⊗ΩU ≡ C (or R if U is real) is canonically trivial. Hence
(or directly) show that the integration map (L3.1) gives a linearly-invariant map

(3+.64)
∫

Rn
: ImS (W, {0}; ΩW ) −→ C

(as it should).

3+.2. Properties of conormal distributions.

3+.3. The Thom class.

3+.4. Submanifolds and restriction.



CHAPTER 4

Conormality at a submanifold

Lecture 4: 20 September, 2005

Last time I defined the space of conormal distributions at the zero section of
a real vector bundle and checked the basic properties. These include invariance
under bundle transformations and diffeomorphism of the base. The next step is
to transfer the defintion to a general embedded submanifold. As noted at the end
of last lecture, to do this we need a more general invariance result. To make a
change of pace I will do this locally rather than globally. There is no particularly
compelling reason for this, I just felt it was time to make sure we could ‘see’ what
is happening.

Thus consider a trivial vector bundle over Rn, W = Rn × Rk. We have not
really defined the conormal distibutions with respect to Rn × {0} ‘globally’ on Rn,
although we could easily do so – and indeed I will need them later. Let me instead
consider the space of conormal distributions on Rn×Rk with compact support and
in fact supported in some bounded open set N ⊂ Rn × Rk which meets Rn × {0}
(so that we are not just looking at smooth functions). Since N is bounded we can
choose a large constant so that N ⊂ [−π, π]n × Rk and then we may think of it as
a subset of a trivial bundle over the torus

(L4.1) N ⊂ Tn × Rn, Tn = Rn/2πZn.
So, by definition the conormal distributions supported in N are just the fibre inverse
Fourier transforms of classical symbols, the elements of
(L4.2)

ImS (W,OW ) = F−1
fib (C∞(W ′; Ωfib(W ′)⊗N−m′)) , W = Tn ×Rn, m′ = m− n

4
+
k

4
,

to which we simply add the condition that

(L4.3) supp(u) ⊂ N.
The main invariance result I will prove is

Proposition 8. If F : N ′ −→ N is a diffeomorphism, between open subsets of
Rn × Rk both satisfying (L4.1), and which satisfies

(L4.4)

{
F (p) = p

F∗ = Id on N ′
p(Rn × {0})

∀ p ∈ N ′ ∩ (Rn × {0})

then

(L4.5) u ∈ ImS (W,OW ) and supp(u) b N =⇒ F ∗u ∈ ImS (W,OW ).
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Proof. As discussed last time, we will use Moser’s method which depends on
the construction of a 1-parameter family of such diffeomorphism.

Lemma 11. If F : N ′ −→ N is as in Proposition 8 then for some open N ′′ ⊂ N ′

with N ′′ ∩ (Rn × {0}) = N ′ ∩ (Rn × {0}) there is a smooth 1-parameter family of
maps Fs : N ′′ −→ Rn ×Rk, s ∈ [0, 1], which are diffeomorphisms onto their ranges
and satisfy F0 = Id, F1 = F

∣∣
N ′′ and (L4.4) for each t.

Proof. The assumptions on the diffeomorphism F imply that

(L4.6) F (x, z) = (x+
∑
zj

Gj(x, z), z +
∑
jk

zjzkHjk(x, z)), (x, z) ∈ N ′.

Indeed, the first restriction on the components realizes the condition F (x, 0) = (x, 0)
and the second correspond to the requirement that the Jacobian ∂z∂zF (x, 0) = Id .
Then we can simply set

(L4.7) Fs(x, z) = (X(s), Z(s)), Xi(s) = xi + s
∑
zj

Gij(x, z),

Zp(s) = zp + s
∑
jk

zjzkHpjk(x, z)), (x, z) ∈ N ′′ = N ′ ∩ |z| < ε

where choosing ε > 0 small enough ensures, by the inverse function theorem, that
all the maps are diffeomorphisms onto their images. �

Recall that for any smooth function (and hence by continuity also for distribu-
tions) the chain rule becomes

(L4.8)
d

ds
F ∗s vs = F ∗s (

d

ds
vs + V (s)vs)

for a smooth vector field Vs. Indeed the vector field is just

(L4.9)
dXi

ds
∂Xi +

dZp
ds

∂Zp

where the coefficients should be treated as functions of (X(s), Z(s)). It follows from
(L4.7) that

(L4.10) V (s) =
∑
k

ZkVk, Vk smooth and tangent to Z = 0,

which is to say the zero section.
To prove the proposition, consider u as in (L4.5). We will choose a curve of

distributions supported very close to N ′′ ∩ (Rn × {0}) and such that

(L4.11)
d

ds
u(s) + V (s)u(s) ∈ C∞, u(1) = u.

Recall that we have shown above that the action of any smooth vector field tan-
gent to the zero section leaves the order of a conormal distribution unchanged and
multiplying by any Zk lowers it. Thus

(L4.12) V (s) : {u ∈ ImS (W,OW ); supp(u) b Fs(N ′′)} −→ Im−1
S (W,OW ).

So in fact it is easy to solve (L4.11) iteratively. Just make a first choice of u0 = u
which is constant. This means that we have the initial step for the inductive
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hypothesis

(L4.13)
d

ds
u(N)(s) + V (s)u(N)(s) = fN+1(s) ∈ Im−N−1

S (W,OW ),

u(N)(s) = u0(s) + · · ·+ uN (s), uj(1) = 0, j > 1.

Supposing we have solved it to level N, setting

(L4.14) uN+1(s) =
∫ 1

s

fN+1(s′)ds′ =⇒ d

ds
uN+1(s) = −fN+1s+ fN+2

gives the inductive hypothesis at the next level. Taking an asymptotic sum

(L4.15) u(s) ∼
∑
j

uj(s) gives (L4.11).

Notice that I have not bothered talking about the supports here, but they can be
arranged to be arbitrarily close to the compact set supp(u)∩ (Rn×{0}) by making
additional smooth errors.

This completes the proof of Proposition 8 since d
dsF

∗
s u(s) is smooth in all

variables and hence

(L4.16) F ∗u = F ∗1 u(1) = F ∗0 u(0) + v = u(0) + v ∈ ImS (W,OW ) since v ∈ C∞c (N ′′).

�

We can easily apply this local result to obtain a more global one along the lines
that I mentioned last time.

Proposition 9. Let W be a real vector bundle over a compact manifold Y and
suppose that f : N −→ N ′ is a diffeomorphism between open neighbourhoods of the
zero section 0W with the properties (L3.53) and (L3.54) (so it fixes each point of
the zero section and has differential projecting to the identity on the normal space
to the zero section at each point) then

(L4.17) u ∈ ImS (W, 0W ) with supp(u) b N ′ =⇒ f∗u− u ∈ Im−1
S (W, 0W ).

and in particular

(L4.18) σm(f∗u) = σm(u) ∈ C∞(SW ′;N−m′ ⊗ ΩW ′), m′ = m− d

4
+
n

4
.

Proof. Each point of Y has a neighbourhood in Y over which W is trivial and
Proposition 8. Thus, taking a partition of unity φj of a neighbourhood of 0W = Y
in W with each element supported in such a set we may apply Proposition 8 to f
and φju on each set. Since u−

∑
j

(φju) is smooth and f∗(φju)− φju is conormal,

and of order m− 1, for each j we deduce the global form (L4.17).
The invariance of the symbol, (L4.18), follows immediately from (L4.17). �

This result in turn allows us to define the space Im(X,Y ) of conormal distri-
butions associated with (only singular at) an embedded closed submanifold of a
compact manifold. To do so we need an appropriate form of

Theorem 1. [Collar Neighbhourhood Theorem] Let Y ⊂ X be a closed embed-
ded submanifold of a compact manifold (so Y is a closed subset and for each point
y ∈ Y there exist local coordinates on X based at y in which Y meets the coordinate
patch in the set given by the vanishing of the last d − k coordinates) then there
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are an open neighbourhood D of Y in X and D′ of the zero section of the normal
bundle, NY, to Y in X and a diffeomorphism f : D −→ D′ such that

(L4.19)
f
∣∣
Y

is the natural identification of Y with 0NY
f∗ induces the natural identification of NyY with NyY ∀ y ∈ Y.

Perhaps in this form the theorem requires a little more explanation. First the
normal bundle has, as I said early, fibre at a point y ∈ Y the quotient

(L4.20) NyY = TyX/YyY.

If X is a given a Riemannian structure then we may identify this quotient witht he
metric normal space and write

(L4.21) TyX = TyY ⊕NyY

but in general there is no natural way of embedding NY as a subbundle of TYX.
However, once we have a smooth map f : D −→ D′ which maps a neighbourhood
of Y in X to a neighbourhood of the zero section of NY, and maps each y ∈ Y to
its image point in 0NY then

f∗ : TyX −→ Ty(NY ).

Since we are assuming that f maps Y onto 0NY as ‘the identity’ it must map TyY
to Yy(0NY ) = TyY as the identity and hence projects to a map on the quotients

(L4.22) f∗ : NyY −→ Ty(NY )/Ty0NY = NyY

where we can identify the normal space to the zero section unambiguously with the
fibre for any vector bundle. Thus the second condition is that this map should also
be the identity.

Proof. I will not give a complete proof of the Collar Neighbourhood Theorem
in this form. Suffice it to say that the standard approach is to use geodesic flow
map for a Riemann metric on X. Using the embedding of NY in TYX coming
from (L4.21) one can check that the restriction of the exponential map to a small
neighbourhood of the zero section of the normal bundle gives a diffeomorphism onto
a neighbourhood of Y and the inverse of this satisfies the two conditions. �

For our application, the uniqueness part is also important. Namely given two
local diffeomorphism fi, i = 1, 2, both as in the theorem, the composite f = f2◦f−1

1

is a diffeomorphism of one neighbourhood of the zero section of NY to another and
it necessarily satisfies both (L3.53) and (L3.54). This means that the definition we
have been working towards makes good sense.

Definition 3. If Y ⊂ X is a closed embedded submanifold of a compact
manofold then

(L4.23) Im(X,Y ) =
{
u ∈ C−∞(X);u = u1 + u2, u2 ∈ C∞(X) and

u1 = f∗v, v ∈ ImS (NY, 0NY ), supp(v) ⊂ D′ for some diffeomorphism as in (L4.19)
}
.

Now, many properties of the Im(X,Y ) now follow directly from the properties
already stablished for the ImS (W, 0W ). First the inclusion for these spaces gives
immediately

(L4.24) Im−1(X,Y ) ⊂ Im(X,Y ).
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This inclusion is important because it is captured by the symbol. Since this is
rather important in the sequel, let me state this formally.

Lemma 12. The symbol map on Im(NY, 0NY ) induces a symbol map on Im(X,Y )
and this gives a short exact sequence

(L4.25) Im−1(X,Y )�
� //Im(X,Y )

σm //C∞(SN∗Y ;N−m′ ⊗ Ωfib),

m′ = m− d

4
+
n

4
, d = dimY, n = codimY.

So what are the important properties of these distributions?
(1) Each element of Im(X,Y ) is smooth outside Y and

(L4.26)
⋂
k

Im−k(X,Y ) = C∞(X).

(2) Invariance:- If F : X ′ −→ X is a diffeomorphism then

(L4.27) F ∗ : Im(X,Y ) −→ Im(X ′, F−1(Y )), σm(F ∗u) = F ∗σm(u)

where you need to check the sense in which F ∗ induces an isomorphism
of the conormal bundles N∗Y in X and N∗(F−1(Y )) in X ′.

(3) Action of differential operators. If P ∈ Diffk(X) (which I have not really
defined) then

(L4.28) P : Im(X,Y ) −→ Im+k(X,Y ), σm+k(Pu) = σk(P )
∣∣
N∗Y

σm(u).

(4) Asymptotic completeness. If uk ∈ Im−k(X,Y ) then there exists u ∈
Im(X,Y ) such that

(L4.29) u−
∑
k<N

uk ∈ Im−N (X,Y ), ∀ N.

4+. Addenda to Lecture 4

4+.1. Listing the properties. Let me briefly summarize, again, the proper-
ties of the conormal distributions as I have defined them above and outline proofs.
For the momemnt we only have ‘generalized functions’. For each m ∈ C (I have
mostly been treating m as real but this is not usd anywhere) and any embedded
closed submanifold of a compact manifold, Y ⊂ X, we have defined

(4+.30) Im(X,Y ) ⊂ C−∞(X) = (C∞(X; Ω))′.

This is Definition 3 in terms of conormal distributions with respect to the zero
section of a vector bundle (in this case the normal bundle to Y in X). The definition
in that case is (L3.50) as the inverse fibre Fourier transform of ‘symbols’ on the
radial compactification of the dual bundle. It follows from the inclusion for the
symbol spaces that if k ∈ N then

(4+.31) Im−k(X,Y ) ⊂ Im(X,Y ),
⋂
k

Im−k(X,Y ) = C∞(X).

Asymptpotic completeness of the symbol spaces shows that if uk ∈ Im−k(X,Y )
then there exists u ∈ Im(X,Y ) such that

(4+.32) u−
∑
k≤N

uk ∈ Im−N (X,Y ) ∀ N.
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The main thing that distinguishes conormal distributions is that their leading
singularities are describeable by the principal symbol map which gives a short exact
sequence for each m
(4+.33)

Im−1(X,Y ) −→ Im(X,Y ) σm−→ C∞(SN∗Y ;Nm′⊗Ωfib), m′ = m−1
4

dimX+
1
4

dimX,

N−m is the bundle of functions homogeneous of degree m′ on N∗Y (the normal
bundle to Y in X) and Ωfib is the bundle of densities on the fibres of N∗Y.

Exercise 16. Show that the density bundle on X, restricted to Y, can be
decomposed

(4+.34) ΩYX = ΩY ⊗ ΩfibNY

where ΩfibNY is the ‘normal density bundle to Y, so is the ‘absolute value’ of the
maximal exterior power of the conormal bundle to Y. (The notation is to indicate
that this is the usual normal bundle on the fibres of NY made into a bundle over
Y.) So if 0 < µ ∈ C∞(Y ; ΩNY ) is a positive smooth ‘normal density’ on Y (and
such always exists) then

(4+.35) uµ : C∞(X; ΩX) 3 ν 7−→
∫
Y

(ν/µ) ∈ C (or R)

is a well-defined distibution. Show that this ‘delta’ section is an element of I−
1
4 codimY (X,Y )

and compute its symbol (in terms of µ.)

For any differential operator P ∈ Diffq(X) (so P : C∞(X) −→ C∞(X) is a
continuous linear operator which is local) its symbol σq(P ) is a smooth function on
T ∗X which is a homogeneous polynomial of degree q on the fibres (defined by the
condition

(4+.36) P (eitf(x)v(x)) = eitf(x)
(
σq(tdf)v(x) +O(tq−1)

)
∀ f, v ∈ C∞(X), t ∈ R)

(4+.37) P : Im(X,Y ) −→ Im+q(X,Y ), σm+q(Pu) = σq(P )σm(u).

In particular the Im(X,Y ) are C∞(X) modules and they are invariant under dif-
feomorphisms, so if f : O −→ O′ is a diffeomorphism between open subsets of X,
Y and Y ′ are embedded submanifolds of X and f(O ∩ Y ) = O′ ∩ Y ′ then
(4+.38)

f∗ : {u ∈ Im(X,Y ′); supp(u) ⊂ O′} −→ Im(X,Y, σm(f∗u) = (f∗)∗σm(u)

where f∗ : N∗
O;∩Y ;Y

′ −→ N∗Y is the induced map.

Exercise 17. Show that any element of Im(X,Y ) which has support in Y is
of the form Puµ where uµ is as in (4+.35) and P ∈ Diffq(X) for some q. What
values of m can occur this way?

4+.2. Poincaré forms. Although I have only defined conormal distributions,
there is no problem in defining conormal sections of any complex vector bundle
E over X (and I will do this next time) giving a space Im(X,Y ;E) with similar
properties. In fact I will discuss this in more detail next time. Informally an element
of C−∞(X;E) is given in terms of any local trivialization of E by a sum over the
local basis with distributional coefficients. If these coefficients are in Im(X,Y )
then the distributional section is in Im(X,Y ;E). This tensor-product definition
can readily be made rigourous.
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Anyway, suppose we have made sense of this already. The ‘simplest’ sort of
conormal distributions are again the ‘Dirac delta sections’. One particularly nice
example is given by the Poincaré duals of embedded submanifolds. Since this is an
opportunity to discuss a little homology, let me do so.

First recall deRham theory in which the spaces of sections of the exterior bun-
dles (exterior powers of the cotangent bundle) over a manifold X are the chain
spaces for a (co)homology theory. Namely d gives a complex of differential opera-
tors, d ∈ Diff1(X; ΛkX,Λk+1X), d2 = 0

(4+.39) . . .
d //C∞(X; Λk−1) d //C∞(X; Λk) d //C∞(X; Λk+1) d // . . . .

The deRham cohomology groups

(4+.40) Hk
dR(X) = {u ∈ C∞(X; Λk); du = 0}/dC∞(X; Λk−1)

are naturally isomorphic (for a compact manifold) to the other ‘obvious’ cohomology
groups – singular, smooth singular or Čech (and as I will discuss later, Hodge).

There are other forms of the deRham groups too. In particular the ‘distribu-
tional deRham cohomology’ is canonically isomorphic to the smooth

(4+.41) {u ∈ C−∞(X; Λk); du = 0}/dC−∞(X; Λk−1) ≡ Hk
dR(X).

Here there is an obvious map from smooth deRham to distributional deRham and
this is always an isomorphism. That is, any element of C−∞(X; Λk) which satisfies
du = 0 is of the form dv + u′ with v ∈ C−∞(X; Λk−1) and u′ ∈ C∞(X; Λk) (so of
course du = 0). This by the way is a consequence of the Hodge theorem proved
later (but can be proved more crudely but more directly if you want).

Why care about distributional deRham at all? One reason is the existence of
Poincaré dual forms (also sometimes called Leray forms).

Proposition 10. If Y ⊂ X is a closed embedded submanifold with an oriented
normal bundle then the form given in local coordinates near any point of Y, in which
Y = {xd+1 = . . . = xn = 0} locally with the correct orientation, by

(4+.42) pY = δ(xd+1) · · · δ(xn)dxd+1 ∧ . . . ∧ dxn ∈ I−(X,Y ; Λn−d), dimY = d,

is independent of choices, closed and fixes the Poincaré dual class to Y in Hn−d(X).





CHAPTER 5

Pseudodifferential operators

Lecture 5: 22 September, 2005

Since it may be a while before I write up the notes from this fifth lecture, I
include here my pre-lecture notes

L5.1. Conormal sections of bundles. I had planned to go through the
definition of Im(X,Y ) again from the beginning to define instead Im(X,Y ;E)
where E is a complex vector bundle over X. I will do this in the addenda and
instead give a direct definition which has the virtue of brevity. Namely

(L5.1) Im(X,Y ;E) = Im(X,Y )⊗C∞(X) C∞(X;E).

Here we use the fact that Im(X,Y ) is a module over C∞(X) – we can multiply
by arbitrary C∞ functions – and so is C∞(X;E), the space of smooth sections of
the vector bundle E. What precisely does (L5.1) mean? It means that we define
an element of Im(X,Y ;E) as an equivalence class of finite sums of pairs (written
multiplicatively)

(L5.2) v = [
∑
i

uiei], ei ∈ C∞(X;E), ui ∈ Im(X,Y )

where the equivalence relation is generated by C∞(X)-linearity, i.e.

(L5.3)
∑
i

uiei ∼
∑
j

u′je
′
j if ei =

∑
j

aije
′
j and u′j =

∑
i

aijui, aij ∈ C∞(X).

Then Im(X,Y ;E) is itself a C∞(X)-module and if an element, u, has support in
an open set over which E is trivial then for any smooth local basis, ei of E, 1

(L5.4) u =
∑
i

uiei, ui ∈ Im(X,Y ).

The definition above can be used for the space of distributional sections, that is

(L5.5) C−∞(X;E) = C−∞(X)⊗C∞(X) C∞(X;E)

so Im(X,Y ;E) ⊂ C−∞(X;E) and this tensor product definition is equivalent to
the duality definition

(L5.6) C−∞(X;E) = (C∞(X;E∗ ⊗ ΩX))′.

It follows that there are natural injections, as there should be

(L5.7) C∞(X;E) ↪→ Im(X,Y ;E) ↪→ C−∞(X;E).

0.7E; Revised: 29-11-2006; Run: November 29, 2006

1Instead this can also be used as the basis of the definition.
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L5.2. Integration. Suppose that Z is compact then integration of distibu-
tions is well-defined provided they are valued in the density bundle of Z, for any
vector space E (not a vector bundle, it has to be globally trivialized)

(L5.8)
∫
Z

: C−∞(Z;E ⊗ ΩZ) −→ E.

Of course this means we can integrate Im(Z, Y ;E⊗ΩZ) under the same conditions.

L5.3. Restriction. Now suppose that Z ⊂ X is an embedded submanifold
which is transversal to Y, meaning that

(L5.9) ∀ p ∈ Y, TpY + TpZ = TpX.

Then, the restriction map for smooth sections C∞(X;E) −→ C∞(Z;E
∣∣
Z
) extends

to conormal sections
(L5.10)∣∣
Z

: Im(X,Y ;E) −→ Im+ 1
4 codimZ(Z, Y ∩ Z;E

∣∣
Z
), σm+ 1

4 codimZ(u
∣∣
Z
) = σm(u)

∣∣
Z
.

To prove this, we can use the restriction map from C∞(X;E) to handle any
element supported away from Y. So to define u

∣∣
Z

for u ∈ Im(X,Y ;E) we can
suppose that u is supported in any preassigned neighbourhood of Y. In particular
we can assume it is supported in the range of some normal fibration of Y.

Now, what does the transversality mean? Fix a point p ∈ Y then let Z =
{y1, . . . , yk = 0} be given by the vanishing of local defining functions and let Y =
{t1, . . . , tp = 0} be similarly given in terms of local defining b functions. Then
(L5.9) means that the differentials of these functions are independent at p, so they
can be completed to a local coordinate system based at p, by adding s1, . . . , sn−p−k
where necessarily k ≤ n − p. Thus the y and s together give local coordinates on
Y near p. These coordinates give a normal fibration of Y near p – we may identify
the normal bundle with the fibres (y, s) =const near Y (and near p.) Now, cover Y
by such local coordinate systems and normal fibrations and take a finite partition
of unity subordinate to this cover. Using this to decompose u ∈ Im(X,Y ) we see
that each piece, ui, is of the form

(L5.11) ui ∈ C∞
(
Rk; Im+n−p−k

4 (Rn−p−k × Rp, Y ∩ Z;E)
)

with compact support near the origin in all variables. The first variables here are
the y’s and Y ∩Z = Rp×{0}. Thus, restriction to y = 0, which is to say Z, gives a
map as in (L5.10) locally. It is clearly consistent2 under changes of coordinates and
so we get (L5.10) with the computation of the symbol also immediate from (L5.11).

L5.4. Push-forward. Let φ : X −→ B be a fibration (or if you prefer, for
present purposes it is enough to take the projection off a product, i.e. X = B×Z).
Suppose that this fibration is transversal to the embedded submanifold Y ⊂ X,
meaning that for all p ∈ Y,
(L5.12) TpY + Tp(φ−1(φ(p))) = TpX,

which is just the condition that each fibre is transversal to Y. Then fibre integration
gives a linear map

(L5.13) φ∗ : Im(X,Y ;φ∗E ⊗ ΩX) −→ C∞(B;E ⊗ ΩB)

2See problem X
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for any smooth vector bundle E over B.
First recall that this is true in the case m = −∞, i.e.

(L5.14) φ∗ : C∞(X;φ∗E ⊗ ΩX) −→ C∞(B;E ⊗ ΩB).

Namely, near a point b ∈ B we can reduce φ to projection for the product U × Z
to U, where U is a neighbourhood of b ∈ B. The density bundles behave well under
products, so ΩX = ΩU ⊗ ΩZ . Then (L5.14) is just locally in B the formula

(L5.15) φ∗(u) =
(∫

Z

u(b, z)ν(z)
)
ν(b).

In each fibre, i.e. for fixed b, u(b, z) is a smooth map in z into the vector space
Eb, the fibre of the bundle at b. Now, to get (L5.13) we just replace the integral
in (L5.15) by the integral in (L5.8) after restricting to each fibre using (L5.10) and
the result is smooth as claimed in (L5.13).

L5.5. Pseudodifferential operators. As already noted, we define the space
of pseudodifferential operators, ‘acting between’ sections of two vector bundles E
and F over X to be

(L5.16) Ψm(X;E,F ) = Im(X2,Diag;Hom(E,F )⊗ ΩR).

Here ΩR = π∗RΩX is the pull-back of the density bundle from the right factor of X,
πR(x, y) = y, and Hom(E,F ) is the ‘big’ homomorphism bundle. Thus Hom(E,F )
is a vector bundle over X2 with fibre at (x, y) the space hom(Ey, Fx) of linear maps
from the fibre, Ey, of E at y ∈ X to the fibre, Fx, of F at x ∈ X. Using standard
identifications we can think of this bundle as

(L5.17) Hom(E,F ) = π∗LF ⊗ π∗R(E′).

Then the operator associated with (and indeed identified with) the kernel A ∈
Ψm(X;E,F ) is

(L5.18) (Au)(x) =
∫
X

A(x, y)u(y)dy, Au = (πL)∗ (A · (πR)∗u) ,

A : C∞(X;E) −→ C∞(X;F ).

Here the left ‘integral’ is formal. The middle expression is supposed to be rigourous
and yield the map as shown. Thus, for u ∈ C∞(X;E) the pull-back to X2

under πR is an element of C∞(X2;π∗RE). When we multiply it by the kernel
A ∈ Im(X2,Diag;Hom(E,F )⊗ ΩR) we get, using (L5.17), an element

A⊗ (πR)∗uIm(X2,Diag;π∗LF ⊗ (πR)∗(E ⊗ E′)ΩR).

Now, we can pair E with E′ to get the action of hom(Ey, Fx) on Ey and hence
an element of Im(X2,Diag;π∗LF ⊗ ΩR). Finally we may apply (L5.13) to get the
integral, mapping to C∞(X;F ) as expected.

This means that the composite of two pseudodifferential operators acting on
appropriate bundles is defined. It is of fundamental importance that the composite
is again a pseudodifferential operator,

Theorem 2. On any compact manifold, X, and for any complex vector bundles,
E, F and G

(L5.19) Ψm(X;F,G) ◦Ψm′
(X;E,F ) ⊂ Ψm+m′

(X;E,G).
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I will prove this after discussing the use of pseudodifferential operators to par-
tially invert elliptic operators.

We also need to see what has happened to the symbol of our conormal dis-
tributions in this case. Namely the symbol map simplifies to give a short exact
sequence

(L5.20) Ψm−1(X;E,F ) //Ψm(X;E,F ) //C∞(S∗X;Nm ⊗ hom(E,F )).

So, the density terms have disappeared, the manifold carrying the symbol has
become the cosphere bundle of X, S∗xX = (T ∗xX \0)/R+ and the bundle has become
the usual homomorphism bundle, over X, lifted to S∗X.

L5.6. Action of differential operators. For the moment we can easily see
that differential operators are special cases of pseudodifferential operators and more
generally the restricted composition theorem
(L5.21)

Diffk(X;F,G) ◦Ψm(X;E,F ) ⊂ Ψk+m(X;E,G), σk+m(PA) = σk(P ) ◦ σm(A)

is easy to deduce. This is enough for our application to Hodge theory.
[Needs proof]

5+. Addenda to Lecture 5

5+.1. The euler class.



CHAPTER 6

Ellipticity

6+.1. Bundles and sections.

Lecture 6: 4 October, 2005

First I want to talk about the basic properties of smoothing operators since to
a large extent the study of more operators, particularly elliptic pseudodifferential
operators, is ultimately reduced to the study of smoothing ‘errors’.

Thus, if X is a compact manifold and E and F are complex vector bundles over
X then the space of smoothing operators on X between sections of E and sections
of F is

(L6.1) Ψ−∞(X;E,F ) = C∞(X2; Hom(E,F )⊗ ΩR).

Here, Hom(x,x′)(E,F ) = hom(Ex′ , Fx) is the ‘big’ homomorphism bundle. Using
the tensor product characterization of homomorphism it can also be identified with
the ‘exterior’ tensor product π∗LF ⊗ π∗RE′, the tensor product of the pull-back of
F from the left fact with the pull-back of the dual of E from the right factor of
X. The bundle ΩR is the ‘right density bundle’ on X2, just the pull-back from the
right factor of the density bundle. It allows invariant integration.

As operators each Ψ−∞(X;E,F ) defines a linear map A : C∞(X;E) −→
C∞(X;F ) (with which we always identify it) given by

(L6.2) Af(x) =
∫
X

A(x, x′)f(x′).

Here, the product of A(x, x′) and f(x′) implicitly includes the action of A as a
homomorphism from Ex′ to Fx. Thus, for fixed x, the integrand is a section of
Fx ⊗ ΩR as a bundle over X in the variable x′, i.e. Fx is a trivialized bundle and
the integral makes invariant sense.

Basic properties of smoothing operators
• Smoothing operators are characterized (by standard distribution theory)

as those continuous linear operators A : C∞(X;E) −→ C∞(X;F ) which
extend by continuity to continuous linear operators A : C−∞(X;E) ←→
C∞(X;F ) where C−∞(X;E) is the usual space of distributional sections
of F over X. I will not use this characterization below, but it is sometimes
handy.

• Smoothing operators extend by continuity to compact operatorsA : L2(X;E) −→
L2(X;F ). This is easy to prove using some form of the Ascoli-Arzela theo-
rem which shows that the inclusion C0(X;F ) −→ L2(X;F ) is compact, or

0.7E; Revised: 29-11-2006; Run: November 29, 2006
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the usual form of Ascoli-Arzela which shows that C1(X;F ) −→ C0(X;F )
is compact, and hence so is C1(X;F ) −→ L2(X;F ). From the inte-
gral formula (L6.2) it follows that smoothing operators define continuous
maps A : L2(X;E) −→ C1(X;F ) the compactness follows. Note that
smoothing operators are not characterized as the continuous operators
A : L2(X;E) −→ C∞(X;F ). However if an operator has this property
and its adjoint, with respect to smooth inner products on the bundles and
a smooth density, has the same property, A∗ : L2(X;F ) −→ C∞(X;E)
then A is smoothing.

• Now consider the special case Ψ−∞(X;E) = Ψ−∞(X;E,E) of operators
acting on sections of a fixed bundle. Then Id +A is Fredholm as an oper-
ator A : C∞(X;E) −→ C∞(X;E) or A : L2(X;E) −→ L2(X;E). Namely
(1) The null space is finite dimensional
(2) The range is closed
(3) The range has a finite dimensional complement.

Proof. The null space is

(L6.3) null(Id+A) = {u ∈ L2(X;E);u+Au = 0}

so for any element u ∈ null(Id+A) it follows that u = −Au ∈ C∞(X;E). Thus the
unit ball {u ∈ null(Id+A); ‖u‖ = 1} is precompact in L2(X;E) and hence compact
(since it is closed). It is a standard theorem that any Hilbert space with a compact
unit ball is finite dimensional so proving (1) for L2. The null space on C∞(X;E) is
the same as the null space on L2(X;E) so this is also finite dimensional.

To see that the range is close, suppose fn ∈ L2(X;E) and fn → f in L2(X;E)
and fn = (Id+A)un for un ∈ L2(X;E). We can assume that un ⊥ null(Id+A) and
then we wish to show that un → u in L2(X;E) which implies that f = (Id+A)u.
So, suppose first that the sequence ‖un‖ is unbounded. Passing to a subsequence,
and relabelling, we may suppose that ‖un‖ → ∞. Thus vn = un/‖un‖ has unit
norm and (Id+A)vn = fn/‖un‖ → 0 in L2(X;E). Passing to a subsequence we
may assume that vn ⇀ v converges weakly (by the weak compactness of the unit
ball in a Hilbert space). Then vn = Avn + fn must converge strongly, since A is
a compact operator. Thus vn → v with ‖v‖ = 1 and v ∈ null(Id+A) which is
a contradiction, since un ⊥ null(Id+A) implies v ⊥ null(Id+A). So in fact the
assumption was false and ‖un‖ is necessarily bounded. Then the same argument
shows that on an subsequence un ⇀ u and hence un = Aun+fn → Au+f converges
strongly and (2) follows.

Recall that the adjoint of a bounded operator is defined if one has a smooth
(sesquilinear) inner product on the fibres of E and a smooth positive density ν on
X – one needs these really to fix the inner product on L2(X;E),

(L6.4) 〈u, v〉 =
∫
X

〈u(x), 〉Exdν(x)

by

(L6.5) 〈Au, v〉 = 〈u,A∗v〉 ∀ u, v ∈ L2(X;E).

In the case of a smoothing operator (and in fact in general) it follows that the kernel
of A∗ is A∗(x′, x) in terms of ∗ acting on Hom(E,E). Thus A∗ ∈ Ψ−∞(X;E) is
also a smoothing operator.
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Directly from the definition of the adjoint, the orthcomplement of the range of
any bounded operator is always the null space of A∗

(L6.6) 〈Au, v〉 = 0 ∀ u ∈ L2(X;E)⇐⇒ A∗v = 0.

Thus null(Id+A∗) is a complement to the range of Id+A which is therefore finite
dimensional, provign (3).

The range of Id+A is closed in C∞(X;E) by essentially the same argument.
Namely if (Id+A)un = fn → f in C∞(X;E) then (since the null spaces on L2(X;E)
and C∞(X;E) are the same) we may assume that un ∈ C∞(X;E) and un → u in
L2(X;E) by the discussion above. Then un = −Aun + fn → u in C∞(X;E). It
also follows that the range of Id +A has finite codimension in C∞(X;E), in fact
null(Id+A∗) is still a complement (in the algebraic sense that

(L6.7) (Id+A)C∞(X;E) + null(Id+A∗) = C∞(X;E).

In fact we know that the left side is a closed subspace of the right, so if they were not
equal then there would be a non-trivial distributional section v ∈ C−∞(X;E) such
that 〈v, (Id+A)u〉 = 0 for all u ∈ C∞(X;E) and v(w) = 0 for all w ∈ null(Id+A∗).
However the first condition is just v +Av = 0 as a distribution, but then v = −Av
and A : C−∞(X,E) −→ C∞(X;E) so together these imply v = 0. �

Now consider differential opertors, P ∈ Diffk(X;E,F ). These are operators
P : C∞(X;E) −→ C∞(X;F ) which are given everywhere locally, in terms of lo-
cal coordinates and trivializations of the bundles, by a finite sum of derivatives
composed with a matrix

(L6.8) P =
∑
|α|≤k

pα(x)Dα
x .

We say that such an operator is elliptic if the leading part of this sum

(L6.9)
∑
|α|=k

pα(x)ξα is invertible for each ξ ∈ Rn \ {0}

and for each x (i.e. is invertible as an N ×N matrix).
The sum in (L6.9) makes invariant sense as a section over T ∗X \ {0} of the

pull-back from the base of the bundle hom(E,F ). To see this we simply have to
give an invariant definition of its value at a point of T ∗X! Choose such a point,
Ξ ∈ T ∗x̄X. Thus, near x̄ ∈ X we may choose f ∈ C∞(X), real valued, such that
df(x̄) = Ξ. Now, given an element ū ∈ Ex̄ choose u ∈ C∞(X;E) such that u(x̄) = ū.
Then, for t ∈ R,
(L6.10)
P (ueitf ) = eitfU(t, x), U(t, x) ∈ C∞(R×X;F ), U(t, x̄) = tkσk(P )(x̄, df(x̄)+O(tk−1.

We can use (L6.8) to see this. Thus, U(t) must be a polynomial of degree at most
k in t and the leading term, of order k, at x̄ is just

(L6.11)
∑
|α|=k

pα(x̄)(df(x̄)α

which is just (L6.9). Thus in fact the principal symbol of a differential operator of
order m, defined locally by (L6.9) is in fact a well defined section

(L6.12) σk(P ) ∈ C∞(T ∗X; hom(E,F )) is a fibre-polynomial of degree k.
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Now recall that we defined pseudodifferential operators in terms of conormal
distributions

(L6.13) Ψm(X;E,F ) = Im
′
(X2,Diag;Hom(E,F )⊗ ΩR)

and showed that the acted on smooth sections

(L6.14) A : C∞(X;E)←→ C∞(X;F ), Au(x) =
∫
X

A(x, x′)u(x′).

We also showed, locally, that differentiation of a conromal distribution gives a
conormal distribution with the order increased by one. Since we also know that
conormal distributions form a C∞ module, it follows that
(L6.15)
P (x,Dx) : Im

′
(X2,Diag;Hom(E,F )⊗ΩR) −→ Im

′+k(X2,Diag;Hom(E,F )⊗ΩR).

This in fact shows that

(L6.16) Diffk(X;E,F )Ψm(X;F,E) ⊂ Ψm+k(X;F ).

Now, consider what happens to the symbol of A ∈ Ψm(X;F,E) under this
action on the left by a differential operator. The symbol can be computed locally
near a point of the diagonal and in terms of any normal fibration. In particular we
can choose the normal fibration to be the ‘right fibration with fibres given by the
constancy of the second variable x′. That is a local fibre of the normal fibration (in
local coordinates and with respect to a local trivialization of the bundles) is just
x′ = x̄ is constant. Thus P (x,Dx) just acts by differentiation on the fibre so the
kernel of PA on this fibre is

(L6.17) P (x,Dx)A′(x− x̄′, x̄′)

where the left variable has been shifted so that it vanishes at x̄′, i.e. where the
diagonal meets the fibre, and A(x − x̄′, x̄′) is the kernel of A on this fibre. Now,
it follows from (L6.8) that any lower order terms in P can only raise the order at
most to m+ k− 1. Since we know that multiplication by xj − ξ′j lowers the oder by
1 (since it vanishes at the singular point) we see that the symbol of PA, modulo
lower order terms, is just

(L6.18) σk(P )(x̄, ξ)σm(A).

Now, since we are assuming that P is elliptic everywhere, in particular σk(x̄, ξ)
is a homogeneous polynomial which does not vanish outside the origin. From the
earlier discussion of this in the case of conormal distributions at a point, we know
that we can solve the problem

(L6.19) PA = IdF +R, A ∈ Ψ−k(X;F ;E), B ∈ Ψ−∞(X;F )

provided of course that P ∈ Diffk(X;E,F ) is elliptic.

Proposition 11. If P ∈ Diffk(X;E,F ) is elliptic then there exists A ∈
Ψ−k(X;F,E) such that
(L6.20)
P ◦A = IdF +RF , RF ∈ Ψ−∞(X;F ), A ◦ P = IdE +RE , RE ∈ Ψ−∞(X;E)

from which it follows that P : C∞(X;E) −→ C∞(X;F ) is Fredholm.
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Proof. From the existence of a right parametrix, A ∈ Ψ−k(X;F,E), satifying
the first condition in (L6.20) we can conclude that the range is closed and of finite
codimension. Indeed the range of P certainly contains the range of PA and this is
equal to the range of Id+RF . This, as we know, is a closed subspace of C∞(X;F ) of
finite codimension, so any subspace of C∞(X;F ) containing it must also be closed
and of finite codimension.

To examine the null space we need the second condition in (L6.20). First we
try to construct an element A′ ∈ Ψ−k(X;F,E) satisfying this condition without
worrying whether it is related to A. To do so, note that we may take adjoints and
the condition becomes

(L6.21) P ∗ ◦ (A′)∗ = Id+R∗E .

From the local discussion above we see that for differential operators,

(L6.22) σk(P ∗) = (σk(P ))∗

so P is elliptic if and only if P ∗ is elliptic. Thus we may apply the same construction
as above to find (A′)∗ ∈ Ψ−k(X;E,F ), satifying (L6.21) and then A′ is a right
parametrix. From this we conclude that the null space of P is finite dimensional,
since it is contained in the null space of Id+RE .

So, it only remains to see that there is an element A ∈ Ψ−k(X;F,E) which
is simultaneously a left- and a right-parametrix. Consider the left parametrix just
constructed. From the identity for the right parametrix, and associativity of prod-
ucts, it satisfies
(L6.23)
A′ = A′(PA−RF ) = (A′P )A−A′RF = A+REA−A′RF = A+S, S ∈ Ψ−∞(X;F,E).

Thus the left and right parametrices differ by a smoothing operator, either of them
is a two-sided parametrix. �

In fact, and such elliptic operator has a ‘generalized inverse’. If we choose
inner products and densities so that the orthocomplement of the range of P may
be identified with the null space of P ∗ and the orthocomplement of the null space
of P may be identified with the range of P ∗ then there is a unique operator A :
C∞(X;F ) −→ C∞(X;E) which vanishes on the null space of P ∗ has range exactly
the range of P ∗ and which is a two-sided inverse of P as a map from the range of
P ∗ to its own range. In fact, as we shall see next time, this is a pseudodifferential
operator (i.e. differs from a parametrix A by a smoothing operator).

L6.2. Hodge theory. Next I want to remind you how the Fredholm proper-
ties of elliptic operators on C∞ spaces lead to Hodge theory, either for the usual
exterior differential complex or some other elliptic complex (such as the Dolbeault
complex).

On a compact manifold, consider the exterior form bundle ΛX. Thus ΛkxX is
totally antisymmetric part of the k-fold tensor power of T ∗xX. Then, as is well-known
(and this is really the reason for the definition)

(L6.24) d : C∞(X; ΛpX) −→ C∞(X; Λp+1X), d2 = 0

where we may think of d : C∞(X; Λ∗X) −→ C∞(X; Λ∗) as the direct sum of these
operators or write it out as a complex

(L6.25) · · · d//C∞(X; ΛpX) d //C∞(X; Λp+1X)d // · · · .
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The definition of the symbol of a differential operator in (L6.10) can be applied
since

(L6.26) d(eitfu) = eitf (itdf ∧ u+ du) =⇒ σ1(d)(x, ξ) = iξ ∧ .
In particular of course σ1(d)2 = 0, but that follows directly from the property for
d.

If we consider a general differential complex, so a sequence of differential oper-
ators Pi ∈ Diffk(X;Ei, Ei+1) (the orders can be taken to be different but it makes
for heavier algebra) such that Pi+1 ◦Pi = 0. Such a complex is said to be elliptic if

(L6.27) · · ·
σk(Pi−1)(x,ξ)//Ei,x

σk(Pi)(x,ξ) //Ei+1,x
σk(Pi+1)(x,ξ) // · · ·

is exact ∀ (x, ξ) ∈ T ∗X \ 0X .

The deRham complex (L6.25) is elliptic in this sense, since for any 0 6= ξ ∈ T ∗xX
the elements α ∈ ΛpxX satisfying ξ ∧ α = 0 are exactly those which are of the form
ξ ∧ β for some β ∈ Λk−1X – to see this simply introduce coordinates in which
ξ = dx1 and decompose forms accordingly.

Such an elliptic complex is ‘almost exact’ in the sense that the cohomology
(originally called the hypercohomology) of the complex is finite dimensional.

Proposition 12. If

(L6.28) · · ·
Pi−1 //C∞(X;Ei)

Pi //C∞(X;Ei+1)
Pi+1 // · · ·

is an elliptic complex of differential operators of order k then the range of each Pi
is closed in C∞(X;Ei+1) and

(L6.29) null(Pi)/Pi−1C∞(X;Ei−1) is finite dimensional.

Proof. Hodge’s idea was to choose inner products and densities (well he ac-
tually did it in a very algebraic setting) and consider the adjoint complex. Since
the adjoint of a product is the product of the adjoints in the opposite order, we get
an elliptic complex going the other way

(L6.30) · · · C∞(X;Ei)
P∗i−1oo C∞(X;Ei+1)

P∗ioo · · ·
P∗i+1oo

Now each of the operators

(L6.31) ∆i = P ∗i Pi + Pi−1P
∗
i−1 ∈ Diff2k(X;Ei)

is elliptic. Indeed, its symobl at each point (x, ξ) ∈ T ∗xX \ {0} is

(L6.32) σ2k(∆i) = σk(Pi)∗σk(Pi) + σk(Pi−1)σk(Pi−1)∗.

This is a self-adjoint matrix and and element of its null space satisfies
(L6.33)
〈σ2k(∆i)u, u〉 = |σk(P )iu|+ |σk(Pi−1)u| = 0 =⇒ σk(Pi−1)∗u = 0 = σk(Pi)u.

Since the null space of σk(Pi−1)∗ is a complement to the range of σk(Pi−1), this
implies u is zero.

Thus the null space of ∆i is finite dimensional and its range is closed and has
orthocomplement this same null space, by self-adjointness. Again by integration
by parts on X, the null space of ∆i is the intersection of the null spaces of Pi and
P ∗i−1. It follows that for each i we may decompose

(L6.34) C∞(X;Ei) 3 u = u0 ⊕ Pi−1vi−1 ⊕ P ∗i vi+1, Piu0 = 0 = P ∗i−1u0
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where the decomposition is orthogonal and unique. The range of Pi−1 must there-
fore be closed (since the closure in the C∞ topology is contained in the closure in
L2). �

Note that the ‘Hodge decomposition’ (L6.34) is a useful way to encapsulate the
consequences of ellipticity for a complex. It shows in particular that (L6.29) can
be seen in the stronger form that

(L6.35) null(∆i) −→ null(Pi)/Pi−1C∞(X;Ei−1) is an isomorphism

which is the Hodge theorem.

6+. Addenda to Lecture 6





CHAPTER 7

Localization and composition

Lecture 7: 6 October, 2005

L7.1. Localization. Finally I will connect the definition of pseudodifferen-
tial operators made here with the more standard approach, starting with a local
definition on Euclidean space and proceeding by superposition. To break a pseu-
dodifferential operator up into pieces it is convenient to use partitions of unity of
the following type.

Lemma 13. If {Ui} is an open cover of a compact manifold there is a partition
of unity {φij} subordinate to the cover, so

0 ≤ φij ≤ 1, ∀ i, j,
∑
i,j

φij = 1, supp(φij) ⊂ Ui,

which also satisfies

(L7.1) supp(φij) ∩ supp(φi′j′) 6= ∅ =⇒ supp(φij) ∪ supp(φi′j′) ⊂ Ui ∩ Ui′ .

Proof. First choose a partition of unity χi subordinate to the open cover
{Ui}. Then each point p ∈ X has an open neighbourhood Vp with the property

(L7.2) Vp ∩ supp(χi) 6= ∅ =⇒ Vp ⊂ Ui.

In fact we could take Vp to be the intersection of the Ui containing p. Pass from
the Vp to a finite subcover, Vj , and choose a partition of unity ψj subordinate to
this cover. Then set φij = χiψj . This is a partition of unity and the intersection
condition in (L7.1) implies that the supports of ψj and χi′ must meet, as well as
those of ψj′ and χi. By (L7.2) this implies that supp(ψj) ⊂ Ui′ and supp(ψj′) ⊂ Ui
from which (L7.1) follows. �

We can use this to localize a pseudodifferential operator with respect to an open
cover of X. Namely if A ∈ Ψm(X;E,F ) consider the decomposition obtained by
mutliplying by the φij on both the left and the right. That is, using the partition
of unity φij(x)φi′j′(y) on X2. This decomposes A (using the C∞ module property)
as a finite sum

(L7.3) A =
∑

i,j,i′,j′

φijAφi′j′

where we are thinking of the φij as operators on C∞ spaces, so (L7.3) is a compo-
sition of operators. The support of each term in (L7.3) is contained in Ui×Ui′ but
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more importantly the support can only meet the diagonal if
(L7.4)

(supp(φij)×X) ∩ (X × supp(φi′j′) ∩Diag 6= ∅ =⇒ supp(φij) ∩ supp(φi′j′) 6= ∅.

So, if we use the partition of unity from Lemma L7.2, then

(L7.5) supp(φijAφi′j′) ∩Diag 6= ∅ =⇒ supp(φijAφi′j′) ⊂ Ui × Ui.

So, given an open cover {Ui} of X we may decompose A into a sum of pseudodif-
ferential operators of the same order

(L7.6) A =
∑
i

Ai +A′, supp(Ai) ⊂ Ui × Ui, A′ ∈ Ψ−∞(X;E,F )

where the last term comes from all the pieces which have support not meeting the
diagonal.

L7.2. Local normal fibrations. In particular we can assume that the open
cover {Ui} with respect to which we get a decomposition (L7.6) consists of co-
ordinate patches over each of which the bundles E and F are trivialized. Then
the kernel of each Ai is a matrix of conormal distributions, with compact support
and of order m, with respect to the diagonal in Ui × Ui. The coordinate system
identifies Ui with an open set U ′i in Rn, n = dimX. The density bundle on X is
locally trivialized by the coordinate density |dx| so it sufficies to consider ‘scalar’
pseudodifferential operators with kernels compactly supported on Rn × Rn. This
indeed is a typical starting point for the definition of pseudodifferential operators.

To specify the kernel as the inverse Fourier transform of a symbol we also need
to choose a normal fibration of the diagonal

(L7.7) Diag(Rn) = {x = y} ⊂ Rnx × Rny .

There are three standard choices for the normal fibration, which I will call the ‘left’
fibration, the ‘right’ fibration and the ‘Weyl’ fibration. These each give a global
identification of the whole of R2n, as a neighbourhood of the diagonal, with Rn×Rn,
thought of as the normal bundle to the diagonal.

So first we have to identify the normal bundle to the diagonal. This is naturally
the quotient of the tangent bundle to R2n, restricted to Diag, by the tangent bundle
to Diag . The latter is easy to describe, namely

(L7.8) T Diag = {((x, x), (v, v)); (x, v) ∈ R2n} ≡ Rn × Rn ≡ {(x, v) ∈ TRn}

where this identification is canonical. So the normal bundle can be identified with
any subbundle of TDiagR2n which is transversal to T Diag . The standard choice is
to take the ‘left tangent bundle’

(L7.9) TRn 3 (x,w) 7−→ ((x, x), (w, 0)) ∈ TDiagRn −→ N Diag .

Notice that this is not really canonical. Namely we could ‘just as well’ take the
right tangent vectors (but DO NOT DO THIS if you are easily confused)

TRn 3 (x,w) 7−→ ((x, x), (0, w)) ∈ TDiagR2n −→ N Diag .

The trouble is that modulo the tangent bundle to the diagonal (0, w) − (w,w) =
(−w, 0) so this is almost the same identification but has the sign reversed. The
identification (L7.9) is universally adopted, basically in the same sense that one
writes compositions of operators on the left, i.e. AB means first apply B then A.
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Once we have adopted (L7.9) as our identification of the normal bundle to the
diagonal with the tangent bundle to the manifold (this works on a manifold as well)
then there are still choices for the normal fibration. Now of course they correspond
to maps from R2n to TRn = Rn × Rn with the right properties. The ones we
consider each induce a linear isomorphism (linear in fact in all variables, not just
the fibre variables). These are the left, the right and the Weyl fibrations:-

(L7.10)

fL : R2n 3 (x, y) −→ (x, x− y) ∈ TRn

fR : R2n 3 (x, y) −→ (y, x− y) ∈ TRn

fW : R2n 3 (x, y) −→ (
x+ y

2
, x− y) ∈ TRn.

Thus, for the left fibration we fix the variable x, so with the standard picture of
x, y-space the fibres are the verticals, but we take the linear variable on each fibre
which is x − y, the x being constant normalizes this to be zero at the point (x, x)
on the diagonal, but the ‘variable’ is −y. This comes about because of the standard
identification of the normal bundle to the diagonal with the tangent bundle. The
right fibration is similar, except that y is held fixed, the fibres are ‘horizontal’ and
the variable on them is still x− y. For the Weyl fibration, which I will not use for
the moment, we hold x + y fixed and the fibre variable is still x − y. There are
plenty of other possibilities, but these are the usual ones.

So, what does our kernel A ∈ Ψm(X), supported in a coordinate patch, look
like with respect to these fibrations? It is always the inverse Fourier transform of
a classical symbol, so the three representations (of the one kernel) are

(L7.11)

A(x, y) = (2π)−n
∫

Rn
ei(x−y)·ξaL(x, ξ)dξ|dy|,

A(x, y) = (2π)−n
∫

Rn
ei(x−y)·ξaR(y, ξ)dξ|dy|,

A(x, y) = (2π)−n
∫

Rn
ei(x−y)·ξaW (

x+ y

2
, ξ)dξ|dy|.

Here |dy| is the coordinate trivialization of the right density bundle. In all three
cases the ampllitude lies in ρ−mC∞c (Rn × Rn).

For the moment, we are most interested in the two ‘extreme’ representations,
the left and right representations. As noted above, in each case we are holding one
of the variables x or y fixed. This means that there is a close relationship between
the Fourier transform and the operator.

Lemma 14. The left representation of a pseudodifferential operator with com-
pactly supported kernel on Rn puts the operator in the form

(L7.12) Af(x) = (2π)−n
∫

Rn
eix·ξaL(x, ξ)f̂(ξ)dξ, ∀ f ∈ S(Rn),

and similarly the right representation gives

(L7.13) Âf(ξ) =
∫

Rn
e−iy·ξaR(y, ξ)f(y)dy.

Proof. �
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L7.3. Composition. Almost as an immediate corollary of the representations
(L7.12) and (L7.13) we deduce the basic composition property of pseudodifferential
operators.

Proposition 13. If A ∈ Ψm(X;E,F ) and B ∈ Ψm′
(X;F,G) for complex

vector bundles, E,F and G over a compact manifold X then as an operator

(L7.14) BA : C∞(X;E) −→ C∞(X;G), BA ∈ Ψm+m′
(X;E,G).

Furthermore

(L7.15) σm+m′(BA) = σm′(B)σm(A).

Proof. First we start with the ‘easy case’ where m = −∞ or m′ = −∞ and
one of the operators is smoothing. The composition is then very closely related
to the action of pseudodifferential operators on smooth sections. In fact below I
observe that it can be deduced directly from the continuity of this action after
localizing.

However, one can also proceed directly and globally. I want to point out this
argument, although I give a simpler alternative below, because it leads to an inter-
esting geometric question which I will consider later.

Recall that we showed that A ∈ Ψm(X;E,F ) defines a map

A : C∞(X;E) −→ C∞(X;F )

by working on the kernel level. Namely we define the map (L7.3) by proceeding
in steps. First lift an element u ∈ C∞(X;E) to the section π∗Ru ∈ C∞(X2;π∗RE)
which is independent of the left, x, variable. Then use the C∞-module property to
‘multiply’ the kernel by this smooth section (and compose in the bundle) to get

(L7.16) Aπ∗Ru ∈ Im(X2,Diag;π∗LF ⊗ ΛR).

Then the ‘action’ of the operator is defined by integrating out the right, y, variables
to get

(L7.17) Au = (πL)∗(A · π∗Ru).

The push-forward theorem (using the freedom to choose the normal fibration) shows
that this is an element of C∞(X;F ).

Essentially the same argument works for composition of B ∈ Ψm′
(X;F,G) and

A ∈ Ψ−∞(X;E,F ) except that we have three factors ofX to worry about. However
the right-most fact here can be viewed as a parameter space. The composition looks
like

(L7.18)
∫
X

B(x, y)A(y, z)‘dy′

(where I have written ‘dy′ because the measure is already part of B) and we may
interpret this as in (L7.17) by writing it

(L7.19) AB = (πC)∗(π∗SA · π∗FB).

Here there are three projections from X3 to X2

(L7.20)
πF : X3 3 (x, y, z) −→ (y, z) ∈ X2,

πC : X3 3 (x, y, z) −→ (x, z) ∈ X2 and πS : X3 3 (x, y, z) −→ (x, y) ∈ X2.
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The first one drops the left variable, the second the middle variable and the last
the right-most variable. The labels as supposed to correspond to the action of
operators, as in C = BA, so A is the ‘first’ operator (in action) and corresponds to
πF , B is the ‘second’ operator and corresponds to πS whereas C is the ‘composite’
operator and corresponds to πC in (L7.18) and (L7.19); so you can think of this as
the ‘composite’ projection or the ‘central’ projection.

Since these maps are smooth, π∗FA ∈ C∞(X3;π∗MF ⊗ π∗RE′) where

(L7.21)

πR : X3 3 (x, y, z) −→ z ∈ X
πM : X3 3 (x, y, z) −→ y ∈ X and

πL : X3 3 (x, y, z) −→ x ∈ X

are the three projections onto a single factor of X (corresponding to ‘right’, ‘middle’
and ‘left’. We are using these projections mainly to pull bundles back. The pull-
back theorem for conormal distributions proved above applies to show that

(L7.22) π∗SA ∈ Im−
1
4 dimX(X3, π−1

S Diag;π∗LG⊗ π∗MF ⊗ ΩM ).

Thus the product in (L7.19) can be interpreted as an element

(L7.23) π∗SA · π∗FB ∈ C∞(X2;π∗LG⊗ π∗RF ⊗ ΩR) = C∞(X2; Hom(E,G)⊗ ΩR).

The global discussion of the composition when A is smoothing and B is pseu-
dodifferential is similar. In fact it is not necessary to do it, since we know that the
space of pseudodifferenetial operators is invariant under taking adjoints. Thus the
discussion above then applies to B∗A∗ and this is (AB)∗.

Once we have taken care of the case where one of the factors is smoothing we
can pass to the local setting. In fact, we can do that anyway. Thus if {Ui} is an
open cover of X we can decompose A and B into finite sums

(L7.24) A =
∑
i,k

ψiAΨk, B =
∑
i′,k′

ψi′BΨk′ .

Then the composite decomposes into a big sum

(L7.25) (AB) =
∑

i,k,i′,k′

ψiAΨkψi′BΨk′ .

Now, we have already discussed the case in which one of the factors is smooth-
ing, which in particular covers the case where the support does not meet the di-
agonal. Let me prove this again by localization. Thus we can suppose that each
element of the open cover {Ui} is a coordinate neighbourhood over which the bun-
dles E, F and G are trivial. The density bundle is trivialized by the coordinate
density |dx| so the kernels just become matrices of conormal distibutions with re-
spect to the diagonal. The bundle composition is just matrix composition, so we
are reduced to looking at each of the entries, just the composition of scalar kernels.
In general there may have different coordinates in the various factors, but using
Lemma 13 above we may assume that the middle patches, the left for B and the
right for A, are the same. Now, if say the localized term on the right AΨkψi′BΨk′

is smoothing, it can be regarded as a smooth map from Uk′ to smooth functions
on Uk = Ui, using the fact that a smooth function on a product is the same as a
smooth map from either factor into smooth functions on the other factor. Then
applying ψiAψk on the left gives a smooth function on Ui, for each point in Uk′ ,
where everything has compact support. The linearity and continuity of A means
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that it is a C∞ map, so in fact this is a smooth map from Uk′ into C∞c (Ui) and
hence in fact an element of C∞c (Ui × Uk′), i.e. the kernel of a smoothing operator.
This gives the alternative proof of the composition formula where the right factor
is smoothing, mentioned above. If the left factor is smoothing one can apply the
discussion of adjoints as above.

Thus in the expansion of the product in (L7.25) we know that each term where
one of the factors is smoothing is itself smoothing. Using a decomposition as in
(L7.3) we arrive at (L7.5) and in fact by a similar argument we can see (changing
the indexing) that if one of the terms in the product AlBk is not smoothing then
both factors have kernels supported in the product of a fixed element of the cover
with itself, that is both have compact support in Ui×Ui for some i. This allows us
to work in just one coordinate patch rather than two.

Thus, we are reduced to showing that the product AB in the case of compactly
supported scalar pseudodifferential operators on Rn. We choose to write B in right
reduced form as in (L7.13) and A in left reduced form as in (L7.12)

(L7.26)
B̂f(ξ) =

∫
Rn
e−iy·ξbR(y, ξ)f(y)dy,

Af(x) = (2π)−n
∫

Rn
eix·ξaL(x, ξ)f̂(ξ)dξ, ∀ f ∈ S(Rn).

Inserting the formula for B into that of A we see that the kernel of the composite
is

(L7.27) AB = (2π)−n
∫

Rn
ei(x−y)·ξaL(x, ξ)bR(y, ξ)dξ.

The product of the two symbols is a symbol itself, so this is almost of the form we
expect, the inverse Fourier transform of a symbol. The problem is that it is not
quite an inverse Fourier transform because both the variables x and y occur in the
amplitude. However we have already effectively overcome this problem. Namely
we can treat the dependence of the amplitude on, say, y as parameter and write
(L7.27) in the form

(L7.28) AB(x, y) =
(

(2π)−n
∫

Rn
ei(x−y)·ξaL(x, ξ)bR(z, ξ)dξ

) ∣∣
z=y

.

Now the inverse Fourier transform gives a conormal distribution on R3n, with vari-
ables x, y, z, with respect to the submanifold x = y. Then restriction to z = y
is transversal to the submanifold so we deduce that the kernel is conormal and
of order m + m′. Putting all the terms back together we deduce (L7.14) and also
(L7.15). �

L7.4. Ellipticity again. Now, we can prove the same result as I showed last
time for elliptic differential operators but in the more general setting of elliptic
pseudodifferential operators.

Theorem 3. If P ∈ Ψm(X;E,F ) is elliptic, in the sense that σm(P ) is in-
vertible at each point of S∗X, then there exists Q ∈ Ψ−m(X;F,E) such that

(L7.29) QP = IdE −RE , RE ∈ Ψ−∞, PQ = IdF −RF , RF ∈ Ψ−∞(X;F ).

Proof. The proof is the same as for differential operators above, except that
we use the composition formula from Proposition 13. Still, let me take the time to
go through the proof again.
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�

L7.5. Index problem. As a direct result of Theorem 3 that proof that an
ellipti element P ∈ Ψm(X;E,F ) is Fredholm on C∞ sections is reduced to the same
statement for operators of the form Id+A with A smoothing. Namely we want to
show that

(L7.30)

Nul(P ) = {u ∈ C∞(X;E);Pu = 0} is finite dimensional

Ran(P ) = {f ∈ C∞(X;F ); ∃ u ∈ C∞(X;E), Pu = f} is closed and

C∞(X;F ) = Ran(P ) + V, V ⊂ C∞(X;F ) finite dimensional.

From (L7.29) we see that

(L7.31) Nul(P ) ⊂ Nul(IdE −RE) and Ran(P ) ⊃ Ran(IdF −RF ).

So if Nul(IdE −RE) is finite dimensional, so is Nul(P ) and if Ran(IdF −RF ) is closed
with finite codimension then so is Ran(P ) (check the algebra here for yourself); the
point being that for smoothing perturbations of the identity, this is always true.
As noted before, the fact that the range is closed follows from the last condition,
the existence of a finite dimensional complement. I include it to avoid confusion
with the weaker condition that the closure of the range has finite codimension. I
will talk extensively about smoothing operators, next time.

Now the index of P is by definition the integer

(L7.32) ind(P ) = dim Nul(P )− dim
(
C∞(X;F )

/
Ran(P )

)
,

(although it might have been better if it had been defined with the opposite sign).
The problem solved by the index theorem of Atiyah and Singer (in its simplest
form) is the computation of the index in terms of the symbol of P, via a topological
formula.

The question arises as to why this integer is interesting. Of course the funda-
mental reason is that it is something that does not occur in finite dimensions. For
a finite dimensional matrix, the corresponding integer is the difference between row
rank and collum rank so it just the difference of dimension of source and target
vector spaces.

Practically the index solves the problem of ‘perturbative invertibility’, as I will
show next week. Namely we can ask whether there exists a smoothing operator
R ∈ Ψ−∞(X;E,F ) such that P +R is inverible, meaning for present purposes that
it is injective and surjective.

Proposition 14. For any elliptic pseudodifferential operator P ∈ Ψm(X;E,F )
there exists R ∈ Ψ−∞(X;E,F ) such that P + εR is invertible for small ε 6= 0 if and
only if ind(P ) = 0.

To analyse the index I will need to detour a little into K-theory. Suppose Y
is any compact manifold and E is any vector bundle over Y. Then consider the
operators of the form Id+A, A ∈ Ψ−∞(X;E) as we have been doing, but now
look at those which are invertible (as an operator on C∞(X : E). The inverse is
automatically of the same form, so this is a group which I will denote G−∞(Y ;E).
In fact it is an open subset of C∞(X2; Hom(E)⊗ΩR) so has a well-defined topology.
I will define K-theory directly through the definition of odd K-theory. Thus for any
compact manifold X set

(L7.33) K−1(X) = [X;G−∞(Y ;E)]
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the set of (smooth) homotopy classes of smooth maps into G−∞(Y ;E). Of course
it is implicit in this definition that the result is independent of the choice of Y or
E.

7+. Addenda to Lecture 7



CHAPTER 8

Smoothing operators

Lecture 8: 13 October, 2005

Now I am heading towards the Atiyah-Singer index theorem. Most of the results
proved in the process untimately reduce to properties of smoothing operators, so
let me review these today.

Recall that the space of smoothing operators on a compact manifold X acting
between bundles E and F is identified with smooth sections of the ‘big homomor-
phism bundle’ over X2 :

(L8.1) Ψ−∞(X;E,F ) = C∞(X2;π∗LF ⊗ π∗RE′ ⊗ π∗RΩ)

where we identify Hom(E,F ) = π∗LF ⊗ π∗RE′. These are bounded operators on L2

sections as follows directly from the Cauchy-Schwarz inequality

(L8.2)
Ψ−∞(X;E,F ) 3 A : L2(X;E) −→ L2(X;F ),

Au(x) =
∫
X

A(x, y)u(y), ‖Au‖ ≤ ‖A‖L2‖u‖L2 .

This just uses the square-integrability of the kernel.

Lemma 15. If A ∈ Ψ−∞(X;E) (so E = F ) and its norm as a bounded operator
on L2(X;E) is less than 1 then (Id+A)−1 = Id+B for B ∈ Ψ−∞(X;E).

Proof. Since ‖A‖ < 1 the Neumann series converges as a sequence of bounded
operators so

(L8.3) B =
∞∑
l=1

(−1)lBl

is bounded on L2(X;E).As a 2-sided inverse (Id+A)(Id+B) = Id = (Id+B)(Id+A)
which shows that

(L8.4) B = −A+A2 +ABA.

From this it follows that B ∈ Ψ−∞(X;E) since ABA ∈ Ψ−∞(X;E). Indee the A
on the right may be considered locally as a smooth map from X into L2(X;E) and
hence remains so after applying B but then applying the second copy of A gives a
smooth map into C∞(X;E) so the kernel of the composite is actually smooth on
X2. �

Corollary 2. For any compact manifold and complex vector bundle E

(L8.5) G−∞(X;E) =
{
A ∈ Ψ−∞(X;E); (Id +A)−1 = Id+B, B ∈ Ψ−∞(X;E)

}
0.7E; Revised: 29-11-2006; Run: November 29, 2006
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is an open subset of Ψ−∞(X;E) which is a topological group.

Proof. For any point A ∈ G−∞(X;E) the set A + B such that ‖B‖ <
1/‖(Id+A)−1‖ is open in Ψ−∞(X;E) and for such B it follows from the discussion
above thatA+B ∈ G−∞(X;E) since (Id+A+B)−1 = (Id+A)−1(Id+B(Id+A)−1)−1.
Similarly the maps A → (Id+A)−1 − Id and (A,B) −→ (Id+A)(Id+B) − Id are
continuous. �

Notice that I insist on G−∞(X;E) ⊂ Ψ−∞(X;E) onto to make such statements
easy to say. ‘Really’ of course you should think of G−∞(X;E) as something like
the invertible bounded operators on L2(X;E) which are of the form Id+A with
A ∈ Ψ−∞(X;E).

In fact, as we shall see later, G−∞(X;E) ⊂ Ψ−∞(X;E) is actually an open
dense subset, just like the invertible matrices in all matrices. As a topological
algebra it is independant of X and E (provided dimX > 0).

Definition 4. An operator has finite rank if its range is finite dimensional.

We are particularly interested in finite rank smoothing operators.

Lemma 16. A smoothing operator A ∈ C∞(X;E,F ) is of finite rank if and
only if there are elements fi ∈ C∞(X;F ), ei ∈ C∞(X;E′) i = 1, . . . , N and ν ∈
C∞(X; Ω) such that

(L8.6) A =
N∑
i=1

fi(x)ei(y)ν(y).

Proof. By definition if A ∈ C∞(X;E,F ) has finite rank, its range must be a
finite dimensional subspace of C∞(X;F ). Let the fi be a basis of this space. Thus,

we can write Au =
N∑
i=1

(Aiu)fi where Ai : C∞(X;E) −→ C is continuous. If the fi

are orthonormalized with respect to an hermitian inner product on F and a density
on X then Aiu = 〈Au, fi〉 so these functionals are given by pairing with the smooth
density

(L8.7) Ai =
∫
X

〈A(x, y), fi〉F ν(x) ∈ C∞(X;E′ ⊗ Ω)

Dividing by a fixed density 0 < ν ∈ C∞(X; Ω) gives ei = Ai/ν ∈ C∞(X;E′) and
this shows that the kernel can be written in the form (L8.6). �

If we insist that the ei be independent, or even orthonormalized with respect
to some choice of hermitian inner product on E (hence on E′) and density on X
then the kernel takes the form

(L8.8) A =
N∑
i=1

aijfi(x)ej(y)ν(y).

We may also use the antilinear isomorphism of E′ and E in terms of the chosen
inner product to think of the ei as sections of C∞(X;E). Then (L8.8) can be written
rather fancifully as

(L8.9) A =
N∑
i=1

aijfi(x)ej(y)ν(y), aij ∈ C,
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where the operation ei is the antilinear isomorphism. Then the action of A is
through the inner product

(L8.10) Au(x) =
∑
i,j

aij

∫
X

〈ei(y), u(y)(y)〉fi(x).

If E = F then we can orthonormalize the collection of all the ei and fj together
and denote the result as ei. In this case we have embedded A inside the collection
of N ×N matrices via (L8.10) which now becomes

(L8.11) Au(x) =
∑
i,j

aij

∫
X

〈ei(y), u(y)〉ei(x).

Notice in fact that these finite rank smoothing operators do form a subalgebra of
Ψ−∞(X;E) which is isomorphic as an algebra to M(N,C).

Lemma 17. The finite rank operators are dense in Ψ−∞(X;E,F ).

I will give a rather uninspiring proof of this in which the approximation is done
rather brutally. One can give much better approximation schemes, and I will,
but first one needs to show that such approximation is possible (since this result
is so basic it is actually used in the spectral theory which lies behind the better
approximations. . . ).

Proof. In the special case that XTn is a torus and E = Ck and F = Ck′

are trivial bundles we can use Fourier series. Let ν = |dθ1 . . . dθn| be the standard
density on the torus then and element A ∈ Ψ−∞(Tn; Ck,Ck′) is a k×k′ matrix with
entries in Ψ−∞(Tn), so acting on functions. The kernel, using the trivialization of
the density bundle, is just an element a ∈ C∞(T2n) which we can therefore expand
in Fourier series. Let us write this expansion with the sign reversed in the second
variable (in Tn)

(L8.12) a(θ, θ′) =
∑
I,J

aIJe
iJ·θe−iJ·θ

′

where the sum is over all I, J ∈ Zn and the coefficients are rapidly decreasing,
because of the smoothness of a

(L8.13) aiJ = (2π)−2n

∫
T2n

e−iI·θiJ·θ
′
dθdθ′.

Since this double Fourier series converges rapidly the truncated kernels

(L8.14) aN (θ, θ′) =
∑

|I|,|J|≤N

aIJe
iJ·θe−iJ·θ

′

converge to a in the C∞ topology. Clearly aN is a finite rank smoothing operator,
so this proves the result in the case of the torus.

In the general case of a compact manifoldX and bundles E, F, choose a covering
of X by coordinate patches Ui over which both bundles are trivial and a partition
of unity of the form ρ2

p subordinate to this cover. We may think of each of the Up
as embedded as an open subset of Tn = Rn/2πZn, by translating and scaling Up
until it is contained in (0, 2π)n. Then we may apply the discussion above to the
kernel ρpA(x, y)ρq(y) which may be interpreted as acting between trivial bundles
over the torus. Of course, from (L8.14) the resulting approximating finite rank
kernels aN,p,q will not have support in Up × Uq when regarded as subsets of T2n.
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However ρp(x)aN,p,qρq(y) does have such support and is of the form (L8.9) with
the ej being the eiJ·θ

′
ρq(y) and similarly for the fi. Thus, summing these finitely

many kernels we obtain a sequence of finite rank operators on X converging to A
in the C∞ topology. �

We need to consider families of operators, so note that this proof of approxi-
mation works uniformly on compact sets with the ei and fj fixed, i.e. independent
of the parameters so only the coefficients in the approximating kernels depend on
the parameters.

Now, recall that I have defined the odd K-theory of a compact manifold as

(L8.15) K−1(X) = [X,G−∞(Y ;E)] = π0(C∞(X;G−∞(Y ;E))

So this includes the claim that the result is independent of the choice of Y and the
bundle E (provided that dimY > 0). Note that
(L8.16)
C∞(X;G−∞(Y,E)) = {K ∈ C∞(X×Y 2; Hom(E)⊗π∗LΩ); ∃ (Id+K(x, ·))−1 ∀ x ∈ X}.
So the equivalence relation defining K−1(X) is just that K ≡ K ′ if there exists
K̃ ∈ C∞(X × [0, 1];G−∞(Y ;E)) such that K̃

∣∣
t=0

= K and K̃
∣∣
t=1

= K ′.
The standard definition of odd K-theory is as the stable homotopy classes of

(continuous) maps in GL(N,C). I will not work with this directly, but if you think
a little about the proof below that K1(X) is independent of the choice of Y and E
you will see how to show the equivalence of (L8.15) and the standard definition.

Proposition 15. The groups G−∞(Y ;E) are connected and the set (L8.15)
for any compact manifold X is independent of the choice of Y and E, so given
two choices Y,E and Z,F there is a natural bijection between [X;G−∞(Y ;E)] and
[X,G−∞(Z,F )].

Proof. That G−∞(Y ;E) is connected follows from the fact that that it is lo-
cally connected, so if aN → a in G−∞(Y ;E) then for large N, aN may be connected
to a and the fact that GL(N ; C) is connected. Or once can proceed more directly,
as discussed below.

Let us choose a fixed ‘model’, namely Y = S and E = C. Now, we may embed

(L8.17) G(N,C) ⊂ G−∞(S)

by mapping the N ×N matrices to the smoothing operators

(L8.18) M(N,C) 3 akl 7−→ A =
∑

k,l=1,N

(akl − δkl)eikθe−lθ
′
|dθ′|.

The identity N ×N matrix is subtracted here since we want GL(N,C) to be em-
bedded as a subgroup of G−∞(S), which it is for each N.

Given some compact manifold Y and bundle E any smooth map A : X 3
x −→ A(x) ∈ G−∞(Y ;E) may be approximated by finite rank operators A(N)

as in Lemma 17. Choosing a basis as in (L8.11) we may identify the coefficients
δkl+akl with an element of GL(N,C) and then use (L8.18) to map it to Ã : X −→
G−∞(S). It is important to see that this procedure is well defined at the level of
homotopy classes. That is, that the element [Ã] ∈ π0(X;G−∞(S)] is independnet of
choices. With the approximations fixed, the procedure only depends on the choice
of basis. Since (see the remarks following Lemma 17) the basis is independent
of the parameters in X the choice only corresponds to a choice of basis (possibly
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including redundant elements). Add redundant elements to the basis does not
change the family Ã and changing the basis results in its conjugation by a fixed
element of G−∞(S), replacing Ã by B−1Ã(x)B, B ∈ G−∞(S). Since we know that
G−∞(Y,E) is connected, B may be smoothly connected to the identity, so the
conjugated element gives the same homotopy class. All families sufficiently close
to a given family are in the same homotopy class so in fact for large enough N
the homotopy class of Ã only depends on the homotopy class of A. Applying the
construction to X × [0, 1] shows that homotopic families lift to the same homotopy
class, so the map

(L8.19) π0(X;G−∞(Y ;E)) −→ π0(X;G−∞(S))

is well-defined. An inverse to it can be constructed in essentially the same way, so
this is a bijection independent of choices. �

The trace of matrices may be defined as the sum of the diagonal elements

(L8.20) tr(aij) =
∑
i

aii.

It is invariant under change of basis since if a′ = b−1ab then

(L8.21) tr(a′) =
∑
i

(b−1ab)ii =
∑
i,j,k

b−1
ij ajkbki =

∑
i,j,k

ajkbkib
−1
ij = tr(a).

Thus, tr : hom(V ) −→ C is a well-defined linear map for any vector space V.
If we apply this to the finite rank operators in (L8.11) we find, using the assume

orthonormality of the basis, that

(L8.22)
∑
i

aii =
∑
i

aii

∫
Y

〈ei(y), ei(y)〉 =
∫
Y

tr(A(y, y))ν(y)

in terms of the trace on hom(E) of which A(y, y) = A
∣∣
Diag

is a section. Thus for
general smoothing operators we may simply define

(L8.23) Tr(A) =
∫
Y

tr(A
∣∣
Diag

).

Proposition 16. The trace functional is a well-defined continuous linear map

(L8.24) Tr : Ψ−∞(Y ;E) −→ C

which satisifies

(L8.25) Tr([A,B]) = 0 ∀ A, B ∈ Ψ−∞(Y ;E).

Proof. If A, BΨ−∞(Y ;E) then

Tr(AB) = Tr(C), C(x, z) =
∫
Y

A(x, y) ·B(y, z)

where the · refers to composition in the ‘Hom(E)’ bundles. Thus in fact

(L8.26) Tr(AB) =
∫
Y

tr (A(x, y) ·B(y, x)) =
∫
Y

tr (B(y, x) ·A(x, y)) = Tr(BA)

using the same identity for hom(E). �
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Note that it follows from (L8.22) that under approximation by smoothing op-
erators,

(L8.27) Tr(A) = lim
N→∞

Tr(AN ).

Using this one can show that the determinant extends to smoothing operators
in the following sense.

Theorem 4. (Fredholm) There is a unique map

(L8.28) Ψ−∞(Y ;E) 3 A −→ det(Id+A) ∈ C
which is entire and satisfies

(L8.29)

det (Id+A)(Id+B)) = det(Id+A) det(Id +B)

∂s det(Id+sA)
∣∣
s=0

= Tr(A)

A ∈ G−∞(Y ;E)⇐⇒ A ∈ Ψ−∞(Y ;E), det(Id+A) 6= 0.

From this it follows that Ψ−∞(Y ;E) ⊂ G−∞(Y ;E) is an open dense subset.
The determinant can be defined on G−∞(Y ;E) by using the connectedness to
choose a smooth curve γA : [0, 1] −→ G−∞(Y ;E) from Id to a given point A and
then setting

(L8.30) det(Id+A) = exp(
∫ 1

0

Tr
(

(Id+γA(t))−1 dγA(t)
dt

)
dt.

Of course it needs to be shown that this is independent of the choice of γA, that it
extends smoothly to all of Ψ−∞(Y ;E) (as zero on the complement of G−∞(Y ;E)
and that it satisfies (L8.29).

8+. Addenda to Lecture 8

There are many other results on smoothing operators which reinforce the sense
in which they are ‘infinite rank matrices.’ Think for instance of the spectrum.

Proposition 17. If A ∈ Ψ−∞(X;E) then

(8+.31)
spec(A) = {z ∈ C \ {0}; (z Id−A) : L2(X;E) −→ L2(X;E) is not invertible}

is discrete except (possibly) at 0 ∈ C

and for each 0 6= z ∈ spec(A) the associated generalized eigenspace
(8+.32)
E(z) = {u ∈ C∞(X;E); (z Id−A)Nu = 0 for some N ∈ N} is finite dimensional.

Proof. If we could use the Fredholm determinant – although at this stage I
have not finished the proof of its properties – then the discreteness would be clear
once since certainly

(8+.33) spec(A) ⊂ {z ∈ C; det(Id−A
z

) = 0}

and the latter is the set of zeros of a holomorphic function on C\{0}. So, we would
only need to show that the determinant is not identically zero.

In any case we can proceed more directly, without using the determinant but
instead using ‘analytic Fredholm theory’. First of all, if we give E an inner product
and choose a density on Y then we know that ‖A/z‖ = ‖A‖/|z| so for |z| > ‖A‖
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it follows that (Id−Az )−1 exists. Thus spec(A) ⊂ {z; |z| ≤ ‖A‖}, meaning that
(A−z Id)−1 is a holomorphic family of bounded operators, and hence map in G−∞

for ‖z‖ > ‖A‖. �





CHAPTER 9

Homotopy invariance of the index

Lecture 9: 18 October, 2005

Let me first improve a little on the parametrix constructed in the case of an
elliptic pseudodifferential operator.

Proposition 18. If A ∈ Ψm(X;E,F ) is elliptic then there exists B ∈ Ψ−m(X;F,E)
such that

(L9.1) BA = IdE −π, AB = IdF −π′

where π ∈ Ψ−∞(X;E) is projection onto the null space of A and π′ is projection
onto the null space of B which is a complement to the range of A. Choosing inner
products and smooth densities one can further arrange that π∗ = π and (π′)∗ = π′.

Proof. We know already, as a consequence of the assumption of ellipticity,
that there exists a parametrix B0 ∈ Ψ−m(X;F,E) such that B0A = Id−R, AB0 =
Id−R′ with R and R′ smoothing operators on the appropriate bundles, E and F.
Since the finite rank smoothing operators are dense in the smoothing operators, we
can find a finite rank operator RF such that R̃ = R − RF has L2 norm less than
one. Thus (Id−R̃)−1 exists as a bounded operator on L2(X;E) and is of the form
Id−S̃ with S̃ ∈ Ψ−∞(X;E). Composing on the right with this operator,
(L9.2)
B′A = (Id−S̃)(Id−R) = (Id−R̃)−1(Id−R̃−RF ) = Id−(Id−S̃)RF = Id−SF , B′ = [(Id−S̃)B0],

where SF ∈ Ψ−∞(X;E) also has finite rank. On the null space of SF , which has
finite codimension, A is injective, since B′ inverts it. It also follows from (L9.2)
that the null space of A is contained in the null space of Id−SF , which is finite
dimensional. Thus we may choose a finite dimensional subspace U ⊂ C∞(X : E)
which complements null(SF )+(A) in C∞(X;E). Setting D = null(SF )+U it follows
that

(L9.3) C∞(X;E) = D + null(A)

and that A : D −→ A(D) = A(null(SF ) + A(U) ⊂ C∞(X;F ) is injective. Let
V ⊂ C∞(X;F ) be a complement to A(D); thus V is finite-diemnsional and in
terms of this, and the decomposition (L9.3),

(L9.4) A =
(
A 0
0 0

)
Then we may simply define B to be the inverse of A on A(D) and to be zero on
V. Note that B differs from B′, which inverts A on A(null(SF )) by a finite rank

0.7E; Revised: 29-11-2006; Run: November 29, 2006
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smoothing operator and BA = Id−π where π is the projection onto null(A) which
vanishes on D and that AB = Id−π′ where π′ is the identity on V and vanishes
on A(D). Thus we have arrived at (L9.1).

If we give E and F Hermitian inner products and choose a positive smooth
density on X then we may consider the effect of replacing D in the discussion
above by null(A)⊥. Certainly null(A)⊥ ∩D has finite codimension in null(A)⊥ and
the same codimension in D. We may replace D by null(A)⊥ in the discussion above
and choose V to be A(null(A)⊥)⊥. This ensures that π∗ = π and (π′)∗ = π′. �

Now observe that for a finite rank, smoothing, projection Tr(π) is equal to its
rank. Thus, with B the ‘generalized inverse’ of Proposition 18 we find that

(L9.5) ind(A) = Tr(π)− Tr(π′) = Tr(IdE −BA)− Tr(IdF −AB).

Proposition 19. For any parametrix, B ∈ Ψ−m(X;F,E) of an elliptic ele-
ment A ∈ Ψm(X;E,F )

(L9.6) ind(A) = Tr(IdE −BA)− Tr(IdF −AB).

Proof. Denote the generalized inverse of Proposition 18, for which (L9.5)
holds, as B̃. Then for a parameterix as in the statement, C = B−B̃ ∈ Ψ−∞(X;F,E)
and Bt = B̃+ tC is a smooth family of parametrices for t ∈ [0, 1] with B0 = B̃ and
B1 = B. Thus it suffices to show that the right side in (L9.6) is constant in t. Since

(L9.7)
d

dt
(Tr(IdE −BtA)− Tr(IdF −ABt)) = Tr(AC)− Tr(CA) = 0

since

Lemma 18. For any C ∈ Ψ−∞(X;F,E) and A ∈ Ψm(X;E,F )

(L9.8) Tr(AC) = Tr(CA).

Proof. If Ci −→ C in Ψ−∞(X;F,E) then ACi ←→ AC and CiA −→ CA
in Ψ−∞(X;F ) and Ψ−∞(X;E) respectively. Since we may choose the Ci to be of
finite rank, it suffices to prove (L9.8) for finite rank smoothing operators. Since
the identity is linear in C it is enough to consider the case where C has rank 1,
Cf = v(f)w where v(f) =

∫
X
v ·f for some v ∈ C∞(X;F ′⊗ΩX) and w ∈ C∞(X;E)

is fixed. Then AC and CA are also of rank 1 (or 0)

(L9.9) AC(f) = v(f)Aw, CA(g) = v(Ag)w

and

(L9.10) Tr(AC) =
∫
X

v ·Aw = Tr(CA).

�

�

From this we deduce that

Proposition 20. The index is a (smooth) homotopy invariant of elliptic op-
erators.
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Proof. Consider a smooth family of elliptic operatorsAt ∈ C∞([0, 1];Ψm(X;E,F )),
(the argument works equally well if we just assume continuity in t). Then, as shown
above, we may construct a smooth family of parametricesBt ∈ C∞([0, 1];Ψ−m(X;F,E).
Thus BtAt− IdE and AtBt− IdF are both smooth families of smoothing operators.
It follows from (L9.6) that the index itself depends smoothly on t ∈ [0, 1]. However
it takes integer values and so is constant. �

Since the index is homotopy invariant we can change the lower order terms
freely and leave the index unchanged. Thus ind(A) actually only depends on σ(A) ∈
C∞(S∗X; hom(E,F )) since it two operators A, A′ have the same symbol then (1−
t)A+ tA′ has constant symbol and hence remains elliptic, so the ind(A) = ind(A′).

In fact even some of the information in the symbol is irrelevant for the index
and to state the index theorem we eliminate this extraneous data by passing to a
topological object.

Proposition 21. For any compact manifold Y (of positive dimension) and
any bundle G over Y

(L9.11) K−1(X) = [X;G−∞(Y ;G)]

the set of smooth homotopy classes of smooth maps, is an Abelian group naturally
independent of the choice of Y and G.

Proof. We know that we may deform a smooth map F : X ←→ G−∞(Y ;G)
to be of the form Id−F̃ with F̃ of uniformly finite rank, i.e. acting on a fixed finite-
dimensional subspace of C∞(Y ;G). Choosing a basis of this space, this reduces the
map to F̃ : X −→M(N,C), Id−F̃ ∈ C∞(X; GL(N,C).

Consider especially the case Y = S, G = C. Then we may identify M(N,C),
the algebra of N ×N matrices, with the operators on finite Fourier series

(L9.12) M(N,C) 3 {ajk}N1 7−→ a(θ, θ′) =
1
2π

N∑
j,k=1

ajke
ijθe−ikθ

′
,

a

(
N∑
p=1

upe
ipθ

)
=
∑
k

(∑
l

aklul

)
eikθ.

Combined with the discussion above, this allows us to deform F to the finite rank
perturbation F̃ and then embed into G−∞(S) :

(L9.13) [X;G−∞(Y,G)] 7−→ [X;G−∞(S)].

Note that the homotopy class of the image is independent of the basis chosen, since
GL(N,C) is connected. Similarly, it does not depend on N, increasing it results in
a homotopic map.

This construction is reversible, so proving the first part of the proposition.
So, this is just a consequence of the possibility of finite rank approximation.

In standard topological approaches K−1(X) is defined simiply by the stabilization
of maps in GL(N,C), we ‘avoid’ this by passing to G−∞. Note that G−∞ is like
GL(N,C), as non-commutative as can be. Nevertheless K−1(X) is an Abelian
group with the product induced by the product in G−∞. Namely, after retracting
both Fi ∈ C∞(X;G−∞) to F̃i ∈ C∞(X; GL(N,C)) we may embed GL(N,C) as the
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upper left corner in GL(2N,C) as 2×2 matrices with entries in M(N,C) (stabilized
by the identity in the lower right corner) and then we may rotate using

(L9.14)
(

cos θ − sin θ
sin θ cos θ

)(
F̃ 0
0 Id

)(
cos θ sin θ
− sin θ cos θ

)
=
(
F̃ 0
0 Id

)
at θ = 0,

(
Id 0
0 F̃

)
at θ = π/2.

This allows us to deform F̃2 until it commutes with F̃1. Thus the product is com-
mutative. �

Lemma 19. For any compact manifold with corners we may embed K−1(X) 7−→
K−1(X × S) as the subgroup of homotopy classes of S-constant maps and then
K−1(X × S) splits as a direct sum of groups

(L9.15) K−1(X × S) = K−1(X)⊕K−2(X)

where

(L9.16) K−2(X) = [X × S, X × {1}, G−∞(Y ;G), Id]

may be identified as the homotopy classes of pointed maps.

Note that the identification (L9.15) can be seen at the level of maps as

(L9.17) [f ] 7−→ [f1] + [f2], f1(x, θ) = f(x, 1), f2(x, θ) = f(x, 1)−1f(x, θ)

which is clearly an isomorphism at the level of maps.

Proof. The map induced by (L9.17) gives an isomorphism (L9.15) since under
homotopy of f both f1 and f2 undergo homotopies within their respective classes
of maps, constant and pointed. �

There are other useful representations of K−2(X). One that will occur later
corresponds to maps which are not only ‘pointed’ in the sense that f(x, 1) = Id
but are flat at this submanifold, that is they differ from the constant, identity, map
by a map into Ψ−∞(Y ;G) which vanishes to infinite order at X × {1}. Namely, if
F : X × S −→ Ψ−∞(Y ;G) defines Id+F : X × S −→ G−∞(Y ;G) and F (x, 1) = 0
then if φ ∈ C∞(S) has 0 ≤ φ ≤ 1 and φ(θ) = 1 in |θ−1| ≤ ε, φ(θ) = 0 if |θ−1| > 2ε
for ε > 0 small enough,

(L9.18) Id+(1− ρ)F : X × S −→ G−∞(Y ;G)

is homotopic to Id+F.

Definition 5. The (smooth, flat, pointed) loop group, G−∞(1) (Y ;G), ofG−∞(Y ;G)
is the space of Schwartz maps
(L9.19)
G−∞(1) (Y ;G) =

{
a ∈ bS(R; Ψ−∞(Y ;G)) s.t. (Id +a(t)) ∈ G−∞(Y ;G) ∀ t ∈ R

}
.

Lemma 20. For any compact manifold Y and complex vector bundle G over Y,
G−∞(1) (Y ;G) is a topological group with the topology inherited from bS(R; C∞(Y 2; Hom(G)⊗
ΩY ).
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Proof. Since we already know that G−∞(Y ;G) is a topological group, this is
straightforward. In fact G−∞(1) (Y ;G) is an open subset of bS(R; C∞(Y 2; Hom(G)⊗
ΩY ), since invertibility in G−∞(Y ;G) is the same as invertibility on L2(Y ;G).
Composition and inversion are continuous, since the are continuous on G−∞(Y ;G).

�

The smooth map R 3 t −→ exp
(
i t

1+t2)
1
2
π

)
identifies the complement of 1 in

S with R. Using this and the deformation above, we may identify

(L9.20) K−2(X) = [X;G−∞(1) (Y ;G)],

since this is just a restatement of flatness at the submanifold X × {1}.
Thus, essentially by definition, G−∞(Y ;G) and G−∞(1) (Y ;G) are classifying

spaces for odd and even K-theory, respectively. Later I will reinterpret G−∞(1) (Y ;G)
as the ‘symbol group’ for elliptic Toeplitz operators on the circle (stabilized by hav-
ing values in the smoothing operators on Y ). This will lead to an exact classifying
sequence for K-theory of the form

(L9.21) G−∞(S× Y ;G) −→ ∗ −→ G−∞(1),0(Y ;G)

where ∗ is a contractible group (a group of invertible Toeplitz perturbations of
the identity) and the extra ‘0’ on the loop group means the component of the
identity, on which the index vanishes. This is closely related to Bott periodicity.
The sequence in (L9.21) is essentially the symbol sequence for Toeplitz operators,
as a subalgebra of the pseudodifferential operators on the circle.

9+. Addenda to Lecture 9





CHAPTER 10

Chern forms and the Fredholm determinant

Lecture 10: 20 October, 2005

I showed in the lecture before last that the topological groupG−∞ = G−∞(Y ;E)
for any compact manifold of positive dimension, Y, and and bundle E, is an open
subset of the (infinite dimensional) vector space Ψ−∞(Y ;E). I also, by fiat, de-
clared it to be a classifying space for odd K-theory. This would not be sensible
except of course that it is such a classifying space. If you consult a standard book
on topology you will see that my claim amounts to the assertion

(L10.1) πk(G−∞) =

{
0 k even
Z k odd.

This result, which I will prove later, justifies my declaring that for any smooth
compact manifold

(L10.2) K−1(X) = [X,G−∞]

is the abelain group of (smooth) homotopy classes of (smooth) maps.
Back to the statement that G−∞ is open in Ψ−∞, where I drop the qualifying

space Y and bundle E since they are irrelevant. This means that I can happily treat
G−∞ as a manifold. In fact the tangent space to G−∞ at a point A = Id+a (I
will try to stick to this notation of A as the whole operator and a as the smoothing
part) defined as usual as the equivalence classes of smooth curves Id+at, a0 = a,
under tangency, is just Ψ−∞,

(L10.3) dA : TAG−∞ 3 [Id+at] 7−→
dat
dt

∣∣
t=0
∈ Ψ−∞.

The notation ‘dA’ really comes from Lie group theory. In fact we may think of this
map as defined on the whole of the tangent bundle to G−∞ and hence also

(L10.4) A−1dA : TG−∞ −→ Ψ−∞.

This is the universal left-invariant 1-form on G−∞. Under left multiplication by
B ∈ G−∞

(L10.5) LB : G−∞ 3 A 7−→ BA ∈ G−∞, L∗B(A−1dA) = A−1B−1BdA = A−1dA.

From this form we may construct the (Unnormalized) odd Chern forms

(L10.6) u2k−1 = Tr
(
(A−1dA)2k−1

)
, k = 1, 2, . . . .

0.7E; Revised: 29-11-2006; Run: November 29, 2006
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Here the product is interpreted as the product in Ψ−∞ followed by antisymmetriza-
tion, i.e. the wedge product. Written out more formally this is
(L10.7)

u2k−1(b1, . . . , b2k−1) =
∑

σ∈Σ2k−1

sgn(σ) Tr
(
A−1bσ(1)A

−1bσ(2) · · ·A−1bσ(2k−1)

)
where the sum is over the permutation group on {1, . . . , 2k − 1}. The smoothness
of composition, inversion and the trace shows this to be a smooth form on G−∞.
Of course this can also be done with an even number of factors but then the trace
idenity shows that
(L10.8)
Tr
(
(A−1dA)2k

)
= Tr

(
(A−1dA) ∧ (A−1dA)2k−1)

)
= −Tr

(
(A−1dA)2k−1) ∧ (A−1dA)

)
= 0

since an odd number of transpositions occur.
The forms u2k−1 are left invariant, from the left invariance of A−1dA but also

right-invariant, since under RB : G−∞ 3 A 7−→ AB ∈ G−∞, R∗B(A−1dA) =
B−1(A−1dA)B.

Now the standard formula dA−1 = −A−1(dA)A−1 is justified here as usual
by differentiation the equality of smooth functions A−1A = Id . Rewriting the
definition
(L10.9)
u2k−1 = Tr

(
(A−1dA) ∧ (A−1dAA−1dA)k−1

)
= (−1)k−1 Tr

(
(A−1dA) ∧ (dA−1 ∧ dA)k−1

)
.

Thus,
(L10.10)
du2k−1 = (−1)k−1 Tr

(
(dA−1 ∧ dA) ∧ (dA−1 ∧ dA)k−1

)
= −Tr

(
(A−1dA)2k

)
= 0

and it follows that these forms are closed.
By definition in (L10.2), and odd K-class on a compact manifold X is repre-

sented by a smooth map f : X −→ G−∞.We may use f to pull back the forms u2k−1

to smooth forms on X. Since df∗u2k−1 = f∗(du2k−1) these forms are necessarily
closed.

Proposition 22. The deRham model of cohomology leads, for each k ∈ N, to
a well-defined and additive map

(L10.11) U2k−1 : K−1(X) −→ H2k−1(X; C).

Proof. The deRham cohomology class of the closed from f∗u2k−1 is constant
under homotopy from f : X −→ G−∞ to f : X −→ G−∞. Indeed, such an
homotopy is a smooth map F : [0, 1]×X −→ G−∞ with F (0, ·) = f and F (1, ·) = f ′.
If ft = F (t, ·) then dF ∗u2k−1 = becomes the condition

(L10.12)
df∗t u2k−1

dt
= dXvt =⇒ f∗1u2k−1 − f∗0u2k−1 = dv, v =

∫ 1

0

vtdt.

Thus the map (L10.11) is well-defined. Its additivity follows from the discussion
last time which shows that two maps fi : X −→ G−∞, i = 1, 2 may be deformed
homotopically to be each finite rank perturbations of the identity and in commuting
N×N blocks inG−∞. For such maps the product (f1f2)∗u2k−1 = f∗1u2k−1+f∗2u2k−1

showing the additivity. �
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Taking the correct constants in a formal sum

(L10.13)
∑
k

ckU2k−1 : K−1(X) −→ Hodd(X; C)

will give the ‘odd Chern character’ discussed later. Its range then spans Hodd(X; C)
and its null space is the finite subgroup of torsion elements of K−1(X), those
elements satisfying p[f ] = 0 (represented by the constant maps) for some integer p
depending on f.

Even Chern forms can be defined in the same way as forms on the group G−∞(1) .

Let me use the version of this group defined last time, were we consider (for some
underlying manifold Y and bundle E) the space of smooth Schwartz maps

(L10.14) G−∞(1) (Y,E) =

{a ∈ S(Rt; Ψ−∞(Y ;E)) = S(R×Y 2; Hom(E)⊗π∗RΩY ); Id +at ∈ G−∞(Y ;E) ∀ t ∈ R}.

Then again G−∞(1) is an open subspace of S(R× Y 2; Hom(E)⊗ π∗RΩY ) and we set

(L10.15) u2k =
∫

R
Tr
(

(A−1dA)2k(A−1 dA

dt

)
dt.

Since we may regard G−∞(1) as a subset of C∞(R;G−∞) this may also be considered
as the integral over R of the pullback of u2k+1. In any case this is again a closed
form, this can also be seen directly, and for the same reasons as in the odd case
defines an additive map

(L10.16) K−2(X) −→ H2k(X; C) for each k ∈ N0.

An appropriate combination of these forms gives the Chern character (now the
‘usual’ Chern character) which has image spanning over C.

The simplest, and most fundamental, cases of these forms are the first odd
Chern form

(L10.17) u1 = Tr(A−1dA) on G−∞

and its integral in the even case

(L10.18) u0 =
∫

R
Tr(A−1 dA

dt
)dt, A ∈ G−∞(1) .

Proposition 23. The form u1/2πi is integral, i.e. for any smooth map γ :
S −→ G−∞,

(L10.19)
∫
γ

u1 ∈ 2πiZ.

Proof. We may prove this by finite rank approximation. Since the integral
is a cohomological pairing, we know it is homotopy invariant. Thus it suffices to
replace γ by an approximating loop which is a uniformly finite rank perturbation of
the identity. Thus we can assume that γ : S −→ GL(N,C) for some embedding of
GL(N,C) in G−∞. Since the trace restricts in any such embedding we are reduced
to the matrix case. Then (L10.19) follows from the standard formula for matrices
that

(L10.20) d log det(A) = Tr(A−1dA)

with the integer in (L10.19) being the variation of the argument of the determinant
along the curve. �
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Conversely we may use (L10.19) to conclude the the definition of the determi-
nant on G−∞ which I proposed earlier,

(L10.21) det(A) = exp
(∫ 1

0

Tr(A−1
t

dAt
dt

dt

)
,

where t → At is a curve in G−∞ from A0 = Id to A1 = A, does indeed lead to a
well-defined function

(L10.22) det : G−∞ −→ C.

Indeed, such a curve exists, by the connectedness of G−∞ and two such curves
differ by a closed curve (admittedly only piecewise smooth but that is not a serious
issue).

Furthermore it follows directly from the definition that det is multiplicative.
Namely for AB we may use the product AtBt of the curves connection the factors
to the identity. Then

(L10.23) (AtB + t)−1d(AtBt) = B−1
t dBt +B−1

t (A−1
t dAt)Bt =⇒

Tr(AtB + t)−1d(AtBt) = Tr(B−1
t dBt) + Tr(A−1

t dAt)

from which it follows that det(AB) = det(A) det(B) as in the finite dimensional
case. Of course this also follows by approximation, given the continuity of det which
follows from the same formula.

In fact the Fredholm determinant in (L10.22) extends to a smooth map

(L10.24) Ψ−∞(Y ;E) 3 A 7−→ det(Id+A)C

which is non-vanishing precisely on G−∞.
++++ Add definition near zeros (this is a good exercise!)
Of course it follows from Propositon 23 that

(L10.25)
u0

2πi
: G−∞(1) −→ Z.

We shall see below that this can be interpreted as the simplest case of the index
formula and that this map faithfully labels the components of G−∞(1) .

Next I turn to the Toeplitz algebra. This algebra is the basic object which
leads to a short exact sequence of groups

(L10.26) G−∞ −→ G0 −→ G−∞(1),−[[ρ]] ∼ G−∞(1),0.

Here I will not explain the whole notation for the moment, but the normal subgroup
on the left is one of our ‘smoothing groups’, the central group is supposed to be
contractible and the group on the right is homotopic to the identity component
(this is the extra 0 subscript, meaning the index is zero in (L10.25)) of the loop
group G−∞(1) .

Now, this sequence is supposed to come, after some work, from the short exact
sequence arises from the symbol of a pseudodifferential operator

(L10.27) Ψ−1(X; CN ) −→ Ψ0(Z; CN ) −→ C∞(S∗Z;M(N,C)).

For the moment I will ignore the difference between Ψ−1 and Ψ−∞, when taken
into account this will lead to the ‘formal power series’ parameter ρ on the right in
(L10.26) – there are other more serious problems to be dealt with! To get from
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(L10.27) to (L10.26) we first want to consider the set of elliptic and invertible ele-
ments of Ψ0(Z; CN ). If we consider the normal subgroup of invertible perturbations
of the identity we arrive at

(L10.28) G−1(Z; CN ) −→ G0(Z; CN ) −→ C∞(S∗Z; GL(N,C)).

Here
(L10.29)
G−1(Z; CN ) = {Id+A;A ∈ Ψ−1(Z; CN ), (Id+A)−1 = Id+B, B ∈ Ψ−1(Z; CN )},

G0(Z; CN ) = {A;A ∈ Ψ0(Z; CN ) elliptic and A−1 ∈ Ψ0(Z; CN )}

where we will finally replace the former by G−∞.
Now, in general the second map in (L10.28) is not surjective, since that would

mean that every elliptic element can be perturbed to be invertible and we known
that this means precisely that the index vanishes. Thus the index is the (only)
obstruction to the exactness of (L10.28). Of course we want to discuss this in
treating the index formula but for the moment I am after something else.

Namely, I would like to choose Z so that the central group in (L10.28) is
contractible and the image group is essentially a G−∞(1) . To arrange the latter we
need to do two things. First we need to choose the manifold Z so that

(L10.30) S∗Z = S

and then to ‘stabilize’ things so that Cn is replaced by an infinite dimensional space
in such a way that GL(N,C) becomes one of our G−∞ groups. This second step
may seem the most daunting but it is not and I will discuss how to do this next
time. So, let us think about how to arrange (L10.30). Of course the small problem
here is that this is impossible, there is no such manifold. Indeed, it would have to be
1-dimensional and compact, hence just the circle if we demand it to be connected.
However

(L10.31) S∗S = S t S

is the disjoint union of two copies of the circle.
There are two ways to overcome this problem (well I know a third which you

can find in [4] if you look hard enough). Stated vaguely these are

(A) Replace the circle by the line R so that ‘S∗R’ is interpreted as the bound-
ary of the radial compactification of T ∗R = R2 as a vector space (not a
vector bundle over R). In this sense we would arrive at (L10.30). I was
going to do this in these lectures, and I may still do so. It requires go-
ing back to the beginning of the lectures and discussing a variant of the
conormal distributions for subspaces of a vector space. This leads to the
‘isotropic calculus’ on R (or in fact on Rn) which can be used to construct
the sequence I am after.

(B) Kill off half of (L10.31) and work on the remaing half. This is what I
will do, namely discuss the Toeplitz algebra and its variants. I find this
approach less geometrically transparent but it has plenty of history behind
it.

For the circle we can decomposte smooth functions as a direct sum

(L10.32) C∞(S) = C∞− (S) + C∞+ (S)
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where these are limited by the Fourier coefficients

(L10.33) a ∈ C∞+ (S)⇐⇒ a =
∑
k≥0

ake
ikθ,

∑
k≥0

|ak|kj <∞ ∀ j.

The Szegő projection is the linear map which excises the negative Fourier modes

(L10.34) S : C∞(S) −→ C∞+ (S), S(a) =
∑
k≥0

ake
ikθ if a =

∑
k∈Z

ake
ikθ.

Clearly this is a projection, S2 = S with null space C∞− (S) and range C∞+ (S).
Note that one can always recover a compact manifold, Z, from C∞(Z) with

its multiplicative structure. Namely the points of Z can be identified with the
valuations on the ring, the linear maps p : C∞(Z) −→ C such that p(fg) = p(f)p(g).
The space C∞+ (S) is a ring, as follows easily from the definition, but it is not the
space of smooth functions on a manifold since the set of valuations actually recovers
S. Still, the idea is that we can think of this ‘Hardy space’ C∞+ (S) as the space of
functions on ‘half of S.’ Note that the Fourier parameter k is closely related to the
dual variable on the fibres of the cotangent space T ∗S = S×R which indicates that
S restricts to the ‘positive half of the cotangent bundle.’ More concretely

Lemma 21. The Szegő projector S ∈ Ψ0(S).

Consider the Toeplitz algebra

(L10.35) T = {A ∈ Ψ0(S);A = SAS}.
It is indeed a subalgebra of the algebra of pseudodifferential operators since
(L10.36)

A1, A2 ∈ T =⇒ S(A1A2) = S(SA1S)(SA2S)S = (SA1S)(SA2S) = A1A2.

To arrive at the algebra I will proceed in three steps.
(1) We need to replace Ψ0(S) by the corresponding algebra of operators ‘val-

ued in the smoothing operators’ on some manifold Y. This can be identified
with C∞(Y 2; Ψ0(S)).

(2) The symbol space of this algebra consists of smooth functions on S∗S =
StS with values in C∞(Y 2). We will consider the subalgebra of functions
which have (full) symbols vanishing to infinite order at one point p ∈ S+.

(3) We then consider the corresponding Toeplitz algebra SAS with A of this
form and define G0 to be the group of operators of the form Id+SAS
which are elliptic on S+ and invertible.

(4) This group G0 is actually contractible.

10+. Addenda to Lecture 10



CHAPTER 11

Toeplitz operators

Lecture 11: 25 October, 2005

Today I want to start working towards the contractibility of the group which
I will call G0

T and which I have not yet defined. As mentioned last time it is
made up out of the Toeplitz algebra, hence the subscript T . For the moment I will
prove some preliminary results about the Toeplitz algebra and make a start on the
contractibility.

The most basic result I will not prove in full detail – it is a good excerise!

Lemma 22. The Szegő projector S : C∞(S) −→ C∞+ (S) given explicitly in terms
of the Fourier series expansion by

(L11.1) Su(θ) =
∑
k≥0

cke
ikθ if u =

∑
k∈Z

cke
ikθ

is an element of Ψ0(S); it is a self-adjoint projection (S2 = S∗ = S) and its am-
plitude, the local Fourier transform of its kernel with respect to a normal fibration,
vanishes rapidly at infinity in one (the negative) direction.

Hint only, carried out below. Think of S as the boundary of the unit
disk D in the complex plane. The elements of C∞+ (S) are actually those which have
extension to C∞(D) (smooth up to the boundary that means) which are holomorphic
in the interior. Then S can be obtained as the boundary value of the map

(L11.2) S̃(f)(z) =
1

2πi

∫
S

f(eiθ)
z − eiθ

dθ, |z| < 1,

interpreted as a contour integral. Applied to eikθ = τk k ≥ 0 it gives zk in the
interior and applied to e−ikθ = z−k, k > 1, it gives zero as can be checked using
Cauchy’s formula. From this the kernel of S can be recovered in terms of the
limit as |z| ↑ 1 of (z − τ)−1. Certainly then the kernel is smooth away from the
diagonal and one can compute the Fourier transform transversal to the diagonal of
the kernel (cut off near the diagonal) and show that it is an element of C∞(T ∗S).
A little contour shoving will show that it vanishes rapidly in the negative direction
and approaches 1 in the positive direction. �

Now, the Toeplitz algebra

(L11.3) Ψ0
T (S; CN ) =

{
A ∈ Ψ0(S; CN );A = SAS

}
,

0.7E; Revised: 29-11-2006; Run: November 29, 2006
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94 11. TOEPLITZ OPERATORS

which is regarded as an algebra of operators on C∞+ (S; CN ), is topologically simpler
than the whole of the algebra, as we shall see. I will proceed to prove some results
for this and the whole algebra, leaving the ‘stabilization’ to next time.

First is the simplest basic result leading to the definition of the (analytic)
families index of a family of elliptic pseudodifferential operators. I will do this for
the circle but the proof will later be shown to extend almost unchanged to a general
manifold. The circle is much simpler than the general case, at the moment, because
we have a sequence of smoothing projections

(L11.4) πr : C∞(S) 3 u =
∑
k

cke
ikθ 7−→ πru =

∑
|k|≤r

cke
ikθ ∈ C∞(S).

We extend these to act componentwise on vector-valued functions. The crucial
property that these projections have is that

(L11.5) A ∈ Ψ−∞(S; CN ) =⇒ Aπr → A in Ψ−∞(S; CN ).

Proposition 24. Suppose that A : X −→ Ψ0(S; CN ) is a smooth family of
elliptic pseudodifferential operators, parameterized by a compact manifold X, then
there exists a smooth family B : X −→ Ψ−∞(S; CN ) such that (A(x) + B(x))−1 ∈
Ψ0(S; CN ) exists for each x ∈ X, if and only if for large enough r the

(L11.6) Fr(x) = null((Id−πr)A∗(x)) ∈ C∞(S; CN )

form a smooth vector bundle over X which is bundle-isomorphic to a trivial bundle
of dimension (2r + 1)N.

Proof. First we show that for r large enough, the Fr(x) do indeed form a
smooth vector bundle over X. Since A(x) is an elliptic family, there is a smooth
family Q : X −→ Ψ0(S; CN ) of parametrices for the A(x), so

(L11.7) Q(x)A(x) = Id−R(x), R ∈ C∞(X; Ψ−∞(S; CN )).

Composing on the right with Id−πr we get

(L11.8) Q(x)A(x)(Id−πr) = (Id−R′r(x))(Id−πr), R′r(x) = R(x)(Id−πr),

where the fact that (Id−πr)(Id−πr) = (Id−πr) has been used. Since R(x)πr →
R(x) uniformly as a family of smoothing operators (i.e. in the C∞ toplogy) we
know that for large enough r the inverse

(L11.9) (Id−R′r(x))−1 = Id−Sr(x), Sr ∈ C∞(X; Ψ−∞(S; CN )

exists. Composing on the left with the inverse and then with the operator Id−πr
and setting Q′(x) = (Id−πr)(Id−Sr(x))Q(x) we find that

(L11.10) Q′(x)A′r(x) = Id−πr, A′r(x) = A(x)−A(x)πr.

From this it follows that the null space of A′r is precisely

(L11.11) null(A(x)(Id−πr)) = null(Id−πr)

the span of the Fourier terms with wavenumber |k| ≤ r. This is a trivial vector
bundle over X of dimension (2r + 1)N. Certainly, the left in (L11.11) contains the
right and if (Id−πr)u = u then (L11.10) shows that A′r(x)u 6= 0.

It also follows from (L11.10) that the Fr(x) form a smooth vector bundle over
X. To see this, recall that we know the (numerical) index of A(x) to be a homotopy
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invariant. In particular it is a fixed integer for all x (well, in each component of X)
for A′r(x). Since

(L11.12) ind(A′r(x)) = (2r + 1)N − dim(Fr(x))

is locally constant, the Fr(x) have locally constant dimensions and this is enough to
guarantee that they vary smoothly with x ∈ X. In fact Q′(x) has range the same as
Id−πr and hence has null space which is of constant dimension and A′r(x)Q

′(x) =
Id−G(x) has null space which is a smooth bundle isomorphic to Fr.

Thus we have succeeded in ‘stabilizing’ the null spaces to a bundle and the
complements to the range to a bundle by modifying A(x) by a smoothing operator
to A′r(x) = A(x)−A(x)πr. The ‘families index of A’ is the formal difference of the
null bundle and complement to the range

(L11.13) [(A′r(x)	 Fr] ∈ K0(X)

where for the moment I have not defined either the left or right sides of this inclu-
sion.

Now, we can prove one direction of the Proposition. If for large r there is an
isomorphism to a trivial bundle over dimension (2r+1)N then we can interpret this
as an isomorphism of Fr to null(A′r(x)) and in this sense it is given by a family of
smoothing operators, which we can denote by B′r(x). Clearly A′r(x)+B′r(x) is then
a family of invertible operators, differing from the original family by smoothing
operators as anticipated.

Conversely, suppose that such an invertible perturbation exists so A(x)+B(x)
is invertible for all x ∈ X. Since B(x)πr → B(x) uniformly in the C∞ topology, it
follows that A(x) +B(x)πr is invertible for r large enough. Since this is equal to

(L11.14) A′r(x) +Br(x), Br(x) = (A(x) +B(x))πr

where A′r(x) = A(x)(Id−πr) as before, it follows that Br(x) is an isomorphism from
the null space, which is a trivial bundle of dimension (2r + 1)N to a complement
to the range of A′r(x), and hence to Fr. �

In fact this result is not restricted to the circle but extends to an arbitrary
compact manifold (and more generally for a fibration by compact manifolds) once
we can find appropriate replacements for the projections πr.

The proof passes over to the Toeplitz case essentially unchanged, if we interpret
πr as the projection onto the span of the Fourier terms with 0 ≤ k ≤ r.

Corollary 3. Suppose that A : X −→ Ψ0
T (S; CN ) is a smooth family of elliptic

Toeplitz pseudodifferential operators, parameterized by a compact manifold X, then
there exists a smooth family B : X −→ Ψ−∞

T (S; CN ) such that (A(x) + B(x))−1 ∈
Ψ0
T (S; CN ) exists for each x ∈ X, if and only if for large enough r the Fr(x) defined

by (L11.6) form a smooth vector bundle over X which is bundle-isomorphic to a
trivial bundle of dimension (r + 1)N.

Corollary 4 (of proof). If At : X −→ Ψ0
T (X; CN ) (or Ψ0(X; CN )) is a curve

of elliptic families, i.e. is a smooth map from [0, 1]t ×X elliptic at each point, and
is invertible for t = 0 then there exists a smooth family Bt : X −→ Ψ−∞

T (S; CN )
with B0 = 0 such that At(x) +Bt(x) is invertible for all t ∈ [0, 1] and all X.

Proof. As in the proof above, consider At(x)(Id−πr). For r large enough this
has null space equal to that of Id−πr for all t ∈ [0, 1] and all x ∈ X and there
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is then a smooth bundle over [0, 1] × X complementary to the range. Applying
Proposition 24 the restriction of this bundle to t = 0 must be isomorphic to the
null bundle, which is trivial and of dimension (r+1)d. Since [0, 1]×X is contractible
to {0}×X it follows that the bundle is trivial over the whole of [0, 1]×X so applying
the Proposition in the other direction there is a smoothing perturbation making
the operator invertible. Following the last part of the proof, this perturbation can
be chosen to vanish at t = 0. �

We will use this result later to lift homotopies of smooth elliptic families to
homotopies of invertible families.

Now, let me turn to the first substantial homotopy computation of the two
needed to construct the classifying sequence for K-theory. In this I will use two
‘shifts’ in the Toeplitz algebra. Namely

(L11.15)

U : C∞+ (S) −→ C∞+ (S), Uu =
∑
k≥0

cke
i(k+1)θ if u =

∑
k≥0

cke
ikθ and

L : C∞+ (S) −→ C∞+ (S), Lu =
∑
k≥1

cke
i(k−1)θ if u =

∑
k≥0

cke
ikθ.

Both are elliptic elements of Ψ0
T (S) since they can be written

(L11.16) U = SeiθS, L = Se−iθS

and they are essential inverses of each other

(L11.17) LU = Id, UL = Id−π0.

In particular L has null space exactly the constants and the constants form a
complement to the range of U. Thus

(L11.18) ind(U) = −1, ind(L) = 1.

Set

(L11.19) G̃0
T (S; CN ) =

{
A ∈ Ψ0

T (S; CN );A is elliptic and A−1 ∈ Ψ0
T (S; CN )

}
.

The tilde here is to distinguish it from a smaller group I will discuss later. We
can inject GL(N,C) −→ G̃0

T (S; CN ) as the operators (of the form Id +a, a ∈
Ψ−∞
T (S,CN ))

(L11.20) GL(N,C) 3 g −→ Id−π0 + π0gπ0.

Let us also consider, in the standard way of ‘stabilization’ that

GL(N,C) ⊂ GL(2N,C)

as the upper left corner in a 2× 2 block decomposition

(L11.21) GL(N,C) 3 g 7−→
(
g 0
0 IdN

)
∈ GL(2N,C).

Proposition 25. If GL(N,C) −→ G̃0
T (S; C2N ) is embedded as a subgroup by

combining (L11.21) and (L11.20) (for 2N in place of N) then the image subgroup
is deformable to the identity.
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Proof. Dividing C2N into CN ⊕ CN we can picture the operators as block
2 × 2 matrices with entries which are N × N matrices of Toeplitz operators. The
subgroup GL(N,C) can then be identified with

(L11.22) M0 =
(

Id−π0 + π0gπ0 0
0 Id

)
.

This is the intial value of a curve of operators in Ψ0
T (S; C2N )

(L11.23) Mθ =
(

cos θ(Id−π0) + π0gπ0 sin θgU
− sin θg−1L cos θ Id

)
, 0 ≤ θ ≤ π

2
.

This is an elliptic family of Toeplitz operators (so the Id’s can be read as S’s) since
it symbol is the invertible matrix

(L11.24)
(

cos θ sin θgeiθ

− sin θg−1e−iθ cos θ

)
(which has determinant 1). Now, Mθ has the property that for all k > 0,

(L11.25) Mθ

(
uke

ikθ

vke
i(k−1)θ

)
=
(

fke
ikθ

gke
i(k−1)θ

)
,

(
fk
gk

)
=
(

cos θ sin θg
− sin θg−1 cos θ

)(
uk
vk

)
and maps (u0, 0) to (gu0, 0). From the invertibility of these matrices it follows that
Mθ is a curve in G̃0

T (S; C2N ).
At the end of this first deformation we have arrived at the initial point of the

curve

(L11.26) M ′
θ =

(
cos θg(Id−π0) + π0gπ0 sin θU

− sin θL cos θg−1 Id

)
.

(where now θ runs from π/2 back to 0). This has essentially the same properties as
Mθ. Namely it is elliptic since the symbol matrix is

(L11.27)
(

cos θg sin θeiθ

− sin θe−iθ cos θg−1

)
which again has determinant 1 and satisfies the analogue of (L11.25) with the
matrix replaced by

(L11.28)
(

cos θg sin θ
− sin θ cos θg−1

)
which is again invertible (and the same on the zero mode).

At the end of this second homotopy (all uniform on GL(N,C) of course) we
have arrived at the ‘Toeplitz operator’ which is purely a matrix

(L11.29)
(
g 0
0 g−1

)
.

It is straightforward to see that this is homotopic to the identity in GL(2N,C)
using a similar rotation but purely in matrices, namely

(L11.30)
(

cos θg sin θ
− sin θ cos θg−1

)
, θ ∈ [0, π/2]

followed by

(L11.31)
(

cos θ sin θ
− sin θ cos θ

)
, θ ∈ [π/2, 0]

finishing at the identity. �
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This result will allow us to show that the ‘G−∞T ’ part of the final group can
be (weakly) deformed away. Next time I will start with Atiyah’s proof of Bott
periodicity modified to show how the invertible elliptic operators can be deformed
into this smoothing subgroup. The combination of the two discussions will give the
weak contractibility we are after.

11+. Addenda to Lecture 11

11+.1. Proof of (L11.5). This is really just the convergence of Fourier series.
Thus, for f ∈ C∞(S) the truncated Fourier series πrf −→ f in C∞(S) as r → ∞.
An element A ∈ Ψ−∞(S) is represented by a smooth kernel, A ∈ C∞(S× S),

(11+.32) Af(θ) =
∫

S
A(θ, θ′)f(θ′)dθ′.

Since πr is self-adjoint and real,

(11+.33) A(πrf)(θ) =
∫

S
A(θ, θ′)(πrf)(θ′)dθ′ =

∫
S
Ar(θ, θ′)f(θ′)dθ′

where Ar is obtained from A by the action of πr in the second variable. For a
smooth family of smooth functions, the Fourier series converges uniformly with all
its derivatives. Thus

(11+.34) Aπr −→ A ∈ C∞(S× S)

which is the topology on Ψ−∞(S), as claimed in (L11.5).

11+.2. Proof of Lemma 22. Following the ‘hint’ of the lecture, we first
observe that restriction to the boundary gives an isomorphism

(11+.35) C∞hol(D) = {u ∈ C∞(D); (∂x + i∂y)u = 0} −→ C∞+ (S).

Surjectivity follows easily, as indicated in the lecture, since if a ∈ C∞+ (S) then
its Fourier series converges uniformly with all derivatives on the circle and since
eikθ = zk restricted to the circle and |zk| ≤ 1 in the disc

ua(z) =
∑
k≥0

akz
k

converges uniformly on D, with all derivatives, to a holomomorphic function (since
the terms are holomorphic) restricting to a on the boundary. Moreover, all elements
of C∞hol(D) arise this way, since the Fourier coefficients of the boundary value of
u ∈ C∞hol(D) can be written, for k < 0, as

(11+.36) ak =
1
2π

∫
S
e−ikθu(z)dθ = lim

r↑1

∫
|z|=r

z−ku(z)
dz

z
= 0

by Cauchy’s integral formula. Thus the boundary value is in C∞+ (S) and if it vanishes
then extending u as 0 outside the disc gives a continuous function on R2 which
satisfies (∂x+ i∂y)ũ = 0, in the sense of distributions, everywhere. Thus (by elliptic
regularity) it is in fact an entire function of compact support, which must vanish
identically. Thus the map is also injective.

Consider the integral in (L11.2). For |z| < 1 this certainly converges for any
f ∈ C∞(S) (since z−eiθ 6= 0 with all its derivatives and by differentiation under the
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integral sign it is holomorphic in |z| < 1. Using the rapid convergence of the Fourier
series we may interchange series and integral and conclude that for any f ∈ C∞(S),
(11+.37)

S̃(f)(z) =
∑
k∈Z

akuk(z), uk(z) =
1

2πi

∫
S

eikθ

eiθ − z
dθ =

1
2πi

∫
|τ |=1

τk

τ − z
dτ

iτ
.

For k < 0 there are no poles outside the unit disk, including at τ = ∞, so by
Cauchy’s integral formula the uk(z) ≡ 0, k < 0. For z ≥ 0 there is a pole at
∞ and applying the residue formula, it evaluates to zk. Thus in fact S̃(f)(z) is
the holomorphic extension, into |z| < 1, of S(f). It is therefore smooth up to the
boundary, by the discussion above, so indeed

(11+.38) S(f)(eiθ) = lim
r↑1

S̃(f)(z)

as claimed.
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Linearization of symbols

Lecture 12: 27 October, 2005

Today I will go through the second homotopy that I will use next time to
construct the classifying sequence for K-theory. This construction is due to Atiyah
([1]). The question is the extent to which one can simplify, or bring to normal
form, a family of loops in GL(N,C). Thus, for a given smooth compact manifold
X suppose we have a smooth map a : X −→ C∞(S; GL(N,C)) which is the same
thing as an element of C∞(X × S; GL(N,C)). I will assume that it satisfies the
normalization condition

(L12.1) a
∣∣
1∈S ≡ Id .

We are allowed to make deformations, i.e. homotopies, of the family and we are
also permitted to stabilize the family by embedding GL(N,C) ↪→ GL(M,C) for any
M ≥ N, as the subgroup

(L12.2) GL(N,C) 3 a −→
(
a 0
0 IdM−N

)
∈ GL(M,C).

The result shown by Atiyah is that by such stabilization and deformation (al-
ways through invertibles of course) we may arrive at a family

(L12.3) ã(x) = π−(x)e−iθ + π0(x) + π+(x)eiθ

where π−, π0 π+ are three smooth maps into the projections on CM which mutually
commute for each x and sum to the identity

(L12.4) π−(x) + π0(x) + π+(x) = Id ∀ x ∈ X.

Notice that this is just the normalization condition (L12.1) for a family of the form
(L12.3).

To construct such a (stable) homotopy, we first consider the Fourier expansion
of a

(L12.5) a(x, θ) =
∞∑

j=−∞
aj(x)eijθ.

The coefficients here are smooth functions valued in N ×N matrices, namely

(L12.6) aj(x) =
1
2π

∫
S
e−ijθa(x, θ)dθ

0.7E; Revised: 29-11-2006; Run: November 29, 2006

101
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which vanish rapidly with j, so for any differential operator P on X and any q ∈ N.

(L12.7) sup
X
|Paj(x)| ≤ Cq(1 + |j|)−q.

Thus the series (L12.5) converges rapidly in any Cp norm and there exists q such
that with
(L12.8)
a(q)(x, θ) =

∑
|j|≤q

aj(x)eijθ, at = (1− t)a+ ta(q) : [0, 1]×X × S −→ GL(N,C).

We can also maintain the normalization condition under the homotopy since
ct(x) = at(x, 1) : [0, 1]×X −→ GL(N,C) is the identity at t = 0 so c−1

t (x)at(x, θ)
is a new homotopy to a trigonometric polynomial satisfying the normalization con-
dition. Thus a and a(q) are homotopic, so we can consider instead a(q) and just
suppose that a is a trigonometric polynomial of some degree satisfying the normal-
ization condition.

Thus a(x, θ) = b(x, z)
∣∣
z=e−iθ

where

(L12.9) b(x, z) = z−qb′(x, z), b′ : X × C −→M(N,C) a polynomial of degree 2q

and of course b′ is invertible on the circle and b′(x, 1) = Id . Now we will use a
simple form of stabilization to separate off the z−q factor. Add another N × N
identity block and consider the 2× 2 block rotation

(L12.10) Rτ =
(

cos(τ) IdN sin(τ) IdN
− sin(τ) IdN cos(τ) IdN

)
.

Replacing a by

R−τ

(
z−q IdN 0

0 IdN

)
Rτ

(
b′(x, z) 0

0 IdN

)
gives a homotopy for τ ∈ [0, π/2] which rotates the z−q into the second block,
finishing at

(L12.11)
(
b′(x, z) 0

0 z−q IdN

)
.

We then proceed to discuss these two blocks separately, of course the first is
a good deal more complicated than the second. We will stabilize the first block
by another p blocks each N × N, where p = 2q is the degree of the polynomial b′

(notice that a polynomial of degree p has p + 1 terms.) Thus we replace the first
block by

(L12.12)


b′(x, z) 0 0 . . . 0

0 IdN 0 . . . 0
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
0 0 0 . . . IdN


and what is crucial is that this is invertible on X×S where the circle is |z| = 1 now.
Since this matrix is block diagonal, we can keep invertibity while adding absolutely
any terms above the diagonal. What I want to do is to choose polynomials valued
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in N ×N matrices (no invertibility condition of course) and deform (L12.12) to

(L12.13)


b′(x, z) c1(x, z) c2(x, z) . . . cp(x, z)

0 IdN 0 . . . 0
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
0 0 0 . . . IdN

 .

To do this, just put a t ∈ [0, 1] in front of the cj ’s. We can imagine (L12.13) as
postmuliplied by the identity, then deform the identity to

(L12.14)


IdN 0 0 . . . 0
−z IdN 0 . . . 0
. . . . . . . . . . . . . . .
. . . 0 −z IdN 0
0 0 . . . −z IdN


which has −z all along the ‘subdiagonal’. This is a lower-triangular perturbation
so is still invertible and homotopic to the identity. Thus, without having chosen
the cj , we have deformed the matrix to the product
(L12.15)

b′(x, z) c1(x, z) c2(x, z) . . . cp(x, z)
0 IdN 0 . . . 0
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
0 0 0 . . . IdN




IdN 0 0 . . . 0
−z IdN 0 . . . 0
. . . . . . . . . . . . . . .
. . . 0 −z IdN 0
0 0 . . . −z IdN



=


g0(x) g1(x) g2(x) . . . gp(x)
−z IdN 0 . . . 0
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
0 0 0 −z IdN

 = p+(x, z).

Here

(L12.16) g0 = b′ − zc1, g1 = c1 − zc2, . . . , gp−1 = cp−1 − zcp, gp = cp.

Observe that we can choose the cj ’s successively to be polynomials of degree p− j
so that each of the gj ’s is a constant matrix, i.e. does not depend on z at all. In
fact the gj ’s are just the coefficient matrices of b′.

At the end of this deformation the (enlarged) block corresponding to b′(x, z)
has been reduced to a linear, in z, matrix. We can proceed in the same way with
the other, simpler block with entry z−p IdN , but replacing z by 1/z. This shows
that there is a homotopy, after appropriate stabilization, to a matrix of the form

(L12.17) a(x, θ) = a−(x)e−iθ + a′0(x) + a′′0(x) + a+(x)eiθ

through invertible matrices. Here the a− and a′0 matrices form one block and the
a′′0 + a+ form another. As before we can enforce the normalization condition, that
at the point 1 ∈ S the matrix is the identity, simply by multiplying by the inverse
of this matrix. Thus we can assume that both the blocks in the discussion above
satify the normalization condition. Thus

(L12.18) a−(x) + a′0(x) = Idp− , a
′′
0(x) + a+(x) = Idp+ .
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It follows that a−(x) and a′0(x) and a′′0(x) and a+(x) commute for each x and these
two block commute with each other. Thus, in the combined form (L12.17) it follows
that a−(x), a0(x) and a+(x) are commuting matrices, for each x, summing to the
identity.

Consider the matrices obtained by integration round the circle

(L12.19) π =
1

2πi

∫
|z|=1

p+(x, z)−1 dp+(x, z)
dz

dz

z
.

Since p+ is invertible on the circle, this is a smooth matrix in x. Suppose for a
moment that a+(x) is invertible. Then

(L12.20) p+(x, z)−1 = (a+(x))−1(a′′0(x) + z)−1

and the contour integral (L12.19) may be evaluated by residues. In fact π(x) is
then the projection onto the span of those eigenvectors of −a+(x)−1a′′0(x) with
eigenvalues |z| < 1 (and vanishing on the span of the eigenvectors with eigenvalues
in |z| > 1). We may always perturb a+(x) to a+(x) + s Id for small s to make it
invertible. So in the general case, without assuming that a+(x) is invertible, it
follows that π(x) is a projection (as the limit of a sequence of projections) and that
it commutes with both a′′0(x) and a+(x) (since these commute with the argument
of the integral).

Decomposing p+(x, z) with respect to π(x), with which it commutes, the term
p+(x, z)π = a1(x) + b1(x)z has no zeros outside the unit circle so the matrix
(1 − t)a1(x) + b1(x)z is invertible on the unit circle for all t ∈ [0, 1]. Similarly
p+(x, z)(Id−π) = a2(x) + b2(x)z has no singular values inside the unit circle so
a2(x) + (1− t)b2(x)z remains invertible on the unit circle for all t ∈ [0, 1]. Combin-
ing these two homotopies and premultiplying by the value at z = 1 gives a homotopy
of p+(x, z) to π(x) + (Id−π(x))z – indeed the end point is a′2(x) + b′1(x)z where
a′2(x) acts on the range of π and b′1(x) on the range of Id−π and the normalization
condition holds.

Carrying out a similar analysis for p−(x, z) we obtain a homotopy, always
keeping invertibility for |z| = 1 from the initial map a : X × S −→ GL(N,C), after
stabilization, to a family of the form (L12.3).

We will apply this homotopy to the symbols of a family of elliptic Toeplitz
operators, P : X −→ Ψ0

T (S; CN ), allowing stabilization.

Proposition 26. If P is a smooth family of invertible elliptic Toeplitz operators
parameterized by the compact manifold X with symbols satisfying the normalization
condition

(L12.21) σ0(P )
∣∣
1∈S = Id

then, after stabilization, it may be smoothly deformed through invertible Toeplitz
operators to P̃ : X −→ G−∞T (S; CM ).

Proof. We can certainly apply the previous result to the symbol family, de-
forming it to the form (L12.3). We may then choose an elliptic family with these
symbols which reduces to P at t = 0. As shown above such a homotopy of families of
elliptic operators which is invertible at t = 0 may perturbed by a smoothing family,
which vanishes at the intial point, to make the whole family invertible. Thus, we
may suppose that we have an operator with symbol of the form (L12.4) and which
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is invertible. We can easily find an explicit family of operators with this symbol,
namely

(L12.22) Q(x) = π−(x)L+ π0(x) + π+(x)U

where L and U are the shift (down and up respectively) operators. Thus we can in
fact suppose that Q(x) is invertible after the addition of a smoothing family.

On the other hand we may easily compute the (stabilized) null bundles of Q(x)
and its adjoint. Namely (for any k ≥ 0 it is not really necessary to stabilize here)

(L12.23)

null(Q(x)(Id−πk)) = sp{eijθCM , 0 ≤ j ≤ k}

null((Id−πk)Q∗(x)) = sp{eijθCM , 0 ≤ j ≤ k − 1,

eikθ(π0 + π+(x))CM , ei(k+1)θπ+(x)CM}.

Now we know that the assumption that Q(x) has an invertible perturbation
means that these two bundles must be isomorphic for large k. The first of these is
just the trivial bundle of rank (k + 1)M whilst the second is the trivial bundle of
rank kM plus the range of π0 + π+ plus another copy of the range of π+. Since
π− complements π0 + π+ to a trivial bundle of range M, adding the range of π−
to both sides (with the identity isomorphism) this means there must be a vector
bundle isomorphism

(L12.24) CL + Ran(π−) ' CL + Ran(π+).

Now, observe that the 2L× 2L block matrix

(L12.25)
(
e−iθ 0
0 eiθ

)
is homotopic to the identity using a simple rotation

(L12.26)
(

cos(τ)e−iθ sin(τ)
− sin(τ) cos(τ)eiθ

)
to τ = π/2, followed by the rotation back without the exponentials. Thus we can,
by stabilizing, add such a matrix to the symbol of Q(x). This replaces π+ and
π− by trivially stabilized projections so that they have ranges which are bundle
isomorphic. Finally then this allows us to perform a similar rotation to the identity.
Namely, identifying the range of π− with that of π+ using a bundle isomorphism,
F, we may consider the homotopy

(L12.27)

cos(θ)e−iθπ− sin(τ)F 0
− sin(τ)F−1 cos(τ)eiθ 0

0 0 π0


and then back again without the exponentials.

Thus the symbol can be deformed to the identity (after stabilization of course)
which means that the operator can be deformed, through invertibles, to a family
in G−∞T (S; CL). �

Next time I will show that this construction, together with the construction
from last time, gives the weak contractibility of the stabilized, normalized Toeplitz
group which I will now proceed to define.
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Choose any compact manifold Y (as usual with positive dimension). Then we
can consider the space
(L12.28)

C∞(Y 2; Ψm(S)⊗ ΩRY ) = Im
′
(S2 × Y 2,DiagS; ΩR(Y × S), m′ = m− 1

2
dimY.

Apart from the (trivial) density factors this is just the space of smooth functions
with values in the pseudodifferential operators on S. However, we may also interpret
it as the space of pseudodifferential operators on S ‘with values in the smoothing
operators on Y.’ That is, there is a full operator composition on this space.

To see this, consider the Toeplitz action of A ∈ C∞(Y 2; Ψm(S) ⊗ ΩR) on u ∈
C∞(S× Y )

(L12.29) A(y, y′)u(θ, y′′) ∈ C∞(Y 3 × S; Ω′Y ).

Restricting to the diagonal and integrating gives

(L12.30) Au =
∫
Y

A(y, y′)u(θ, y′) ∈ C∞(S× Y )

and this is a continuous linear operator. Operator composition therefore works in
the obvious way, if A ∈ C∞(Y 2; Ψm1(S)⊗ΩRY ), B ∈ C∞(Y 2; Ψm2(S)⊗ΩRY ) then

(L12.31) AB(y, y′) =
∫
Y

A(y, z) ◦S B(z, y′) ∈ C∞(Y 2; Ψm1+m2(S)⊗ ΩRY )

and with this product we will denote the space as

(L12.32) C∞(Y 2; Ψm(S)⊗ ΩRY ) = Ψm,−∞(S, Y ).

It is straightforward to do the same thing for operators between sections of any
two vector bundles over Y or Y × S. We can also look at the elements which are
valued in the Toeplitz operators and consider the algebra

(L12.33) Ψ0,−∞
T (S, Y ) = SΨ0,−∞(S, Y )S.

We ‘really’ view this algebra as a stabilization of all the Ψ0
T (S; CN ) each of which

can be embedded in it as a subalgebra by taking a corresponding finite dimensional
subspace of C∞(Y ) and considering only operators acting on it. These can also be
thought of in the form (L12.33) in that if πN ∈ Ψ−∞(Y ) is a projection onto a
subspace of dimension N then

(L12.34) πNΨ0,−∞
T (S, Y )πN ' Ψ0

T (S; CN ).

The symbol maps in all these cases are surjective maps onto the corresponding
spaces of smooth functions

(L12.35)

Ψ0(S) σ0−→ C∞(S+ t S−)

Ψ0
T (S) σ0−→ C∞(S), S = S+

Ψ0(S; CN ) σ0−→ C∞(S;M(N,C))

Ψ0,−∞
T (S) σ0−→ C∞(S; Ψ−∞(Y ))

and these are homomorphism of the corresponding algebras.
Now, we want to consider the group of invertible perturbations of the identity

of this type. Notice that the fact that these operators are valued in smoothing
operators means that they cannot be invertible, say acting on C∞(S× Y ), on their
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own. We add a normalization condition for the same reason as it was added to the
homotopy result above and consider

(L12.36)
G0,−∞
T (S, Y ) =

{
A ∈ Ψ0,−∞

T (S); Id +A is elliptic (i.e. σ0(A) ∈ C∞(S;G−∞(Y ))

(Id+A)−1 − Id ∈ Ψ0,−∞
T (S), σ(A)

∣∣
1∈S = 0

}
.

Sometimes I will get carried away and just denote this as G0
T (S) even though it

does depend on Y.
So, next time I will prove

Proposition 27. The topological group G0,−∞
T (S, Y ) is weakly contractible.

The proof, as I said before, is obtained by combining the two homotopies that
I have talked about today and last time. We will get some other things out of these
as well. Why should we care about this? For one thing it means that the short
exact sequence of groups

(L12.37) G−∞T (S× Y ) −→ G0,−∞
T (S, Y ) −→ Q

where Q is the quotient, is a classifying sequence for K-theory.

12+. Addenda to Lecture 12





CHAPTER 13

Classifying sequence for K-theory

Lecture 13: 1 November, 2005

Today I will discuss some of the consequences of the two homotopies I described
last week.

Recall the second of these results. Let X be a compact manifold and consider

A : X −→ C∞(S; GL(N,C)),

a family of smooth maps, so A ∈ C∞(X×S; GL(N,C)), satisfying the normalization
condition that A(x, 1) = Id for all x ∈ X. We are permitted to stabilize the family
by embedding GL(N,C) in GL(M,C) for M ≥ N. Then for M sufficiently large we
can find a homotopy, which is to say a family At ∈ C∞(X × [0, 1]t × S; GL(M,C)),
such that A0 = A and

(L13.1) A1(x) = π−(x)e−iθ + π0(x) + π+(x)eiθ

where π−, π0 and π+ are three smooth families of projections which are mutually
commuting and sum to the identity.

L13.1. Numerical index for the circle.

Corollary 5. If P ∈ Ψ0
T (S; CN ) is an elliptic Toeplitz operator, so σ0(P ) ∈

C∞(S; GL(N,C)) then
(L13.2)

ind(P ) = dim(null(P ))− dim(null(P ∗)) =
i

2π

∫
S
Tr
(
σ0(P )−1 dσ0(P )

dθ

)
dθ.

Proof. For a single symbol (i.e. X = {pt}) of the form (L13.1) we can prove
(L13.2) directly. Namely

(L13.3) P = π−L+ π0 + π+U

is a Toeplitz operator with this symbol, since L has symobl e−iθ and U has symbol
eiθ. The null space of P is

(L13.4) null(P ) = π−(CN )

and since the adjoint is P ∗ = π−U + π0 + π+L

(L13.5) null(P ∗) = π+(CN ) =⇒ ind(P ) = rank(π−)− rank(π+).

On the other hand, with σ0(P ) given by A1,

(L13.6) A−1
1

dA1

dθ
= −iπ− + iπ+ =⇒

∫
S
Tr
(
A−1

1

dA1

dθ

)
dθ = −2πi ind(P )
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which is (L13.2) in this special case.
The homotopy argument shows that every elliptic symbol p ∈ C∞(S; GL(N,C))

normalized by p(1) = Id is stably homotopic to one of the form (L13.1). SettingQ =
p(1) ∈ GL(N,C) it follows that any elliptic operator may be written as a product
P = QP ′ where σ(P ′) satisfies the normalization condition and Q ∈ GL(N,C).
Since Q is an isomorphism, the index of P is equal to the index of P ′. Moreover,
since Q is independent of θ,

(L13.7)
∫

S
Tr
(
σ0(P )−1 dσ0(P )

dθ

)
dθ =

∫
S
Tr
(
σ0(P ′)−1Q−1 dQσ0(P ′)

dθ

)
dθ

=
∫

S
Tr
(
σ0(P ′)−1 dσ0(P ′)

dθ

)
dθ.

Thus, it suffices to prove the index formula for P ′, i.e. to assume the normalization
condition for P. Now, the index of a curve of elliptic operators is constant and we
also know, from Proposition 22, that the right side of (L13.2) is homotopy invariant,
i.e. is constant along a curve of elliptic symbols and holds at the end point. Thus
(L13.2) must hold in general. �

A similar argument works for elliptic pseudodifferential operators on the circle,
with the resulting formula being ‘the same’ except there are now two circles forming
the boundary of T ∗S.

Proposition 28. If P ∈ Ψ0(S; CN ) is elliptic
(L13.8)

ind(P ) = dim(null(P ))− dim(null(P ∗)) =
i

2π

∫
S∗S

Tr
(
σ0(P )−1 dσ0(P )

dθ

)
dθ.

As a consequence of this one can see that the index of any differential operator
on the circle vanishes. Namely, the principal symbol of a differential operator is a
homogeneous polynomial p(θ)τk so the restrictions to ±∞ are (−1)kp(θ) as sections
of the trivial homogeneity bundle. The signs cancel in (L13.8) and the orientations
are opposite, so the terms cancel each other.

L13.2. Contractibility of the Toeplitz group. The central consequence of
the two homotopies discussed last week is the weak contractibility of the normalized
and stabilized group of invertible Toeplitz operators. Let me recall the definition.
We start with the Szegő projector, S ∈ Ψ0(S) which projects a smooth function
on the circle to its non-negative-frequency part, S : C∞(S) −→ C∞+ (S). Then the
Toeplitz algebra is the compression of the pseudodifferential algebra to the range
of S :

(L13.9) Ψ0
T (S) = SΨ0(S)S

which we think of as operators on C∞+ (S). There is no problem considering matrices
of such operators, forming the algebras Ψ0

T (S; CN ) but we want to consider the
‘fully stabilized’ algebra which is the Toeplitz algebra ‘with values in the smoothing
operators’ on another compact manifold Y (and maybe acting on a bundle E.)

So, consider

(L13.10) C∞(Y 2; Ψ0(S)⊗ E) = I− dimY/2(Y 2 × S2,DiagS⊗Hom(E))

where for simplicity of notation I am leaving out the density bundles, since they are
trivial anyway. From the results we have proved for conormal distributions, this is
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an algebra where the product can be interpreted in several equivalent ways. Perhaps
the clearest is to do the composition in S first. Thus, if A,B ∈ C∞(Y 2; Ψ0(S)⊗E)
then

(L13.11) A(y, y′) ◦S B(z, z′) ∈ C∞(Y 4; Ψ0(S)⊗Hom(E)L ⊗Hom(E)R)

where the two copies of Hom(E) are on the left two and the right two copies of Y.
We can then restrict to y′ = z, compose in the two copies of Hom(E) and integrate
out the z variable giving the composite

(L13.12) (A ◦B)(y, y′) =
∫
Y

A(y, z) ◦S B(z, y′)

where we really do need to be carrying the densities along to do the integration
invariantly.

Now, we can compress the operators onto the range of S as before, or equiva-
lently consider directly the smooth maps into the Toeplitz algebra C∞(Y 2; Ψ0

T (S)⊗
E). I will denote this space with the product (L13.12) as Ψ0,−∞

T (S, Y ;E). The sym-
bol map on Ψ0

T (S) extends to give a symbol map which is multiplicative and takes
values in the loops in smoothing operators

(L13.13) σ0 : Ψ0,−∞
T (S, Y ;E) −→ C∞(S; Ψ−∞(Y ;E)), σ0(AB) = σ0(A)σ0(B).

This algebra does effectively stabilize the matrix-valued Toeplitz operators since we
can embed the N ×N matrices as a subalgebra of Ψ−∞(Y ;E), just by choosing an
N -dimensional subspace of C∞(Y ;E), and then

(L13.14) Ψ0
T (S; CN ) ↪→ Ψ0,−∞

T (S, Y ;E)

as a subalgebra acting on the subspace. Of course such an inclusion is not natural,
but any two choices are homotopic through such embeddings, simply by rotating
one subspace of C∞(Y ;E) into the other.

Finally then we come to the group which is

(L13.15) G0
T (S, Y ;E) =

{
A ∈ Ψ0,−∞

T (S, Y ;E); Id+σ(A) ∈ G−∞(1) (Y ;E),

(Id+A)−1 − Id ∈ Ψ0,−∞
T (S, Y ;E) and σ0(A)

∣∣
1∈S = 0

}
.

The first condition is ellipticity (recall that G−∞(1) (Y ;E) is the loop group for
G−∞(Y ;E), corresponding to maps from the circle). The last condition is the
normalization condition. Since the symbol, fixed at a point on the circle, takes val-
ues in G−∞(Y ;E) this effectively kills off a whole classifying space for odd K-theory.
We need this to get the result we are after, namely

Theorem 5. The topological group G0
T (S, Y ;E) is weakly contractible, i.e. if

f : X −→ G0
T (S, Y ;E) is any smooth map from a compact manifold then there is a

smooth homotopy f· : X × [0, 1] −→ G0
T (S, Y ;E) with f0 = f and f1 ≡ Id .

It is easy to see that continuous maps are approximable by smooth maps – or indeed
the proof below carries through in the continuous case with only a little extra care.

Conjecture 1. The group G0
T (S, Y ;E) is dominated by a CW complex and

as a result is actually contractible.

Proof. Basically this amounts to putting the two homotopies, discussed ear-
lier, together. First however we need to discuss the topology, to check that we do
indeed have a topological group – in the infinite dimensional case such as this one
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needs to be careful. The topology on the space of conormal distributions of any
fixed order, for a fixed submanifold, is very like the C∞ topology. Namely we know
that a conormal distribution is the sum of a smooth term and the inverse Fourier
transform of a symbol and we can write this as

(L13.16) Im(X,Z;E) 3 u =⇒ φu = F ∗F−1(a), a ∈ C∞(N∗Z;E
∣∣
Z
⊗N−m′⊗Ωfib)

where φ ∈ C∞(X) cuts off close to Z in the collar neighbourhood fixed by F. With
such choices (including the identification of E on the collar neighbourhood with
E
∣∣
Z
) made, a and φu ∈ C∞(X;E) are determined and we can impose the usual

C∞ topology on them. That is, the seminorms on Im(X,Z;E) are those giving
uniform convergence of all derivatives for a and φu. This gives a metric topology on
Im(X,Z;E) with respect to which it is complete. Of course it is necessary to check
that different choices of cutoff, normal fibration and bundle identification lead to
the same topology but this follows directly from the earlier proofs (and I should
have mentioned it . . . ).

The spaces of pseudodifferential operators are just special cases of conormal
distributions so they also have such topologies. Moreover the proof of the compo-
sition theorem shows the continuity of composition with respect to this topolgy, so
we have the first condition needed for a topological group, that

(L13.17) G0
T (S, Y ;E)×G0

T (S, Y ;E) 3 (A,B) 7−→ AB ∈ G0
T (S, Y ;E)

is continuous with respect to the topology inherited from Ψ0,−∞
T (S, Y ;E). We also

need to check that the same is true for

(L13.18) G0
T (S, Y ;E) 3 A 7−→ A−1 ∈ G0

T (S, Y ;E).

This is the usual stumbling block. In fact, the way we constructed the inverse
was to first use the ellipticity to construct a parametrix and then the parameterix
was ‘corrected ’ to the inverse by adding a smoothing operator. The construction
of the parametrix is locally uniform on compact sets – it involves summation of
the Taylor series for the symbol. The construction of the compensating smoothing
term is also locally uniform. The uniqueness of the inverse (given that it exists)
gives continuity on compact sets. This is enough to give the continuity in (L13.18)
since the topology is metrizable, so it is enough to prove sequential continuity. In
fact the set of invertible elliptic elements is open (within the subspace fixed by the
normalization condition).

Now we proceed in 5 steps.
1) Given such a smooth map f : X ←− G0

T (S, Y ;E) we first approximate
closely, and uniformly on X, by elements of G0

T (S; CN ) using (L13.14) and hence
deform into this smaller algebra. This follows exactly as in the approximation of
smoothing operators by finite rank operators discussed earlier, the only difference
is that in (L13.10) our smoothing operators are valued in the Toeplitz operators.
So, simply decompose Y 2 into small product sets Ui ×Uj over which the bundle E
is trivial and which are embedded in the torus. Using the product of a partition
of unity from Y and Fourier expansion on the torus allows us to approximate f
arbitrarily closely. Note that the fact that the smooth functions are valued in the
linear space Ψ0

T (S) makes very little differece, since this is essentially the same as
C∞(Z) for a compact manifold Z (in fact we can reduce to that case for the symbol
and the smoothing error). It follows that the approximation is uniform on X and
when enough terms in the Fourier series are taken the resulting finite rank family
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(on Y ) lies in G0
T (S; CN ) and is homotopic to f in G0

T (S, Y ;E). Notice that we
can maintain the normalization condition by first ignoring it and then afterwards
composing with the inverse of σ0(f·)

∣∣
1∈S thought of as a map from X × [0, 1] into

G−∞(Y ;E).
2) Now we are reduced to a smooth map from X into G0

T (S; CN ). This was
the setting in which the homotopy given by Atiyah was discussed above. By first
approximating the symbol by its truncated Fourier expansion and then stabilizing
(depending on the order of the truncated symbol as a trigonomentric polynomial)
we get a homotopy for the symbol, stabilized to an element of C∞(S; GL(M,C)),
for M large, to a symbol of the form

(L13.19) π−(x)e−iθ + π0(x) + π+(x)eiθ ∈ C∞(S; GL(M,C)).

Here the smooth families of projections π−, π0 and π+ are mututally commuting
and sum to the identity.

A smooth family of operators with the symbol (L13.19) is

(L13.20) A(x) = π−(x)L+ π0(x) + π+(x)U ∈ Ψ0
T (S; CM ).

This is certainly elliptic and we know that we may stabilize the null spaces to a
bundle by considering A(x)(Id−πk) for large enough k, where πk is projection onto
the span of the eijθ for 0 ≤ j ≤ k. The null space is then equal to that of Id−πk
and we are interested in the null bundle of the adjoint

(L13.21) null((Id−πk)A(x)∗) = null ((Id−πk)(π−(x)U + π0(x) + π+(x)L))

= sp{eijθCM , 0 ≤ j ≤ (k − 1), (π0(x) + π+(x))CMeikθ, π+(x)CMei(k+1)θ}.

3) Now, the original family was invertible and we know that along a curve
of elliptics, which is initially invertible, we may perturb by a smoothing family
(initially zero) to maintain invertibility. Thus the family we arrive at, of the form
(L13.20) can be perturbed to be invertible by a smoothing operator. As shown
earlier this means that the null bundle and null bundle of the adjoint are bundle
isomorphic once they are sufficiently stabilized. In this case this just means that
the bundle (L13.21) is trivial, i.e. isomorphic to a trivial bundle of the same rank,
for large enough k. Writing out (L13.21) this means
(L13.22)

null((Id−πk)A∗(·)) = CkM ⊕
(
CM \ Ran(π − (·)

)
⊕ Ran(π+(·)) ' C(k+1)M .

This in turn means that there exists

(L13.23) F : Ran(π−(·))⊕ C(k+1)M ←→ Ran(π+(·))⊕ C(k+1)M ,

i.e. that the ranges of these two projections are stably isomorphic.
Now, for any bundle, with projector π it is straightforward to see that the

symbol

(L13.24)
(
π(x)e−iθ + (Id−π(x)) 0

0 (Id−π(x)) + π(x)eiθ

)
is homotopic to the identity through invertible symbols. Indeed one such homotopy
is

(L13.25)
(

cos(θ)π(x)e−iθ + (Id−π(x)) sin(θ)π(x)
− sin(θ)π(x) (Id−π(x)) + cos(θ)π(x)eiθ

)
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rotating to π/2 and then back again without the exponentials. It follows that by
using such a homotopy from the identity (in some other matrix block) the symbol
in (L13.20) can be connected to one in which π− and π+ are increased by the same
trivial projection corresponding to CkM . Then the isomorphism in (L13.23) can be
used to deform this symbol to the identity. Namely, simplifying the notation by
identifying π± with the stabilized projections, we may identify F as an isomorphism
from the range of π− to the range of π+. Splitting the space into three, the ranges of
π−, π0 and π+ we may consider the homotopy (where the π±’s are now redundant)
from τ = 0 to π/2

(L13.26)

cos(τ)π−e−iθ 0 sin(τ)F−1

0 π0 0
− sin(τ)F 0 cos(τ)π+e

iθ


and then back again without the exponentials, finishing at the identity.

This we have deformed the family of symbols to the identity after sufficient
stabilization. As already noted this can be lifted to a deformation of invertibles,
i.e. in G0

T (S, Y ;E) which finishes at an element of G−∞T (S × Y ;E) (which is of
finite rank in Y.)

4) At this stage in the deformation the symbol has been trivialized and we are
reduced to a family A ∈ C∞(X;G−∞T (S× Y ;E)) which can be taken to be of finite
rank in Y, i.e. to have image in a subgroup G−∞T (S; CN ) for large N. Even if it
were not the case we can achieve this result directly by finite rank approximation
in Y as before. Now, we further make a finite rank approximation in S by replacing
the family by (Id−πk)A(x)(Id−πk) which converges uniformly to A(x) as k →∞.
Taking k sufficiently large, the family may now be assumed to act on the finite
dimensional subspace of C∞+ (S× Y ;E) spanned by

(L13.27) eijθel, 0 ≤ j ≤ k, 0 ≤ l ≤ N.

Now, again stabilize the group by expanding N to (k + 1)N by choosing k other
independent subspaces of C∞(Y ;E) of the same dimension. Then the basis in
(L13.27) is expanded to

(L13.28) eijθel,p, 0 ≤ j ≤ k, 0 ≤ l ≤ N, 0 ≤ p ≤ k

where el,0 = el and of course the operator is the identity on the terms with p > 0.
Then consider the rotation of basis elements in 2 dimensional spaces for 1 ≤ j ≤ k,
1 ≤ l ≤ N

(L13.29) cos(θ)eijθel + sin(θ)el,j , − sin(θ)eijθel + cos(θ)el,j , θ ∈ [0, π/2]

with all other elements held fixed. This has the effect of rotating all the non-trivial
parts of the matrix into the 0 Fourier term with everything outside the constants
on the circle being the identity.

5) The final step is then to follow the first homotopy of last week which allows
such a matrix in GL(N,C) ⊂ G−∞T (S; CN ), identified as the zero Fourier terms, to
be deformed to the identity in G0

T (S; C2N ). This completes the deformation to the
identity. �

L13.3. Classifying sequence for K-theory. One reason this weakly con-
tractible group is of interest here is that it gives a smooth classifying sequence for
K-theory.
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Theorem 6. There is a short exact sequence of topological groups

(L13.30) G−∞T (S× Y ;E) −→ G0,−∞
T (S, Y ;E) −→ G−∞(1),0(Y ;E)[[ρ]]

in which the first group is classifying for odd K-theory, the second is weakly con-
tractible and the third is (therefore) a reduced classifying group for even K-theory
(i.e. the identity component of such a classifying group). The quotient group is a
formal countable sum (i.e. the elements are sequences, written as power series in
the indeterminant ρ) with leading term an element of G−∞(1),0(Y ;E), the subgroup of
the loop group C∞(S;G−∞(Y ;E)) consisting of the pointed loops (taking 1 to the
identity) of index zero and with lower order terms which are arbitrary elements of
C∞(S; Ψ−∞(Y ;E)).

Since (L13.30) is a short exact sequence of groups, there is a product induced on
the quotient. This will show up a bit later.

Proof. There is actually not too much to prove here since we have shown
the weak contractibility. The leading term of the projection map is just the
principal symbol σ. Thus, if A ∈ G0,−∞

T (S, Y ;E) then we know that σ0(A) ∈
C∞(S;G−∞(Y ;E)) has index zero (this follows from our first result today) and
σ0(A)(1) = 0 is the normalization condition on the symbol. This is precisely the
definition of G−∞(1),0(Y ;E) and the map is surjective since any such symbol of index
zero is the symbol of an invertible operator.

To get the second map in (L13.30) we just consider a normal fibration around
the diagonal in S. Then the corresponding ‘full symbol map’ takes a conormal
distribution in (L13.10) and maps it to the Taylor series at the circle at infinity of
the transverse Fourier transform of the kernel (cut off near the diagonal of S). This
gives a short exact sequence of linear maps

(L13.31) Ψ−∞
T (S× Y ;E) −→ C∞(Y 2; Ψ0

T (S)⊗ E) −→
∞∑
j=0

ρjC∞(S; Ψ−∞(Y ;E)).

The only constraint on an elliptic operator to be perturbable is the already-noted
requirement that the index vanish. Thus, for invertible perturbations of the identity
we arrive at (L13.30). �

There are two other closely related theorems that I will prove next time, again
as consequences of the homotopies discussed earlier. To state them I need to define
the ‘usual’ K-group K0(X) for a compact manifold X. Traditionally this is the
starting point for topological K-theory, but I have instead approach the subject
through

(L13.32) K−1(X) = [X;G−∞(Y ;E)] and

K−2(X) = [X;G−∞(1) (Y ;E)] = [X × S, X × {1};G−∞(Y ;E), Id].

We defineK0(X) as the Grothendieck group associated to stable vector bundles
(under direct sum). Thus if E −→ X and F −→ X are two vector bundles over X
they are isomorphic if there is a diffeomorphism between the total spaces E ←→ F
which maps the fibre Ex linearly to the fibre Fx; denote this relationship E ≡ F.
To define K0(X) consider pairs of vector bundles (E+, E−) (also thought of as Z2-
graded vector bundles) and the equivalence relation of stable isomorphism. That
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is

(L13.33) (E+, E−) ∼ (F+, F−)⇐⇒ ∃ H s.t. E+ ⊕ F− ⊕H ≡ E− ⊕ F+ ⊕H.
It is straightforward to check that this is an equivalence relation and the set it
defines, K0(X), is an abelian group under direct sum

(L13.34) [(E+, E−)] + [(F+, F−)] = [(E+ ⊕ F+, E− ⊕ F−)].

Theorem 7. [Families index for the Toeplitz algebra] Given [a] ∈ K−2(X),
represented by a ∈ C∞(X × S; GL(N,C)) with a(1) = Id, choosing any smooth
family of operators A ∈ C∞(X; Ψ0

T (S; CN )) with σ0(A) = a, the stabilized ‘families
index’

(L13.35) [(null(A(x)(Id−πk),null((Id−πk)A∗(x))] ∈ K0(X)

is well-defined for large k, independent of the choice of A, and defines an isomor-
phism of abelain groups

(L13.36) K−2(X) −→ K0(X).

Theorem 8. [Bott periodicity] For any representative [(E+, E−)] ∈ K0(X) one
can choose smooth families of commuting projections π−(x), π0(x), π+(x) on CN
for large N such that E± are isomorphic to the ranges of π± and π−(x) + π0(x) +
π+(x) = Id and then the element

(L13.37) π−(x)e−iθ + π0(x) + π+(x)eiθ ∈ C∞(X × S; GL(N,C))

projects to a well-defined map

(L13.38) K0(X) −→ K−2(X)

which is an isomorphism.

The maps in these two theorems are just inverses of each other (assuming that
I have not messed up the signs).

13+. Addenda to Lecture 13

13+.1. Proof of Proposition 28. First choose an element P+ ∈ Ψ0
T (S; CN )

with σ(P+) = σ(P )
∣∣
S∗+S. Then the operator P+ + (Id−S) ∈ Ψ0

T (S; CN ) has the

same index as P+ (the latter acting on C∞+ (S; CN )) so the formula (L13.2) applies.
We can also choose a ‘negative’ Toeplitz operator, P− ∈ Ψ0

−T (S; CN ), the Toepltiz
algebra for the opposite orientation, with σ(P−) = σ(P )

∣∣
S∗−S. Extending it as the

identity on the positive side, P+P− is an elliptic operator with the same index as
P and this index is ind(P+) + ind(P−). This proves (L13.8).
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Bott periodicity

Lecture 14: 3 November, 2005

Recall that I defined the standard K-theory of a compact manifold as the set
of equivalence classes of pairs of complex vector bundles

(L14.1) K0(X) = {(E+, E−)}/ ∼
where equivalence is the existence of a stable isomorphism. In particular (E+, E−) ∼
(E+ ⊕H,E− ⊕H) so these really are formal differences in the sense that we can
‘cancel’ an H from both terms.

Although the equivalence relation here is stable bundle isomorphism, it is im-
portant to realize that it implies the equivalence of homotopic bundles.

Lemma 23. If E is a complex vector bundle over [0, 1] × X then as bundles
over X, E0 = E

∣∣
{0}×X and E1 = E

∣∣
{1}×X are isomorphic.

L14.1. Proof of Theorem 7. We have also defined

(L14.2) K−2(X) = [X × S, X × {1};G−∞(E;E), Id]

as the homotopy classes of pointed maps from X × S into the ‘smoothing group’.
Theorem 7 asserts that these two abelian groups are isomorphic where the map
between them is constructed by regularizing the null bundle of an elliptic family of
Toeplitz operators as follows
(L14.3)

A ∈ C∞(X; Ψ0
T (S; CN )

σ0

OO

//

C∞(X × S; GL(N,C))

OO
[σ0(A)] ∈ K−2(X)

))
[null(A(Id−πk),null((Id−πk)A∗] ∈ K0(X)

So we have to show first that this is really does define a map

(L14.4) ind : K−2(X) −→ K0(X).

We first check that the element of K0(X) does not depend on k and it does not
depend on the choice of A with fixed symbol σ0(A) = a ∈ C∞(X × S; GL(N,C)).
This will give us a map

(L14.5) C∞(X × S; GL(N,C)) −→ K0(X).

0.7E; Revised: 29-11-2006; Run: November 29, 2006
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Two operators A0 and A1 with the same symbol are homotopic through the linear
homotopy At = (1 − t)A0 + tA0. Choosing k large it follows from our earlier ar-
guments that ((Id−πk)At) is a smooth bundle over X × [0, 1] and hence that the
pairs of bundles

[null (A0(Id−πk)) ,null ((Id−πk)A∗1)] and [null (A1(Id−πk)) ,null ((Id−πk)A∗1)]

(in which the null bundles are constant and trivial) define the same element in
K0(X).

Thus it remains to consider the effect of taking different values of k. By as-
sumption k is chosen large enough that A(Id−πk) has null bundle equal to that of
Id−πk. So it is enough to consider the effect of increasing k to k+1. The null bun-
dle of A(Id−πk+1) is just increased by the trivial bundle ei(k+1)θCN . Since none of
these elements are annihilated by A(x), the range of A(Id−πk) is just the range of
A(x)(Id−πk+1) plus A(x)(ei(k+1)θCN ). Since A is a smooth isomorphism onto this
space, it is a trivial bundle of rank N, with the trivialization given by A(x) itself.
Thus the null space of (Id−πk+1)A∗, being the annihilator of the range with respect
to the chosen innner product, must be equal to the null space of (Id−πk+1)A∗ plus
a trivial bundle of rank N. Thus increasing k by 1 does not change the element in
K0(X).

Thus we do have a map (L14.5). A homotopy of symbols can be lifted to a
homotopy of operators and as we have already seen, this results in the same element
in K0(X), so (L14.5) descends to the desired map (L14.4). So it remains to show
that this is an isomorphism.

So, suppose A ∈ C∞(X; Ψ0
T (S; CN )) has symbol a ∈ C∞(X×S; GL(N,C)) with

ind(a) = 0 ∈ K0(X). We can assume that a(x, 1) = Id, since b(x) = a(x, 1) ∈
C∞(X; GL(N,C) is a smooth family of matrices, hence trivially an element of
C∞(X; Ψ0

T (S; CN )), which is invertible. Thus A(x) and b−1(x)A(x) have the same
index. Now, if ind(a) = 0 then we know that there is a familyA ∈ C∞(X;G0

T (S; CN ))
with symbol a. Thus from the argument of last time we know that there is then
an homotopy from a suitably stabilized a to the identity. Stabilizing a corresponds
to stabilizing the operator by the identity on a bundle and so does not change
the index. This if ind(a) = 0 then a can be deformed to the identity and hence
[a] = 0 ∈ K−2(X), so the map (L14.4) is injective.

Surjectivity of the index map also follows easily. First recall that any smooth
complex bundle E over X can be complemented to a trivial bundle, i.e. can be
embedded as a subbundle of a trivial bundle CN (and hence for any larger N).
Taking a pair of vector bundles, (E+, E−), let π+ be the projection onto E+ as a
subbundle of CN and similarly let π− be projection onto E− as a subbundle of CM .
Then the symbol

(L14.6) a(x, θ) = π+(x)e−iθ + (IdN −π+) + (IdM −π−) + π−(x)eiθ

has index [(E+, E−)]. Indeed, it is the symbol of the elliptic family

(L14.7) π+(x)L+ (IdN −π+) + (IdM −π−) + π−(x)U ∈ C∞(X; Ψ0
T (S; CN+M ))

which has null space π+(x)CN (constant on the circle) and the null space of its
adjoint

(L14.8) π+(x)U + (IdN −π+) + (IdM −π−) + π−(x)L

is similalry π−(x)CM so indeed ind(a) = [(E+, E−)] shows the surjectivity.
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An elliptic element, such as L, with index 1 = [(C, 0)] ∈ L({pt}], in the Toeplitz
algebra is sometimes called a Bott element and the inverse K0(X) −→ K−2(X)
just constructed is the Bott map.

More generally, ifX is a possibly non-compact manifold we still want definitions
of K−1

c (X), K−2
c (X) and K0

c (X) reducing to K−1(X), K−2(X) and K0(X) in
the compact case. The natural choice for the first two is to take maps into the
same spaces as before but which now reduce to the identity outside a compact set
(depending on the map). Homotopies are also required to be constant (and hence
equal to the identity) outside some compact subset of X in
(L14.9)

K−1
c (X) =

{
f ∈ C∞(X;G−∞(Y ;E)); f

∣∣
X\K = Id, K b X

}
/homotopy

K−2
c (X) ={
f ∈ C∞(X × S;G−∞(Y ;E)); f

∣∣
(X\K)×S = Id = f

∣∣
X×{1}, K b X

}
/homotopy.

Of course, this is consistent with out defintion for compact spaces.
For K0(X) we need to take a similar definition in which the two bundles

(E+, E−) are isomorphic outside a compact set, where the isomorphism needs to
be included in the data defining the element. Thus we consider triples (E+, E−, a)
where a ∈ C∞(X \ K; hom(E+, E−)) is invertible for some compact set K b X.
Thus

(L14.10) K0
c (X) = {(E+, E−, a)} / ∼

for such data, where the equivalence relation is that
(L14.11)

(E+, E−, a0) ∼ (E+, E−, a1)

if ∃ a homotopy of isomorphisms at : E+ −→ E− over [0, 1]t × (X \K)

and (E+, E−, a) ∼ (F+, F−, b)
if ∃ H and F : E+ ⊕ F− ⊕H ←→ E+ ⊕ F− ⊕H

s.t. F = a⊕ b⊕ IdH on X \K, K b X.

Note that a triple (E+, E−, a) defines the zero element in Kc(X) if and only if
there is a bundle H and an isomorphism b : E+⊕H −→ E−⊕H over X restricting
to a⊕ IdH outside some compact subset.

Exercise 18. Show that the index isomorphism (L14.4) carries over to the
case of non-compact manifolds.

An important consequence of the existence of this index isomorphism is

Proposition 29. [Bott periodicity, usual form] For any manifold X there is a
natural isomorphism

(L14.12) K0
c (X) −→ K0

c (R2 ×X).

Proof. In our original definition ofK−2(X) we can perturb any representative
slightly so that the normalization condition f

∣∣
X×{1} = Id can be arranged to hold on

X × I for some neighbourhood I of 1 ∈ S and similarly for homotopies. Identifying
S \ {1} with R this shows that in terms of the non-compact notion

(L14.13) K−2
c (X) = K−1

c (R×X).
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Next consider K0
c (R×X), say for X compact; we shall show that

(L14.14) K0
c (R×X) = K−1(X).

A bundle over R×X is necessarily isomorphic to the lift of a bundle from X so any
element is represented by two bundles E+, E− over X and isomorphisms between
then over (−∞,−N) × X and (N,∞) × X for some N. By homotopy invariance,
these isomorphisms can also be taken to be constant in the real variable. Then
the isomorphism at −N may be used to identify the bundles and the isomorphism
at N becomes an isomorphism of a fixed bundle to itself. Stabilizing such an iso-
morphism by the identity on a complementary bundle gives an element of K−1

c (X)
and it is straightforward to check that this element is well defined and leads to the
isomorphism (L14.14).

Combining these two identifications we see that

(L14.15) K0
c (R2 ×X) = K−1

c (R×X) = K−2
c (X) = K0

c (X)

where the last identification is using the index map. �

From this we can deduce that (for k ≥ 1)

(L14.16) K−1(Sk) =

{
Z k odd
{0} k even.

In fact we shall show that K−1(Sk) = Kc(Rk) then from (L14.14) Kc(Rk) =
K−1

c (Rk+1) and (L14.16) follows. There is a map

(L14.17) K−1
c (Rk) −→ K−1(Sk)

defined by identifying a point on the sphere as the point at infinity on Rk. Then
a map from Rk to G−∞(Y ;E) required to be the identity near infinity defines an
element of K−1(Sk). Homotopy with the value fixed near infinity as the identity
implies homotopy on the sphere so this gives (L14.17). Moreover, using the con-
nectedness of G−∞(Y ;E) every element of K−1(Sk) must arise this way, since the
value at the chosen point can be deformed to Id . Thus (L14.17) is surjective. An
element can only go to zero if it is homotopic to the identiy through families which
are constant near infinity. But then multiplying everywhere by the inverse of the
value at infinity gives a homotopy which is the identity near infinity, so (L14.17) is
an isomorphism and (L14.16) follows.

Corollary 6. The homotopy groups of G−∞ are

(L14.18) πk(G−∞(Y ;E)) =

{
Z k odd
{0} k even.

This is one justification for the statement that G−∞ is a classifying group for K-
theory.

Next I want to give at least a preliminary statement of the Atiyah-Singer index
theorem. I will discuss both the ‘numerical’ index and the families index. The
formula for the former and the formula for the Chern character for the latter are
of particular interest.

Given a compact manifold, Z, and two complex vector bundles E+, and E−
over Z any elliptic operator P ∈ Ψ0(Z;E+, E−) (if one exists) has finite dimensional
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null space and its range has finite dimensional complement. The difference between
these two integers is the (numerical) index of P

(L14.19) ind(P ) = dim(null(P ))− dim(C∞(Z;E−)/PC∞(Z;E+)).

We already know that this function is homotopy invariant, so it can only depend on
the geometric data (Z, E+, E−) and the symbol σ0(P ) ∈ C∞(S∗Z; hom(E+, E−)).

Proposition 30. The index defines a map

(L14.20) inda : Kc(T ∗Z) −→ Z, ind(P ) = inda([(π∗E+, π
∗E−, σ0(P ))]).

Proof. Since Kc(T ∗Z) is defined as the set of equivalence classes of triples
(E+, E−, a), with a an isomorphism outside a compact set, we need to show first
that, for T ∗Z, every such classes arises from the symbol of an elliptic operator.
Notice that the fibres of the cotangent bundle are contractible, being vector spaces.
So it is a standard fact (and easy enough to check) that every vector bundle over
T ∗Z is bundle isomorphic to π∗E for some bundle over Z. Using the invariance un-
der bundle isomorphisms in the definition of Kc(T ∗Z) it follows that every element
is represented by a triple corresponding to an elliptic operator – note that by the
homotopy invariance in the definition of the equivalence relation we may assume
that a is homogeneous of degree 0 (or any other degree you might choose). So it
only remains to show that the index is constant on equivalence classes. As for the
bundles themselves, bundle isomorphism over T ∗Z are homotopic to their values at
the zero section, i.e. to bundle isomorphisms over Z. Such a bundle isomorphism is
invertible and hence has zero index as a (rather trivial) pseudodifferential operator.
This, with the homotopy invariance, shows that the index map does project to a
well-defined map (L14.20). �

Not only is this map, the ‘analytic index map’ well defined but it is clearly a
homomorphism, since we know that ind(AB) = ind(A) + ind(B).

Gelfand around 1960 asked what amounts to the question of identifying this
map in topological terms and in particular to find a formula for it.

An answer to this, given by Atiyah and Singer, is to define another map, the
topological index, and show that the two are equal. This second map is defined by
‘trivializing the topology’ of the space. Namely by embedding Z as a submanifold
of a simple manifold, either Euclidean space or a sphere according to your taste.
Then, and this is where most of the work is, an operator on the larger space is
constructed which has the same index and with symbol which is ‘derived’ from
that of the original operator. For appropriate operators on the sphere (trival near
the point at infinity) the index can again be seen to be an isomophism and this
allows the topological index to be defined, or the analytic index to be computed
depending on how you look at it.

14+. Addenda to Lecture 14





CHAPTER 15

Fibrations and families

Lecture 15: 8 November, 2005

The usual geometric setting for the families version of the index theorem of
Atiyah and Singer is in terms of operators on the fibres of a fibration. Thus, rather
than simply consider a parameterized family Ab ∈ Ψm(Z;E,F ) depending on b ∈ B
we shall allow the family to be ‘twisted’ by diffeomorphisms of Z depending on B.

L15.1. Fibrations. Such twisting is to be interpreted in terms of a fibration
of compact manifolds

(L15.1) Z M

φ

��
B.

A fibration of compact manifolds is just a submersion. For simplicity of notation
we will assume that the ‘base’ B is connected. Then a smooth map

(L15.2) φ : M −→ B

is a submersion if

(L15.3) φ∗ : TmM −→ Tφ(m)B

is surjective for each m ∈M.

Theorem 9. If φ : M −→ B is a smooth submersion between compact mani-
folds with B connected then

(1) For each b ∈ B, φ−1(b) = Zb ⊂ M is an embedded compact submanifold
diffeomorphic to a fixed manifold Z.

(2) Each b ∈ B has an open neighbourhood b ∈ Ub ⊂ B such that there exists
a diffeomorphism fb giving a commutative diagramme

(L15.4) φ−1(Ub)
fb //

φ ##H
HH

HH
HH

HH
Z × Ub

πL
{{ww

ww
ww

ww
w

Ub.
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(3) For each intersectiong pair of such open sets it follows that there is a
commutative diagramme

(L15.5) Z × (Ub ∩ Ub′)
πL

((QQQQQQQQQQQQQ φ−1(Ub ∩ Ub′)

φ

��

fb′oo fb // Z × (Ub ∩ Ub′)

πL
vvmmmmmmmmmmmmm

Ub ∩ Ub′

which shows that fb′b = fb′f
−1
b ∈ C∞(Ub ∩Ub′ ; Difm(Z)) is a smooth map

into the diffeomorphisms of Z and also that the cocycle condition

(L15.6) fb′′b′fb′b = fb′′b holds on Ub′′ ∩ Ub′ ∩ Ub.

Proof. (Brief) The implicit function theorem shows that Zb = φ−1(b) is an
embedded compact submanifold of M. Indeed, if ti are local coordinates near b on
B then the φ∗(ti) are defining functions for Zb in M. One can choose commuting
vector fields in φ−1(Ub) for a sufficiently small neighbourhood Ub of b, Ti on φ−1(Ub)
such that φ∗(Ti) = ∂ti and then by integration along the Ti one can define fb with
Z = Zb. Having done this on an open covering of B it follows that all the Zb are
diffeomorphic, so Zb can be replaced by a fixed Z in (L15.4). This proves (1) and
(2) and (3) follow directly from (2). �

One can recover the fibration, thought of here as a fibre bundle with fibre Z and
structure group Difm(Z) (the diffeomorphism group of Z), from (2) and (3). If the
maps fb′b can be chosen, for some covering of B, to lie in a subgroup G ⊂ Difm(Z)
of the diffeomorphism group, then the structure group is ‘reduced to G.’

Fibrations have various functoriality properties. The most important for us
is that we may restrict to a submanifold of the base or more generally we may
‘pull-back’ a fibration.

Proposition 31. If F : B̃ −→ B is any smooth map, with B̃ compact, and
φ : M −→ B is a fibration, then
(L15.7)
M̃ = {(m, b̃) ∈M × B̃;φ(m) = F (b̃)} is an embedded submanifold of M ×B and

φ̃ : M̃ −→ B̃, φ̃(m, b̃) = b̃ is a fibration.

Equally important is that the composite of two fibrations is a fibration.

Proposition 32. If φ′ : M ′ −→ M is a fibration with typical fibre Z ′ and
φ : M −→ B is a fibration with typical fibre Z then φφ′ : M ′ −→ B is a fibration
with typical fibre Z × Z ′.

It is also easy to see that the direct product of two fibrations, φi : Mi −→ Bi,
i = 1, 2 is a fibration

(L15.8) φ1 × φ2 : M1 ×M2 −→ B1 ×B2.

In the proof of the Atiyah-Singer index theorem discussed below, a given fi-
bration is trivialized by embedding, so it is important to see that this is always
possible.

Exercise 19. Given a fibration (of compact manifolds always) φ : M −→ B
show that there is an embedding e : M −→ SN × B with range in (SN \ {p}) × B
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for fixed point p ∈ SN such that

(L15.9) M
e //

φ   @
@@

@@
@@

@ SN ×B

πL
{{ww

ww
ww

ww
w

B

commutes.
Hint: This is not hard, just use Whitney’s theorem to embed M in a big sphere,

staying away from one point, and then define e as the product of that embedding
and φ. Check that this is an embedding and that (L15.9) holds.

L15.2. Pseudodifferential operators on the fibres. Next we turn to the
definition of pseudodifferential operators ‘on the fibres’ of a fibration. We could
proceed locally from (L15.4) and (L15.5), using the definition of pseudodifferential
operators on Z depending on a parameter and then the invariance under diffeomor-
phisms to piece these together between patches. However we are in a position to
proceed more directly than this.

The standard notation for pseudodifferential operators on the fibres of a fibra-
tion φ : M −→ B is Ψm(M/B;E,F ), where E and F are bundles over M. Note
that the fibration φ does not appear explicitly in the notation, which is designed (I
suppose) to suggest the the operators are on ‘M/B’ which does not mean anything
but could only be interpreted as the fibre.

Given a fibration φ : M −→ B we first define the fibre-product of this fibration
with itself, M2

φ −→ B. Namely, M2
φ is the restriction of M ×M, as a fibration over

B ×B, to the diagonal B ≡ Diag ⊂ B ×B. The total space in then

(L15.10) M2
φ = M ×φM = {(m,m′) ∈M ×M ;φ(m) = φ(m′)}.

Thus the fibres of M2
φ −→ B, (where I use the same letter for the new fibration)

are modelled on Z × Z. Clearly the diagonal in M2 is contained in M2
φ where we

may think of it as the ‘fibre diagonal’ Diagφ so we have the embedded submanifold

(L15.11) M ≡ Diagφ ↪→M2
φ.

Definition 6. The space of pseudodifferential operators on the fibres of a
fibration φ : M −→ B is identified as

(L15.12) Ψm(M/B;E,F ) = Im
′
(M2

φ,Diagφ; Hom(E,F )⊗ΩR), m′ = m− 1
4

dimB

for any complex vector bundles E and F over M ; here ΩR is the bundle of fibrewise
densities on the right, discussed more below.

Note that if M = Z × B is ‘trivial’ and E, F are the lifts of bundles over Z
then

Im
′
(M2

φ,Diagφ; Hom(E,F )⊗ ΩR) = C∞(B; Ψm(Z;E,F )).

Thus, locally over U ⊂ B over which the fibration is trivial and so small that E and
F are the pull-backs of their restrictions Eb and Fb to Zb, Ψm(M/B;E,F ) reduces
to C∞(U ; Ψm(Z;Eb, Fb)). From this, and the definition, we can deduce all the basic
properties.

In general, elements of Ψm(M/B;E,F ) cannot be elements of Ψm(M ;E,F )
since the latter have kernels singular only on the diagonal of M whereas the kernels
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of the fibrewise operators are supported on M2
φ. In fact the only elements in both

are fibrewise differential operators (assuming the dimension of the base is positive).
(1) (Action) The elements of Ψm(M/B;E,F ) are continuous linear operators

(L15.13) Ψm(M/B;E,F ) 3 A : C∞(M ;E) −→ C∞(M ;F ).

Indeed, locally over any small open set, U ⊂ B, u ∈ C∞(M,E) becomes
ub ∈ C∞(U × Z;Eb) and A maps this to C∞(U × Z;Fb). Alternatively
we can go back to the proof in the case of a single manifold and use the
push-forward theorem.

These operators clearly act on the fibres. That is, if u ∈ C∞(M ;E)
and u

∣∣
Zb

= 0 then Au
∣∣
Zb

= 0. Hence Ab is well-defined by

(L15.14) Abv = (Au)
∣∣
Zb
, u ∈ C∞(M ;E) s.t. u

∣∣
Zb

= v and Ab ∈ Ψm(Zb;Eb, Fb).

(2) (Smoothing operators) The smoothing families are

(L15.15) Ψ−∞(M/B;E,F ) = C∞(M2
φ; Hom(E,F )⊗ ΩR).

(3) (Symbol map) For each point b ∈ B the symbol of Ab, where A ∈
Ψm(M/B;E,F ), is an element of C∞(S∗Zb; hom(Eb, Fb) ⊗ Nm) and in
terms of a local trivialization of the fibration and bundles (i.e. local reduc-
tion to a product) depends smoothly on b. Let T (M/B) be the subbundle
of TM consisting of the vectors tangent to the fibre at each point. Thus,
restricted to Zb, T (M/B) reduces to TZb. Let T ∗(M/B) be the dual bun-
dle and S∗(M/B) be the corresponding sphere bundle. Then, from the
local properties, the symbol map becomes

(L15.16) σm : Ψm(M/B;E,F ) −→ C∞(S∗(M/B); hom(E,F )⊗Nm)

where as usual, Nm is the bundle of functions homogeneous of degree m
on T ∗(M/B) (as a bundle over S∗(M/B)).

(4) (Symbol sequence) The symbol map leads immediately to the short exact
sequence

(L15.17)

Ψm−1(M/B;E,F ) // Ψm(M/B;E,F )
σm // C∞(S∗(M/B); hom(E,F )⊗Nm).

(5) (Composition) Of course one of the most important properties of pseudo-
differential operators is that they compose to give such operators. Agian
it follows directly from the local picture, or using the same proofs as there
but in the more global setting, that

(L15.18)
A ∈ Ψm(M/B;F,G), B ∈ Ψm′

(M/B;E,F ) =⇒ AB ∈ Ψm+m′
(M/B;E,G) and

σm+m′(AB) = σm(A)σm′(B).

(6) (Ellipticity) A ∈ Ψm(M/B;E,F ) is said to be elliptic (as a family) if each
Ab is elliptic, which is the same as saying that the symbol has an inverse

(L15.19) (σm(A))−1 ∈ C∞(S∗(M/B); hom(F,E)⊗Nm)

Then, as in the case of a single operator, the ellipticity of A is equivalent
to the existence of a two-sided parametrix Q ∈ Ψ−m(M/B;F,E) such
that

(L15.20) QA− IdF ∈ Ψ−1(M/B;F ), AQ− IdE ∈ Ψ−1(M/B;E).
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(7) (Asymptotic completeness) Using just the corresponding fact for conormal
distributions we know that given a sequence Aj ∈ Ψm−j(M/B;E,F ) for
j ∈ N0,

(L15.21)

∃ A ∈ Ψm(M/B;E,F ) s.t. A ∼
∑
j

Aj ⇐⇒ A−
N∑
j=0

Aj ∈ Ψm(M/B;E,F )

and A is unique modulo Ψ−∞(M/B;E,F ).
Using these properties we can improve the parametrix for an elliptic operator

from (L15.20). Namely let Q0 be that operator, so

(L15.22) Q0A = Id−R, R ∈ Ψ−1(M/B;E).

Then the formal Neumann series for (Id−R)−1,
∑
j

Rj is asymptotically summable,

as is the product on the left with Q0. Thus we can find

(L15.23) Q ∼
∑
j

RjQ0 ∈ Ψ−m(M/B;F,E) =⇒ QA− IdE ∈ Ψ−∞(M/B;E).

Similarly a right parametrix modulo smoothing operators can be constructed and
shown to be equal to Q modulo smoothing, so Q also satisfies

AQ− IdF ∈ Ψ−∞(M/B;F ).

L15.3. The analytic index. Now, we can proceed very much as in the case of
the Toeplitz operators to discuss the families index theorem. Of course the geometry
of the fibration M will cause complications. In fact we need another basic fact to
proceed (the way I want, there are other approaches), namely a replacement for
the projections on the first k terms in the Fourier series on the circle.

Proposition 33. For any fibration of compact manifolds, φ : M −→ B there is
a sequence of projections πN ∈ Ψ−∞(M/B;E), for any vector bundle E, satisfying

(L15.24) rank(πN ) ≤ N, AπN −→ A for any A ∈ Ψ−∞(M/B;E,F )

in terms of the usual topology on C∞(M2
φ; Hom(E,F )⊗ ΩR).

Note that I am not assuming here that the projections are increasing, so it may
be that πNπN+1 6= πN (and this product may not even be a projection).

Proof. Missing – I do not yet have a reasonably elementary proof of this.
There is one using Kuiper’s theorem which I will resort to if necessary but I am
still hoping to find something a bit better than that! It is pretty easy to do this in
case of a product Z ×B but the twisting of the bundle causes some trouble. �

Assuming the existence of such a family of projections we can proceed as in
the Toeplitz case to construct the analytic index. Thus, given an elliptic family
A ∈ Ψm(M/B;E,F ) choose a parametrix Q ∈ Ψ−m(M/B;F,E) as above, i.e.
satisfying (L15.23), so QA = Id−R, with R ∈ Ψ−∞(M/B;E). Then RπN −→ R
for a family of projections as in Proposition 33 and hence for N sufficiently large,
(Id−R(Id−πN ))−1 exists and is of the form Id−S with S ∈ Ψ−∞(M/B;E). Thus,
for N sufficiently large,

(L15.25) (Id−S)QA(Id−πN ) = Id−ΠN
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from which it follows that

(L15.26) null(A(Id−πN )) = Ran(πN ) is a bundle over B.

It follows from this (just work locally as usual) that

(L15.27) null((Id−πN )∗A∗) is a bundle over B

again of finite rank – for any choice of inner products and smooth densities used to
define the adjoints. This latter bundle is a complement to the range of A(Id−πN )
as a subbundle of C∞(M/B;E) thought of as a bundle over B.

Proposition 34. For any elliptic family in Ψm(M/B;E,F ) the symbol deter-
mines an element of K∗

c (T ∗(M/B)) and the regularized null bundles in (L15.26)
and (L15.27) determine an element of K0(B) and this correspondence projects to
a well-defined map

(L15.28) inda : K0
c (T ∗(M/B)) −→ K0(B).

Proof. We need to show independence of the choice of πN , independence of
the choice of A, given the symbol, homotopy invariance under deformation of the
symbol (which amounts to homotopy invariance for A) constancy of the index class
under stablization and under composition of the symbol with bundle isomorphisms;
of course we also need to check that every compactly supported K-class on T ∗(M/B)
arises from a symbol. All of this is pretty straightforward and pretty much as in
the Toeplitz case. �

Next time I will introduct the algebra of product-type pseudodifferential oper-
ators on a fibration which I will use to identify this analytic index map with the
topological index map defined by embedding of the fibration. This is the index
theorem of Atiyah and Singer.

15+. Addenda to Lecture 15

15+.1. Some more details.

15+.2. The analytic index map (L15.28).



CHAPTER 16

Product-type symbols

Lecture 16: 10 November, 2005

Last time I described the space of Ψm(M/B;E,F ) of pseudodifferential op-
erators acting on the fibres of a fibration φ : M −→ B. This is defined directly
in terms of conormal distributions, as Im

′
(M2

φ,Diag;Hom(E,F ) ⊗ ΩR) where M2
φ

is the fibre diagonal, the set of pairs (m,m′) ∈ M2 such that φ(m) = φ(m′) and
Diag is the diagonal of M2, so the set of pairs {(m,m);m ∈M}. Such an operator
defines a map

(L16.1) Ψm(M/B;E,F ) 3 A : C∞(M ;E) −→ C∞(M ;F ),

just as pseudodifferential operators on M do. It therefore has a Schwartz kernel on
M ×M. This is easily seen to be, in terms of a local trivialization of φ

(L16.2) KA(m,m′) = Ã(m,m′)δ(b− b′)

where Ã is the conormal distribution defining (and usually identified with) A. Thus
there are two submanifolds of M2 in the picture here, namely M2

φ and Diag . These
are nested as in the simple picture

•
Diag

δ(b− b′)⊗ Ã

M2
φ

Thus, in this simplified picture the kernels of elements of Ψm(M/B;E,F ) are
singular all along the bigger submanifold, with a delta-singularity normal to it
whereas the elements of Ψm(M ;E,F ) have conormal singularities just at the smaller
submanifold, and so are smooth outside it. It is then rather easy to see the following
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129



130 16. PRODUCT-TYPE SYMBOLS

Exercise 20. Show that the elements of Ψm(M ;E,F ) ∩ Ψm(M/B;E,F ) for
a fibration with base and fibre of positive dimension are the fibrewise differential
operators of order m (so for instance this intersection is empty if m ∈ R \ N0).

For arguments in the proof of the index theorem, and for other reasons too, I
want to define a larger class of ‘pseudodifferential operators of product type’ with
respect to any fibration which is to include both the fibrewise pseudodifferential
operators and the usual pseudodifferential operators on the total space of the fibra-
tion. To do this we return to the beginning and use the same pattern of definition
as before. Namely, the operators will be defined, through their Schwartz kernels,
in terms of a corresponding class of product-type conormal distributions

(L16.3) Ψm,m′

pt−φ(M ;E,F ) = Im−N,m
′−N ′

(M2,M2
φ,Diag;Hom(E,F )⊗ ΩR).

Here m is the ‘main order’, m′ is the ‘fibre order’ and on the right I am using as
yet undefined notation for the conormal distibutions with respect to a nested pair
of submanifolds; N and N ′ are dimension shifts as before.

So, to define (L16.3) we wish to define

(L16.4) Im,m
′
(X,Y, Z;E) ⊂ C−∞(X;E)

the space of (product-type) conormal distributions (distributional sections of the
bundle E) with respect to two embedded submanifolds

(L16.5) Z ⊂ Y ⊂ X.

Here, somewhat confusingly, m is the ‘order at Z’ whereas m′ is the ‘order at Y .’
Following backwards through the previous argument, to define (L16.4) we will

want to carefully discuss a model case which we take to be a vector space Rn with
two subspaces. The variables along the smaller manifold Z in (L16.4) are intended
to be ‘smooth parameters’ so we can take the smaller subspace to be {0} and so
consider as the model for a nested pair of submanifolds

(L16.6) {0} ⊂ Rky ⊂ Rny,z.

Here (y, z) are linear coordinates, with z = 0 being the larger of the subspaces so
the y = (y1, . . . , yk) are coordinates in it.

So now, we want to define

(L16.7) Im,m
′

S (Rn,Rk, {0})

where the subscript S is supposed to mean that the elements will have some sort of
‘rapid decay’ at infinity to compensate for the fact that Rn is not compact. Let me
try to motivate the definition a little more. We want these spaces (for appropriate
orders) to include both

(L16.8) ImS (Rn, {0}) and S(Rky ; Im
′

S (Rn−k, {0}))

which we defined before, and the latter space being a natural candidate for the
space of conormal distributions associated to Rk with ‘rapid decrease at infinity’.

Now, the first space in (L16.8) is by definition F−1ρ−M (Rn), in terms of the
radial compactification of Rn, which is a ball (which is where we started). The
second space is defined by Fourier (inverse) transform on Rk so is

F−1
ζ→z

(
S(Rk; ρ−M

′
C∞(Rn−kζ))

)
,
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To compare these two it is natural to take the Fourier transform in the y variables
in the second space as well; since it is just Schwartz in these variables this gives the
same space again.

So, assuming that we want to define our new space, (L16.7), as the inverse
Fourier transform of some class of ‘symbols’ and we want it to ‘include’ (for appro-
priate orders) the two older spaces then the symbol space should include

(L16.9) ρ−M (Rnη,ζ) and S(Rkη; ρ−M
′
C∞(Rn−kζ)).

One of the points I am trying to make in this course is that in such circumstances
one should look for an appropriate compactification, of Rn in this case. I already
briefly describe the ‘correct’ compactification in the addenda to Lecture 1, when I
talked mostly about the radial compactification of vector space. The one I have in
mind is the ‘relative’ compactification of a vector space with respect to a subspace.
In this case

(L16.10) Rn ↪→ VW, W = Rn, V = Rn−k = {η = 0} ⊂ Rn.

Note that we have taken the Fourier transforms, so the symbols are defined on
the dual of the original space. So the well-defined subspace is the annihilator of
Rky ⊂ Rn, i.e. Rn−kζ = {η = 0} ⊂ Rn.

Let me recall the definition of this compactification from (1+.30), changing
(and reversing the order of) the variables to fit (L16.10)

(L16.11) RV : W 3 w = (η, ζ) 7−→ (t, s, η′, ζ ′) =

(
1

(1 + |η|2) 1
2
,

(1 + |η|2) 1
2

(1 + |η|2 + |ζ|2) 1
2
,

η

(1 + |η|2) 1
2
,

ζ

(1 + |η|2 + |ζ|2) 1
2
) ∈ R2 ×W.

As noted there, the image lies in the compact manifold with corners (product of
two half-spheres)

(L16.12) VW = {(t, s, η′, ζ ′) ∈ R2+n; t2 + |η′|2 = 1 = s2 + |ζ ′|2, t ≥ 0, s ≥ 0}.
In fact the image is precisely the interior (s, t > 0) since the inverse there can be
written

(L16.13) η = η′/t, ζ = ζ ′/st,

that is, (L16.11) is a diffeomorphism onto the interior of (L16.12) which is therefore
a compactification.

Our symbol spaces will be the same type as before, just ‘Laurent’ functions,
meaning smooth functions except for a (possibly non-integral) overall power be-
haviour at each boundary face. So, we arrive at the basic definition of (model)
product-type conormal distributions

(L16.14) Im,m
′

S (Rn,Rky × {0}, {0}) = F−1(t−Ms−M
′
C∞(VW ),

W = Rnη,ζ , V = {η = 0}, M = m, M ′ = m′.

To check that this is consistent with what I claim above, we want to know that

u ∈ Im,m
′

S (Rn,Rky × {0}, {0}) =⇒ u
∣∣
(y,z) 6=0

∈ Im(Rn \ {0},Rk \ {0}),(L16.15)

ImS (Rn, {0}) ⊂ Im,m+(Rn,Rk, {0}),(L16.16)

S(Rky ; Im
′
(Rn−k, {0}) ⊂ I−∞,m′

(Rn,Rl, {0}),(L16.17)
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Before trying to check these results and more, we need to look at the prop-
erties of the relative compactification. In particular we want to show some linear
invariance as a prelude to eventual coordinate invariance, as in Lemma 2. The
definition itself corresponds to choosing a transversal subspace to V and writing W
as a product

(L16.18) W = V × U, V = {ζ = 0}, U = {η = 0}.

We want to show that, up to a diffeomorphism, VW does not depend on the choice
of U, otherwise the notation is defective (to say the least)!

Points of VW fall into four classes, those in the interior, those at which t = 0
but s > 0, those at which t > 0 but s = 0 and those at which t = 0, s = 0. We
can introduce local coordinates near each such point, although it is simpler just to
introduct a local generating system (i.e. a set of functions which are smooth and
which contain a coordinate system). We can safely ignore the interior, since this is
just Rn with global coordinates η, ζ. As in (1+.35), (1+.36) observe that

Near t = 0, s > 0,
1
|η|
,
ζ

|η|
,
η

|η|
generate,(L16.19)

near t > 0, s = 0,
1
|ζ|
,
ζ

|ζ|
, η generate(L16.20)

and near t = 0, s = 0,
1
|η|
,
|η|
|ζ|
,
η

|η|
,
ζ

|ζ|
generate(L16.21)

(where ‘generate’ can be read as ‘are smooth and generate’).
In fact, to see the first of these, observe that t = 0 implies |η| = ∞, meaning

that in a sufficiently small neighourhood (in VW ) of such a point |η| > R for any
preassigned R (R > 10 say below.) Since s > 0 at the point, s ≥ s0 > 0 in a
neighbourhood for some s0 > 0, so

(L16.22) s = (1 +
|ζ|2

1 + |η|2
)−

1
2 > s0 =⇒ |ζ| < C|η|

where C > 0 depends on R and s0, especially the latter. Thus as we approach
the first type of boundary point, |η| → ∞, maybe |ζ| → ∞ but no faster than a
multiple of |η| and (L16.19) follows since we can replace t by 1/|η|, s by |ζ|/|η| etc.
Similarly at the second type of boundary point t ≥ t0 > 0 in some neighbourhood
so |η| is bounded above, i.e. η is finite. Hence |ζ| → ∞ as we approach the point,
since s→ 0. Thus we can replace (t, η′) by η itself, then s by 1/|ζ| and ζ ′ by ζ/|ζ|,
giving (L16.20). In the third case, of a point on the corner, along any sequence
approaching such a point, |η| → ∞, since t → 0 and |ζ| → ∞ since s → 0 (using
(L16.22)). In fact |ζ|/|η| → ∞ for the same reason. From this (L16.21) follows.

Note that near any particular point on the boundary we just need to drop one,
or in the last case two, of the ‘spherical’ variables to get a coordinate system.

As noted back in (1+.34) this allows us to see which of the constant and linear
vector fields lift. Namely

(L16.23) ∂ηi , ∂ζk , ηi∂ζk , ζl∂ζk , ηi∂ηj

all lift to be smooth on VW (for the obvious range of the indices) but ζl∂ηi does
not. To see this, we can use homogeneity in terms of the coordinates derived from
the generating functions. For instance, look at the corner and denote the first two
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functions in (L16.21) as r and R and an appropriate choice of coordinates from the
spherical variables as ω. Then each of the vector fields lifts to be of the form

(L16.24) a(r,R, ω)∂r + b(r,R, ω)∂R + V (r,R, ω)

where V is a vector field in the ω’s. The vector field is certainly smooth in r > 0,
R > 0 since that is the interior. Moreover the scaling r → λr, λ > 0 corresponds
precisely to η → η/λ and ζ → ζ/λ. Under this combined scaling, all of the vector
fields in (L16.23) are homogeneous, or degrees 0 or 1 (as is ζl∂ηi). On the other hand
the scaling R→ λR (with other variables fixed) corresponds precisely to ζ → ζ/λ.
Under this scaling all the vector fields in (L16.23) are homogeneous of degrees 0 or
1 still (whereas ζl∂ηi is homogeneous of degree −1). This homogeneity translates to
homogeneity of the individual terms in (L16.24) and shows that the coefficients are
all homogeneous of positive degrees, hence the vector fields lift to be smooth (and
if you look a little more carefully, ζl∂ηi definitely does not.) They are all tangent
to both boundary hypersurfaces. I have just been talking about a neighbourhood
of the corner but the other regions of the boundary are similar with the discussion
simpler (basically one of these homogeneities persists at each).

This proves Lemma 2. From (L16.11) we see immediately that the definition
only depends on V, U, and the choice of Euclidean metrics on these spaces. That is,
the group O(n− k)×O(k), which acts on W once the decomposition (L16.18) and
choice of Euclidean metrics is fixed, lifts to act smoothly on VW, namely (Oη, Oζ)
acts through (t, s, η′, ζ ′) 7−→ (t, s, Oηη′, Oζζ ′). To show that the whole group

(L16.25) {A ∈ GL(W );AV = V } lifts to act smoothly on VW

lifts to act smoothly on VW observe that in terms of a splitting W = V ⊕ U, this
group consists of the lower triangular block matrices

(L16.26)
(
A′ 0
S A′′

)
, A′ ∈ GL(U), A′′ ∈ GL(V ), S ∈ hom(U, V ).

We have already seen the invariance under the block diagonal, orthogonal, matrices
and modulo those (needed just to make sure that A′ and A′′ are both positively
oriented) such a matrix can be connected to the identity in the group. Thus, it can
be written as a product of exponentials of elements of the Lie algebra. However,
the Lie algebra is spanned by the linear vector fields in (L16.23) so these exponen-
tials are given by the integration of smooth vector fields on VW and so all lift to
diffeomorphisms.

Thus in fact the definition of VW does not depend on the choices made in the
explicit map (L16.11). This justifies the notation VW for the compactification of a
vector space W with respect to a subspace V. Note that there really is asymmetry
in the definition, as there has to be if it is independent of the choice of U, the
transversal, but not of V. One can also see this in terms of the important map back
to the radial compactification.

Lemma 24. The identification of the interiors of VW and W with W extends
to a smooth surjective map

(L16.27) β : VW −→ W.
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Proof. We only need to compare the compactification map (L16.11) with that
corresponding to the radial compactification expressed in terms of these variables

(L16.28) R : W 3 w = (η, ζ) 7−→ (τ, η′′, ζ ′′) =

(
1

(1 + |η|2 + |ζ|2) 1
2
,

η

(1 + |η|2 + |ζ|2) 1
2
,

ζ

(1 + |η|2 + |ζ|2) 1
2
) ∈ R×W.

Clearly

(L16.29) τ = st, η′′ = sη′, ζ ′′ = ζ ′

which shows that the map (L16.27) exists and is smooth. �

Notice from (L16.29) that β maps the boundary hypersurface {t = 0, s > 0} in
VW onto the boundary of W except for the part ∂V where we regard V ⊂ W. This
is actually the alternative construction of VW which I will record here even though
I have not defined the notion of blow up. It means ‘introduce polar coordinates
around the submanifold.’

Lemma 25. The relative compactification VW is canonically identified with the
manifold obtained by blowing up the boundary ∂V in W (denoted by me [W,∂V ]).

Now we know that the space of (model) product-type conormal distributions
defined by (L16.14) is also invariant under linear transformations which preserve Rk
(as a subspace of Rn) because the Fourier transform converts this to the action of
the transpose, which preserves the annihilator in the dual and we may use Lemma 2
which implies in particular that on the ‘symbolic side’
(L16.30)

A∗
(
t−Ms−M

′
C∞(VW )

)
= t−Ms−M

′
C∞(VW ) ∀ M,M ′ ∈ R (or indeed C).

Recall that the whole thrust of this definition is towards (L16.15) – (L16.17).
So, consider (L16.16) first. This is a consequence of (L16.27) and (L16.29). Namely
we are to show that

(L16.31) u ∈ ImS (Rn, {0}) =⇒ u ∈ Im,m+
S (Rn,Rk)

where of course this must be true for any choice of k. By definition

(L16.32) û = R∗a, a ∈ ρ−MC∞(W ), W = Rn

and then from (L16.27) and (L16.29) (which shows that β∗ρ = st)

(L16.33) β∗a ∈ t−Ms−MC∞(VW ), V = Rn−k, W = Rn.
However, β is just the canonical extension of the identification of the interiors so of
course, βRV = R since they are equal on the interiors. Thus(L16.33) and (L16.32)
mean that

(L16.34) û = R∗V b, b ∈ t−Ms−MC∞(VW )

which is (L16.31) and hence (L16.16) (for the moment all the order-normalizations
are messed up or omitted here).

Next consider (L16.17). We want to do much the same as (L16.33) but we do
not quite have the right map (with a little more blow-up technology we could get
it). So, let me proceed more by hand. We already observed in the run up to (L16.9)
that

(L16.35) u ∈ S(Rky ; ImS (Rn−k, {0})) =⇒ û ∈ S(Rkη; ρ
−M
ζ C∞(Rn−kζ )).
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Ignoring the factor of ρ−Mζ for the moment we want to show that (L16.35) implies
that û extends from the interior (i.e. Rn) to be smooth on VW. To do this we can
consider the three regions of the boundary in (L16.19). Near the boundary s = 0,
away from the corner in (L16.20), û is smooth, since it is a smooth function of η
and of the generating functions 1/|ζ| and ζ/|ζ| of Rn−kζ . Near the remainder of the
boundary, covered by (L16.19) and (L16.21), |η| → ∞. from (L16.35) we know that
û is uniformly rapidly decreasing as |η| → ∞, i.e.

(L16.36) |û(η, ζ)| ≤ CN |η|−N in |η| > 1.

Since the entries of the Jacobian of the singular changes of variables from ζ/|η| to
ζ/(1 + |ζ|2) 1

2 and 1/(1 + |ζ|2) 1
2 are bounded by powers of |η| it follows that û(η, ζ)

is in fact smooth down to the boundary t = 0 at which it vanishes to infinite order.
That is,

(L16.37) û ∈ t∞s−MC∞(VW ) −→ u ∈ I−∞,m(Rn,Rk, {0}).

Additonal factors of ρζ present no extra problems.
In fact we will later make use of the fact that

Lemma 26. Under the identification as functions on the interior

(L16.38) S(Rkη; ρ
−M
ζ C∞(Rn−kζ ) ≡ t∞s−MC∞(VW ), W = Rn, V = Rn−k.

I will prove the partial converse of this, (L16.15) next time and go through
the extension to vector bundles and submanifolds, much as before, leading to the
definition of the pseudodifferential operators through (L16.3).

16+. Addenda to Lecture 16

16+.1. More on the relative compactification. The relative compactifi-
cation VW is given by the map and image in (L16.11) for the vector spaces V and
W in (L16.10). Observe that as well as the map (L16.27) there is a natural map

(16+.39) VW 3 (t, s, η′, ζ ′) 7−→ (t, η′) ∈ W/V .

Certainly this map is smooth and surjective in the model setting. Furthermore
it follows from the form of the general element of GL(W,V ), i.e. an element of
A ∈ GL(W ) such that A(V ) ⊂ V,

(16+.40) GL(W,V ) 3 A =
(
A′ 0
Q A′′

)
, A(η, ζ) = (A′η,Qη +A′′ζ)

that the map (16+.39) and the actions of GL(W,V ) and GL(V ) give a commutative
diagram

(16+.41) GL(W,V ) // GL(V )

VW // W/V .

Thus the map (16+.39) is natural.
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Lemma 27. The map (16+.39) is a fibration with fibre diffeomorphic to V .
Although not naturally a product the fibration is trivial and induces a fibration of
the boundary face HW = {t = 0} of VW,

(16+.42) HW −→ S(W/V ) = ∂W/V with fibre diffeomorphic to V .

The other boundary hypersurface, HV = {s = 0} naturally decomposes as a product

(16+.43) HV = SV ×W/V , (t, 0, η′, ζ ′) 7−→ ((0, ζ ′), (t, η′)).

Proof. The map (16+.43) corresponds to the quotient of the group GL(W,V )

by the normal subgroup
(

Id 0
∗ Id

)
in (16+.40). Namely it gives a commutative

diagram

(16+.44) GL(W,V ) // GL(V )×GL(W/V )

BV oo // SV ×W/V

which shows that the product decomposition is natural.
On the other hand in (16+.42), on restriction to HW the off-diagonal part of

GL(W,V ) still acts non-trivially, so the map is only naturally a trivial fibration
(that it is a fibration follows from the explicit form of (16+.42) which presents it
as a product). �

The invariance of these maps shows that they extend directly to the corre-
sponding bundle settings. In the geometric case discussed below, where

(16+.45) Z ⊂ Y ⊂ X
are submanifolds, the vector space W and subspace V are replaced by the bundle
and subbundle

(16+.46) N∗YZ ⊂ N∗Z

with the conormal bundles being relative to X. Note that the quotient N∗Z/N∗
ZY

may be naturally identified with the conormal bundle of Z as a submanifold of Y.
Perhaps I will finally admit a relative notation for normal/conormal bundles and
write

(16+.47) XN∗Z/XN∗
ZY = YN∗Z.

Then the relative compactification becomes the manifold with corners

(16+.48) N∗YZN∗Z

which has the two boundary hyersurfaces we can now associate to Z (corresponding
to W above) and Y (corresponding to V ) which are respectively fibred and have a
product-bundle structure:-

(16+.49)

XN∗
z Y HZ

��
YSN∗Z,

HY ≡ YN∗Z ×Z XSN∗
ZY.
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We shall see later that there is a natural idenfication with the blow up

(16+.50) HZ ≡ [XSN∗Z, XS∗ZY ],

of XS∗ZY as a submanifold of XSN∗Z.





CHAPTER 17

Product-type conormal distributions

Lecture 17: 15 November, 2005

The aim today is to complete the definition of the spaces of product-type conor-
mal distributions, Im,m

′
(X,Y, Z;E) where Z ⊂ Y ⊂ X are embedded compact

submanifolds (of positive codimension!) As for the case where Z is absent, we shall
find symbol maps which capture the leading singularity. Here there are two symbol
maps, one corresponding to singularities on Z associated, perhaps unfortunately,
with the first order m and the second one associated with the second order m′ and
the singularity on Y (which does include Z but the singularities captured by this
second symbol are only those ‘conormal to Y ).’

The idea, as for Im(X,Y ;E), is to reduce to the case of the normal bundle to
Y. Here, however it is useful to discuss first the normal bundle to Z in X and how
it is related to Y.

The most significant difference between the old spaces Im(X,Y ;E) and the
new Im,m

′
(X,Y, Z;E) is that the symbol map for Y itself takes values in conormal

distributions. Recall that the old symbol map was

(L17.1) σm : Im
′
(X,Y ;E) −→ C∞(SN∗Y ;EY ⊗N−m′)

where SN∗Y is the sphere bundle (thought of as the compactifying surface at
infinity for N∗Y ) of the conormal bundle to Y in X. In the present case this has a
submanifold corresponding to Z, namely

(L17.2) SN∗
ZY =

⋃
z∈Z

SN∗
z Y ⊂ SN∗Z

just the union of the fibres over Z, i.e. the restriction of the bundle to Z; as
indicated in (L17.2) this is a subbundle of the conormal bundle to Z itself. Then
our modified ‘Y -symbol’ is to be part of a short exact sequence

(L17.3)
Im,m

′−1(X,Y, Z;E) ↪→ Im,m
′
(X,Y, Z;E) σY−→ Im(SN∗Y, SN∗

ZY ;EY ⊗N−m′),
σY = σY,m,m′ .

There should be a picture here.
The other symbol, the Z-symbol, is more like the previous one

(L17.4) σm : Im(X,Z;E) −→ C∞(SN∗Z;EZ ⊗N−m).

The extra singularity still shows up in the replacement for this map, in that SN∗Z is
to be replaced by the part of the boundary of the relative compactification N∗

ZYN∗Z
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which corresponds to it under the ‘blow-down map’

(L17.5) β : N
∗
ZYN∗Z −→ N∗Z

discussed last time. I denoted the ‘lift’ or ‘proper transform’ of the boundary,
SN∗Z, of the radial compactification under β as [SN∗Z, SN∗

ZY ]. Note that this is
not the preimage under β. Rather it is the closure of the preimage of SN∗Z\SN∗

ZY.
The notation [X,Y ] makes sense for any embedded submanifold of any manifold,
but I am using it here without full explanantion – I will add something to the
addenda about this. So the modified form of the symbol map for Z becomes the
short exact sequence

(L17.6) Im−1,m′
(X,Y, Z;E) ↪→ Im,m

′
(X,Y, Z;E)

σ−→ C∞([SN∗Z, SN∗
ZY ];EZ ⊗N−m,−m′), σ = σY,m,m′ .

So, in this new setting, the Z-symbol is a smooth function (or section of a trivial
line bundle) over a compact manifold with boundary.

The total symbol is the combination of these two. Even though each of these
symbols is surjective there is a compatibility condition between them. Namely the
symbol for Z in (L17.6) restricts to the boundary of the blown-up manifold to define
the ‘corner symbol’

(L17.7) σY,m,m′
∣∣
S∗N(SN∗

ZY )
, ∂[SN∗Z, SN∗

ZY ] ≡ S∗N(SN∗
ZY ).

Here S∗N(SN∗
ZY ) is the sphere bundle of the conormal bundle to SN∗

ZY as a
submanifold of SN∗Y. On the other hand, this is exactly where the symbol of an
element of the image of σY,m,m′ lives. The compatibility condition between the two
symbols is then precisely

(L17.8) γm,m′(u) = σY,m,m′(u)
∣∣
S∗N(SN∗

ZY )
= σm(σY,m,m′(u)).

That is, together these two maps give one joint symbol map giving a short exact
sequence

(L17.9) Im−1,m′−1(X,Y, Z;E) ↪→ Im,m
′
(X,Y, Z;E)

σm,m′−→ Jm,m
′
(Y, Z;E)

Jm,m
′
(Y, Z;E) =

{
(a, v); a ∈ C∞([SN∗Z, SN∗

ZY ];EZ ⊗N−m,−m′),

v ∈ Im(SN∗Y, SN∗
ZY ;EY ⊗N−m′) s.t. a

∣∣
S∗N(SN∗

ZY )
= σm(v)

}
.

This does capture the ‘full leading singularity’ because

(L17.10)
⋂
k

Im−k,m
′−k(X,Y, Z;E) = C∞(X;E)

so in an iterative argument one would expect to finish up with smooth errors if all
went well.

Note that we can also think in terms of the corner symbol in (L17.8) as being
another symbol map. It corresponds to the short exact sequence

(L17.11) Im,m
′−1(X,Y, Z;E) + Im−1,m′

(X,Y, Z;E) ↪→ Im,m
′
(X,Y, Z;E)

γm,m′−→ C∞(SN∗(SN∗
ZY );EZ ⊗N−m,−m′).
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So, it remains to define the spaces Im,m
′
(X,Y, Z;E) and prove all these things.

For the most part this goes through following the earlier model for conormal dis-
tributions with respect to a single submanifold. I will therefore concentrate on the
new twists which arise and relegate many of the proofs to the addenda.

We start with the model case where Z is a point and Y is a linear subspace
of Euclidean space, {0} ⊂ Rk ⊂ Rn. Now, last time I recalled the definition of the
relative compactification VW where V ⊂W is a linear subspace of a vector space.
We want to consider it here for the dual spaces. Thus V = (Rk)◦ ⊂ Rn = W is the
inclusion Rn−k ⊂ Rn. Recall that there is a smooth map

(L17.12) VW −→ W

so C∞(VW ) is ‘bigger than’ C∞(W ) in the sense that the latter is naturally included
in the former. With these identifications we defined

(L17.13) Im,m
′

S (Rn,Rk, {0}) = F−1
(
ρ−MW ρ−M

′

V C∞(VW )
)
, M = m, M ′ = m′.

Here the defining function for the boundary of W pulls back under the map (L17.12)
to ρV ρW where both are elements of C∞(VW ), the one, ρW , defining the ‘main face’
at infinity (the one whose image is the whole of the boundary of W ) and the other
defining the ‘product-type’ face which corresponds to V, hence the notation ρV .

For simiplicity of notation, set m = m′ = 0 so that the powers in (L17.13)
are removed. In this case the two symbols of u ∈ I0,0

S (Rn,Rk, {0}) are just the
restrictions of F(u) to the two faces ρW = 0 and ρV = 0. Referring back to the
defining map for VW in (L16.11) to see what these two boundary faces are with
the compactification given by the closure of the image in (L16.12), corresponding
to a choice of splitting W = V × U. Here

(L17.14) ρW = t, ρV = s.

From (L16.12) we see that there is an identification

(L17.15) VW ⊃ {s = 0} −→ U × SV, SV = ∂V .

At least in coordinates, the ‘Y -symbol’ can therefore first be identified with an
(arbitrary) element of C∞(U×SV ). If we now take the inverse Fourier transform on
U we will get an element of Im(U ′, {0}) (ignoring as usual niceties about the shifts
in the order of conormal distributions). Since V is the dual of Rk, we may identify
the dual, U ′ of U with V and hence identify SV × U ′ with SN∗Y = Rk × Sn−k−1,
the sphere bundle of the conormal bundle of Y = Rk in Rn. With this identification,
which we have to check behaves properly under linear transformations,

(L17.16) σY : Im,m
′

S (Rn,Rk, {0}) 3 u 7−→ a = F(u)
∣∣
s=0
−→

F−1
u (a) ∈ C∞(Sn−k−1; Im

′

S (Rk, {0}) = Im
′

S (Rk × Sn−k−1, {0} × Sn−k−1)

is exactly what we have anticipated for the ‘Y -symbol’. It is a conormal distribution
on the spherical conormal bundle to Y with respect to the submanifold given by
the fibre over Z = {0}.

We have already shown that any linear transformation of a real vector space
W which preserves a subspace V ⊂ W lifts to a diffeomorphism of [V ]W. If L ∈
GL(n,R) preserves the subspace Rk = Rk × {0} ⊂ Rn then for any u ∈ S ′(Rn),

(L17.17) F(L∗u) = |det(L)|−1(Lt)−1F(u).
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Since the transpose preserves the annihlator (Rk)◦ ⊂ Rn, we see directly from the
definition that
(L17.18)
L∗ : Im,m

′

S (Rn,Rk, {0}) −→ Im,m
′

S (Rn,Rk, {0}) if L(Rk) = Rk, L ∈ GL(n,R).

Thus we do have linear invariance in the sense that under a general linear transfor-
mation

(L17.19) L∗ : Im,m
′

S (Rn,Rk, {0}) −→ Im,m
′

S (Rn, L−1Rk, {0}), L ∈ GL(n,R).

The other symbol map is surjective, essentially by definition, onto the space
C∞([SW,SV ]) where this manifold with boundary, which looks like SU × V , is
identified (by definition) with {t = 0} in VW. Then the properties of the symbol
maps corresponding to (L17.3) and (L17.6) are the exactness of
(L17.20)

I0,−1
S (Rn,Rk, {0}) ↪→ I0,0

S (Rn,Rk, {0}) σY−→ Im
′

S (Rk × Sn−k−1, {0} × Sn−k−1)

and

(L17.21) I−1,0
S (Rn,Rk, {0}) ↪→ I0,0

S (Rn,Rk, {0}) σZ−→ C∞([SW,SV ]).

Namely, in each case, a function in C∞(VW ) is in ρY C∞(VW ) or ρZC∞(VW ) if
and only if it vanish on s = ρY = 0 or t = ρV = 0 respectively, and this means
exactly that the restriction of the function to that boundary face vanishes.

The joint symbol γ(u) is obtained simply by combining of these two symbols.
The only compatibility condition between them is that the have the same restriction
to the corner of VW, which is SU × SV and which defines the ‘corner symbol’
γ(u) ∈ C∞(SU × SV ). The vanishing of the joint symbol means that F(u) can be
written as stb with b smooth giving the analogue of (L17.9) in this vector space
setting:-

(L17.22) Im−1,m′−1
S (Rn,Rk, {0}) ↪→ Im,m

′
(Rn,Rk, {0}) σ0,0−→ J0,0

S (Rn,Rk)

J0,0
S (Rn,Rk) =

{
(a, v); a ∈ C∞([SW,SV ]),

v ∈ Im(Rk × Sn−k−1, {0} × Sn−k−1) s.t. a
∣∣
SU×SV = σ(v)

}
.

The vanishing of the corner symbol γ implies that F(u) ∈ C∞(VW ) can be
written as the sum of a smooth function vanishing at t = 0 and one vanishing at
s = 0 (check this yourself!) giving the analogue of (L17.11)
(L17.23)
I0,−1
S (Rn,Rk, {0}) + I−1,0

S (Rn,Rk, {0}) ↪→ I0,0
S (Rn,Rk, {0}) γ0,0−→ C∞(SU × SV ).

Note that by iterative use of the ‘Z-symbol’ one would expect errors in

(L17.24)
⋂
k

Im−k,m
′

S (Rn,Rk, {0}) = Im
′

S (Rn,Rk) = S(Rk; Im
′

S (Rn−k, {0}).

To see this equality note first that the middle space needs some comment even as
regards its definition – simply because I did not define a ‘tempered’ conormal space
in the general case of a subspace of a vector space (because I did not need it).
However, the last equality serves as a reasonable definition of the middle space. If
we take variables in Rn = Rky × Rn−kz then taking the Fourier transform to realize
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the conormal distributions at the origin in Rn−k as symbols we get
(L17.25)
Fz→ζS(Rky ; Im

′

S (Rn−kz , {0})) = S(Rky ; ρ−m
′
C∞(Rn−kζ )) = ρ∞y ρ

−m′

ζ C∞(Rky × Rn−kζ ).

Now, taking the Fourier transform in y gives again Schwartz functions in the dual
variable η. Thus the right two spaces in (L17.24) can be identified under Fourier
transform in all variables with

(L17.26) ρ∞η ρ
−m′

ζ C∞(Rkη × Rn−kζ ).

Thus, it remains to see that this is the same as the space on the left in (L17.24).
In fact, by definition, Fourier transform gives a symbol in

(L17.27) ρ−m
′

V ρ∞WC∞(VW )

so it remains to see that these two spaces are the same (as spaces of functions on
Rnη,ζ). This is Lemma 26 from last time (unproven then, with proof in the addenda).

As an intermediate case (which I did not have time to include in the lecture)
suppose that N −→ Z is a vector bundle over a compact manifold Z. I am thinking
here of the normal bundle to Z as a submanifold of some compact manifold X. Then
we replace Y by its linearization in N, so suppose that M ⊂ N is a subbundle over
Z. To fit a little with the earlier notation, let W be the dual bundle of N and V the
annihilator ofM inW. Then, for any bundle E over Z we wish to define, and explore
the properties of, Im,m

′

S (N,M,Z;E). This is rather easy (which is why I skipped it),
since we may always take local trivializations of the bundle N in which it becomes
Rn×O over an open subset O ⊂ Z with the identification such that M = Rk×O. If
we assume that E is trivial over O as well, then we are reduced to smooth functions
on O with values in (the direct sum of rankE copies of) Im,m

′

S (Rn,Rk, {0}). From
the linear invariance of Im,m

′

S (Rn,Rk, {0}) the result space is independent of choice
of trivialization and patches to give Im,m

′

S (N,M,Z;E).
We can alternatively proceed more directly, by taking the fibre Fourier trans-

form on N and defining more directly
(L17.28)
Im,m

′

S (N,M,Z;E) = F−1
fib

(
ρ−m

′

V ρ−mW C∞(VW ;E ⊗ Ωfib)
)
, W = N∗, V = M◦.

Here we just observe that the fibre-by-fibre relative compactification gives a well-
defined compact manifold with corners, fibred over Z so this makes good sense.
Clearly this gives the same space as before. The second definition has the advantage
that the symbol maps discussed above carry over directly and we get the analogous
short exact sequences, except that everything is now fibred over Z.

Having briefly discussed the case of a bundle over Z we now consider the case
of a bundle N over Y, a compact manifold with a given submanifold Z ⊂ Y. Of
course, N will be the normal bundle for Y in a manifold X. Now the set up is
completely global in Y and we will define the space by reduction to the previous
case.

Lemma 28. For a real vector bundle N over Y any submanifold Z ⊂ Y, identifed
as a subset of the zero section of N, has a normal fibration F in N in which the
image of the zero section of N lies in a subbundle MY ⊂ NZ.
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Given such a normal fibration, we can set, for any vector bundle over Y,

(L17.29) Im,m
′

S (N,Y, Z;E) = Im
′

S (N,Y ;E)

+ F ∗{u ∈ Im,m
′

S (NZ,MY , Z;EF ); supp(u) ⊂ D(F ) ⊂ NZ}.

Here D(F ) is the open neighbourhood of Z in NZ which is the image of F and
EF is a bundle over Z with an identification to E over D′(F ), the domain of F. Of
course to use this as a definition we need to check that the right side is independent
of the normal fibration. This follows the usual pattern and will be included in the
addenda (when I get around to it).

Naturally we also wish to show that the symbol maps extend to these spaces
and have the properties which will lead to those displayed above. In fact we are
now in the general case, except for more coordinate invariance. That is, we need
to show that we can set

(L17.30) Im,m
′
(X,Y, Z;E) = C∞(X;E)

+G∗{u ∈ Im,m
′

S (NY, Y, Z;EY ); supp(u) ⊂ D(F ) ⊂ NY }

where G is a normal fibration of Y in X with the usual identifications of bundles.
Then the properties will reduce to the case in (L17.29). The main issues are to
show that the symbol maps are well-defined, that they are surjective and that they
have the null spaces as required to give the short exact sequences. For the symbol
associated to Z this is rather clear. We already know it is unaffected by what
happens away from Z so, apart from coordinate invariance, it drops back to the
case (L17.28) of a bundle over Z where we already understand it.

So, it is more productive to talk about the Y symbol. This is global so needs
to be discussed carefully. To see that it is well-defined we can proceed to make
the decomposition in (L17.29) a little more definitive. Thus, we can choose a
function ψ ∈ C∞c (N) which is equal to one in a neighbourhood of Z and which has
support in the domain of the normal fibration of Z inN. Then we the decomposition
u = ψu+(1−ψ)u gives and element in Im

′
(N,Y ;E) supported away from Z and an

element in v ∈ Im,m
′

S (NZ,MY , Z;EF ) with compact support such that ψu = F ∗v.
We may then define the symbol as the sum

(L17.31) σY (u) = σ((1− ψ)u) + (F∗)∗σY (v).

These may both be directly interpreted as elements of the expected space

(L17.32) Im(SN∗Y, SN∗
ZY ;EY ⊗N−m′).

Indeed the first term in (L17.31) is a smooth section of this bundle supported away
from Z and the second is in this space from the discussion above. To prove that
the result is well-defined we only need check that change of ψ does not affect the
result. This just means showing that if u is supported away from Z but in the
domain of the normal fibration then the two symbols are the same. This however
follows from the definitions, which are the same away from Z.

This argument also shows surjectivity of σY .Namely the second term in (L17.31)
is of the form ψ(F∗)∗σY (v′) and hence every conormal distribution arises this way.
Conversely, if σY (u) = 0 then u is certianly of order m′ − 1 away from Z. Hence
subtracting a term in Im

′−1(X,Y ;E) with support away from Z replaces u by a
distribution supported in the domain of the normal fibration. Since its symbol can
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be computed from the bundle model and it vanishes by hypothesis, it must lie in
Im,m

′−1(X,Y, Z;E) and this proves the exactness of (L17.3).
The other claims may be established in much the same way.
The two inclusion which can be seen directly from the definition of product-type

symbols are

(L17.33)
Im(X,Z;E) ⊂ Im,m(X,Y, Z;E) for any Y ⊃ Z,

Im
′
(Y ;E) ⊂ I−∞,m′

for any Z ⊂ Y.
There is a third inclusion which I will use below. Namely (I will put something

about this back in the addenda) for any submanifold Y ⊂ X of any manifold
(compact for simplicity of notation) there is an inclusion

(L17.34) C−∞(Y ;EY ⊗ Ω(N∗Y )) 3 v −→ v ⊗ δY ∈ C−∞(X;E)

corresponding to ‘tensoring with a delta function in the normal direction’ and the
density factor is there because the delta ‘function’ wants to be a density in the
normal direction (and Ω stands for the absolute value of the maximal exterior
power of the dual of any real bundle). In local coordinates in which Y is given by
z1 = · · · = zn−k = 0, the map (L17.34) is just

(L17.35) v(y) 7−→ v(y)δ(z1) . . . δ(zn−k).

I leave you to check that it is independent of coordinates.
Then there is an inclusion

(L17.36) Im
′
(Y, Z;EY ) −→ I0,m′

(X,Y, Z;E)

which extends to the more obvious inclusion

(L17.37) C∞(Y ;EY ⊗ Ω(N∗Y )) −→ I0(X,Y ;E)

and in which the ‘0’ arises as the order of the delta function as a conormal distri-
bution.

17+. Addenda to Lecture 17

17+.1. Linear invariance.





CHAPTER 18

Product-type pseudodifferential operators

Lecture 18: 17 November, 2005

The main application I will make of the product-type conormal distribution,
that I discussed last time, is to product-type pseudodifferential operators. Since
these operators are associated to a fibration, let me start with a short discussion of
the geometry of fibrations.

L18.1. Product-type operators defined. Thus consider a fibration,

(L18.1) Z M

φ

��
B.

If we take the product fibration M2 −→ B2 and map the diagonal of B into the
product, B = DiagB −→ B2 then pulling back the product gives us the fibre
product

(L18.2) Z2 M2
φ

φ2

��

� � // M2

φ2

��
B

� � Diag // B2.

Since the points of M2
φ ⊂M2 are exactly those mapped to the diagonal in B2

under the fibration, we have a pair of embedded submanifolds

(L18.3) DiagM ⊂M2
φ ↪→M2.

Note that M2
φ is often called the fibre diagonal. In local coordinates z, y and z′, y

near different points in M but above the same point in B with respect to which
the fibration is projection onto the second factor,

(L18.4) DiagM = {z = z′, y = y′} ⊂M2
φ = {y = y′} ⊂M2.

Definition 7. The pseudodifferential operators on M of product type with
respect to the fibration φ and acting between sections of bundle, E and F over M
are identified as a space of kernels with the product-type conormal distributions

(L18.5) Ψm,m′

φ−pt (M ;E,F ) = Im̃,m̃
′
(M2,M2

φ,Diag;Hom(E,F )⊗ ΩR).

0.7E; Revised: 29-11-2006; Run: November 29, 2006
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Lemma 29. The product-type pseudodifferential operators act continuously on
smooth sections:

(L18.6) Ψm,m′

φ−pt (M ;E,F ) 3 A : C∞(M ;E) −→ C∞(M ;F ).

Proof. This is a direct application of the simple push-forward theorem for
product-type conormal distributions, as in the standard case before. Namely the
product-type conormal distributions on any manifold X are a module over C∞(X) :

C∞(X) · Im,m
′
(X,Y, Z;E) −→ Im,m

′
(X,Y, Z;E).

If π : X −→ X ′ is a fibration which is transversal to both submanifolds and E is
the lift of a bundle from the base then

π∗ : Im,m
′
(X,Y, Z;π∗E ⊗ Ω) −→ C∞(X ′; Ω)

is continuous.
In this case we consider the projection πL : M2 −→M as a fibration. For any

bundles E and F over M the module product (L18.1) followed by composition in
the fibres gives

(L18.7) C∞(M2;E) · Im,m
′
(M2,M2

φ,Diag;Hom(E,F )⊗ ΩR) −→

Im,m
′
(M2,M2

φ,Diag;π∗LF ⊗ ΩR).

The cancellation of left densities, as in the standard case, allows us to interpret
(L18.6) as the composition of the maps (L18.1) and (L18.1) (for πL) with pull-
back:

(L18.8) A : C∞(M ;E) 3 u 7−→ π∗Ru ∈ C∞(M2;E) ·A−→

Im,m
′
(M2,M2

φ,Diag;π∗LF ⊗ ΩR)
(πL)∗−→ C∞(M ;F ).

�

L18.2. Symbol maps. The symbol, acting on the space of conormal distribu-
tions, associated to the smaller submanifold M2

φ takes values in (conormal) sections
of a bundle over the the sphere bundle of the conormal bundle, SN∗M2

φ.

Lemma 30. For any fibration, (L18.1), the sphere bundle of the conormal bun-
dle to the fibre diagonal, may be naturally identified as the pull-back

(L18.9) SN∗(M2
φ) = π∗(M2

φ) where π : S∗B −→ B,

as a fibration over S∗B with fibre Z2 giving a commutative diagramme

(L18.10) Z2 SN∗(M2
φ) π //

��

M2
φ

φ2

��

� � // M2

φ2

��
S∗B

π // B
� � Diag // B2.

Proof. At any point p ∈ M2
φ the conormal fibre in M2, N∗

pM
2
φ is the space

of differentials of functions vanishing on M2
φ. Since M2

φ is the preimage of DiagB
under the product fibration, this is just (φ2)∗N∗

φ(p) DiagB = T ∗φ(p)B. The same is
therefore true of the spherical quotient, SN∗

pM
2
φ which is therefore identified with

the pull-back of the fibration, SN∗
pM

2
φ = π∗pS

∗B. In local coordinates this is just
saying that N∗

pM
2
φ is spanned by the dyj in terms of product coordinates. �
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For any fibration manifold SN∗(DiagM ) = S∗M as usual where the identifica-
tion comes from pull-back from the left factor of M.

Lemma 31. For a fibration, the boundary of the relative compactification of
N∗ DiagM with respect to the subbundle N∗

DiagM
M2
φ may be identified with the blow-

up [S∗M,φ∗S∗B] and this fibres

(L18.11) γ : [S∗M,φ∗S∗B] −→ S∗(M/B)

with fibre, over b ∈ B, modelled on T ∗b B; the boundary of [S∗M,φ∗S∗B] is naturally
identified as

(L18.12) ∂[S∗M,φ∗S∗B] = π∗S∗(M/B),

the pull-back to S∗B of the bundle S∗(M/B) over B.

Proof. This follows from the earlier discussion of the relative compactificaiton
of a vector bundle U with respect to a subbundle V. Namely, the ‘main’ boundary
component of the relative compactification of U with respect to V may be identified
with blow-up [SU, SV ], that this fibres over SU/V with fibres modelled on Vp (at
any point p) and has boundary naturally diffeomorphic ∂[SU, SV ] ≡ π∗V S(U/V )
to the pull-back of S(U/V ) to SV. In the present case the base is M, U = T ∗M
and V = φ∗T ∗B, the pull-back to M of the cotangent bundle to the base. Thus,
SU = S∗M and SB = φ∗S∗B and the ‘main’ boundary face, [S∗M,φ∗S∗B], fibres
over the ‘vertical sphere bundle’ S∗(M/B) with fibre modelled on the fibres of T ∗B
with the boundary, which is to say the corner of V U, being the pull-back to S∗B
of S∗(M/B). �

With these reinterpretations of the manifolds on which the symbols of product-
type conormal distributions are defined we may reinterpret the general symbol maps
in the case of pseudodifferential operators to give

(L18.13)
σ0,0 : Ψ0,0

φ−pt(M ;E,F ) −→ C∞([S∗M,φ∗S∗B]; hom(E,F )),

β0,0 : Ψ0,0
φ−pt(M ;E,F ) −→ Ψ0(π∗M/S∗B;E,F ).

For operators of double order other than 0, 0 we need to add appropriate ‘homo-
geneity bundles’ to the symbol maps

(L18.14)
σm,m′ : Ψm,m′

φ−pt (M ;E,F ) −→ C∞([S∗M,φ∗S∗B]; hom(E,F ))⊗Nm.m′ ,

βm′,m : Ψm,m′

φ−pt (M ;E,F ) −→ Ψm′
(π∗M/S∗B;E,F ⊗N−m).

These two maps are therefore separately surjective and have joint range the com-
patible subset

(L18.15) σm,m′(βm′,m(A)) = σm,m′(A)
∣∣
∂[S∗M,φ∗S∗B]

.

I will generally call σm,m′(A) the ‘usual symbol’ since it is a fairly obvious
extension of the standard symbol map. On the other hand I will call βm′,m the ‘base
symbol’. This may be a rather contrarian name, since the base symbol is actually
a family of fibre-wise pseudodifferential operators. However, these depend on the
cotangent varriables in the base and this is why I think of it as the ‘base’ sybmol
– it looks like the symbol of an operator on the base except that it takes values in
pseudodifferential operators on the fibres instead of simply bundle homomorphisms.
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L18.3. Composition. Also very much as in the standard case, the composite
of two pseudodifferential operators, as maps (L18.6) is again a pseudodifferential
operator of product type.

Proposition 35. For any fibration of compact manifolds (L18.1) and any three
bundles E, F and G over M,

(L18.16) Ψm1,m
′
1

φ−pt (M ;F,G) ◦Ψm2,m
′
2

φ−pt (M ;E,F ) ⊂ Ψm1+m2,m
′
1+m

′
2

φ−pt (M ;E,G)

and the symbol maps are both homomorphisms, i.e. map products to products

(L18.17)
σm1+m2,m′

1+m
′
2
(AB) =σm1,m′

1
(A)σm2,m′

2
(B),

A ∈ Ψm1,m
′
1

φ−pt (M ;F,G), B ∈ Ψm2,m
′
2

φ−pt (M ;E,F )

βm′
1+m

′
2

: (AB) = βm′
1
(A)βm′

2
(B) ∈ Ψm′

1+m
′
2(π∗M/S∗B;E,G⊗Nm1+m2).

Proof. This is basically the same as in the standard case – I did not go through
it carefully in the lecture, but it is written out below in the addenda. �

L18.4. Ellipticity. If both symbols are invertible then A is said to be fully
elliptic and then (in fact iff) it has a parametrix.

Proposition 36. If A ∈ Ψm,m′

φ−pt (M ;E,F ) is fully elliptic in the sense that
σm,m′(A) has an inverse in C∞([S∗M,φ∗S∗B]; hom(F,E))⊗N−m,−m′ and βm′,m(A)
has an inverse in Ψ−m′

(M/B;F,E⊗N−m) then there exists B ∈ Ψ−m,−m′

φ−pt (M ;F,E)
such that

(L18.18) A◦B = IdF −R′, B◦A = IdE −R, R ∈ Ψ−∞(M ;E), R′ ∈ Ψ−∞(M ;F ).

Proof. This is a good opportunity to review the construction of a parametrix
for an elliptic operator in the standard case, since the argument is almost precisely
the same. �

Homotopy invariance of the index follows as before. Namely, if At is a smooth
(in t ∈ [0, 1]) family of elliptic operators then we can find a smooth family of
parametrices Bt up to smoothing errors. The arguments leading to the formula

(L18.19) ind(At) = Tr(IdE −BA)− Tr(IdF −AB)

carry over directly to this more general setting and show that the index is smooth
and integer-valued, hence constant.

Remark 1. This suggests a harder index problem, which I hope to come back
to before the end of the semester, namely what is the (families) index of A of
product-type; it depends only on the (invertible) joint symbol σm,m′(A), βm′,m(A).
Of course it is also the case that full ellipticity is quite a strong condition, since
it requires the invertibility of a family of operators. On the other hand the index
theorem in the standard case gives us a good hold on invertibility, after smoothing
purturbation.

L18.5. Subalgebras. For the application to the index of ordinary pseudodif-
ferential operators we need three important inclusions (see (L18.11)). The first is
of the fibrewise operators.
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Proposition 37. For any fibration of compact manifolds
(L18.20)

Ψm′
(M/B;E,F ) ⊂ Ψ0,m′

φ−pt(M ;E,F ), σm,m′(A) = γ∗σm′,0(A), β0,m′(A) = A.

Proof. This is just the corresponding inclusion of conormal distributions dis-
cussed last time

(L18.21) Im
′
(Y, Z;E ⊗ ΩY ) 3 u ↪→ u · δY ∈ I0,m′

(X,Y, Z;E ⊗ ΩX)

in which a (conormal) distribution on Y, with respect to Z, is extended to X as
a ‘Dirac delta’ in the normal variables. Locally (for the fibration case) this is
rather obvious, since in product coordinates z, y and z′, y (the same in the base,
but possibly near different points in the fibre)

(L18.22) Ψm′
(M/B;E) 3 A = A(y, z, z′) ∈ Im(Z2;E ⊗ ΩZ) −→

δ(y − y′)A(y, z, z′) ∈ Im̃,0̃(M2;M2
φ,Diag;E).

As usual the densities take care of themselves (which one needs to check of course)
and the symbol behaves as indicated in (L18.21). Namely, the base symbol comes
from the (local) Fourier transform in y so recovers the operator and the usual
symbol comes from the full Fourier transform on y, z which is constant in the dual
to y. �

Similarly the inclusion of the standard pseudodifferential operators corresponds
to the inclusion

Im(X,Z;E)←→ Im,m(X,Y, Z;E)
for any embedded submanifold Z ⊂ Y.

Proposition 38. For any fibration of compact manifolds
(L18.23)
Ψm(M ;E,F ) ⊂ Ψm,m

φ−pt(M ;E,F ), σm,m(A) = σm(A), βm,m(A) = σm(A)
∣∣
φ∗S∗B

.

Thus in the second case the ‘base symbol’ is just the ordinary symbol – so acts
as a bundle isomorphism on the fibres.

Perhaps the most important inclusion for us is that of pseudodifferential op-
erators on the base. For any bundle E over M we may view C∞(M ;E) as an
infinite-dimensional bundle over B, it could be denoted C∞(M/B;E), with fibre
isomorphic to C∞(Z;E

∣∣
Z
). Suppose we have a family of smoothing projections,

hence of finite rank,

(L18.24) π ∈ Ψ−∞(M/B;E), π2 = π( and π∗ = π if you want.)

Then the range of π is a finite dimensional bundle which sits inside C∞(M/B;E).

Proposition 39. If π1 ∈ Ψ−∞(M/B;E) has range isomorphic to a bundle Ẽ
over B and π2 ∈ Ψ−∞(M/B;F ) has range isomorphic to F̃ over B then

(L18.25) Ψm(B; Ẽ, F̃ ) 3 A −→ π2Aπ1 ∈ Ψ−∞,m
φ−pt (M ;E,F ),

σ−∞,m(πFAπ1) = 0 (by definition), βm,−∞(π2Aπ1) = π2σ(A)π1.

Proof. This corresponds to the general inclusion for product-type conormal
distributions

(L18.26) Im(X,Y ;E) ⊂ I−∞,m(X,Y, Z;E).

�



152 18. PRODUCT-TYPE PSEUDODIFFERENTIAL OPERATORS

I have inserted smoothing operators in (L18.25) ‘compressing’ the pseudodif-
ferential operator on the base so that it acts on a finite subbundle on the fibres
because I felt this was clearer in the application below. One can instead consider
an operator on the base as acting on the lifted bundles and then one arrives at

Proposition 40. For any fibration of compact manifolds there is a natural
inclusion

(L18.27) Ψm(B;E,F ) ⊂ Ψm,0(M ;φ∗E, φ∗F ), σm,0(A) = σm(A), β0,m = σm(A).

L18.6. Connection.

Definition 8. A connection on a fibration is a choice of complementary bundle
to T (M/B) ⊂ TM where

(L18.28) Tp(M/B) =
{
v ∈ TpM ; v is tangent to Zφ(p) = φ−1(φ(p))

}
.

The complement corresponding to a connection is necessarily isomorphic to the
lift of the tangent bundle to the base, φ∗(TB), corresponding to the short exact
sequence

(L18.29) T (M/B) −→ TM −→ φ∗TB.

Thus a connection is a splitting of (L1.2) as a sequence of bundles over M.

L18.7. Tensor product construction. Finally, with this ammuntion (un-
verified as a lot of it is) we come to the main construction of Atiyah and Singer, at
least from this point of view.

Proposition 41. If B ∈ Ψ0(M/B;E+, E−) is an elliptic family with trivial
index bundle of rank 1 – more specifically which is surjective and has null bundle
trivial of rank 1 – then for any elliptic operator A ∈ Ψ0(B;F+, F−) (having chosen
inner products and densities) the operator

(L18.30) PA = A⊗B =
(

B 0
πnull(B)Aπnull(B) B∗

)
∈ Ψ0,0

φ−pt(M ;H+,H−),

H+ = E+ ⊗ F+ ⊕ E− ⊗ F−, H− = E+ ⊗ F− ⊕ E− ⊗ F+

is elliptic with

(L18.31) ind(A⊗B) = ind(A)

and PA is deformable, through fully elliptic elements of Ψ0,0
φ−pt(M ;H+,H−) to an

element

(L18.32) Ã ∈ Ψ0(M ;H+,H−), σ(Ã) =
(
χ1σ0(B) −χ2σ0(A)∗

χ2σ0(A) χ1σ0(B∗)

)
where χi ∈ C∞(S∗M) form a partition of unity subordinate to the cover.

The operator PA can be thought of as the ‘Clifford tensor product’ of A and B.
How are we going to use this? Given A ∈ Ψm(B; E) (where I will start using

‘superbundle’ notation, with E = (E+, E−) and B acting between them) then given
an embedding B ↪→ SN we may take a normal fibration to B. The normal bundle
NB is itself is a bundle over B and if we take its 1-point compactification 1NB we
get a fibration over B. The result above is applied to lift A to a pseudodifferential
operator on 1NB with the same index (and the ‘same’ symbol in the sense of
(L18.32). We can actually arrange that the lifted operator is completely trivial
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near the section ‘at infinity’ of the 1-point compactification and so extend it to SN ,
to be trivial outside the collar neighbourhood of B. This effectively reduces the
index problem to SN , we we can solve it using Bott periodicity.

18+. Addenda to Lecture 18

18+.1. Fredholm condition and ellipticity. In the general mixed order
case Sobolev spaces are needed to characterize ellipticity.

Proposition 42. If A ∈ Ψ0,0(M ;E,F ) then A is Fredholm as a map A :
L2(M ;E) −→ L2(M ;F ) if and only if it is fully elliptic.

18+.2. Proof of Proposition 40.





CHAPTER 19

Multiplicativity and excision

Lecture 19: 22 November, 2005

L19.1. Multiplicativity. Last time I set up the following single operator
version of multiplicativity but did not complete the proof. The general case is no
harder, the notational overhead is just heavier.

Proposition 43. [Multiplicativity] Consider a ‘tower’ of compact fibrations

(L19.1) S M̃

φ̃

��
Z M

φ

��
B

and suppose that P ∈ Ψ0(M̃/M ; E) is an elliptic family with trivial one-dimensional
index bundle then for any ellptic family A ∈ Ψ0(M/B; F)

(L19.2) ind(A) = ind(P ⊗A) = ind(AP ) ∈ K0(B)

where P ⊗A is the product-type family

(L19.3) P ⊗A =
(

P 0
Anull(P ) P ∗

)
and AP ∈ Ψ0(M̃/B; E⊗ F) is any family with symbol

(L19.4)
(
χ1σ0(P ) −χ2σ0(A)∗

χ2σ(A)) χ1σ0(P )∗

)
where χ1, χ2 is a partition of unity on S∗(M̃/B) subordinate to the cover by the
complements of φ̃∗(S∗(M/B)) and S∗(M̃/M) for some choice of connection on φ̃.

Proof. I set this up last time in the single operator case, where the bottom
fibration just has one fibre and B is a point. Formally the general case is not very
different. Thus, by assumption, the null space of the family P is a trivial line bundle
over M. We can make A act between sections of E+ ⊗ φ̃∗F+ and E+ ⊗ φ̃∗F− by
considering it as the composite

(L19.5) Anull(P ) = πnull(P )Aπnull(P ) : Ψ0,−∞
φ̃-pt

(M̃/B;E+ ⊗ F)

0.7E; Revised: 29-11-2006; Run: November 29, 2006
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where I am using F to stand for the ‘superbundle’ (F+, F−) and E+⊗F stands for
(E+⊗F+, E+⊗F−). Then (L19.3) is a well-defined family of product-type operators
(it is a family over B, and of product-type with respect to φ̃.)

We know by direct computation that its index is ind(A), at least if A has been
stabilized to have a smooth null bundle. Namely, the null space of P ⊗ A consists
of pairs (u, v) ∈ C∞(M̃ ;E+ ⊗ F+)⊕ C∞(M̃ ;E+ ⊗ F−) satisfying

(L19.6)
Pu = 0 =⇒ u ∈ C∞(M ;E+ ⊗ null(P )),

Anull(P )u+ P ∗v = 0 =⇒ Au = 0, v = 0.

In the second line we use the fact that the range of P ∗ is orthogonal to the null
space of P so the two terms must vanish separately. Then Au = 0 just recovers the
null space of A. For the adjoint

(L19.7) (P ⊗A)∗ =
(
P ∗ A∗null(P )

0 P

)
we similarly conclude that (u′, v′) in the null space implies that u = 0, v ∈
C∞(M ;E− ⊗ null(P )) and then u ∈ null(A∗).

We also ‘know’ (I only did it in the single operator case in fact) that a homotopy
of totally elliptic product-type pseudodifferential operators has constant index in
K-theory of the base; I will add this to the addenda. So we proceed to deform the
family (L19.3) but keeping total ellipticity. Recall that the family P ⊗A is totally
elliptic because it symbol and base symbol are respectively

(L19.8)
σ0,0(P ⊗A) =

(
σ0(P ) 0

0 σ0(P )∗

)
β0(P ⊗A) =

(
P 0

σ0(A)πnull(P ) P ∗

)
.

Now, we have the partition of unity χ1, χ2 on S∗(M̃/B) in which χ2 is sup-
ported near the lift of T ∗(M/B) under φ̃. This means that χ2σ0(A) is a well-defined
symbol in a neighbourhood of the ‘non-commutative’ front face – on the fibres of
which it is constant. Take an element Ã ∈ Ψ0(M̃/B;E+ ⊗ F) which has symbol
χ2σ0(A) and consider the curve of operators

(L19.9)
(

P −tÃ∗
(1− t)Anull(P ) + tÃ P ∗

)
∈ Ψ0,0

φ̃-pt
(M̃/B; E⊗ F).

The claim is that this remains elliptic. Its usual symbol is just

(L19.10)
(
σ0(P ) −tχ2σ0(A)∗

tχ2σ(A) σ(P )∗

)
.

The crucial property of this (Clifford) tensor product matrix is that it is invertible
because the ‘diagonal’ part is invertible. Consider an element (α, α′) of the null
space. Note that σ(P ) and σ(A) commute, because the act on different factors of
the tensor product, so

(L19.11) σ0(P )α− tχ2σ0(A)∗α′ = 0, tχ2σ(A)α+ σ(P )∗β = 0 =⇒
α = tχ2σ0(A)∗σ0(P )−1α′ = −t2χ2

2σ0(A)∗σ0(A)(σ(P )∗)−1σ0(P )−1α.
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Thus the null space is trivial, because of the invertibility of σ0(P ) and hence the
operator is ‘symbolically’ elliptic. The non-commutative, or base symbol is

(L19.12)
(

P −tχ2σ0(A)
(1− t)σ0(A)null(P ) + tσ0(A) P ∗

)
since (as a fibre family) P is its own base symbol. We know this to be invertible
for t = 0 and for t > 0 a similar argument applies. The symbol preserves the
decomposition coming from the null space of P. On it, it is invertible because it
is actually constant in t. Off the null space of P it is invertible because of the
invertibility of P and an argument just like (L19.11) but now using P instead of
its symbol. Note that P and σ0(A) commute because the latter is fibre constant
for φ̃ and acts on a different bundle in the tensor product. Thus we arrive at the
operator with t = 1. Now choose an element

(L19.13) P̃ ∈ Ψ0(M̃/B; F⊗ E+) with σ0(P̃ ) = χ1σ0(P )

and perform the homotopy

(L19.14)
(

(1− t)P + tP̃ −Ã∗
Ã (1− t)P ∗ + tP̃ ∗

)
∈ Ψ0,0

φ̃-pt
(M̃/B; E⊗ F).

The ‘commutative’ symbol of this is(
(1− t)σ0(P ) + tχ1σ0(P ) −χ2σ0(A)∗

χ2σ(A) (1− t)σ(P )∗ + tχ2σ0(P )∗

)
which remains invertible everywhere. Similarly the ‘non-commutative’ symbol is(

(1− t)P −σ0(A)
σ0(A)null(P ) (1− t)P ∗

)
which is invertible because of the invertibilty of σ0(A). Thus the family remains
elliptic throughout the deformation and we finally arrive at

(L19.15)
(
P̃ −Ã∗
Ã P̃ ∗

)
∈ Ψ0(M̃/B; E⊗ F)

which is an elliptic family in the usual sense with symbol (L19.4). Thus (L19.2)
follows. �

Corollary 7. For an iterated fibration (L19.1), if b ∈ K0
c (T ∗(M̃/M)) has

ind(b) = 1 ∈ K0(M) then tensor product gives a commutative diagramme

(L19.16) K0
c (T ∗(M/B))

⊗b //

ind
&&LLLLLLLLLLL K0

c (T ∗(M̃/B))

ind
xxrrrrrrrrrrr

B

where for [(E, a)] ∈ K0
c (T ∗(M/B)), b⊗ [(E, a)] is represented by

(L19.17)
(
χ1b −χ2a
χ2a χ1b

∗

)
where b = [(F, b)].

Proof. The main thing to check is that the top map in (L19.16) is well-defined,
using (L19.17). This is straightforward. �



158 19. MULTIPLICATIVITY AND EXCISION

L19.2. Excision.

Proposition 44. [Excision.] Let Mi −→ B be fibrations of compact manifolds
and suppose ij : E ↪→Mj , j = 1, 2, are inclusions of a non-compact manifold as an
open subset giving a commutative diagramme,

(L19.18) M1

φ1   B
BB

BB
BB

B U?
_i1oo � � i2 // M2

φ2~~||
||

||
||

B

then the diagramme

(L19.19) K0
c (T ∗(M1/B))

ind

''OOOOOOOOOOO

K0
c (T ∗(U/B))

(i1)∗
66mmmmmmmmmmmmm

(i2)∗ ((QQQQQQQQQQQQQ
K0(B)

K0
c (T ∗(M2/B))

ind

77ooooooooooo

is commutative.

Proof. The main issue is to understand the maps (ij)∗ induced by the in-
clusions. A representative of an element of K0

c (T ∗(U/B)) is a triple (E+, E−, a)
where E± are bundles over U and a is an isomophism between the lifts of them
outside a compact subset K ⊂ T ∗(U/B). The fact that the two fibrations are the
same on U means that T ∗(U/B) is a well-defined bundle over U, identified by the
ij with T ∗)ij(U)(Mj/B). The image, K ′, of K under projection to U is compact
and a is therefore defined over the whole of the bundle T ∗U\K′(U/B). We can use
the restriction of a to the zero section to identify the two bundles E+ and E− over
U \K ′′, where K ′′ is the image of a slightly larger compact subset of T ∗(U/B) which
contains K ′ in its interior and having done this use the fibre homogeneity of the
bundle to give a homotopy between a and a′ which is now the identity isomorphism
between E+ and E− in U \K ′′. Now, recall from the definition that E+ and E−
are in any case supposed to be trivial outside a compact set, so we may replace
(E+, E−, a) by a representative in which E± are trivial outside a compact subset
of U and a = Id outside such a set. Of course a need not be the identity outside
a compact subset of T ∗(U/B). Then the maps are given by extending E± and a
trivially outside U to give well-defined maps

(L19.20) (ij)∗ : K0
c (T ∗(U/B)) −→ K0

c (T ∗(Mj/B).

Now, the index is defined by quantizing the ‘symbol’ a – deformed to be ho-
mogeneous of degree 0 outside the zero section of T ∗(Mj/B) to a family of pseu-
dodifferential operators. We know that the result is independent of the family
chosen with the given symbol, so we may choose the families to be of the form
Pj ∈ Ψ0(Mj/B;E+, E−) and to be equal to the identity outside Mj \ Kj for
K = ij(K) the image of a compact subset of U. Thus, Pj − Id is to have its
Schwartz kernel supported in Kj×Kj . Now, in this sense the two families of opera-
tors are ‘exactly the same’. We only have to make sure that nothing goes wrong in
the stabilization process to define the index as the difference of the null and conull
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bundles. Of course we may start with the ‘same’ parameterices for the Pj – each
being Id−Pj′ where P ′j has kernel support in Kj ×Kj where they are same. The
remaining problem here is that I did not do the stabilization procedure fully in
the families case. Here I will refer to an alternative stabilization procedure – the
relationship between this and the other one (which I did not complete!) will be
added to the addenda.

To define the families index we need to stabilize the null space, or the range,
to a bundle. One way to do this is to add an auxilliary finite dimensional map.
Namely

Lemma 32. If P ∈ Ψm(M/B; E), E = (E+, E−), is elliptic then there is a
smooth map S ∈ C∞(B ×M ; hom(CN ;E−)) such that

(L19.21)
(
P ⊕ S

)
:
C∞(M ;E+)

⊕
C∞(B; CN )

−→ C∞(M ;E−) is surjective.

Proof. For each point b ∈ B we know that the range of P has finite codimen-
sion. We can therefore find a finite number vi ∈ C∞(Zb;E−), of smooth sections
which span a complement. Extending them to smooth sections of E− over M (say
supported close to b) will mean, by continuity, that the vj span the range of Pb′
for b′ in a neighbourhood of b. Now, by compactness we may cover B by a finite
number of such neighourhoods with corresponding vj,k ∈ C∞(M ;E−) as k ranges
over some finite set. Now, let N be the total number of such sections and let S be
the linear map from CN 3 aj,k to

∑
j

aj,kvj,k. The sum P + S is surjective at each

point of the base, since it is constructed to be surjective when to the subspace with
aj,k = 0 for all but one value of k. Now, the fact that P + S is surjective leads, by
the same argument as before, to the conclusion that the null spaces form a smooth
finite dimensional subbundle of the bundle C∞(M/B;E+) ⊕ CN as a bundle over
B. The claim (or definition depending on how you look at it) is that

(L19.22) ind(P ) = [null(P + S),CN ] ∈ K0(B).

In fact it is easy to see that two choices or S are stabily homotopic – just put all the
choices together, maybe refine the covering to a common one such that one each
set one of each stabilizations works, and then do an appropriate homotopy]. �

With this ‘definition’ of the families index, we may complete the proof of exci-
sion. Namely the stabilizing sections can always be chosen to have support in Kj

and we may take the same stabilization for the two operators P1 and P2. �

L19.3. Atiyah-Singer index theorem. Now we can state the first form of
the Atiyah-Singer families index theorem – in K-theory.

Theorem 10. If φ : M −→ B is a fibration of compact manifold then the
analytic index map

(L19.23) ind : K0(T ∗(M/B)) −→ K0(B)
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defined by quantization of symbols, is equal to the topological index map, i.e. can
be factored through any embedding of the fibration

(L19.24)

M
e //

φ   A
AA

AA
AA

A Rn ×B

πB
{{wwwwwwwww

B,

so

K0(T ∗(M/B))
⊗b //

ind ((RRRRRRRRRRRRRR
K0

c (T ∗(NM/B))
i∗ // Kc(R2N ×B)

indvvmmmmmmmmmmmmm

K0(B)

commutes

where ⊗b is the product with the Bott element for the normal fibration.

19+. Addenda to Lecture 19



CHAPTER 20

Chern character

Lecture 20: 29 November, 2005

We have the families index theorem in K-theory and now I want to discuss the
image in cohomology.

Recall that in terms of K-theory we have shown that for any fibration of com-

pact manifolds Z M
φ //B an elliptic element A ∈ Ψm(M/B;E+, E−) can

be stabilized by the addition of A′ ∈ Ψ−∞(M/B;E+, E−) so that the null spaces
form a bundle and then

(L20.1) ind(A) = [(null(A+A′),null((A+A′)∗))] ∈ K0(B)

is the analytic index. As an element of the K-group it only depends on the image
of the symbol of A in K0

c (T ∗(M/B)).
Then for an embedding of the fibration

M
e //

φ   @
@@

@@
@@

@ B × SN

π1
{{ww

ww
ww

ww
w

B

we can replace A with a family PA ∈ Ψ0(B × SN/B;G+, G−) having symbol given
in terms of the Bott element and cut-offs

(L20.2)
(
χ1b −χ2a

∗

χ2a χ2b
∗

)
in a collar neighbourhood of M and extended outside as the identity, with the
property that ind(A) = ind(PA) in K0(B). This constructs a commutative diagram

(L20.3) K0
c (T ∗(M/B))

e! //

ind ''NNNNNNNNNNN
K0

c (R2N ×B)

indxxppppppppppp

K0(B)

where the index map on the right we ‘understand completely’ in the sense that it
is given by repeated application of Bott periodicity, the index isomorphism for the
Toeplitz calculus.

The traditional interpretation of (L20.3) is that the embedding construction
defines the topological index, so the commutativity of (L20.3) is the equality of
analytic and topological indexes. We can also think of it as an effective tool for
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computing the index. This will be more apparent in the generalization to product-
type operators below.

L20.1. Review of Chern-Weil theory. Let E −→ X be a complex vector
bundle over a compact manifold. Then E always admits an affine connection which
is to say a first order differential operator ∇ ∈ Diff1(X;E,Λ1 ⊗ E) :

(L20.4) C∞(X;E) ∇−→ C∞(X; Λ1 ⊗ E)

which has the property

(L20.5) ∇(fu) = df ⊗ u+ f∇u ∀ f ∈ C∞(X), u ∈ C∞(X;E).

If ∇ is a connection on E and a : E −→ Ẽ is a bundle isomorphism then
∇̃ũ = a∇(a−1ũ) is a connection on Ẽ. If E = CN is trivial then d itself, acting on
the coefficients, is a connection. If ρi ∈ C∞(X) is a partition of unity and ∇i is a
connection on E over an open set containing the support of ρi then

(L20.6) ∇ =
∑
i

ρi∇i

is a connection on E. Combining these observations we see that any complex bundle
does indeed admit a connection.

Any connection has a natural extension to a superconnection, which is to say
an operator ∇ ∈ Diff1(X; Λ∗X ⊗ E) which satisfies

(L20.7) ∇(α⊗u) = dα⊗u+(−1)kα⊗∇u ∀ α ∈ C∞(X; Λk), u ∈ C∞(X;E), ∀ k.
The superconnection corresponding to an ordinary connection clearly satisfies the
grading condition

(L20.8) ∇ ∈ Diff1(X; Λk ⊗ E,Λk+1 ⊗ E) ∀ k.
The sign change corresponds to anticommuting ∇ past k wedge factors. Namely
we can just insist on (L20.7) to get the superconnection with the connection on the
right side; of course one still needs to check that the result is consistent. I will not
distinguish between the connection ∇ and the superconnection it defines.

This allows us to define the curvature as the square of the connection which is
always a bundle map

(L20.9) C∞(X; Λ2 ⊗ hom(E)) 3 ω∇ = ∇2 ∈ Diff2(X;E,Λ2 ⊗ E).

To see this, just observe that ∇2 commutes with multiplication by any smooth
function

∇2(fu) = ∇(df ⊗ u+ f∇u) = d2f ⊗ u+ (df ⊗∇u− df ⊗∇u) + f∇2u = f∇2u.

If a : E 7−→ Ẽ is a bundle isomorphism and ∇̃ = a∇a−1 is the transformed
connection then the curvature of ω̃ of ∇̃ is aω∇a−1. A connection on E induces a
connection on the dual bundle E∗ by demanding that

(L20.10) du∗(u) = ∇∗u∗(u) + u∗(∇u) ∀ u∗ ∈ C∞(X;E∗), u ∈ C∞(X;E).

The curvature of ∇∗ is the transpose of the curvature of ∇. Similarly if E and
F are bundles with connections ∇E and ∇F then the direct sum has the obvious
connection ∇E +∇F with curvature ωE +ωF . Connections on E and F also induce
a connection on E ⊗ F where for any sections

(L20.11) ∇E⊗Fu⊗ v = ∇Eu⊗ v + u⊗∇F v.
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The curvature of this connection is easily computed

(L20.12) ωE⊗F = ωE ⊗ IdF +IdE ⊗ωF .
Combining these two constructions we see that hom(E,F ) also acquires a connec-
tion from connections on E and on F. Namely if we identify hom(E,F ) = F ⊗ E∗
the connection is the tensor product of ∇F and ∇∗E . Alternatively one can see that
the commutation formular

(L20.13) (∇a)u = ∇F (au)− a(∇E)u, ∀ u ∈ C∞(X;E)

defines the action of the connection on a ∈ C∞(X; hom(E,F ). Bianchi’s identity,
which comes from computing ∇3

E in two ways, then becomes the identity

(L20.14) ∇EωE = 0

where ∇E is also written for the (super) connection action on hom(E).
So, having defined the curvature of a connection we may define the Chern

character form, or just the Chern character, of the bundle with connection as

(L20.15) λE = tr exp(
i

2π
ωE).

The normalizing constant, i/2π, is put in for reasons of rationality (and is sometimes
left out). To understand (L20.15) note first that the tensor product Λ∗ ⊗ hom(E)
is a bundle of algebras over X. The product is just the tensor product of wedge and
matrix products

(L20.16) (αp⊗ap) ·(βp⊗bp) = αp∧βp⊗(ap ◦bp), αp, βp ∈ Λ∗p, ap, bp ∈ hom(Ep).

Then the exponential in (L20.15) is computed with respect to this product

(L20.17) exp(
i

2π
ω) = Id +

∞∑
k=1

ik

(2π)kk!
ωk.

Since ω takes values in 2-forms the sum is finite, since the power vanishes identically
for 2k > dimX. Thus each term in the sum in (L20.17) is a smooth section of the
bundle Λ2k ⊗ homE over X. The trace functional, defined on hom(E) extends
naturally to the tensor product

(L20.18) tr : C∞(X; Λj ⊗ homE) −→ C∞(X; Λj)

and this is the meaning of (L20.15)

(L20.19) λE = r +
∞∑
k=1

ik

(2π)kk!
tr(ωk) ∈ C∞(X; Λevn)

where r is the rank of E (and the trace of the identity acting on it). Note that
under a bundle isomorphism a : E −→ Ẽ the form λE for a connection ∇ on E is
the same as the form for the connection a∇a−1 on Ẽ.

Lemma 33. For any a ∈ C∞(X; Λk ⊗ homE) and any connection

(L20.20) d tr(a) = tr(∇a).

Proof. We can cover X by open sets Ui over each of which E is trivial. Over
these sets tr is given as the sum of the diagonal entries of the (form-valued) matrix
ai representing a. The connection on E over Ui can be compared to the trivial
connection d and written ∇ = d + γi where γi is a matrix valued in 1-forms (this
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follows directly from the definition of a connection); the action of the connection
on a homomorphism, represented as a matrix, is then just

(L20.21) ∇a = da+ [γi, a].

Using a partition of unity ρi subordinate to the cover

(L20.22) d tr(a) =
∑
i

d tr(ρiai) =
∑
i

tr(d(ρiai))

=
∑
i

tr(dρiajk + [γi, ρiai]) =
∑
i

tr(∇Eρia) = tr(∇a).

�

From this lemma if follows immediately that

(L20.23) dλE = tr
(
∇E exp(

i

2π
ωE)

)
= 0

since ∇ Id = 0 and ∇ (acting on homomorphism) distributes over products, so
∇EωkE = 0 for every k.

Proposition 45. The cohomology class of λE in Hevn(X; C) is independent
of the connection on E used to define it and this defines a group homomorphism

(L20.24) Ch : K0(X) −→ Hevn(X; C),

the Chern character.

Proof. To show the independence of the choice of connection we use a stan-
dard ‘transgression’ analysis. Suppose ∇ and ∇′ are two connections on E. Then

(L20.25) ∇̃ = (1− t)∇+ t∇′ + ∂tdt

is a connection on the bundle π∗E over [0, 1]×X where π is the projection onto X.
Let λ̃ be the Chern form of this connection. From the discussion above, λ̃ is a (sum
of) closed form(s) on [0, 1]×X so, decomposing in terms of t-dependent forms on
X

(L20.26) λ̃ = λ′ + dt ∧ µ, dλ̃ = 0 =⇒ ∂tλ = dµ.

Now, the Chern forms of ∇ and ∇′ are respectively λ′
∣∣ + t = 0 and λ′

∣∣
t=1

which
are cohomologous since

(L20.27) λ′
∣∣
t=1
− λ′

∣∣
t=0

=
∫ 1

0

∂tλ
′dt = d

∫ 1

0

µdt.

For the direct sum of two bundle E⊕F we can choose a direct sum connection.
Then, as noted above, the curvature is the sum of the curvatures, the one acting
on E the other on F. As such an product of the two curvatures vanishes, so

(L20.28) exp(
i

2π
(ωE + ωF )) = exp(

i

2π
ωE) + exp(

i

2π
ωF ) =⇒ λE⊕F = λE + λF .

This shows that the map

(L20.29) K0(X) 3 [(E+, E−)] −→ [λE+ − λE− ] ∈ Hevn(X; C)

is well-defined, since it is invariant under the addition of the same bundle to both
E+ and E− and under bundle isomorphisms. �
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As well as being an Abelian group, K0(X) is a ring with the product being
induced by the tensor product of bundles. In fact we have already used this in the
construction of PA above. Suppose that E and F are superbundles, just Z2-graded
bundles, E = (E+, E−) and F = (F+, F−). Then the graded tensor product is the
bundle G = (G+, G−) where

G+ = (E+ ⊗ F+)⊕ (E− ⊗ F−), G− = (E+ ⊗ F−)⊕ (E− ⊗ F+).

It is straightforward to check that the equivalence class of E⊗ F is determined by
the classes of E and F and that this product on K0(X) is Abelian.

Since we know that for the tensor product of connections on E and F the
curvature of E ⊗ F is ωE ⊗ IdF +IdE ⊗ωF it follows directly that

(L20.30) λE⊗F = λE ∧ λF .
Using the formula for direct sums as well and setting λE = λE+ − λE− it follows
that

(L20.31) λE⊗F = λE ∧ λF

as well. Thus in fact the Chern character is a multiplicative map

(L20.32) Ch : K0(X) −→ Hevn(X; C), Ch(a · b) = Ch(a) ∧ Ch(b) ∀ a, b ∈ K0(X)

where the wedge product in deRham theory is the usual cup product. With a little
more care it can be seen that Ch is well defined mapping into rational cohomology.
It is important to know

Theorem 11. (Atiyah-Hirzebruch) After tensoring with C the Chern character
becomes and isomorphism

(L20.33) K0(X)⊗ C '−→ Hevn(X; C).

I will not discuss the proof of this (nor use it), although I hope that there is a
treatment in the present spirit – at the moment I do not know one.

L20.2. Toeplitz families index. Recall that for elliptic families of Toeplitz
operators, A : B −→ Ψ0

T (S; CN ) the families index theorem gives us Bott periodic-
ity

(L20.34) ind : K−2(B) −→ K0(B).

Namely we can stabilize the symbol of the Toeplitz family

a = σ(A) ∈ C∞(B × S; GL(N,C)) ↪→ C∞(B × S;G−∞)

and we can compose with the inverse of σ(A)(b, 1), as a bundle isomorphism over
B, to normalize the symbol so that A(b, 1) = Id . This normalization does not
change the index and a defines an element [a] ∈ K−2(B), as the homotopy class
of a : B −→ G−∞(1) , the pointed loop group. This gives the map (L20.34) which we
know to be an isomorphism.

Thus the Chern character as discussed above on K0(B) induces a similar map
from K−2 :

(L20.35) K−2(B)
indT //

Ch &&

K0(B)

Ch

��
Hevn(B; C).
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I hope the notation is not be too confusing.
What we want is an explicit representative of this map in terms of a ∈ C∞(B×

S; GL(N,C)), the Toeplitz symbol.

Proposition 46. For any a ∈ C∞(B × S; GL(N,C)) or a ∈ C∞(B × S;G−∞)
the Chern character is

(L20.36) Ch([a]) =
∞∑
k=0

ik+1k!
(2π)k+1(2k + 1)!

∫
S
Tr((a−1da)2k+1.

The integrand in (L20.36) is a form on B×S and the integral means push-forward.
That is the form is α ∧ dθ + β where α and β are θ-dependent forms on B and
(L20.36) means the integral, with respect to θ, of α.

Proof. Recall that by stabilizing and extensively deforming a we reduced it
to the form

(L20.37) a = π−(b)e−iθ + π′−(b) + π′+(b) + π+(b)eiθ

where π±(b) are smooth families of projections on two trivial bundles CM± and
π′±(b) = Id−π±(b) are their complementary projections. Thus, a is an elliptic
symbol acting on CM , M = M−+M+. We know that if we quantize a to the family
of Toeplitz operators

(L20.38) A = π−(b)L+ π′−(b) + π′+(b) + π+(b)U ∈ C∞(B; Ψ0
T (S; CM ))

then its null spaces for the bundle E− = π−(b)CM− realized in the constant functions
on the circle and similarly for the adjoint, so the index is

(L20.39) ind(a) = [E] = [(π−CM− , π+(b)CM+)] ∈ K0(B).

So, we need to compute the Chern forms for these two bundles, presented as
the ranges of smooth families of projections on trivial bundles. For simiplicity of
notation I will drop the signs for the moment and consider a subbundle E = π(x)CN
of a trivial bundle over a manifold X. Notice that this bundle is in no way special.
So we need a connection on E and the obvious one is

(L20.40) C∞(X;E) 3 u 7−→ π(x)du ∈ C∞(X; Λ1 ⊗ E).

Here d acts on the coefficients. Now, we can write this operator as

π(x)d = d+ (Id−π(x))d = d+ π′(x)dπ(x) : C∞(X;E) −→ C∞(X; Λ1 ⊗ E)

where d acts on the coefficients of π(x) as a matrix. The superconnection takes the
same form so the curvature is
(L20.41)
ωEu = (d+π′(x)dπ(x))2u = d2u+d(π′(dπ)u)+π′(dπ)du+π′(dπ)π′(dπ)u = (dπ′∧dπ)u

where I have used the identities that come from differentiating π2 = π, namely
π′(dπ)π′ = π(dπ)π = 0. Here the wedge product is to be understood in terms of
antisymmetrizing the value on the tangent space, not commutation of homomo-
prhisms. Since the curvature is acting on E we can write it out more fully as

(L20.42) ωE = −π(dπ)(π′)(dπ)π
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and as already noted the product is in Λ∗ hom . Thus the Chern character form for
these connections on the index bundle is

(L20.43) Ch(ind(a)) = tr(π−)− tr(π+)

+
∞∑
k=1

ik(−1)k

(2π)kk!
tr
(
(π−(dπ−)(π′−)(dπ−)π−)k

)
−

∞∑
k=1

ik(−1)k

(2π)kk!
tr
(
(π+(dπ+)(π′+)(dπ+)π+)k

)
.

where the trace is on CM± .
Now, we proceed to compute the correspondint terms in (L20.36). From

(L20.37) we can compute the total differential, on B × S, which is what appears in
(L20.36) but I will write here as d′ = d+ dθ∂θ where d is the differential on B :

d′a = (−iπ−e−iθ + iπ+e
iθ)dθ + dπ−e

−iθ − dπ− − dπ+ + dπ+e
iθ.

The inverse of a is simply a(−θ) and the composite is seen to be

(L20.44) a−1d′a = (−iπ− + iπ+)dθ

+ ((e−iθ − 1)π′− + (1− eiθ)π−)dπ− + ((eiθ − 1)π′+ + (1− e−iθ)π+)dπ+.

There is no interaction between the two terms so
(L20.45)

tr
(
(a−1d′a)2k+1

)
= λ′k ∧ dθ + µ′k,

λ′k = −i(−1)k(2k + 1)(2− e−iθ − eiθ)k
(
π−(dπ−)π′−(dπ−)π−)k − π+(dπ+)π′+(dπ+)π+)k

)
.

Here the constant term in θ, with factor dθ, which is what the integral will pick out,
is computed by noting that the first term in (L20.44) must arise from exactly one
factor. There are 2k + 1 choices for this and commuting the chosen factor to the
front results in no overall change of sign. Since π−dπ−π− = 0 the next factor can
be replaced by the π′− part, and so on alternatively through the remaining factors.
So we arrive at (L20.36) in the special case that a is given by (L20.37). So, to
compute the constant we need to evaluate

(L20.46)
∫ 2π

0

(2− e−iθ − eiθ)kdθ = (−1)k
∫ 2π

0

(e−iθ/2 − eiθ/2)2kdθ = 2π
(2k)!
(k!)2

.

However, from the earlier discussion of the forms in (L20.36), we know the
cohomology classes to be stable under homotopy, and the forms are unchanged
under stabilization by the identity. So in fact (L20.36) must always hold. �

Of course what we have computed is the Chern character of the index bundle
for Toeplitz families.

Corollary 8. If A ∈ C∞(B; Ψ0
T (S; CN ) is an elliptic family of Toeplitz oper-

ators then the Chern character of its index bundle (in K0(B)) is given by (L20.36)
with a = σ(A).

Next time I will consider the relative Chern character, as a map from compactly
supported K-theory. In particular we need to understand the map

(L20.47) Ch : Kc(T ∗(M/B)) −→ Hevn
c (T ∗(M/B); C)

since this is what appears in the cohomological version of the families index theorem

(L20.48) Ch(ind(A)) =
∫

TdCh(σ(A)) ∈ Hevn(B)
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for an elliptic family A ∈ Ψm(M/B; E). In fact we can already see that the map to
cohomology of the base must be of this form, for some class Td which is independent
of the operator. Next time I will identify Td .

20+. Addenda to Lecture 20



CHAPTER 21

Families Atiyah-Singer index theorem

Lecture 21: 1 December, 2005

L21.1. Relative Chern character. For the Atiyah-Singer formula, we wish
to associate with the symbol [σ(A)] ∈ K0

c (T ∗(M/B)) of a family of elliptic operators
a cohomology class Ch(σ(A)) ∈ Hevn

c (T ∗(M/B)). This enters crucially into the
formula for the Chern character of the index bundle,

(L21.1) Ch(ind(A)) =
∫

Td ·Ch(σ(A)) ∈ Hevn(B)

where the integral is the pushforward operation for the overall fibration T ∗(M/B) −→
M −→ B.

I will define this relative Chern character in the context of the interior of a
compact manifold with boundary; the model case being T ∗(M/B) ⊃ T ∗(M/B).
From a topological point of view there is not difficulty in defining this relative
Chern character quite generally. This if the Chern character is defined for a general
class of compact topological spaces then for non-compact spaces U with 1-point
compactification 1U in this class one can (and indeed this is the standard way to
do it) define the K-theory of U in terms of the K-theory of 1U

(L21.2) K(U) = null
(
K(1U) −→ K({pt})

)
where the map is restriction to the point at infinity. Then if one has a topological
Chern character the Chern character on K(U) is defined as the composite.

However, I want a smooth version of this with explicit forms, since later I need
to generalize the set up substantially. For the interior of a compact manifold with
boundary, the definition (L21.2) reduces to the one I have been using. Namely el-
ements of Kc(int(X)) are equivalence classes of pairs of bundles [(E+, E−, a)] with
a bundle isomorphism between then outside a compact set, i.e. in a neighbourhood
of the boundary. In fact in this case we are free to assume that the bundles are
smooth up to the boundary and a is just an identification of them over the bound-
ary. For the moment however I will assume that a is defined near the boundary.
The equivalence relation imposed identifies triples related by bundle isomorphisms
and homotopies as previously discussed. So, we will associated a deRham form
on int(X) with such a triple (and choice of connections) which vanishes near the
boundary, and so defines a relative cohomology class, and show that this gives a
map

(L21.3) Ch : Kc(int(X)) −→ Hevn
c (int(X)) = Hevn(X, ∂X)

0.7E; Revised: 29-11-2006; Run: November 29, 2006
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where the compact supported cohomology of the interior may be identified with
the cohomology of X relative to its boundary.

Let ∇± be connections on E±. We can use the isomorphism a to relate a
connection on E+ to that on E−. Thus, if ρ ∈ C∞c (int(X)) is such that 1−ρ ∈ C∞(X)
has support in the neighbourhood of the boundary over which a is defined (and is
an isomorphism) then

(L21.4) ∇ = ρ∇+ + (1− ρ)a−1∇−a

is a connection on E+. The Chern form we consider is

(L21.5) λ = Tr
(

exp(
i

2π
ω)
)
− Tr

(
exp(

i

2π
ω−)

)
, ω = ∇2, ω− = (∇−)2.

That this is closed follows immediately from the discussion of last lecture. In this
case λ = 0 as a form near the boundary and its class in Hevn(X, ∂X) is independent
of choices. In fact I want to get a reasonably explicit formula for a representative
of the class of λ which does not have the cut-off function in it.

First we need to compute the curvature of ∇. First recall that the connections
∇± on E± determine a natural connection on hom(E+, E−) as a bundle over X.
Namely, if a is such a homorphism then

(L21.6) (∇a)u = ∇−(au)− a(∇+u) ∀ u ∈ C∞(X;E+)

defines the connection which perhaps should be denoted ∇−+ since has nothing
much to do with the ρ-dependent connection in (L21.4). In fact, we can express
that connection in terms of it since

(L21.7) ∇ = ∇+ + (1− ρ)a−1∇a on C∞(X;E+).

Thus the curvature of ∇, which is what appears in (L21.5) is

(L21.8) ωu = ∇2u = (ω+ + (1− ρ)a−1∇a)2u
= ω+ +∇+((1− ρ)a−1(∇a)u) + (1− ρ)a−1(∇a)∇+u+ (1− ρ)2(a−1∇a)2u =⇒

ω = −dρa−1(∇a) + (1− ρ)
(
a−1ω−a

)
+ ρω+ − ρ(1− ρ)a−1(∇a)a−1(∇a).

Here I have used the identities

(L21.9) (∇2a)u = ω+a− aω− and ∇a−1 = −a−1(∇a)a−1

which follow from the definitions.
Consider the form

(L21.10) Tr exp(
i

2π
ω) =

∑
k

ik

(2π)k
Tr(wk).

To remove ρ we will let it approach the characteristic function of the manifold.
Choose a boundary defining function x ∈ C∞(X), ∂X = {x = 0}, x ≥ 0, dx 6= 0 on
∂X and for χ ∈ C∞(R), 0 ≤ χ ≤ 1, χ(t) = 0 in t < 1

2 , χ(t) = 1 in t ≥ 1, set

(L21.11) ρ = χ(x/ε).

For ε > 0 small enough ρ satisfies the conditions required above. The curvature
form in (L21.8) can be written as the sum

(L21.12) ω = α+
χ′(x)
ε

dxβ
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where α and β are localy integrable uniformly as ε ↓ 0. Inserting this into (L21.10)
gives a similar decomposition

(L21.13) Tr exp(
i

2π
ω) = A+

χ′(x/ε)
ε

dx ∧B

where A and B have uniformly locally integrable coefficients.

Lemma 34. As ε ↓ 0 the form (L21.13) converges as a (supported) distibutional
form on X to

(L21.14) Tr exp(
i

2π
ω+)− δ(x)dx ∧ i

2π
ι∗∂X

Tr
(
a−1(∇a)

∫ 1

0

exp
(
i

2π
(s
(
a−1ω−a

)
+ (1− s)ω+ − s(1− s)a−1(∇a)a−1(∇a)

))
ds.

Proof. From (L21.8) the first term in (L21.13) converges in the sense of sup-
ported distributions to the first term in (L21.14) – that is after integrating agains a
smooth section (up to the boundary) of the dual bundle tensored with the density
bundle. Thus, it is only necessary to prove the convergence of the second term to
the second term in (L21.14).

Expanding out the second term, using the trace identity to bring each possible
factor dρ to the front, shows that B in (L21.13) is

B = Tr

(∑
k

ik

(2π)k(k − 1)!
((1− ρ)

(
a−1ω−a

)
+ ρω+ − ρ(1− ρ)a−1(∇a)a−1(∇a))k−1

)
The coefficient of B tends to δ(x)dx, supported on the boundary and apart from
the explicit dependence on ρ the form is uniformly smooth up to the boundary.
Replacing the smooth coefficients in B by their restrictions to the boundary leaves
an error of the form x/εχ′(x/ε)dxB′, with B′ smooth, and this vanishes, as a
distribution, in the limit as ε → 0. Thus we may assume that B coefficients in B
are replaced by their restrictions to the boundary, extended to be independent of
x in a product decomposition near the boundary. As a result the distribution limit
is the same as the integral against a smooth x-independent factor. The x integral
becomes

(L21.15)
i

2π
Tr(a−1(∇a)

∫ 2ε

0

exp
(
i

2π
(1− ρ)

(
a−1ω−a

)
+ ρω+ − ρ(1− ρ)a−1(∇a)a−1(∇a)

)
χ′(

x

ε
)
dx

ε

which reduces to (L21.14) after the change of variable s = χ(x/ε). �

This gives the form on the relative Chern character (due, I believe, to Fedosov),
as a distribution deRham class

(L21.16) λ = Tr exp(
i

2π
ω+)− Tr exp(

i

2π
ω−)− δ(x)dx∧

i

2π
ι∗∂X Tr(a−1(∇a)

∫ 1

0

exp
(
i

2π
(s
(
a−1ω−a

)
+ (1− s)ω+ − s(1− s)a−1(∇a)a−1(∇a))

)
ds.
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Note that this sort of ‘conormal representation’ gives a cohomology class with
an explicit transgression. That is, a distribution form

(L21.17) α+ δ(x)dx ∧ β,
where α and β are smooth forms, respectively up to and on the boundary, is closed
as a supported differential form (dual to smooth sections) if and only if α is closed
(and so defines an absolute cohomology class on X) and also

(L21.18) ι∗∂Xα = dβ on ∂X.

Note that this formula can be compared to the formula for last time for the
Chern character in the Toeplitz case.

L21.2. Bott element.

21+. Addenda to Lecture 21



CHAPTER 22

Eta forms

Lecture 22: 6 December, 2005

The index formula for product-type will involve a ‘regularized Chern character’
which we interpret as an ‘eta’ form. To construct these forms, by regularization,
we use holomorphic families of pseudodifferential operators. This leads us to a
discussion of the residue trace, the regularized trace and the trace-defect formula
and then finally to η-forms.

L22.1. Trace functional. For smoothing operators I have already discussed
the trace. Namely

(L22.1) Tr : Ψ−∞(Z;E) −→ C, Tr(A) =
∫
Z

trE(A(z, z))

where trE is the trace functional on the fibres of hom(E) = Hom(E)
∣∣
Diag

. It is
straightforward to extend the trace to low order operators, for which the kernel is
continuous (and a little more) across the diagonal.

Theorem 12. The trace functional extends canonically to

(L22.2) Tr : Ψs(Z;E) −→ C, s ∈ C, Re(s) < −dimZ.

Proof. To see this, and derive a formula for the extended functional, observe
that the trace vanishes on any smoothing operator with kernel having support not
meeting the diagonal. Since we can decompose and pseudodifferential operators as

(L22.3) A = A1 +A2, A2 ∈ Ψ−∞(X;E), supp(A2) ∩Diag = ∅
we only need to consider the part, A1, of A with support near the diagonal. Directly
from our original definition of pseudodifferential operators, this is given as the
inverse Fourier transform of a symbol on the cotangent bundle and then transferred
to Z2 using a bundle isomorphism (from Hom to hom) covering a normal fibration
of the diagonal:

(L22.4) A1 = F ∗F−1(a), a ∈ ρ−sC∞(T ∗Z; hom(E)).

This is the case even for a smoothing operator, when a ∈ Ċ∞(T ∗Z; hom(E)) is
Schwartz on the fibres of T ∗Z.

By definition of a normal fibration, the diagonal is carried to the zero section of
TZ under F. Thus, for a smoothing operator in (L22.4), the trace may be written

(L22.5) Tr(A1) =
∫
O⊂TM

F−1(a) = (2π)−d
∫
T∗Z

aωd, d = dimZ.

0.7E; Revised: 29-11-2006; Run: November 29, 2006
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Here I am just using the fact that, fibre by fibre, the value of a function at 0 is the
integral of its Fourier transform. We also really need to check that the measures
behave correctly in (L22.5) – but that is something I have sloughed over anyway.
Here ωd is the symplectic measure on T ∗Z, just the maximal exterior power of the
symplectic form. In local coordinates one can check (L22.5) directly. Notice that
the (full) symbol a is by no means invariantly defined, but we see from (L22.5) that
its integral is, and that it continues to make sense provided trE(a) is integrable,
which is just the condition Re s < −n in (L22.2). �

As I shall show in the addenda, under this condition A1 is indeed trace class
so (L22.5) does represent the trace of an operator in the usual sense.

L22.2. Holomorphic families (of holomorphic order). For topological
vector spaces such as Ψm(Z;E), the topoolgy here being very similar to that on
C∞(M), there is no difficulty in defining (strongly) holomorphic families, i.e. holo-
morphic maps from some open set

(L22.6) C ⊃ Ω −→ Ψm(Z;E).

Namely, this is just a smooth function of the parameter, i.e. and element of
C∞(Ω; Ψm(Z;E)) which satifies the Cauch-Riemann equtions

(L22.7) ∂A = (∂x + i∂y)A = 0 in Ω.

We do want to consider such maps, but we need something more. Namely
holomorphic families where the order is changing holomorphically as well. These
are not holomorphic maps into a fixed topological vector space, so we need to be a
little careful about their properties. In fact it is probably better to think of them
as ‘yet-another-variant’ of the spaces of pseudodifferential operators. Note that we
have defined the space of pseudodifferential operators of complex order, it is the
holomorphy that needs to be analyzed.

Definition 9. A map A : Ω −→ Ψs(Z;E,F ) is said to be a holomorphic
family of order µ : Ω −→ C, a given holomorphic function on an open set Ω ⊂ C, if
for any function χ ∈ C∞(Z2) with Diag∩ supp(χ) = ∅,
(L22.8) χA : Ω −→ Ψ−∞(Z;E,F ) is holomorphic

(in the usual sense) and for some (any) normal fibration and bundle trivialization
and an appropriate cutoff

(L22.9) F(G∗(1− χ)A) = ρ−µ(s)a, Ω 3 s −→ a(s) ∈ C∞(T ∗Z; hom(E,F )).

Thus coefficinet a in (L22.9) is itself is holomorphic in the usual sense, as a
smooth function on Ω × T ∗Z and only the factor ρ−µ(s) is ‘extraordinary’. Note
that changing to another boundary defining function ρ′ merely multiplies a by
(ρ/ρ′)−µ(s) which is holomorphic in the usual sense, since it is bµ(s) for a positive
smooth function b. We are mostly interested in the case µ(s) = ±s; the case µ(s) =
m, constant, is the usual notion of holomorphy.

Of course, it needs to be checked that this definition is independent of the
normal fibration and the bundle isomorphism. This however proceed exactly as
before so I pass over it without too much comment. The crucial point being that
the space of functions ρ−s Hom(Ω ×X) for any compact manifold with boundary
and any open set Ω ⊂ C is invariant under the action of smooth vector fields on
X which are tangent to the boundary. It is also necessary to do the asymptotic
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summation lemma, not only uniformly in Ω but holomorphically as well – this is
quite straightforward.

Since the proof of the product formula follows from the freedom to change
normal fibrations and bundle isomorphisms, it is also straightforward to check that
composition makes sense.

Lemma 35. If A ∈ Ψµ(s)(Z;E,F ) and B ∈ Ψν(s)(F,G) are holomorphic fami-
lies in an open set Ω ⊂ C then BA ∈ Ψµ(s)+ν(s)(Z;E,G) is holomorphic.

Ellipticity of such a family is just pointwise ellipticity and a useful result is a
version of ‘holomorphic Fredholm theory’.

Lemma 36. If A(s) ∈ Ψm(s)(X;E,F ) is an elliptic holomorphic family on a
connected open set Ω such that A(s0)−1 ∈ Ψ−µ(s0)(Z;F,E) exists for one s0 ∈ Ω
then A(s)−1 ∈ Ψ−µ(s)(Z;F,E) exists for s ∈ Ω \ D, with D discrete in Ω, and
there is a holomorphic family B(s) ∈ Ψ−µ(s)(Z;F,E) and a meromorphic map on
E : Ω −→ Ψ−∞(Z;F,E) with poles only at D and of finite rank, such that

(L22.10) A−1(s) = B(s) + E(s), ∀ s ∈ Ω \D.

The standard examples of such holomorphic families are the complex powers of
a positive, self-adjoint, elliptic operator. For instance if ∆ is the Laplacian on some
compact manifold then (∆ + 1)s is a holomorphic family of order 2s. In fact ∆s,
defined correctly, is itself a holomorphic family of order 2s. Althouth the residue
trace was defined using such complex poweres this is by no means necessary (as was
shown originally by Victor [3]). Instead the following is enough for our purposes:-

Proposition 47. For any bundle E on any compact manifold Z there is an
entire family (i.e. holomorphic on C) E(s) ∈ Ψs(Z;E) which is everywhere elliptic
and satisfies

(L22.11) E(0) = Id .

Using complex powers (or otherwise) one can show that there is such a family which
is everywhere invertible as well.

Proof. For any normal fibration and bundle isomorphism, the identity is al-
ways represented by the full symbol IdE . Thus if we simply choose a boundary defin-
ing function ρ ∈ C∞(T ∗Z) and take the quantization of the symbol a = ρ−s IdE ,

(L22.12) E(s) = (1− χ)F ∗F−1(ρ−s IdE)

we get such a family. �

L22.3. Seeley’s theorem on the trace. The important relationship of holo-
morphic families and the trace functional is given by a theorem of Seeley, originally
in the context of zeta functions.

Theorem 13 (Seeley). For any holomorphic family of order s on a connected
open set Ω ⊂ C such that Ω′ = Ω∩{Re(s) < −dimZ} is non-empty and connected,

(L22.13) Tr(E(s)) : Ω′ −→ C
extends to a meromorphic function with at most simple poles at the divisor −dimZ+
N
(L22.14) Tr(E(s)) : Ω \ {−d+ N} −→ C, d = dimZ.
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Proof. From the discussion above, if we take the full symbol of E(s) localized
near the diagonal

(L22.15) ρ−sa(s) = F(G∗ ((1− χ)E(s))

then a(s) ∈ C∞(T ∗Z; hom(E)) is holomorphic in Ω and

(L22.16) Tr(E(s)) =
∫
T∗Z

ρ−s trE(a(s))Ω2d in Ω′.

So we need only show that this integral extends meromorphically to Ω with the
stated poles, since the uniqueness follows from the uniqueness of holomorphic ex-
tensions.

The integral (L22.16) can be decomposed using a partition of unity on Z and
the invariance of the trace under conjutation means that we may replace E by a
trivial bundle. Since the symbol a(s) is itself holomorphic, the integral over any
fixed compact region is holomorphic. Thus we may take ρ = r = 1/R the inverse
of a polar coordinate in T ∗Z ≡ U ×Rd locally and reduce Tr(E(s)) to a finite sum
of integrals of the form

(L22.17) Tj(s) =
∫
S∗Z

∫ 1

0

r−sa(s, r, z, ω)r−d−1drdzdω.

Here a is a smooth function of all variales, down to r = 0 and holomorphic in
s and the singular factor comes for the usual formula for Lebesgue measure in
polar coordinates, Rd−1dR = −r−d−1dr. Here the local cutoff makes a compactly
supported in z so the z and ω ∈ Sd−1 integrals may be carried out, leaving the
single integral

(L22.18) Tj(s) =
∫ 1

0

r−sa′(s, r)r−d−1drdzdω.

The integral converges uniformly for Re(s) < −d, which is the initial domain of it
existence (inside Ω). If a′ = rka′′(s, r) where a′′(s, r) is also smooth and holomorphic
in s then the integral (L22.18) converges uniformly for Re s < −d+ k. Thus, if we
replace a′ by its Taylor series at r = 0 to high order

(L22.19) a′(s, r) =
k−1∑
j=0

a′(s)jrj + rka′′(s, r)

we get just such a remainder term, so

(L22.20) Tj(s)− T ′j(s) =
k−1∑
j=0

a′(s)j
∫ 1

0

r−s+j−d−1dr =
k−1∑
j=0

a′(s)j
−s+ j − d

with T ′j(s) holomorphic in Ω∩{Re s < −d+k}. This proves the stated meromorphy
and shows that the extension only has simple poles and only at the points s = −d+j,
j ∈ N0. �

L22.4. Residue trace. If we take an element A ∈ Ψm(Z;E) for some m ∈
Z and a holomorphic family E(s) ∈ Ψs(Z;E) satisfying (L22.11) then A(s) =
AE(s) ∈ Ψs+m(Z;E) and Tr(AE(s)) can only have poles at the points −d+m+N0.
Since A(0) = A the pole at s = 0 is of particular interest. Wodzick observed that
the residue is actually well-defined.
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Proposition 48. For any holomorphic family A(s) ∈ Ψm+s(Z;E) the residue
of the holomorphic extension of the trace from Re s < −d,
(L22.21) TrR(A(0)) = lim

s→0
sTr(A(s))

is independent of the choice of A(s), with A(0) = A, and so defines a continuous
functional

(L22.22) TrR : Ψm(Z;E) −→ C, m ∈ Z,
which vanishes identically if m < −d and satisfies

(L22.23) [A,B] = 0 ∀ A ∈ Psim(Z;E), B ∈ Ψm′
(Z;E), m, m′ ∈ Z.

The functional (L22.21) is called the residue trace.

Proof. By Seeley’s computation above, the residue in (L22.21) certainly ex-
ists.

To see that it does not depend on the holomorphic family of order s chosen so
that A(0) = A, suppose that A′(s) is another such family. Thus B(s) = A′(s)−A(s)
is a holomorphic family of order s such that B(0) = 0. Consider what this means.
For the part away from the diagonal, the kernel as a family of smoothing operators
must vanish at s = 0. By Taylors formula the kernel
chiB(s) = sB′(s) where B′(s) is also holomorphic. For the part near the diagonal,
passing to the symbol ρ−sb(s) with b holomorphic, it follows that b(0) = 0 and
hence, from the same reasoning, that b(s) = sb′(s). So in fact B(s) = sB′(s) where
B′(s) is again a holomorphic family of order s. Now applying Seeley’s computation
again,

(L22.24) Tr(B(s)) = sTr(B′(s)) is regular at s = 0

since Tr(B′(s)) can have at most a simple pole at the origin. Thus TrR(A(0))
defined by (L22.21) is indeed independent of the holomorphic family (of order s)
used to define it.

In particular we may choose or basically family E(s) satisfying (L22.11) and
then

(L22.25) TrR(A) = lim
s→0

sTr(AE(s)) ∀ A ∈ Ψm(Z;E), m ∈ Z.

For a commutator,

(L22.26) TrR([A,B]) = lim
s→0

sTr([A,B]E(s)) = lim
s→0

Tr(ABE(s)−BAE(s))

= lim
s→0

sTr(A[B,E(s)])− lim
s→0

sTr(B[A,E(s)]) = 0.

Here, A[B,E(s)] and B[A,E(s)] are both holomorphic families of order s which
vanish at s = 0 (since E(0) = Id) so the residues must vanish. �

The discussion of Seeley’s theorme above allows us to derive a formula for the
residue trace. Namely, there can be no singularity in Tr(A(s)) arising from the
smoothing terms. I leave it as an exercise (probably disussed more in the addenda)
to show that

(L22.27) TrR(A) =
∫
S∗M

trE(a−d)

where a−d is the term or degree −d in the expansion of the symbol, made into a
density by multiplying by the term of homogeneity d in the corresponding expansion
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of ωd. Note that this is true for the full symbol computed with respect to any normal
fibration. Not that a−d is well-defined, but the integral of its bundle trace is.

L22.5. Regularized trace. As well as the residue trace we are interested in
the regularization of the trace functional itself. Having chosen a holomorphic family
E(s) we set

(L22.28) TrE(A) = lim
s→0

(
Tr(AE(s)− 1

s
TrR(A)

)
where the limit exists exactly because we have removed the singular term. As the
notation indicates this functional does depend on the family E(s) chosen to define
it; further more it is not a trace. Rather it is precisely the trace-defect which we
want to compute.

As shown above, if Ei(s) ∈ Ψs(Z;E), i = 1, 2, are two holomorphic families
satisfying (L22.11) then

(L22.29) E1(s) = E2(s) = sB(s), B(s) ∈ Ψs(Z;E) holomorphic.

Thus, we can set D(E1, E2) = B(0) ∈ Ψ0(Z;E). Then
(L22.30)
Tr(AE2(s)) = Tr(AE1(s))+sTr(AB(s)) =⇒ TrE1(A) = TrE2(A)+TrR(AD(E1, E2)

since AB(s) is a holomorphic family with value AD(E1, E2) at s = 0. This shows
(see the addenda):

Lemma 37. The regularized traces, defined by (L22.28) on ΨZ(Z,E), by holo-
morphic families satisfying (L22.11), form an affine space modelled on Ψ0(Z,E)/Ψ−∞(Z;E).

L22.6. Trace-defect formula. There is another important operation 1 which
arises from the properties of the holomorphic family satisfying (L22.11). Namely,
as we have already remarked, [A,E(s)] = sB(s) is a holomorphic family vanishing
at the origin. Thus

(L22.31) DE : ΨZ(Z;E) 3 A 7−→ [A,E(s)]/s
∣∣
s=0
∈ ΨZ(Z;E)

is a well-defined linear map.

Proposition 49. The map (L22.31) is an exterior derivation mapping Ψm(Z;E)
to Ψm−1(Z;E) for any m ∈ Z (actually for any m ∈ C) which is well-defined up to
interior derivations,

(L22.32) DE1A = DE2A+ [D(E1, D2), A]

and which is in fact the unique continuous exterior derivation (up to constant mul-
tiplies and addition of interior derivations).

Proof. That DE is a derivation follow immediately from the identity

(L22.33) [AB,E(s)] = A[B,E(s)] + [A,E(s)]B.

The difference formula (L22.32) follows from the definition of D(E1, E2).
That DE is not itself an interior derivtion follows easily from the fact that The

uniqueness is not so simple, maybe it will be/is discussed in the addenda. �

1which I did not quite emphasize enough during the lecture



LECTURE 22: 6 DECEMBER, 2005 179

Formally, DEA is the commutator [logQ,A] for some positive operator Q of
order 1 in the algebra. There is no such element, in the pseudodifferential algebra
as it is defined above, so this is an exterior derivation (this is only supposed to be
a plausibility argument). In fact it is easy enough to construct an operator which
does represent the derivation as a commutator, it is just not in the algebra but
rather is in an extension of the algebra.

One relationship that is easy to see is that the residue trace vanishes on the
range of DE – of course it vanishes on the range of interior derivations by (L22.26)

(L22.34) TrR(DEA) = 0 ∀ A ∈ ΨZ(Z;E).

Indeed this just follows from the definition of DE in (L22.31) since

(L22.35) TrR(DEA) = lim
s→0

s(
[A,E(s)]

s
) = 0.

More importantly for computations in the sequel

Lemma 38. For all A, B ∈ ΨZ(Z;E),

(L22.36) TrE([A,B]) = TrR(BDEA).

Proof. By definition the regularized trace is the value at s = 0 of
(L22.37)

TrE([A,B]) = lim
s→0

Tr([A,B]E(s)) = lim
s→0

sTr(B
[E(s), A]

s
) = TrR(BDEA),

where there is no pole at the origin, since TrR([A,B]) = 0 and the identity

Tr(ABE(s)) = Tr(BE(s)A)

holds because it holds in the trace class region. �

L22.7. The circle. For pseudodifferential operators on the circle it is easy to
make some of these operations explicit (this can in fact be done in general, although
it is not necessarily enlightening). First we can take as our holomorphic family

(L22.38) E(s)eikθ = (k2 + 1)s/2eikθ ∈ Ψs(S).

That this can be checked following the arguments for the Szegő projector. Then
the exterior derivation is seen to satisfy

(L22.39) σm−1(DEA) = ±r∂θσm(A), ∀ A ∈ Ψm(S)

where the sign refers to the component of the cosphere bundle S∗S = S+ tS−. The
residue trace we already know to be

(L22.40) TrR(A) =
∫

S+

σ−1(A)dθ −
∫

S−
σ−1(A)dθ ∀ A ∈ Ψ−1(S).

L22.8. Toeplitz η forms. Recall that on the Toeplitz smoothing group, sta-
bilized by the smoothing operators on some other compact manifold,
(L22.41)
G−∞T (S; Ψ−∞(Z;E)) = {a ∈ Ψ−∞

T (S; Ψ−∞(Z;E)); (Id+a)−1 = Id+b, b ∈ Ψ−∞
T (S; Ψ−∞(Z;E))}

is a classifying group for odd K-theory (in this approach by definition) and that
the forms

(L22.42) Chodd(a) =
∞∑
k=0

ckβ2k+1, β2k+1(a) = Tr
(
((Id+a)−1da)2k+1

)
.
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Consider the inclusion of G−∞ as a normal subgroup of the group of (stabilized)
invertible Toeplitz operators of order 0 :
(L22.43)
G0
T (S; Ψ−∞(Z;E)) =

{
A ∈ Ψ0

T (S; Ψ−∞(Z;E)); (Id+A)−1 = Id+B, B ∈ Ψ0
T (S; Ψ−∞(Z;E))

}
.

The subgroup satifying the normalization condition σ0(A)(1) = 0 is contractible,
but for the moment we will ignore this.

Using the regularized trace introduced above, we can extend the forms in
(L22.42) from the normal subgroup to the whole group. So we set

(L22.44) η =
∞∑
k=0

ckη2k+1, η2k+1(A) = Tr((Id +A)−1dA)2k+1)

where we drop the suffix indicating the regularizing family, since we will just use
(L22.38) for definiteness sake.

Proposition 50. The forms in (L22.44) are well-defined on G0
T (S), restrict

to G−∞T (S) to the forms in (L22.42) and are such that

(L22.45) dη2k+1(a) = σ∗0(β2k + dγ2k+1), where

β2k(b) = −1
2

∫
S
Tr
(

(b−1db)2kb−1 ∂

∂θ
b

)
,

γ2k+1(b) =
1
2

∫
S
Tr
(

(b−1db)2k+1b−1 ∂

∂θ
b

)
are defined on the loop group

(L22.46) {b ∈ C∞(S; Ψ−∞(Z;E); (Id +b)−1 = Id+b′, b′ ∈ C∞(S; Ψ−∞(Z;E)}.

Proof. The functional Tr is linear and continuous, so we can commute d
through it to compute dη2k+1. The argument in (L22.44) can be written

(L22.47) ((Id +A)−1dA)2k+1 = (−1)kA−1dA(d(A−1)dA)k

where we use the identity dA−1 = −A−1(dA)A−1. Thus, only the first factor in
(L22.47) is not exact, so

(L22.48) dη2k+1(A) = −Tr((A−1dA)2k+2).

The argument can now be written as a ‘supercommutator’ – really it is a commuta-
tor when we take the antisymmetry of the exterior product into account. Namely

(L22.49) dη2k+1(A) = −1
2
Tr
(
[A−1dA, (A−1dA)2k+1]

)
.

Then, using a ‘super’ version of the trace defect formula we conclude that

(L22.50) dη2k+1(A) =
1
2

TrR
(
(A−1dA)2k+1DE(A−1dA)

)
.

All the products A−1dA are of order zero and DE lower the order by one, so we
know from (L22.40) that the residue trace here is just the integral of the principal
symbol,

(L22.51) dη2k+1(A) =
1
4π

∫
S
σ−1

(
(A−1dA)2k+1DE(A−1dA)

)
dθ.

Now, DE expands to

(L22.52) DE(A−1dA) = −A−1(DEA)A−1dA+A−1dDEA.
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Now, using (L22.39) to evaluate the leading term in DE , we arrive at (L22.45).
Indeed, in the first term arising from inserting (L22.52) into (L22.51), the last
factor A−1dA can be commuted to the front, giving β2k. Similarly, in the term
arising from the second part of (L22.52) the factor premultiplying dDEA,

(L22.53) (A−1dA)2k+1A−1 = (−1)k+1(dA−1 · dA)kdA−1,

is exact, so this reduces to dγ2k+1 with γ2k+1 as in (L22.45). �

The pointed loop group, which is denote above
(L22.54)
G−∞(1) = {b ∈ C∞(S; Ψ−∞(Z;E); b(1) = Id, (Id+b)−1 = Id+b′, b′ ∈ C∞(S; Ψ−∞(Z;E)}

is a normal subgroup of the full loop group in (L22.46) and it in turn has the normal
subgroup of index 0 loops

(L22.55) G−∞(1),0(Z;E) = {b ∈ G−∞(1),0(Z;E);
1
2π

∫
S
Tr((Id +b)−1 ∂

∂θ
b)dθ = 0}

which is the leading part of our classifying sequence. What has been shown above
can be pictured like this
(L22.56)

Chodd ηodd
d //

∣∣
G−∞oo Chevn +dΓ

G−∞T (S; Ψ−∞(Z;E)) // G0
T (S; Ψ−∞(S; Ψ−∞(Z;E))

��
G−∞(1),0(Z;E) + ρC∞(S; Ψ−∞(Z;E))[[ρ]] // G−∞(1),0(Z;E).

The fact that dη2k+1 descends to the quotient group and represents there the (even)
Chern character is what is fundamental. The fact that this differential actually lifts
to the leading part of the quotient, and does not depend on the lower order symbols
at all, is (a higher order extension of) the ‘miracle of the loop group’ of Pressley
and Segal [5]. This latter behaviour does not carry over to higher dimensions or
the ‘geometric case’.

22+. Addenda to Lecture 22

22+.1. Proof of Lemma 37. We have already seen in (L22.30) that the dif-
ference between two regularized traces if given by TrR(AD) where D ∈ Ψ0(Z;E) is
the difference element discussed above. Since the residue trace vanishes on smooth-
ing operators, this certainly vanishes if D ∈ Ψ−∞(Z;E) and so only depends on
the ‘full symbol’ element D ∈ Ψ0(Z;E)/Ψ−∞(Z;E). Every element D can appear
as D(E1, E2) since if E1(s) is a given holomorphic family satisfying (L22.11) then
E2(s) = E1(s) + sDE1(s) is another family of this type with D(E1, E2) = D. Fi-
nally the image of D in Ψ0(Z;E)/Ψ−∞(Z;E) can be recoverd from the difference
of the functionals, namely
(22+.57)

ΨZ(Z;E) 3 A −→ TrR(AD) determines [D] ∈ Ψ0(Z;E)/Ψ−∞(Z;E) uniquely.
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To see this (and we need to use all the integral orders, or at least arbitrarily large
ones) start with A of order −d. Then the term in the symbol of AD of order −d is
just the product of the principal symbols, so in this case

(22+.58) TrR(AD) =
∫
S∗M

trE(σ−d(A)σ0(D)).

If we think of σ0(D) as being a distribution on S∗M this determines it, since
tr(ab) is non-degenerate as a bilinear form on the fibre of hom(E) at each point.
Thus σ0(D) can be recovered from the difference functional. This determines D
modulo Ψ−1(Z;E) so can subtract from TrR(AD) the functional TrR(AD̃) where
D̃ ∈ Ψ0(Z;E) is some operator with the same principal symbol. Thus we can
suppose that D ∈ Ψ−1(Z;E), or proceeding inductively that D ∈ Ψ−k(Z;E) and
then repeat the argument, now with A ∈ Ψ−d+k(Z;E) so that the residue trace still
comes out in terms of the principal symbol of AD. Thus, D is indeed determined
modulo Ψ−∞(Z;E).



CHAPTER 23

Index for product-type families

Lecture 23: 8 December, 2005

It is probably a good thing that no one gave me notes of this lecture. This
allows me to write something closer to what I should have said and try to undo
some of the confusion I must have sown!

NB. At this stage, I have paid no serious attention to the coefficients in the
expansion of the odd Chern character and correspondingly the eta forms. As a
result you will find some discrepancies with the constants below — at some point
I will track down these constants (and quite a few ealier ones!)

L23.1. Product-type Toeplitz algebra. I wanted to finish this course with
an example of an index formula showing how the eta forms discussed last time enter
as ‘regularized Chern forms’.1 To make thing reasonably simple2 I will consider a
product M × S where M is an arbitrary compact manifold.3 To further simplify
things I will consider operators on a fixed bundle and indeed a trivial one (this is
not much of a restriction since one can always complement a bundle to be trivial,
with the identity operator on the complement). Thus, the fibration is actually a
product

(L23.1) M × S

π

��
M.

Rather than consider a general elliptic element A ∈ Ψ0,0
π−pt(M ; CN ) initially I

will further restrict the problem by considering the Toeplitz algebra in this sense.
Recall that the fibrewise operators

(L23.2) C∞(M ; Ψ0(S; CN )) ⊂ Ψ0,0
π−pt(M ; CN ).

In particular the Szegő projector, S, on S lifts to an element of the product-type
algebra. Thus we can consider the Toeplitz subalgebra of the product-type algebra

(L23.3) Ψ0,0
π−pt,T (M ; CN ) = SΨ0,0

π−pt(M ; CN )S.

0.7E; Revised: 29-11-2006; Run: November 29, 2006

1In fact I had hoped to do a reasonably general case, but there is still some work required
for this.

2And let’s face it I had enough trouble with this as it is.
3If you are feeling energetic a natural generalization to understand would be that of a circle

bundle, more precisely the circle bundle of a complex line bundle (hence oriented), over a compact
manifold.

183
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The symbol algebra for Ψ0,0
π−pt(M ; CN ) takes values in smooth maps in matrices

on the blown-up cosphere bundle [S∗(M × S), S∗M ]. In this case, because S∗S is
just two copies of S,

(L23.4) [S∗(M × S), S∗M ] = S∗+(M × S) t S∗−(M × S)

is just the disjoint of the two compact manifolds with boundary, consisting of the
upper half-sphere bundle and the lower half-sphere bundle, separated by the blow-
up rather than meeting at the equatorial sphere bundle. For a fibrewise family the
symbol is the lift of the symbol of the family, so for the Szegő projector it is the
identity on the upper half-sphere bundle and 0 on the lower half. Thus, symbol
map gives a short exact sequence

(L23.5) Ψ−1,0
π−pt,T (M ; CN ) −→ Ψ0,0

π−pt,T (M ; CN ) −→ C∞(S∗+(M × S);M(N,C)).

The base family for a fibrewise family is just the family itself (lifted to the
cosphere bundle of the base). So for the Toeplitz algebra in this product case we
get a short exact sequence

(L23.6) Ψ0,−1
π−pt,T (M ; CN ) −→ Ψ0,0

π−pt,T (M ; CN ) −→ C∞(S∗M ; Ψ0
T (S;M(N,C))).

So, consider an elliptic element A ∈ Ψ−1,0
π−pt,T (M ; CN ), meaning that the sym-

bol a = σ0(A) ∈ C∞(S∗+(M × S);GL(N,C)) and the base family β = β(A) ∈
C∞(S∗M ; Ψ0

T (S;M(N,C))) are invertible, so β−1 ∈ C∞(S∗M ; Ψ0
T (S;M(N,C))).

Under these conditions we may easily check that A defines a Fredholm operator4

(L23.7) A : C∞(M × S; CN ) −→ C∞(M × S; CN )

and we wish to compute the index.
For an elliptic element of Ψ0(M × S; CN ) the index is given by the formula of

Atiyah and Singer. The assumptions we have made above mean that the formula
simplifies. First, the relative Chern character reduces to the odd Chern character,
since we are working on a trivial bundle and may take the trivial connection. Thus
the topological image of the symbol is

(L23.8) Ch(a) =
∑
k

ck Tr
(
(a−1da)2k+1

)
then the index formula becomes

(L23.9) ind(A) =
∫
S∗(M×S)

Td(M) ∧ Ch(a).

In principle the Todd class of M × S enters here, but this can easily be seen to
reduce to the Todd class of M. Although I have not discussed Td in detail here, we
may take it as the lift of a cohomology class on M, represented by some explicit
deRham class, Td(M) ∈ C∞(M ; Λevn) pulled back to S∗(M × S).

So, what I want to show is how the eta forms enter in the corresponding formula
for the elliptic elements of the Toeplitz algebra.

4Construct a parameterix!
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Theorem 14. For an elliptic element A ∈ Ψ−1,0
π−pt,T (M ; CN ) the index is given

by

(L23.10) ind(A) = −1
2

∫
S∗M

Td(M) ∧ η(β) +
∫
S∗+(M×S)

Td(M) ∧ Ch(a),

where η(β) =
∑
k

ckη2k+1(β) =
∑
k

ckTr
(
(β−1dβ)2k+1

)
and Ch(a) is given by (L23.8).

L23.2. Variation formulæ. Let me deduce variation formulæ for the (odd)
eta forms and the odd Chern character which follow from the computation, done
eariler, of the exterior derivative in each case.

For the eta forms on the group G0
T (S; CN ) ↪→ G0

T (S; Ψ−∞(Z;E)) of invertible
Toeplitz operators with values in N ×N matrices

(L23.11) η2k+1(B) = Tr((B−1dB)2k+1)

we know, from Proposition 50, that

(L23.12) dη2k+1(B) = σ∗0(β2k+2 + dγ2k+1)

where the forms on the right are both defined on the loop group G−∞(1) but in this
case we have descended to GL(N,C) :

(L23.13) β2k+2(b) = −1
2

∫
S
tr((b−1db)2k+2b−1∂θb)dθ,

γ2k+1(b) = −1
2

∫
S
tr((b−1db)2k+1b−1∂θb)dθ, b ∈ C∞(S; GL(N,C)).

So, if we suppose that X is an oriented compact manifold without boundary
and that

(L23.14) F ∈ C∞(X × (0, 1)t;G0
T (S; CN ))

then we can consider the function

(L23.15) h1(t) =
∫
X

T ∧ F ∗t η2k+1

where T ∈ C∞(X; Λd−2k−1) is a fixed closed form. Certainly h1 is a smooth function
and

(L23.16) h′1(t) =
∫
X

T ∧ d

dt
F ∗t η2k+1.

Consider the pull back F ∗η2k+1 to X × (0, 1). It can be decomposed with respect
to dt as

(L23.17) F ∗η2k+1 = η2k+1(F, t) + dt ∧ η′2k(F, t), η2k+1(F, t) = F ∗t η2k+1,

η′2k(F, t) =
2k∑
j=0

(−1)jF ∗t Tr((F−1dXF )jF−1 dF

dt
(F−1dXF )2k−j)
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where the coefficients are t-dependent forms on X. If we write out the formula for
dF ∗η2k+1 obtained by pulling back (L23.12) we find

(L23.18) dF ∗η2k+1 = dXη2k+1(F, t) + dt ∧
(
d

dt
η2k+1(F, t)− dXη′2k(F, t)

)
= (F ◦ σ)∗0 (β2k+2 + dγ2k+1) .

So, expanding the last pull-back with respect to dt gives

(L23.19)
d

dt
η2k+1(F, t) = dXη

′
2k(F, t) + β′2k+1(f, t) + dXγ

′
2k+1(f, t)

where f = σ ◦ F is the symbol map for the family F and

(L23.20)

β′2k+1(f, t) = −1
2

2k+1∑
j=0

(−1)j
∫

S
Tr((f−1dXf)j(f−1 df

dt
)(f−1dXf)2k+1−jf−1∂θf)dθ,

γ′2k+1(f, t) = −1
2

2k∑
j=0

∫
S
Tr((f−1dXf)jf−1 df

dt
(f−1dXf)2k−jf−1∂θf)dθ, f = σ0◦F.

So now, if we insert this formula into (L23.16) we find that the exact terms
integrate to zero, so only β′2k+1 survives and

(L23.21) h′1(t) =
∫
X

T ∧ β′2k+1(f, t)

with β′2k+1 given by (L23.20).
Next we make a similar computation for the Chern character. Suppose that Y

is a compact manifold with boundary of dimension q, that T ′ ∈ C∞(Y ; Λq−2k−1) is
closed and that G : Y × (0, 1) −→ G−∞ is smooth. Then consider the function

(L23.22) h2(t) =
∫
Y

T ′ ∧G∗tβ2k+1

where β2k+1 are the component forms for the odd Chern character,

(L23.23) β2k+1 = Tr(
(
a−1da)2k+1

)
.

We know that dβ2k+1 = 0 and from this we find

(L23.24)
d

dt
G∗tβ2k+1 = dY β

′
2k, β

′
2k = Tr

(
(G−1dYG)2kG−1 dG

dt

)
.

Using this and Stokes’ theorem

(L23.25) h′2(t) =
∫
Y

T ′ ∧ dY β′2k =
∫
∂Y

i∗∂Y T
′ ∧ β′2k.

In the application of these formulæ below, ∂Y = X × S. Thus the form β′2k is
pulled back to the product X × S. In this case, decomposing the total differential
on ∂Y and carrying out the integral over the circle, first, shows that

(L23.26)

h′2(t) =
2k−1∑
j=0

(−1)j
∫
X×S

i∗∂Y T
′∧Tr

(
(g−1dXg)jg−1dθg(g−1dXg)2k−1−jg−1 dg

dt

)
dθ,

g = G
∣∣
∂Y=X×S.
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Compare this to (L23.20), first increasing k to k + 1.

L23.3. Proof of Theorem 14. We first show that the right side of the for-
mula (L23.10) is homotopy invariant. Thus, for an elliptic 1-parameter family
At ∈ C∞((0, 1);Ψ−1,0

π−pt,T (M ; CN )) set

(L23.27) I1(t) = −1
2

∫
S∗M

Td(M) ∧ η(β), I2(t) =
∫
S∗+(M×S)

Td(M) ∧ Ch(a).

The discussion above allows us to compute the derivatives of these functions.
Namely if we set

(L23.28) bt = σ0(β(At)) = at
∣∣
S∗M×S,

with equality being the consistency between the symbol and the base family, then
from (L23.21), (L23.24) and (L23.25)5

(L23.29) I ′1(t) + I ′2(t) = 0.

Thus the sum

(L23.30) I = I1(t) + I2(t) is constant.

So, to prove the index formula we may make a homotopy to some operator for
which we can compute the index, in this case using the Atiyah-Singer theorem.6

Consider the symbol a = σ0(A) ∈ C∞(S∗+(M × S; GL(N,C)). This is a ball
bundle, where the origin of each fibre can be taken as the fibre vertical, the point
corresponding to

(L23.31) M × S 3 (m, θ) 7−→ (m, θ, 0, dθ) that is (0, 1) ∈ T ∗mM × T ∗θ S.

Thus the fibres are contractible. This allows us to construct a smooth family of
symbols

(L23.32) ã : [0, 1]t × S∗+(M × S) −→ GL(N,C), ã
∣∣
t=0

= a, ã
∣∣
t=1

= π∗(a
∣∣
M×S).

For instance, one can first smoothly deform the symbol so that it is fibre-constant
near the ‘centre’ in (L23.31) and then radially translate the symbol to expand the
constant region.

In particular the boundary symbols

(L23.33) b̃ = ã
∣∣
S∗M×S=∂S∗+(M×S)

: [0, 1]× S∗M × S −→ GL(N,C)

form a 1-parameter family of symbols of Toeplitz operators, in C∞(S; GL(N,C))
parameterized by S∗M. The compatibility condition between symbols and base
families shows that at t = 0, for the given operator, these are the symbols of an
invertible family of Toeplitz operators. It follows from our earlier results about
such families that we can lift to a family of invertible Toeplitz operators

(L23.34) β̃ : [0, 1]× S∗M −→ Ψ0
T (S; CN ), β̃−1 ∈ C∞([0, 1]× S∗N ; Ψ0

T (S; CN )),

β̃
∣∣
t=0

= β(A).

5For the moment I am completely ignoring the constants – there is good reason to believe
they work out correctly!

6In the lecture I was trying to run the homotopy in the wrong direction, which accounts for
some of my discomforture.
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Finally then we may select a smooth family ÃtΨ0
π−pt,T (M × S; CN ) with symbol ã

and base family β̃. This is therefore a family of (fully) elliptic operators and hence
has constant index

(L23.35) ind(At) ∈ Z is smooth, hence constant.

On the other hand we have also shown (L23.30), so it suffices to show that

(L23.36) ind(Ã1) = I(1),

which reduces to proving the index formula (L23.10) under the additional assump-
tion that

(L23.37) σ0(A) is fibre constant on S∗+(M × S) −→M × S.
This just means that σ0(A) = σ0(L) where L ∈ C∞(M × S; GL(N,C)) is a bundle
isomorphism for our trivial bundle. As an isomorphism L has vanishing index, so
we may compose A with the inverse and strengthen (L23.37) further and suppose
that

(L23.38) σ0(A) = Id .

Of course, we do have to check afterwards that the putative index formula behaves
‘correctly’ under multiplication by a bundle isomorphism.

Thus we are reduced to the case where the symbol is the identity. As we know,
by a further (small) homotopy we may assume that the operator itself is of the
form Id+B where B ∈ Ψ−∞,0

π−pt,T (M ×S; CN ), meaning in particular that its indicial
family is

(L23.39) β : S∗M −→ G−∞T (S; CN ),

so is of the form Id+smoothing and everywhere invertible. This group (classifying
forK−1) is contained in our contractible Toeplitz group, so one might think that the
whole thing could be contracted away and the index would then be zero. However
this cannot be done without deforming the symbol to be non-trivial again. In fact
this approach works perfectly well and reduces the problem to the Atiyah-Singer
theorem on M × S.

Rather than do this I will go in the ‘opposite direction’. Namely we can further
deform the base family, through invertibles of course, until it is a family of finite
rank perturbations of the identity, just doing the deformation

(L23.40) (1− t)β + t
(
Id−π(k) + π(k)βπ(k)

)
, k large

where π(k) is projection onto the span of the first k terms in the Fourier expansion.
It follows that the same deformation for the operator gives an elliptic family

(L23.41) (1− t)A+ t
(
(Id−π(k) + π(k)Aπ(k)

)
so we are reduced to the case that A acts as the identity on the span of all Fourier
coefficients greater than k (of course with arbitrary coefficients in C∞(M)).

This corresponds to the inclusion Ψ0(M,CM ) ↪→ Ψ−∞,0
π−pt,T (M×S; CN ) in which

a pseudodifferential operator is lifted to a finite dimensional subbundle of C∞(M ×
S; CN ) as a bundle over M. The symbol simply lifts to define the base symbol and
the index to the index so we are finally reduced to the Atiyah-Singer theorem on
M,

(L23.42) ind(A) =
∫
M

Td(M) Chodd(σ0(A)), A ∈ Ψ0(M ; CM ) elliptic.
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By construction,7 the eta ‘character’ lifts the odd Chern character, so indeed
(L23.42) reduces to, and hence implies, (L23.10) in this case.

Finally then it remains to check what happens to the formula under composition
with a bundle isomorphism; I certainly did not do this in the lecture!

23+. Addenda to Lecture 23

23+.1. Composition with bundle isomophisms.

23+.2. Non-Toeplitz extension. As a first simple generalization of the
product-type index formula (L23.10) consider the case of a general elliptic element
A ∈ Ψ0,0

π−pt(M × S; CN ) for the product fibration (L23.1). The obvious general-
ization of (L23.10) is to include ‘both sides’ of the symbol and to extend the eta
invariant to pseudodifferential operators on S.

Proposition 51. For any fully elliptic element A ∈ Ψ0,0
π−pt(M × S; CN )

(23+.43)

ind(A) = −1
2

∫
S∗M

Td(M)∧η(β)+
∑
Σ=±

∫
S∗Σ(M×S)

Td(M)∧Ch(a), β = β(A), a = σ0(A).

Proof. For the moment I just assume that the right side of (23+.43) is ho-
motopy invariant. This involves the extension of the analysis of the variation of the
η forms to the full pseudodifferential calculus on the circle and is straightforward
(there is an effective reversal of orientation between the two components of the
cosphere bundle.

Granted this, it is enough to prove (23+.43) for some operator which is in
the same path component of the full elliptic operators. Following the construction
of homotopies above the operator may be deformed to one with symbol on in the
positive half S∗+(M×S) equal to that of a bundle isomorphism and then, composing
with the inverse of this, to one with symbol equal to the identity on S∗+(M × S).
To proceed further we ‘separate’ the base family into the product of two Toeplitz
families, one for the top and one for the bottom.

By a further small deformation we can assume that the full symbol of the base
family is equal to the identity on the positive side of S∗S, i.e. that the base family
is of the form
(23+.44)
β(A) = π Idπ+(Id−π)α−−(Id−π)+γ, γ ∈ C∞(B; Ψ−∞(S; CN )), α1 ∈ C∞(B; Ψ0

−T (S; CN ))

and the whole operator is invertible. Since γ is a smoothing family

(23+.45) π≤kγπ≤k −→ γ ∈ C∞(B; Ψ−∞(S; CN ))

where π≤k is projection onto all modes (including the negative ones) less than k.
Thus when the norm of the difference in (23+.45) is sufficiently small we can replace
γ by π≤kγπ≤k, and in fact A by

π≤kAπ≤k + Id−π≤k
and so arrange that A itself acts as the identity on all Fourier modes exp(ilθ),
l > k. Now, conjugating the whole operator by the bundle isomophism ei(k+1)θ

gives a family

(23+.46) A′ = e−i(k+1)θAei(k+1)θ ∈ C∞(B; Ψ0,0
π -pt,−T (M × S; CN ))

7Modulo the constant chase
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with values in the negative Toeplitz subalgebra, extended as the identity on the
positive modes. Again from the invariance of the result under bundle isomorphisms
it suffices to prove the formula for A′.

This reduces the problem to the previous case, with the orientation reversed.
�



CHAPTER 24

Index theorems and applications

Lecture 24: 13 December, 2005

L24.1. Inadequacies and extensions. Today I will sketch some conjectural
extension of the theorem index theorem I talked about last time and some other
applications of the things I have been talking about. In fact I can list a few extra
lectures, or topics within lectures, that I would like to do or have done. Starting
with the latter category are a couple of topics that I feel I have covered somewhat
inadequately (but I will likely put something in the addenda to the notes).

• The discussion of stabilization.
• Isotropic calculus and proper coverage of Bott/Thom/Todd – respectively

elements, isomorphism(s) and class. In particular at this stage I have not
really described the Todd class at all. Give an oriented real vector bundle
V −→ M, say over a compact manifold M, the Thom isomorphism in
cohomology is the identification

(L24.1) H∗
c (V ) −→ H∗(M)

given by fibre integration – it is always an isomorphism. On the other
hand given a complex vector bundle, which we can also denote V, there is
an extension of the Bott isomorphism (which is the case that V is trivial)

(L24.2) Kc(V ) −→ K(M).

Both for the compactly supported K-theory and the K-theory of the base
there are Chern character maps – as we have discussed. This gives a
diagramme

(L24.3) Kc(V ) Thom //

Ch

��

K(M)

Ch

��
Hevn

c (V ) Thom

×Td
// Hevn(M).

The problem here is that if we simply take the Thom isomorphisms top
and bottom then the diagramme does not commute. This is not totally
surprising, since the maps Thom isomorphism are defined under different
conditions. To get an isomorphism we have to follow the Thom isomor-
phism on the bottom, in cohomology, by multiplication by a characteristic
class. This is the Todd class, Td, of V. The class that appears in the
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Atiyah-Singer formula is the Todd class of M which is by definition the
Todd class of the complexified Tangent bundle of M.

• The computation of Ch(PA), the Chern class of the the ‘extension’ of the
original elliptic family. This is very close to the relative Chern character
that I have discussed and I will certainly try to put it in somewhere. The
Todd class comes out quite naturally from this computation.

• General product-tye index theorem in K-theory.
• Product-type index theorem in cohomology.
• Odd families and determinants.
• Determinant line bundle.
• Gerbes.

I will briefly describe what I think is going on as regards the index theorem for
product type operators and quickly indicate how to define the determinant line
bundle and gerbes – I don’t think I will have time to mention the odd index theorem
and determinants, although that is very closely related to the eta invariant and so
things I have been talking about. It is possible that I will be motivated enough to
write out some more ficticious lectures.

L24.2. Product-type K-theory. So, to talk about the formulation of an in-
dex theorem, in K-theory, associated to product-type pseudodifferential operators,
let me recall the Atiyah-Singer index theorem, again. This is really at least two
theorems. In K-theory it states that for any fibration of compact manifolds

(L24.4) M

φ

��
B

there are two different maps in K-theory which are equal

(L24.5) K0
c (T ∗(M/B))

inda

indt

//K0(B).

The top map, the analytic index, is defined by identifying elements of the K-group
as triples (E, a) in which a may be identified as the symbol of a family of elliptic
operators, A ∈ Ψ0(M/B; E) and then inda([(E, a)]) is the image of the (stabilized)
index bundle in K0(B). The other map is defined via ‘geometric trivialization’, in
which the fibration is embedded as a subfibration of a product fibration SN ×B.

To extend this to the product-type case we consider a compound fibration of
compact manifolds

(L24.6) M

ψ

��
φ=Φψ

��

Y

Φ

��
B.

Here the choice of notation indicates that it is the overall fibration which is analo-
gous to (L24.4). Let me denote by Ψ0,0ψ − pt(M/B; E) the space of product-type
pseudodifferential operators for the compound fibration. For each point b ∈ B this
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is an operaor on the fibre of φ which is of product type with respect to the fibration
ψ (over Φ−1(b). Given what we have done above, the definition should be fairly
self-evident. Such an operator has two ‘symbols’ and ellipticity means invertibility
of both

(L24.7)
σ(A) ∈ C∞([S∗(M/B), S∗(X/B)]; hom(E))

β(A) ∈ Ψ0(π∗M/S∗(X/B); E)

where, with some abuse of notation, π : S∗(X/B) −→ X and the fibration in the
second case is the pull-back of M −→ X to S∗(X/B). In this case the analytic
index is well defined by stabilization of any elliptic family, inda(A) ∈ K0(B), and
only depends on σ(A) and β(A).

There is every reason (meaning I have not checked the details) to think that we
can define an adequate replacement for K0

c (T ∗(M/B)) in this setting. Namely, if we
consider all invertible pairs (L24.7), subject to the compatibility condition that the
symbol of β is the restriction of σ to the boundary, and then impose an equivalence
condition corresponding to bundle isomorphism, stabilization and homotopy, then
we arrive at an Abelian group which I will denote K0

c,ψ−pt(T
∗(M/B). There will

also be an odd version of this, K−1
c,ψ−pt(T

∗(M/B). Of course the basic idea is that
the analytic index descends to this space and defines

(L24.8) inda : K0
c,ψ−pt(T

∗(M/B) −→ K0(B).

Assuming this construction does work we will get a map generated by σ,

(L24.9) K0
c,ψ−pt(T

∗(M/B) −→ K0
c (T ∗(M/X).

This comes from evaluating the symbol in the ‘vertical’ directions of the fibration.
The manifold with boundary on which σ is defined fibres over S∗(M/X) and this
implies that the homotopy class of σ, ignoring β and the compatibility condition,
is actually determined by the image in (L24.9). The families index theorem for the
pull-back of fibration of M over X to S∗(X/B) gives rise to a second map

(L24.10) ind : K0
c (T ∗(M/X) −→ K0(S∗(X/B)

which vanishes on the image of (L24.9), expressing the fact that the symbol is
the symbol of a family of invertible operators there – namely the β(A). The space
K−1(S∗(X/B)) can be identified with1 homotopy classes of maps into a G−∞. We
can take this to be smooth families β which therefore give a pair of symbols (L24.7)
with true symbolic part the identity. Putting all this together we arrive at the
conjectural 6-term exact sequence

(L24.11) K−1(S∗(X/B)) ι // K0
c,ψ−pt(T

∗(M/B)) σ // K0
c (T ∗(M/X))

ind

��
K−1

c (T ∗(M/X))

ind

OO

K−1
c,ψ−pt(T

∗(M/B))
σ

oo K0(S∗(X/B))ι
oo

The analytic index should be compatible with this complex (it is also defined on
K−1(S∗(X/B)) and it should be possible to define a toplogical index by embedding
and arrive at a (conjectural at this stage) extension of (L24.5):

(L24.12) K0
c,ψ−pt(T

∗(M/B))inda

indt

//K0(B).

1In fact was defined here as
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Question 1. Is there some more traditional realization of the groupK0
c,ψ−pt(T

∗(M/B))
– the 6-term exact sequence (L24.11) should serve as a guide to what this might
be.

L24.3. Product-type cohomology. In the standard case, the second form
of the Atiyah-Singer theorem, or if you prefer ‘the Atiyah-Singer formula’, gives
Chern character of the index bundle in terms of the Chern character of the symbol.
So here we expect to get a Chern character

(L24.13) Chψ−pt : K0
c,ψ−pt(T

∗(M/B)) −→ Hevn
c,ψ−pt(T

∗(M/B))

where both the map and the image space are yet to be determined. One thing we
expect is that the 6-term exact sequence will be replicated at this level and in fact
will correspond to a natural transformation (i.e. be functorial) from the K-theory
complex to the ‘cohomological complex’:

(L24.14) Hodd(S∗(X/B)) ι // Hevn
c,ψ−pt(T

∗(M/B)) σ // Hevn
c (T ∗(M/X))

ind

��
Hodd

c (T ∗(M/X))

ind

OO

Hodd
c,ψ−pt(T

∗(M/B))
σ

oo Hevn(S∗(X/B))
ι
oo

with the maps from (L24.11) all being the corresponding Chern characters
(L24.15)

K−1(S∗(X/B)) ι //

Chodd

''OOOOOOOOOOOO
K0

c,ψ−pt(T
∗(M/B)) σ //

Chψ−pt

��

K0
c (T ∗(M/X))

ind

��

Chevnwwpppppppppppp

Hodd(S∗(X/B)) ι// Hevn
c,ψ−pt(T

∗(M/B))σ // Hevn
c (T ∗(M/X))

ind

��
Hodd

c (T ∗(M/X))

ind

OO

Hodd
c,ψ−pt(T

∗(M/B))
σ
oo Hevn(S∗(X/B))

ι
oo

K−1
c (T ∗(M/X))

ind

OO

Chodd

77oooooooooooo
K−1

c,ψ−pt(T
∗(M/B))

σ
oo

Chψ−pt

OO

K0(S∗(X/B))ι
oo

Chevn

ffNNNNNNNNNNNN

So, what should Hk
c,ψ−pt(T

∗(M/B)) be? The anticipated form of the Chern
character is the guide here. Let me try to be a little abstract here and consider a
more general setting of a manifold with boundary Z with a fibration ψ : ∂Z ←→
Y of its boundary. In the present setting, Z = [T ∗(X/B), S∗X] with the ‘old’
boundary removed (because we really want to consider relative cohomology, i.e.
with compact supports, as far as this part of the boundary is concerned.) Thus,
we will not assume that Z is compact but we do assume that Y is compact. Then
consider pairs

(L24.16) (u, τ) ∈ C∞c (X; Λk)× C∞(Y ;λj)

where k = j + d, d being the fibre dimension of the fibration ψ. This pair is closed
if du = 0 as a smooth form and

(L24.17) ι∗∂Zu = ψ∗dτ.
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The pair is exact if there exists (u′, τ ′) ∈ C∞c (Z; Λk−1) × C∞(Y ; Λj−1) such that
du′ = u and ι∗∂Zu

′ = ψ∗τ ′.
Note that this definition is modelled on relative cohomology.

Exercise 21. Check that in the case that ψ : ∂Z −→ ∂Z on recovers the
compactly supported cohomology of intZ = Z\∂Z which is the same as Hk

c (Z, ∂Z).

Problem 1. Show that this cohomology is well-defined and gives a 6-term
exact sequence as in (L24.14). Try to identify the cohomology with intersection
cohomology of the stratified space Z/ψ in which the boundary of Z is ‘smashed’ to
Y.

The idea of this definition is that the Chern character (L24.13) is supposed
to be given by that pair (u, τ) = (Ch(σ), η(β) where Ch(σ) is the relative Chern
charcter form (i.e. the same formula as before but smoothly up to the boundary
and η 2 is the eta form as discussed above. The relationship ι∗∂u = ψ∗τ is just
what is I showed last in the special case of a product with a circle, but the argument
should go over in general when connections are put in.

It is also natural to expect that in the case of a fibration3, as for T ∗(M/B)
where the structure is fibrewise, there should be a pushforward map

(L24.18) Hevn
c,ψ−pt(T

∗(M/B)) −→ Hevn(B)

L24.4. Determinant bundle. Next, a few words about the determinant bun-
dle.

The numerical index is the 0-dimensional part of the Chern character of the
index in the standard families case. In the odd case (which I have not discussed)
the Chern character maps to odd-degree cohomology and the 1-dimensional part
can be thought of as a ‘spectral flow’ of the phase of a determinant. Back in the
usual even setting, the 2-dimensional part of the Chern character corresponds to
the determinant bundle, as I will discuss. In the odd case the 3-dimensional part
corresponds to the curvature of a gerbe, which I had hoped to get to. The 4-
dimensional part of the even Chern character should correspond to a 2-gerbe, but
this is not very well understood geometrically.

Back in the usual families case we consider and elliptic family P ∈ Ψ0(M/B; E)
and for simplicity we assume that the numerical index

(L24.19) #− ind(P ) = dim null(P )− dim null(P ∗) = 0.

It is of course constant. This is not strictly necessary but definitely simplifies the
construction.

The vanishing of the numerical index means that for each point b ∈ B the
operator Pb ∈ Ψ0(Zb; Eb) can be perturbed by a smoothing operator to be invertible.
This allows us to define a big bundle over B where the fibre at b is

(L24.20) Pb = {Pb +Qb;Qb ∈ Ψ−∞(Zb; Eb); (Pb +Qb)−1 ∈ Ψ0(Zb; E−b ).

Not only is each fibre non-empty, but it is a principal space for the action of the
group G−∞(Zb;Eb,−). Namely, two elements Pb+Qb, Pb+Q′b ∈ Pb must be related
by

(L24.21) Pb +Qb = (Id+Rb)(Pb +Q′b), Rb ∈ G−∞(Zb;Eb,−) ⊂ Ψ−∞(Zb;Eb,−).

2Remember I am not claiming that the normalization is correct (yet).
3With oriented fibres
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Thus we can think of

(L24.22) P

��
B

as a ‘principal bundle’ although the groups acting on the fibres are actually vary-
ing and form a bundle of groups, G−∞(M/B;E−). In the discussion earlier on the
stabilization of the index bundle I faced4 the issue of showing that there are ‘ex-
hausting’ smooth families of projections in Ψ−∞(M/B;E−). Using these one can
see that the space of components of the sections, g ∈ C∞(B;G−∞(M/B;E−) is ac-
tually canonicaly equal to K−1(B). That is, the bundle of groups is at least ‘weakly
trivial’. Thus (L24.22) does behave very much as a principal bundle.

Recall that the Fredholm determinant is a multiplicative function

(L24.23) G−∞(M/B);E−) −→ C∗

defined globallly and invariantly. In this sense it is a 1-dimensional representation
of our bundle of groups, or a character if you prefer. As such the principal bundle
(L24.22) induces a line bundle (a 1-dimensional vector bundle) over B. The fibre
at b ∈ B is
(L24.24)
Bb = (Pb×C)/ ∼, (Pb+Qb, z) ∼ (Pb+Q′b, z

′)⇐⇒ (L24.21) holds and z = det(Id +Rb)z′.

24+. Addenda to Lecture 24

4And shelved for some time.
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