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Abstract. Using the free-space translation representation (modified Radon
transform) of Lax and Phillips in odd dimensions, it is shown that the gen-

eralized backscattering transform (so outgoing angle ω = Sθ in terms of the

incoming angle with S orthogonal and Id−S invertible) may be further re-
stricted to give an entire, globally Fredholm, operator on appropriate Sobolev

spaces of potentials with compact support. As a corollary we show that the

modified backscattering map is a local isomorphism near elements of a generic
set of potentials.
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Introduction

The inverse scattering problem in the two body case consists of determining a
potential V by measuring the scattering amplitude aV (λ, ω, θ) where λ denotes the
frequency of an incoming plane wave with direction ω and θ denotes the outgoing
direction. This is an overdetermined problem except in dimension one. In this
note we consider determined problems where the set of possible angles θ and ω
is restricted to an n − 1 dimensional subset of the complement of the diagonal
in the product of the sphere with itself. We use the time dependent approach to
scattering of Lax-Phillips [LP], [P]. This is a based on the classical wave equation
rather than the time dependent or stationary Schrödinger equation and therefore
allows the properties of the wave equation, especially the finite speed of propagation
of the solutions and the precise description on the propagation of singularities, to
be effectively exploited. In particular the Lax-Phillips modified Radon transform
(their free-space translation-representation), reduces the n-dimensional problem to
a one dimensional problem with lower order term arising from the potential.
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2 RICHARD MELROSE AND GUNTHER UHLMANN

If S is an n-dimensional orthogonal transformation such that Id−S is invertible,
then the modified backscattering transform determined by S, for a potential V,
is obtained by composing the restriction of the scattering kernel κV (s, ω, θ) (the
inverse Fourier-Laplace transform in λ of the scattering amplitude) to ω = Sθ with
a linear map LS (the generalized inverse of the linearization of the map at V = 0).
In the Main Theorem in Section 3, it is shown that if Ḣ

n+1
2 (B(ρ)) is the Sobolev

space of functions with support in the closed ball of radius ρ then

(1) Ḣ
n+1

2 (B(ρ)) 3 V 7−→ LS(κV (s, Sθ, θ)) ∈ Ḣ
n+1

2 (B(ρ))

is an entire and globally Fredholm non-linear map of index zero. Indeed this map
is a local isomorphism near potentials forming an open set with complement of
codimension at least two (see Proposition 2 in Section 5).

Related results, in a slightly different setting for the true backscattering, S =
− Id but including two dimensions and non-compact supports, have been obtained
by Eskin and Ralston [ER1, ER2, ER3]. A different method to prove generic
uniqueness was given in [S] in dimension 3 for compactly supported potentials.
The use of hyperbolic equations for the inverse backscattering problem has also
been considered in several papers; see for instance [BLM], [GU], [Mo], [StU]. The
lecture notes [MU] contain most of what we do here. In [Mel], [U], we gave a sketch
of the proof of the main Theorem here for the case S = − Id. The case of even
dimensions n > 2, also for S = − Id, using similar methods to [MU], [Mel] and [U],
was considered in [W]. Melin has developed an alternative approach to the inverse
backscattering problem using the ultrahyperbolic equation [Me1], [Me2].

We leave open the question of whether a map such as (1) is a global isomorphism,
or a local isomorphism near each potential. The problem of determining partial
information of the potential, especially its singularities, from backscattering or other
(formally) determined information has been considered in the papers [GU], [J],
[OPS], [SuU], [R], [RV] and in the recent preprint [BM].

The authors thank the anonymous referee and Jeff Lagarias for comments on
the manuscript.

1. Lax Phillips transform

We briefly recall the approach of Lax and Phillips to scattering theory in odd-
dimensional Euclidean space. Since it suffices for the present problem we give a
simplified formulation of their theory.

The Lax Phillips theory is founded on the Radon transform:

(2)
Rf(s, ω) =

∫
HS(s,ω)

f(x)dHx,

R : C∞c (Rn) −→ C∞c (R× Sn−1)

where Hx is surface measure on HS(s, ω) = {x · ω = s}. The formal transpose, Rt,
of R is given by

(3)

Rt : C∞c (R× Sn−1) −→ C∞(Rn),

Rtg(x) =
∫

Sn−1

g(x · ω, ω)dω.
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Of particular importance here is the fact that the Radon transform intertwines
the n-dimensional and the one-dimensional Laplacians (for any n ≥ 2)

(4) R∆f = D2
sRf ∀ f ∈ C∞c (Rn)

where ∆ is the positive Laplacian and Ds = 1
i ∂s. Moreover there is an inversion

and a Plancherel formula; for any f, g ∈ C∞c (Rn)

(5)

f =
1

2(2π)n−1
Rt(|Ds|n−1Rf),∫

Rn

f(x)g(x)dx =
1
2

1
(2π)n−1

∫
R×Sn−1

(|Ds|
n−1

2 Rf)(s, ω)(|Ds|
n−1

2 Rg)(s, ω)dsdω.

The range of R on C∞c (Rn) was characterized by Helgason in [Hel]. Its closure

in an appropriate topology is simpler. Thus if, n ≥ 3 is odd the operator D
n−1

2
s ·R

extends by continuity to an isometric isomorphism

(6) Rn = D
n−1

2
s ·R : L2(Rn) −→ {k ∈ L2(R×Sn−1); g(−s,−ω) = (−1)

n−1
2 g(s, ω)}

and Rt ·D
n−1

2
s extends by continuity to be its inverse.

The modified Radon transform of Lax and Phillips is defined to be

(7) LP
(
u0

u1

)
= 2

1
2 (2π)

n−1
2

{
D

n+1
2

s (Ru0)(s, ω)−D
n−1

2
s (Ru1)(s, ω)

}
.

For n ≥ 3 odd it is an injective map

(8) LP : C∞c (Rn)× C∞c (Rn) −→ C∞c (R× Sn−1)

which intertwines the free wave group and the translation group:

(9)
LP ·U0(t) = Tt · LP, Ttv(s, ω) = v(s− t, ω),

U0(t)
(
u0

u1

)
=
(

u(t)
Dtu(t)

)
, (D2

t −∆)u(t) = 0, u(0) = u0, Dtu(0) = u1.

In particular, if u is the solution of the Cauchy problem for the wave equation as
in (9) and

(10) k(t, s, ω) = LP · U0(t)
(
u0

u1

)
∈ C∞(R× R× Sn−1)

then k(t, s, ω) = k0(s− t, ω) is a solution of the first order differential equation

(11) (Dt +Ds)k(t, s, ω) = 0 in R× R× Sn−1.

This is in essence the free-space translation representation of Lax and Phillips.
Rather than adopting their approach of constructing a perturbed translation rep-
resentation for the wave equation with potential we use the same ‘free’ Lax Phillips
transform and observe its effect on the solution to the perturbed Cauchy problem

(12)
UV (t)

(
u0

u1

)
=
(

u(t)
Dtu(t)

)
,

(D2
t −∆− V (x))u(t) = 0, u(0) = u0, Dtu(0) = u1,

where V ∈ C∞c (Rn). Namely if

(13) kV (s, t, ω) = LP · UV (t)
(
u0

u1

)
∈ C∞(R× R× Sn−1),
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then

(14)

(Dt +Ds)kV (t, s, ω)

= 2
1
2 (2π)

n−1
2

{
−D

n−1
2

s RD2
t u(t, ·) +D

n+3
2

s Ru(t, ·)
}

= −2
1
2 (2π)

n−1
2 D

n−1
2

s R[V (·)u(t, ·)].

Using the inversion formula it follows that

(15) (Dt +Ds)kV (t, s, ω) + VLPkV (t, s, ω) = 0

where VLP is an operator on C∞(R× Sn−1) :

(16) VLP =
1

2(2π)n−1
D

n−1
2

s ·R · V ·RtD
n−3

2
s .

Thus if supp(V ) ⊂ {|x| ≤ ρ} the operator VLP defined by (16) has Schwartz kernel
VLP(s, ω, s′, ω′) supported in the region

(17) supp(VLP) ⊂
{

(s, ω′, s′, ω) ∈ R× Sn−1 × R× Sn−1; |s|, |s′| ≤ ρ
}
.

There is a unique fundamental solution, which is to say a distribution satisfying

(18)
(Dt +Ds + VLP)ELP(t, s, ω; s′, θ) = 0

ELP(0, s, ω; s′, θ) = δ(s− s′)δθ(ω).

Standard properties of the wave equation imply that

(19)
singsupp(ELP) ⊂

{s′ − s+ t = 0, θ = ω} ∪ {s′ + s+ t = 0, θ = −ω, |s| ≤ ρ, |s′| ≤ ρ}.

¿From this it follows that the continuation problem can also be solved, so for
each θ ∈ Sn−1 there is a unique distribution

(20) α(t, s, ω, θ) ∈ C−∞(R× R× Sn−1 × Sn−1),

satisfying

(21)
(Dt +Ds)α+ VLPα = 0 in R× R× Sn−1 and

α(t, s, ω; θ) = δ(s− t)δθ(ω) in t < −ρ

where ρ = sup{|x|;x ∈ supp(V )}.
It follows that

(22) α(t, s, ω; θ) = κV (t− s, ω; θ) in s > ρ

where κV ∈ C−∞(R× Sn−1 × Sn−1) is the scattering kernel. Here one can think of
α as the free wave

(23) α0(t, s, ω; θ) = δ(s− t)δθ(ω)

propagating in from the left and striking the ‘potential’ which is confined to the
region |s| ≤ ρ. Once it has passed through the potential it again freely propagates
to the right. Thus the kernel κV (t, ω; θ) represents the end result of the interaction.

The scattering amplitude in the ordinary sense is the Fourier-Laplace transform
of κV continued to the real axis. We define the generalized backscattering transform
below directly from κV .



GENERALIZED BACKSCATTERING 5

2. Sobolev bounds

We will consider potentials V with fixed support and finite Sobolev regularity.
So, for ρ ∈ (0,∞), set

(24) Ḣ
n+1

2 (B(ρ)) = {V ∈ L2(Rn);V (x) = 0 in |x| > ρ,

DαV ∈ L2 ∀ |α| ≤ n+ 1
2
}.

The choice of Sobolev order here is not critical; it is convenient that n+1
2 is an

integer and rather more important that n+1
2 > n

2 . The latter condition means that
Ḣ

n+1
2 B(ρ)) is an algebra. In fact the usual Sobolev spaces are then modules over

these for an appropriate range of orders.

Lemma 1. (Gagliardo-Nirenberg, see [Ad]) For any k ∈ N with k > n/2 and any
s ∈ R satisfying −k ≤ s ≤ k
(25) Hk(Rn) ·Hs(Rn) ⊂ Hs(Rn).

In particular, if s ∈ R and −n+1
2 ≤ s ≤ n+1

2 , then

(26) Ḣ
n+1

2 (B(ρ)) ·Hs(Rn) ⊂ Ḣs(B(ρ)).

Lemma 2. For any k (∈ Z for simplicity) the normalized Radon transform in (6)
gives a bounded map

(27)
Rn : Ḣk(B(ρ)) −→ Ḣk([−ρ, ρ]× Sn−1) = {u ∈Hk(R× Sn−1);

u(s, θ) = 0 in |s| > ρ}.

Proof. For k = 0, this is (6) which is a consequence of the L2 boundedness of the
Fourier transform. Consider the case k > 0. We know that R (and hence Rn)
intertwines ∆ with D2

s . Thus if f ∈ C∞c (Rn) then

(28) D2
sRnf = Rn∆f.

Since Rn is a partial isometry on L2,

(29) 〈Rnf,D2
sRnf〉L2 = 〈∆f, f〉.

By continuity then, f ∈ Ḣ1(B(ρ)) =⇒ DsRnf ∈ L2. Repeating this argument a
finite number of times shows that

(30) f ∈ Ḣk(B(ρ)) =⇒ Dj
sRnf ∈ L2([−ρ, ρ]× Sn−1) 0 ≤ j ≤ k.

To get tangential regularity, suppose that W is a C∞ vector field on the sphere.
Then

(31)

WRnf(s, θ) = cnD
n−1

2
s W

∫
δ(s− x · θ)f(x)dx

=
n∑
j=1

qj(θ)DsRn(xjf), W (x · θ) =
n∑
j=1

xjqj(θ).

Thus WRnf ∈ L2. Repeating this argument we conclude that (27) holds for k ≥ 0.
The same type of argument applies to Rtn. Thus

(32) Rtnu(x) = cn

∫
Sn−1

δ(s− x · ω)D
n−1

2
s u(s, ω)ds
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is bounded from L2([−ρ, ρ]× Sn−1) into L2(B(ρ)). Direct differentiation therefore
shows that it is bounded from Hk([−ρ, ρ] × Sn−1) into Hk(B(ρ)) for k ∈ N. By
duality it follows that (27) holds for k ∈ −N, and hence for all k ∈ Z as claimed. �

Note that, from the proof above,

Rt : {u ∈ C−∞(R× Sn−1);Dj
su ∈ L2

loc(R× Sn−1), 0 ≤ j ≤ k}

−→ Hk(B(ρ)) if k ≥ 0, and
(33)

Rt : {u ∈ C−∞(R× Sn−1);u ∈ L2
loc(R× Sn−1) +D−ks L2(R× Sn−1)}

−→ Hk(B(ρ)) if k ≤ 0.
(34)

That is, one does not need tangential regularity to ensure the regularity of Rtnf in
a compact set.

Lemma 3. For any k ∈ Z satisfying n−1
2 ≥ k ≥ −n+3

2 , and any potential V ∈
Ḣ

n+1
2 (B(ρ)), VLP gives a bounded map

(35) VLP : Hk(R× Sn−1) −→ Hk+1(R× Sn−1).

Proof. Recall that VLP = c2nD
n−1

2
s R · V ·RtD

n−3
2

s . From (33),

(36) RtD
n−3

2
s : Hk(R× Sn−1) −→ Hk+1(B(ρ)).

Then, from Lemma 1, multiplication by V maps into the space Ḣk+1(B(ρ)) and

from Lemma 2, D
n−1

2
s R maps into Ḣk+1([−ρ, ρ]× Sn−1). �

3. Generalized backscattering transform

We shall apply these regularity estimates to show that a ‘modified backscattering
transform,’ in which ‘excess’ information has been discarded, extends by continuity
to Ḣ

n+1
2 (B(ρ)).

Let πS,ρ be the orthogonal projection, in H2([−2ρ, 2ρ]× Sn−1), onto the closure

of the range of D
n−3

2
s Rn applied to (Id−S)∗Ḣ

n+1
2 (B(ρ)) = Ḣ

n+1
2 ((Id−S)B(ρ))

using Lemma 2; let PS,ρ be the range of πS,ρ. For V ∈ C∞c (Rn) we know that the
scattering kernel κV , has support in {s ≥ −2ρ}. We will ‘cut off the tail’ where
s > 2ρ and project the rest using πS,ρ. Thus, consider the combined restriction,
differentiation and projection map

(37) χρ : C∞(R× Sn−1) D
n−3

2
s−→ C∞([−2ρ, 2ρ]× Sn−1)

πS,ρ−→ D
n−3

2
s Rn(Ḣ

n+1
2 ((Id−S)B(ρ)) ⊂ Ḣ2([−2ρ, 2ρ]× Sn−1).

Now, for V ∈ C∞c (Rn) we know that

(38) singsuppκV ⊆ {s = 0, θ = ω}.

Thus the generalized backscattering kernel, κV (s, Sθ, θ) ∈ C∞(R × Sn−1). We can
therefore apply (37) to define the modified (and generalized) backscattering trans-
form

(39) βS : Ċ∞(B(ρ)) 3 V 7−→ χρ[κV (s, Sθ, θ)] ∈ PS,ρ ⊂ Ḣ2([−2ρ, 2ρ]× Sn−1).
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Theorem (Main Result). For any orthogonal transformation S, such that Id−S
is invertible, the modified backscattering transform (39) extends, by continuity, to

(40) βS : Ḣ
n+1

2 (B(ρ)) −→ PS,ρ ⊂ Ḣ2([−2ρ, 2ρ]× Sn−1)

which is entire analytic. More precisely, it can be written

(41) βS(V ) =
∞∑
j=1

βjS(V, . . . V )

where

(42) β1
S : Ḣ

n+1
2 (B(ρ)) −→ PS,ρ ⊂ Ḣ2([−2ρ, 2ρ]× Sn−1)

is a linear isomorphism and for each j ≥ 2

(43) βjS : [Ḣ
n+1

2 (B(ρ))]j −→ PS,ρ ∩ Ḣ
5
2 ([−2ρ, 2ρ]× Sn−1)

is symmetric and satisfies, for each 0 ≤ ε ≤ 1
2 ,

(44) ‖βjS(V, . . . , V )‖ 5
2−ε
≤ Cj+1‖V ‖j

(j!)2ε
.

As we shall describe below, this implies that βS is almost everywhere a local
isomorphism. It is not known, at least to the authors, whether βS is a global
isomorphism (for any admissible S, in particular S = − Id). Nor indeed is it known
whether the differential of βS , at V ∈ Ḣ n+1

2 (B(ρ)) is always invertible – although
it is Fredholm. Nor is there a conjectural characterization of the singular points.

The Taylor expansion (41) for the modified backscattering transform is closely
related to the Born approximation. This in turn is just the Neumann (or perhaps
better to say Volterra) series for the solution of the (Radon-transformed) wave
equation.

Formally at least, the solution to (21) can be expanded as a series

(45)
α = δ(s− t)δθ(ω) +

∞∑
j=1

(−1)jαj , αj = [(Dt +Ds)−1VLP]jα0, j ≥ 1

α0 = δ(s− t)δθ(ω).

Here (Dt +Ds)−1 is the inverse of the free forcing problem

(46) (Dt +Ds)u = f, f = 0 in s < −ρ, u = 0 in s < −ρ =⇒ u = (Dt +Ds)−1f.

We proceed to show that, for any V ∈ Ḣ n+1
2 (B(ρ)), the series (45) converges.

Proposition 1. For any V ∈ Ḣ n+1
2 (B(ρ)), T < ∞ and k ∈ Z, with −n+3

2 ≤ k ≤
n+1

2 , (Dt +Ds)−1VLP is bounded as an operator on

(47) Ḣk
T,ρ =

{
f ∈ Ḣk([−∞, T ]t × [−ρ, ρ]s × Sn−1); f = 0 in t < −ρ

}
and for some C = C(T )

(48) ‖[(Dt +Ds)−1VLP]j‖Hk ≤
Cj+1‖V ‖j

j!
,

where ‖V ‖ is the norm in Ḣ
n+1

2 (B(ρ)).
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Proof. Since t is a parameter in the action of VLP and (Dt +Ds)−1 is bounded on
any Sobolev space the boundedness is clear from Lemma 3. Only the Volterra-type
estimate (48) needs to be shown. To carry out this estimation it is convenient to
introduce Dt +Ds and Ds as coordinate vector fields, i.e. change coordinates to

(49) t′ = t, s′ = s− t.
The operators are transformed as follows

(50) Dt +Ds 7−→ Dt′ , VLP 7−→ V ′LP(t′, s′, Ds′)

where V ′LP is still a non-local operator in s′, but now depending on t′ as a parameter,
i.e.

(51) V ′LPu(t′, s′) depends only on u(t′, ·).
The iterated operator is therefore

(52)
(
D−1
t′ V

′
LP

)j
.

Applying this |k|+ 1 times to Hk gives a bounded map into the space

C0([−ρ, T ];Hk(Sn−1 × Rs′)).
Then, integration in t′ and continuity of V ′LP shows that

(53) ‖(D−1
t′ V

′
LP)j+|k|+1u‖Hk(Sn−1×Rs′ )(t

′) ≤ C(t′ + ρ)j

j!
.

This gives (48). �

Of course from Lemma 3 we know that, if −n+3
2 ≤ k ≤ n−1

2 ,

(54) (Dt +Ds)−1VLP : Ḣk
T,ρ −→ Ḣk+1

T,ρ

Since

(55) δ(t− s)δθ(ω) ∈ H−
n+1

2
loc (R2 × Sn−1 × Sn−1)

it follows that

(56) αj ∈ H
−n+1

2 +min(j,n+1)

loc (R2 × Sn−1 × Sn−1).

Consider the successive terms, αj , in (45). Since VLP always restricts supports
to [−ρ, ρ] in s,

(57) supp(αj) ⊆ {t ≥ −ρ} ∩ {s ≥ −ρ} ∩ {t− s ≥ −2ρ} ∩ {t− s ≤ 2jρ}.
To get the expansion (41) we need to use (45) and then project each term with

χρ, after restricting to s = ρ, ω = Sθ (and shifting in t) to get the scattering kernel.
Thus if

(58) κj(s, ω, θ) = αj(s− ρ, ρ, θ, ω)

then

(59) βjS(V ) = χρ[κj(s, Sθ, θ)].

Since, as a function of t−s, s, ω and θ, αj is independent of s in s > −ρ it follows
from (56) that

(60) κj ∈ H−
n+1

2 +min(j,n+1)([−2ρ, T )× Sn−1 × Sn−1) for any T.

Restricting to ω = Sθ, a submanifold of codimension n− 1 shows that

(61) κj(s, Sθ, θ) ∈ H1([−2ρ, T )× Sn−1) if j ≥ n+ 1.



GENERALIZED BACKSCATTERING 9

Moreover, to get (61) we only use the regularity property (54) for the first n + 1
factors in (52). Thus we conclude that the map

(62) Ḣ
n+1

2 (B(ρ)) −→
∑

j≥n+1

κj(s, Sθ, θ) ∈ H1([−2ρ, T )× Sn−1) is entire

for each ρ. This is a good deal weaker than we need to prove the Theorem. Obviously
we need to examine the first n+ 1 terms in the Taylor series of β at V = 0 to show
that this polynomial in V is defined and in any case we have to show that the whole
map βS takes values in H2 rather than H1. Nevertheless we shall use (62) because
it allows us to prove that β is entire, with values in the good space (essentially
because of Pettit’s theorem).

4. Proof of the main result

First we examine

(63) κ1
S(s, Sθ, θ) = α1(s− ρ, ρ, Sθ, θ).

This already has support in [−2ρ, 2ρ]. We wish to show that this, the linear, term
is as claimed in (42). We proceed to compute κ1 explicitly. It is convenient to take
the Fourier transform in s :

(64) k̂1(λ, ω, θ) =

∞∫
−∞

e−iλtκ1(t, ω, θ)dt = α̂1(λ, ρ, ω, θ)eiλρ.

¿From the definition of α1, this gives

(65)

κ̂1(λ, ω, θ) = eiλρ
∞∫
−∞

∫
e−iλ(ρ−s′) [VLPe

−iλsδθ(ω)
]
ds′.

= c2n

∫
eiλsD

n−1
2

s

∫
x·ω=s

V (x)λ
n−3

2 e−iλx·θdxds.

Integrating by parts we get

(66) κ̂1(λ, ω, θ) = c2nλ
n−2

∫
eiλx·(ω−θ)V (x)dx.

Setting ω = Sθ we find

(67) κ̂1
S(λ, Sθ, θ) = c2nλ

n−2V̂ (λ(Id−S)θ).

Thus β̂1
S(V ) is the (n-dimensional) Fourier transform of 2−nV ((Id−S)−1x) = ṼS .

Hence,

(68) β1
S = cnD

n−3
2

s RnṼS

shows that β1
S maps into Ḣ2([−2ρ, 2ρ]×Sn−1). It is obviously an isomorphism onto

D
n−3

2
s RnḢ

n+1
2 ((Id−S)B(ρ)) (which is closed) as claimed.

Next we proceed to find a formula generalizing (66) to the higher derivatives
at zero. From (57) we see that, for s bounded above, the support of each αj is
compact in t. After taking the Fourier transform in t, the iterative definition (45)
becomes

(69) α̂j(λ, s, ω, θ) = (Ds + λ)−1Rn[V ·Qλ]j−1V RtD(n−3)/2
s e−isλδθ(ω),
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where

(70) Qλ = RtnD
−1
s (Ds + λ)−1Rn.

HereD−1
s , and (Ds+λ)−1 mean integration from s = −∞, i.e. the inverse preserving

vanishing to the left.

Lemma 4. Acting from C∞c (Rn) to C∞(Rn), Qλ = (∆ − λ2)−1 is the analytic
extension of the ‘free resolvent’ defined as a bounded operator on L2 for =λ < 0.

Proof. This formula can be deduced from the modified Radon transform of Lax and
Phillips. We know that this intertwines the wave group U0(t) with the translation
group, so conjugates the infinitesimal generator of one to that of the other

(71) cn(D
n−1

2
s R,D

n+1
2

s R)
(

0 −1
∆ 0

)
= Ds(D

n−1
2

s R,D
n+1

2
s R).

For =λ < 0, so in the resolvent set, it follows that

(72) c2nR
tD

n−3
2

s (Ds + λ)−1D
n−1

2
s = (∆− λ2)−1.

This proves the lemma. �

Inserting the integral expression for (Ds + λ)−1 into (69) gives

(73) α̂j(λ, s, ω, θ) = c2n

s∫
−∞

e−iλ(s−s′)D
n−1

2
s′

∫
x·ω=s′

V ·Qλ · V · · ·

Qλ · [V (•)(−λ)
n−3

2 e−iλ•·θ]dHxds
′.

¿From (58), by setting s = ρ and integrating by parts we find

(74) κ̂j(λ, ω, θ) = c2n(−1)
n−3

2 λn−2

∫
Rn

eiλω·xV (x)[Qλ · · ·Qλ · V (•)e−iλθ·•](x)dx.

Restricting to backscattering, ω = Sθ, this gives κ̂jS in a form similar to (67). Since
κj has support in [−2ρ, 2jρ] its regularity can be deduced from its Fourier-Laplace
transform with =λ = −1. Thus we need to examine the growth in λ of

(75) κ̂j(λ, Sθ, θ) =

c2nλ
n−2

∫
Rjn

eiλθ·(S
tx(1)−x(j))V (x(1))Qλ(x(1) − x(2))V (x(2)) . . .

. . . Qλ(x(j−1) − x(j))V (x(j))(x)dx(1) . . . dx(j)

where there are j − 1 factors of the free resolvent, Qλ, and j factors of V. As a
convolution operator Qλ has kernel

(76) Qλ(y) = (2π)−n
∫
eiy·η(|η|2 − λ2)−1dη.
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Inserting this into (75) gives

(77) κ̂j(λ, Sθ, θ) =

c2n

∫
V (x(1))V (x(2)) . . . V (x(j))

j−1∏
`=1

(|η(`)|2 − λ2)−1

× exp[i(Stx(1) − x(j)) · ξ + i(x(1) − x(2)) · η(1) + · · ·+ i(x(j−1) − x(j)) · η(j−1)]

dx(1) . . . dx(j−1)dη(1) . . . dη(j−1)

where ξ = λθ.
Carrying out the x-integrals in (77) gives

(78)
κ̂j(λ, Sθ, θ)

= c2nλ
n−2

∫
V̂ (−Stξ − η(1))V̂ (η(1) − η(2)) . . . V̂ (η(j−2) − η(j−1))V̂ (η(j−1) + ξ)

j−1∏
`=1

(|η(`)|2 − λ2)−1dη(1) . . . dη(j−1).

Apart from the factors arising from the resolvent this is an iterated convolution.
Since =λ = −1, the resolvent factors are non-singular. Using the obvious estimates

(79) |(|η|2 − λ2)−1| ≤ c(1 + |η|+ |λ|)−1.

and

(80) (1 + |η′|+ |λ|)−1(1 + |η|+ |λ|)−1 ≤ (1 + |η − η′|)−1

the right side of (78) can be estimated to give

(81)

|κ̂j(λ, Sθ, θ)| ≤ Cj+1|λ|n−2×∫
Φ̂(−Stξ − η(1))Φ̂(η(1) − η(2))

. . . Φ̂(η(j−2) − η(j−1))Φ̂(η(j−1) + ξ)dη(1) . . . dη(j−1),

where

(82) Φ̂(η) = |V̂ (η)|(1 + |η|)− 1
2 .

Thus

(83) ‖Φ‖H(n+2)/2 ≤ ‖V ‖H(n+1)/2 .

First translating the variables of integration to η(`) +ξ we find that the right side of
(81) is the Fourier transform of a product of functions, so using Lemma 1 repeatedly
(and taking into account the factor of λn−2 and the invertibility of St − Id)

(84) ‖κj(s, Sθ, θ)‖
H

5
2 ([−2ρ,2ρ]×Sn−1

≤ C1+j‖V ‖H(n+1)/2 .

This gives the desired continuity (43) and estimates (44) for ε = 0. Moreover
the estimates (66) give (44) for ε = 1

2 and large (hence all) j. The estimates for all
ε ∈ [0, 1

2 ] then follow by interpolation between Sobolev spaces, i.e.

(85) ‖u‖ 5
2−ε
≤ C‖u‖2ε2 ‖u‖1−2ε

5
2

∀ ε ∈ [0,
1
2

].

This completes the proof of Theorem 3.
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It may be that the estimates centered on (79) can be improved to give the
exponential type estimates (44) directly and with values in H

5
2 . If the original

regularity (n + 1)/2 for V is increased by p then the regularity of the derivatives
βjS in (44) can also be increased by p.

Note that the map βS in (59) is defined by projection onto the range of the
linearization of V 7−→ κV (s, Sθ, θ) at V = 0. The linearization has been shown to
be an injective Fredholm map, i.e. is an isomorphism onto its (closed) range, so its
generalized inverse is a bounded map

(86) LS : Ḣ2([−2ρ, 2ρ]× Sn−1) −→ Ḣ2([−2ρ, 2ρ]× Sn−1) −→ Ḣ
n+1

2 (B(ρ)).

The map in (1) is then

(87) LSβS(V ) = LS(κV (s, Sθ, θ)) on Ḣ
n+1

2 (B(ρ))

which is therefore an entire map with linearization the identity at 0 and derivative
at all other points a compact perturbation of the identity.

5. Fredholm property

Proposition 2. There is a closed subset G(ρ) ⊂ Ḣ n+1
2 (B(ρ)) which is of codimen-

sion at least two (i.e. locally orthogonal projection from G(ρ) onto some subspace
of codimension two is at most p-to-1 for some fixed p ∈ N) such that for each
V ′ ∈ [Ḣ

n+1
2 (B(ρ)) \G(ρ)] there exists ε > 0 such that the map

(88) βS :
{
V ∈ Ḣ

n+1
2 (B(ρ)); ‖V − V ′‖ < ε

}
−→ Ḣ2([−2ρ, 2ρ]× Sn−1)

is an isomorphism onto its image.

Proof. The set G(ρ) is defined to consist of those V ∈ Ḣ n+1
2 (B(ρ)) such that the

derivative of βS with respect to V is not an isomorphism. Certainly (88) holds for
points in the complement of G(ρ) by the implicit function theorem, applied in the
Sobolev space. Thus we need to show that G(ρ) so defined has codimension at least
2, since the density of the complement certainly follows from this. The derivative
of βS with respect to V is a linear map

(89) β1 + γ(V ) : Ḣ
n+1

2 (B(ρ)) −→ Ḣ2([−2ρ, 2ρ]× Sn−1)

where β1 is an isomorphism and γ(V ) depends analytically on V and maps contin-
uously into Ḣ

5
2−ε([−2ρ, 2ρ]×Sn−1). If we consider simply the complex multiples of

V, i.e. just look at γ(zV ), we have analyticity in z. The invertibility of this operator
reduces to a finite dimensional problem. Since the map is known to be invertible at
z = 0, invertibility can only fail at isolated values of z. This proves the result. �

Corollary. For each ρ > 0 there is a dense subset of Ċ∞(B(ρ)) near each point of
which the backscattering transform (88) is injective from Ċ∞(B(ρ)).
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