
GENERALIZED BLOW-UP OF CORNERS AND FIBER

PRODUCTS

CHRIS KOTTKE AND RICHARD B. MELROSE

Abstract. Radial blow-up, including inhomogeneous versions, of boundary

faces of a manifold (always with corners) is an important tool for resolving
singularities, degeneracies and competing notions of homogeneity. These con-

structions are shown to be particular cases of generalized boundary blow-up

in which a new manifold and blow-down map are constructed from, and con-
versely determine, combinatorial data at the boundary faces in the form of a

refinement of the basic monoidal complex of the manifold. This data specifies

which notion of homogeneity is realized at each of the boundary hypersurfaces
in the blown-up space.

As an application of this theory, the existence of fiber products is examined

for the natural smooth maps in this context, the b-maps. Transversality of the
b-differentials is shown to ensure that the set-theoretic fiber product of two

maps is a binomial variety. Properties of these (extrinsically defined) spaces,
which generalize manifolds but have mild singularities at the boundary, are

investigated and a condition on the basic monoidal complex is found under

which the variety has a smooth structure. Applied to b-maps this additional
condition with transversality leads to a universal fiber product in the context

of manifolds with corners. Under the transversality condition alone the fiber

product is resolvable to a smooth manifold by generalized blow-up and then
has a weaker form of the universal mapping property requiring blow-up of the

domain.

Introduction

Real blow-up of a submanifold introduces a new manifold (always here implicitly
meaning ‘with corners’) in which the submanifold in question is replaced by one or
more boundary hypersurfaces in a prescribed manner. Here we analyze the notion
of the generalized boundary blow-up of a manifold with corners, Y, which is a new
manifold X along with a smooth and proper ‘blow-down’ map β : X −→ Y . The
latter is by definition a b-map, restricting to a diffeomorphism on the interiors,
with bijective b-differential. It includes standard radial blow-up of boundary faces,
iterated boundary blow-up, and inhomogeneous blow-up as special cases.

It is shown here that such blow-down maps are, up to diffeomorphism, charac-
terized in an essentially algebraic manner by a ‘monoidal complex’, a consistent
choice of some combinatorial data at each face of Y . One application of the con-
structive part of this result is to fiber products of maps. Working in the category
of smooth manifolds and b-maps, it is shown that under the natural condition of
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b-transversality the fiber product of two maps can be decomposed and smoothed
by generalized blow-up and this resolved fiber product has a weakened form of the
universal factoring property for fiber products in which generalized blow-up of the
domain may be required.

Although this paper is concerned with geometric and algebraic questions, one
of the contexts in which blow-up appears is analytic. Most analytic problems on
a manifold with corners do not have solutions ‘within the smooth category’. For
instance, harmonic forms with absolute or relative boundary conditions are not
typically smooth up to corners. Rather they lie in conormal spaces which themselves
are only ‘resolved’ to polyhomogeneity by blow-up. Here polyhomogeneity is to be
thought of as the natural extension of smoothness, in which C∞(Y ) is extended
to include functions which have non-integral (including possibly negative) powers
in their ‘Taylor series’ at the boundary. The selection of the correct resolution, in
the sense of blow-up, of spaces and their (fiber) products, on which the kernels of
operators are defined, is one of the prime motivations for the discussion here.

A manifold (meaning from now on a manifold with corners) Y is a topological
manifold with boundary which is locally diffeomorphic to the model space [0,∞)k×
Rn−k with its sheaf of smooth functions. The set of (connected) boundary faces of Y
is denoted M(Y ), with Ml(Y ) denoting those faces of codimension l ∈ {0, . . . , k}.
We require that boundary hypersurfaces of a manifold be embedded, which means
that the functions vanishing on each such hypersurface form a principal ideal IH ⊂
C∞(Y ), H ∈ M1(Y ). A smooth map f : X −→ Y is an (interior) boundary map
or ‘b-map’ as defined in [Mel, Mel92] provided it pulls back each of these principal
ideals to a product

(I.1) f∗IH =
∏

G∈M1(Y )

Iα(H,G)
G , α(·, ·) ∈ Z+

of similar ideals in C∞(X)
The boundary faces of a manifold have natural b-normal bundles,

bNF ⊂ bTFX −→ F, F ∈M∗(X),

with inclusions bNpG ⊂ bNpF whenever p ∈ F ⊂ G. At each point these are
spanned by the ‘radial’ vector fields with respect to the boundary face in question.
As a result such a bundle has a canonical global frame, realized by {ρi∂ρi} in terms
of defining functions for the boundary face, which identifies the fibers bNpF with
the fixed vector space denoted bNF. This carries a well-defined lattice structure,
spanZ {ρi∂ρi} , and taking the inward-pointing lattice points defines a ‘smooth’,
which is to say freely generated, monoid

σF = spanZ+
{ρi∂ρi} .

The collection of these along with the inclusions iGF : σG ↪−→ σF for F ⊆ G
constitutes what we call the ‘basic monoidal complex’ of X :

PX = {(σF , iGF ) ; F ⊆ G ∈M(X)} .

A b-map f : X −→ Y has a tangent (or dually ‘logarithmic’) differential which
acts on the b-tangent bundles: bf∗ : bTpX −→ bTf(p)Y , and at a boundary face
F ∈ M(X) restricts to a well-defined homomorphism (i.e. additive map) of the
monoids

f\ : σF −→ σf#(F )
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where f# : M(X) −→ M(Y ) maps each boundary face of X to the boundary
face of largest codimension in Y which contains its image. Viewed as a matrix,
the coefficients of f\ are the relevant exponents α(·, ·) ∈ Z+ occuring in (I.1). The
collection of these monoid homomorphisms patch together to form a morphism of
the complexes

f\ : PX −→ PY
which is fundamental to our discussion.

In general, the monoidal complexes and their morphisms capture only the com-
binatorial relationships between boundary faces of X, those of Y , and the order of
vanishing of boundary defining functions with respect to these faces. However, in
the case of boundary blow-up, where X is the blow-up of a boundary face F in Y ,
this is enough to completely specify, up to diffeomorphism, the domain X = [Y ;F ]
and the map β : X −→ Y in terms of the range space Y.

Indeed, in this case β satisfies additional properties, namely

β : X \ ∂X −→ Y \ ∂Y is a diffeomorphism, and(I.2)

bβ∗ : bTpX −→ bTβ(p)Y is an isomorphism for all p ∈ X,(I.3)

and the morphism β\ : PX −→ PY forms what is called below a ‘smooth refinement’
of PY . Abstracting this, we call a smooth proper map satisfying (I.1), (I.2) and (I.3)
a ‘generalized blow-down map.’

Theorem A. A generalized blow-down map f : X −→ Y determines a smooth
refinement PX −→ PY of the monoidal complex on Y , and conversely to any smooth
refinement R −→ PY there corresponds a manifold denoted X = [Y ;R], unique
up to diffeomorphism, with PX = R and a generalized blow-down map f : X =
[Y ;R] −→ Y .

The manifold [Y ;R] is referred to as the ‘generalized blow-up’ of Y by the
refinement R, and the important question of the lifting of b-maps under generalized
blow-ups of the domain and/or range is resolved by examining the corresponding
lifting of the monoidal complex morphisms.

In particular this theory is applied to the problem of the smoothness (or lack
thereof) of fiber products. Recall that the fiber product of two maps fi : Xi −→ Y,
i = 1, 2 is an object (in the appropriate category) X with maps hi : X −→ Xi such
that f1 ◦h1 = f2 ◦h2, and which has the universal property that for any other maps
gi : Z −→ Xi such that g2 ◦ f2 = g1 ◦ f1 there is a unique map g : Z −→ X through
which they factor:

Z

X X2

X1 Y.

g

h2

h1
f1

f2

g2

g1

In the category of sets there is a unique fiber product

(I.4)
X1 ×Y X2 = {(p1, p2) ; f1(p1) = f2(p2)} ⊂ X1 ×X2,

hi(p1, p2) = pi,
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however, in the setting of manifolds, (I.4) is not generally smooth and fiber products
do not necessarily exist. In the category of manifolds without boundary, there is a
well-known sufficient condition for existence, namely that f1 and f2 be transversal,
meaning that if f1(p1) = f2(p2) = q ∈ Y then

(I.5) (f1)∗(Tp1X1) + (f2)∗(Tp2X2) = TqY.

In this case the set-theoretic fiber product (I.4) is a smooth manifold and the hi
are smooth maps.

The natural analog of (I.5) in the setting of manifolds (now with corners) is
‘b-transversality,’ namely the requirement that

(I.6) b(f1)∗(
bTp1X1) + b(f2)∗(

bTp2X2) = bTqY.

Under this condition, (I.4) is not necessarily a manifold, but can be decomposed as
a union of what are here called ‘interior binomial subvarieties’. These are objects
generalizing manifolds with corners, with smooth interiors but mild singularities
at the boundary and boundary faces which are of the same type. They can be
resolved, by generalized boundary blow-up, to manifolds with corners.

As for a manifold, there is a natural monoidal complex PD defined over the
boundary faces of an interior binomial subvariety D ⊂ X, the difference being that
the monoids may not be freely generated, i.e. may not be smooth. If the monoidal
complex is smooth, then D has a natural structure of a smooth manifold although
this may not be induced from X, in that D may not be embedded. Even if the
complex is not smooth, there is a smooth manifold [D;R] −→ D corresponding to
every smooth refinement R −→ PD.

In the case of fiber products, the monoids in the monoidal complex over X1×Y X2

are of the form

(I.7) σF1 ×σG σF2 , Fi ∈M(Xi),

where G = (f1)#(F1) ∩ (f2)#(F2) ∈M(Y ).

Theorem B. If fi : Xi −→ Y are b-maps which satisfy (I.6), and if each of the
monoids (I.7) is freely generated, then there exists a universal fiber product of f1

and f2 in the context of manifolds with corners, which is given by a decomposition
of (I.4) into a finite union of sets with natural smooth structures.

This result extends a theorem of Joyce [Joy09] on fiber products of more restricted
maps.

In the general case, when the monoids are not necessarily smooth, there is no
such universal object and it is in general necessary to blow up to get smoothness
and also to factor maps.

Theorem C. For every smooth refinement R of the complex PX1×YX2 , there is a
manifold [X1 ×Y X2 ; R] with b-maps to Xi commuting with the fi : Xi −→ Y
and such that if gi : Z −→ Xi, i = 1, 2 are b-maps commuting with the fi then
there exists a generalized blow-up [Z;S] −→ Z and a unique map g : [Z;S] −→
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[X1 ×Y X2 ; R] giving a commutative diagram

[Z;S]

Z [X1 ×Y X2;R] X2

X1 Y.

g
βS

h2

h1

f1

f2

g2

g1

There is a clear relationship between the material discussed here and the the-
ory of logarithmic structures in algebraic geometry. The monoidal complexes we
describe are related to ‘fans’ as defined by Kato [Kat94], which essentially are to
(toric) monoids what schemes are to rings. Our generalized blow-up is then related
to a result of Kato, which produces a resolution of a logarithmic scheme with ‘toric
singularities’ (also called a ‘log-smooth scheme’) from a subdivision of the fan as-
sociated to the scheme. Our manifolds with corners and binomial subvarieties can
be viewed as log smooth spaces, albeit with a stronger differentiable structure than
is usually considered in algebraic geometry.

In Section 1 we briefly recall the theory of manifolds with corners and b-maps,
and establish some notation. Section 2 contains a discussion of monoids (here
always meaning what are often called ‘toric monoids’) and their refinements, which
is enough to establish the local version of generalized blow-up in Section 3. In
Section 4 we discuss the theory of monoidal complexes and refinements and in
Section 5 extend this to fiber products at this level. In Section 6 we complete one
half of Theorem A, showing the existence of a generalized blow-up of X given a
smooth refinement of PX , along with the lifting results for b-maps, before exhibiting
ordinary boundary blow-up and its iterated version as special cases in Section 7.
Section 8 completes Theorem A, giving the characterization of generalized blow-
down maps. In Sections 9 and 10 we discuss the theory of interior binomial varieties
and their resolution, finally applying this to fiber products in Section 11.

Acknowledgements. The authors would like to thank Dan Abromovich, Pierre
Albin, William Gillam, Daniel Grieser, Samouil Molcho and Michael Singer for
helpful discussions during the preparation of this manuscript. We should also like to
point out the important role in the origins of this work played by Umut Varolgunes
and Jonathan Zhu who investigated the resolution of sums of positive monomials in
the model, Euclidean, case in an ‘Undergraduate Research Opportunity’ at MIT.

1. Manifolds with corners

In this section, we fix notation used for manifolds with corners and b-maps. For
background, see [Mel] and [Mel92]. Set

R+ = [0,∞) and Z+ = {0, 1, 2, . . .} .

The model manifold with corners is a product

Rn,k = Rk+ × Rn−k,
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for k ∈ {0, . . . , n} , on which the smooth functions, forming the ring C∞(Rn,k) =
C∞(Rn)

∣∣
Rn,k , are taken to be those obtained by restriction from the smooth func-

tions on Rn.
In general, a manifold with corners X is a (paracompact, Hausdorff) topological

manifold with boundary, X, with a ring of smooth functions, C∞(X) with respect
to which it is everywhere locally diffeomorphic to one of these model spaces. Thus,
X has a covering by coordinate patches with homeomorphisms to open subsets
of the local model spaces such that u ∈ C∞(X) if and only if its image in each
coordinate system is smooth on the model. The pull-backs of the functions on the
model spaces give local coordinate systems.

Each point p ∈ X necessarily has a well-defined (boundary) codimension given
by the number of independent non-negative coordinate functions vanishing at p in
such a coordinate system. A boundary face of codimension k is the closure of one
of the components of the set of points of codimension k; the set of such boundary
faces is denoted Mk(X). In particular M1(X) consists of boundary hypersurfaces
and M0(X) = X (or the set of components of X if it is not connected). We set
M(X) =

⋃
kMk(X), this is an ordered set under inclusion.

As part of the definition of a manifold with corners, we require that all boundary
hypersurfaces H ∈ M1(X) be embedded; this is equivalent to insisting that the
ideal of smooth functions vanishing on H, IH ⊂ C∞(X), is principal. A non-
negative generator ρH ∈ C∞(X) of this ideal is a defining function, so IH =
ρH · C∞(X). It follows that each boundary face of X is itself a manifold with
corners.

The diffeomorphisms of X, homeomorphisms which map C∞(X) to itself, must
preserve the stratification by boundary codimension, and the infinitesimal diffeo-
morphisms correspond to the Lie subalgebra

(1.1) Vb(X) ⊂ V(X)

of the usual algebra of real smooth vector fields, consisting of those vector fields
which are tangent to each of the boundary faces of X. This subalgebra is the space
of global smooth sections of the b-tangent bundle, bTX −→ X. Locally, whenever
(x, y) : U −→ Rk+ × Rn−k are coordinates centered at p,

bTpX = spanR
{
x1∂x1

, . . . , xk∂xk , ∂yk+1
, . . . , ∂yn

}
.

From (1.1), there is a natural evaluation map

(1.2) bTX −→ TX

which is an isomorphism over the interior of X but not over the boundary. Over
points p ∈ F ∈Mk(X), the kernel of (1.2) is the b-normal bundle:

bNF −→ F, bNpF = spanR {x1∂x1
, . . . , xk∂kk} , locally.

In fact, up to reordering, the sections xi∂xi , i = 1, . . . , k of bNF are well-defined
independent of coordinates since any other set (x′1, . . . , x

′
k) must have the form

(reordering if necessary) x′i = ai(x, y)xi with ai > 0, so

x′i∂x′i = xi∂xi +O(x)Vb(X),

and hence x′i∂x′i ≡ xi∂xi at F.

Thus, bNF −→ F is canonically trivial, with a well-defined lattice

(1.3) (bNF )Z = spanZ {x1∂x1
, . . . , xk∂xk}
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and cone of inward-pointing vectors

bN+F = spanR+
{x1∂x1 , . . . , xk∂xk} .

These play a fundamental role in the discussion here.
A b-map f : X −→ Y between manifolds with corners is a map which is smooth,

meaning f∗C∞(Y ) ⊂ C∞(X), and is such that f pulls back each (principal) ideal
IH to either a product of powers of such ideals on X,

(1.4) f∗IH =
∏

G∈M1(X)

Iα(G,H)
G , α(G,H) ∈ Z+

to the zero ideal, f∗IH = 0 or to C∞(X). If the second case does not occur we
say f is an interior b-map. Otherwise f : X −→ F is an interior b-map for some
F ∈M(Y ). We shall mostly be concerned with interior b-maps in this paper.

For an interior b-map the differential f∗ : TX −→ TY extends by continuity
from the interior to the b-differential

bf∗ : bTpX −→ bTf(p)Y, ∀ p ∈ X.

We denote by f# :M(X) −→M(Y ) the map which assigns to each boundary face
of X the boundary face of Y of largest codimension which contains it. Then the
differential restricts to a map

(1.5) bf∗ : bNF −→ bNf#(F )

which is integral with respect to the lattices (1.3). Indeed, (1.5) is given by a
matrix with integer entries coming from the exponents α(G,H) in (1.4), and bf∗
maps inward-pointing vectors to inward-pointing vectors since these entries are
non-negative.

It is convenient to use multi-index notation for certain maps in coordinates.
If t = (t1, . . . , tn) and x = (x1, . . . , xk) are local coordinates on spaces U and V
respectively, and µ ∈ Mat(n×k,R) is a matrix, the map (t1, . . . , tn) 7−→ (x1, . . . , xn)
where

xi =
∏
j

t
µji
j is denoted t 7−→ tµ = x.

With this convention on the order of the indices, (tµ)
ν

= tµν .

2. Monoids

In general terms a monoid is a set which is closed under an associative binary
operation, so in essence a group without inverses. Here we restrict attention to
monoids of the special type usually known as toric monoids; but for brevity we
shall simply call them monoids. These are distinguished among monoids in general
by being commutative, torsion free, integral and saturated, though we rely on the
following more explicit definition.

Definition 2.1. A monoid is a set σ, closed under a binary operation of addition,
which can be expressed as the intersection

σ = Nσ ∩ C

of an integral lattice Nσ and a proper convex polyhedral cone C in the vector space
NR
σ = Nσ⊗ZR which is integral with respect to Nσ. The cone, which is determined
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from the monoid by C = spanR+
σ ⊂ NR

σ , will be called the support of σ and denoted
by

supp(σ) = C ⊂ NR
σ .

The minimal generators {v1, . . . , vk} of the cone supp(σ) (which do not necessarily
generate σ as a monoid) with respect to Nσ are called the extremals of σ; by
assumption no vi is a combination of the others with non-negative coefficients but
every point of supp(σ) is a non-negative linear combination of the vi.

It follows from the definition that σ is sharp, meaning it has no invertible elements
besides 0; saturated, meaning that if n v ∈ σ for some n ∈ N and v ∈ Nσ, then
v ∈ σ; torsion free, meaning that n v = 0 ∈ σ if and only if v = 0; and integral,
meaning that cancellation holds: if x+ y = z+ y ∈ σ then x = z ∈ σ. In fact these
properties characterize the monoids of Definition 2.1 (see [Ogu06]).

The dimension dim(σ) is the dimension of NR
σ ; equivalently, dim(σ) is the maxi-

mum number of linearly independent extremals. A monoid σ is said to be simplicial
if the extremals {v1, . . . , vn} are independent, in which case dim(σ) = n and supp(σ)
is a cone over the n − 1 simplex defined by {v1, . . . , vn} . A simplicial monoid is
further said to be smooth if it is generated as a monoid by its extremals. A smooth
monoid is therefore freely generated and isomorphic to Zn+. We will use the notation
σ = Z+ 〈v1, . . . , vn〉 to denote a smooth monoid freely generated by independent
vectors v1, . . . , vn.

One monoid σ′ in N is a submonoid of another σ if σ′ ⊂ σ so the generators of
σ′ are non-negative integral combinations of the generators of σ.

A monoid τ is a face of σ, written τ ≤ σ, if τ is a submonoid such that whenever
v, w ∈ σ and v + w ∈ τ , then v, w ∈ τ . Equivalently, τ is the largest submonoid
contained in a face (in the sense of cones) of supp(σ), which is in turn equivalent
to the existence of a functional u ∈ N∗σ such that

〈u, v〉 = 0 for v ∈ τ ,

〈u, v〉 > 0 for v ∈ σ \ τ .

In particular, the trivial monoid {0} with no generators is a face of every monoid.

Example 2.2 (A non-simplicial monoid). In R4 with its standard basis, consider
the monoid σ generated by the vectors (which are also its extremals)

v1 = (1, 0, 1, 0) v2 = (1, 0, 0, 1)

v3 = (0, 1, 1, 0) v4 = (0, 1, 0, 1).

It is 3-dimensional (since any three of the generators can be seen to be independent),
with four 2-dimensional faces generated by the pairs {v1, v2}, {v2, v3}, {v3, v4}, and
{v1, v4}, four 1-dimensional faces generated by each of the vi, and the 0-dimensional
face {0} . It is not simplicial.

Example 2.3 (A non-smooth simplicial monoid). In R2, let σ be the monoid
generated by (2, 0), (1, 1) and (0, 2). (See Figure 1.) It is simplicial, with the
support equal to the positive quadrant, and its extremals are (2, 0) and (0, 2). It is
not smooth since it contains elements ((1, 1), for example) which are not positive
integral combinations of its extremals.

A monoid homomorphism φ : σ′ −→ σ is just an addition-preserving map. We
will also denote by φ the induced linear maps φ : Nσ′ −→ Nσ, φ : NR

σ′ −→ NR
σ
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σ σsm

⊃

Figure 1. A non-smooth, simplicial monoid σ, along with its
smoothing σsm. Generators of each monoid are highlighted.

and φ : supp(σ′) −→ supp(σ). Note that unless φ is injective, the image of σ′ in σ
need not be a monoid in the sense we have defined, since it may not be saturated
(consider the map Z2

+ −→ Z+ sending (1, 0) to 2 and (0, 1) to 3, for instance).

Definition 2.4. Given a monoid σ, a refinement of σ is a collectionR of submonoids
of σ, such that

(i) if σ′ ∈ R and τ ′ ≤ σ′, then τ ′ ∈ R,
(ii) for any two monoids σ′1, σ

′
2 ∈ R, σ′1 ∩ σ′2 must be a face of both σ′1 and σ′2,

and
(iii)

⋃
i supp(σi) = supp(σ)

We say R is a simplicial (resp. smooth) refinement if each σi ∈ R is simplicial (resp.
smooth).

These conditions imply that the cones supp(σi) form a fan, in the classical sense
used in the theory of toric varieties [Ful93], whose support is equal to that of σ.

The set of faces of σ (including σ itself) form the trivial refinement of σ.

Example 2.5. A simplicial monoid, σ, with extremals {v1, . . . , vn} , has a canonical
smooth refinement consisting of the faces of the smooth monoid

σsm := Z+ 〈v1, . . . , vn〉 .

These are of the form Z+ 〈w1, . . . , wk〉 for all subsets {w1, . . . , wk} ⊆ {v1, . . . , vn};
this refinement will be called the smoothing of σ. See Figure 1.

This example illustrates the point that while supp(σ) is covered by supports of
the τ ∈ R, σ need not be covered as a monoid by the τ ∈ R. A simpler example
of this phenomenon is the refinement of Z+ given by the submonoid Z+(2) =
{2, 4, . . .}.

A refinement of σ is a special case of a monoidal complex, discussed in Section 4.

Lemma 2.6. If R is a refinement of σ and τ ≤ σ is a face then

(2.1) R(τ) = {σ′ ∈ R ; σ′ ⊂ τ}

is a refinement of τ.
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Proof. Clearly R(τ) satisfies the first two properties of a refinement, since if σ′ ∈
R(τ) and τ ′ ≤ σ′, then τ ′ ⊂ τ and hence τ ′ ∈ R(τ). For the third property,
choose any v ∈ supp(τ). Since also v ∈ supp(σ), there must be a σ′ ∈ R for which
v ∈ supp(σ′). By the support condition, supp(σ′) ∩ supp(τ) is a face of supp(σ′),
which corresponds to a monoid τ ′ ≤ σ′ such that supp(τ ′) ⊂ supp(τ). �

A particularly important example of a refinement is the operation of star subdi-
vision, which is well-known in toric geometry [Ful93] and its generalizations.

Proposition 2.7. If σ is a monoid and 0 6= v ∈ σ the collection, S(σ, v), of
monoids consisting of

(i) all faces τ ≤ σ such that v /∈ τ , and
(ii) monoids τ + Z+v := spanZ+

τ ∪ {v} where τ ≤ σ and v /∈ τ
is a refinement of σ. If all proper faces of σ are smooth, then S(σ, v) is a smooth
refinement.

Proof. For two monoids τ1, τ2 of the first type, the intersection τ1 ∩ τ2 is a face of
σ not containing v, hence a monoid of the first type. For two monoids τ1 + Z+v
and τ2 +Z+v of the second type, the intersection is a monoid (τ1∩ τ2) +Z+v of the
second type, and for one of each type, the intersection (τ1 + Z+v) ∩ τ2 = τ1 ∩ τ2 is
of the first type. The support condition follows from the fact that any w ∈ supp(σ)
lies in some cone of the form supp(τ + Z+v), with τ ≤ σ.

If τ = Z+ 〈v1, . . . , vk〉 is smooth and v /∈ τ , then τ + Z+v has independent
generators {v1, . . . , vk, v}, so τ + Z+v = Z+ 〈v1, . . . , vk, v〉 is smooth. Since σ itself
is not in S(σ, v) smoothness follows from the smoothness of all the proper faces of
σ. �

In the context of generalized blow-up, star subdivision is the operation which
realizes the ordinary blow-up of a boundary face of a manifold. There is a similar
construction, “planar refinement,” which we discuss next although it is not used
until Section 10, in which v is replaced by the intersection of σ with a subspace.

First, as a matter of notation, suppose τi ⊂ σ, i = 1, 2 are full submonoids in
the sense that each

(2.2) τi = σ ∩ supp(τi).

Then we define the join of τ1 and τ2 to be the full submonoid

(2.3) τ1 ∗ τ2 := σ ∩
(
supp(τ1) + supp(τ2)

)
where supp(τ1) + supp(τ2) = spanR+

(τ1 ∪ τ2) is the convex hull of the supports of
the τi.

Let σ be a smooth monoid, and µ ⊂ σ be a submonoid which is obtained by
intersection with an integral subspace of NR

σ :

(2.4) µ = σ ∩M, M ⊂ NR
σ integral.

Note that µ need not be simplicial, though it is a full submonoid in the sense of
(2.2). Let Λ consist of the maximal faces of σ meeting µ trivially:

(2.5) Λ = {τ ≤ σ ; τ ∩ µ = {0} , but for all τ ′ > τ, τ ′ ∩ µ 6= {0}} .

Lemma 2.8. If σ is a smooth monoid, M is an integral subspace and µ and Λ
are defined by (2.4) and (2.5) then for any τ1 6= τ2 ∈ Λ, there exists a functional
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u ∈ N∗σ such that 〈u, τ1〉 ≥ 0, 〈u, τ2〉 ≤ 0, 〈u, µ〉 = 0 and if v is a generator of either
τ1 or τ2 then v ∈ τ1 ∩ τ2 if and only if 〈u, v〉 = 0.

Proof. If M has full dimension the result is trivial, so we may assume that M is a
proper subspace. If M is a hyperplane, then u is a defining functional, u⊥ = M,
and is determined up to non-vanishing constant. Since τi∩M = {0}, u is definite on
each and cannot have the same sign on both or they would be equal by maximality.
Thus, either 〈u, τ1〉 > 0, 〈u, τ2〉 < 0 or with signs reversed. In this case their
intersection is trivial and the result clearly holds. Conversely if τ1 ∩ τ2 6= {0} , then
codim(M) > 1.

In the general case we proceed by induction on codim(M). Choose a generator
w ∈ τ1∩τ2, and consider the smooth monoid σ′ < σ generated by all the generators
of σ except w, with τ ′i := τi∩σ′. Consider the subspace M ′ = (M+Rw)∩Nσ′ ⊂ Nσ′
and set µ′ = M ′ ∩ σ′. Since w /∈ M, M ′ has the same dimension as M, hence the
codimension of M ′ in Nσ′ is one less than the codimension of M in Nσ.

Now, the τ ′i are maximal faces of σ′ not meeting µ′. To see this first note that
τ ′i ∩M ′ = {0} since the generators of µ can be written el = e′l+clw where the e′l are
generators for µ′ and cl ≥ 0. Thus, if there was a point p ∈ τ ′i ∩µ′, necessarily of the
form p =

∑
l dle

′
l with the dl ≥ 0, then there would be a point p+

∑
l

dlclw ∈ τi∩µ.

Similarly, the τ ′i are maximal since if τ ′ > τ ′i is a face of σ′ which meets µ′ trivially
then τ ′ + Z+w > τi meets µ trivially, contradicting the maximality of τi.

Thus by induction on the codimension of M ′ in Nσ′ there exists a functional
u′ ∈ N∗σ′ with the desired separating property for the τ ′i and M ′. Extending u′ to
u by requiring u(w) = 0 gives a functional in N∗σ with the desired properties and
completes the inductive step. �

Now set µ ∗ Λ = {µ ∗ τ ; τ ∈ Λ} , defined by (2.3), and consider

(2.6) S(σ, µ) = {γ ≤ σ′ ; σ′ ∈ µ ∗ Λ} .

Proposition 2.9 (Planar refinement). If σ is smooth monoid and µ = σ ∩M is
the intersection with an integral subspace M ⊂ NR

σ then (2.6) gives a refinement of
σ containing µ; this operation commutes with faces in the sense that for any face
τ ≤ σ, S(τ, τ ∩ µ) =

(
S(σ, µ)

)
(τ) with notation as in (2.1).

Proof. If M = NR
σ , then µ = σ, Λ = {0} and S(σ, µ) = µ ∗ {0} consists of σ and its

faces, which is the trivial refinement of σ.
First we show that the supports of S(σ, µ) cover supp(σ), in fact

(2.7) σ =
⋃
τ∈Λ

µ ∗ τ,

since all the monoids are full as above. Certainly µ ⊂ τ ∗ µ, so consider v ∈ σ \ µ
and choose any m1 ∈ µ. The ray from m1 through v meets some face of σ, call
it τ1, so v is a positive combination of m1 ∈ µ and t1 ∈ τ1. If τ1 ∩ µ = {0} then
τ1 ⊂ τ ∈ Λ and we are finished. On the other hand, if τ1 meets µ, then t1 is
a positive combination of some m2 ∈ µ and t2 ∈ τ2 with τ2 a proper face of τ1.
Continuing this way eventually shows that v ∈ µ ∗ τk for some τk which does not
meet µ, since the dimension decreases and v /∈ µ. Thus v ∈ µ ∗ τ for some τ ∈ Λ
with τ ≥ τk and (2.7) follows.
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Next consider the intersection of two elements in the union (2.7). We will show
that

(2.8) (µ ∗ τ1) ∩ (µ ∗ τ2) = µ ∗ (τ1 ∩ τ2), τi ∈ Λ.

Certainly the right side is contained in the left. Lemma 2.8 applies and gives a
functional u. If v is in the intersection it follows that u(v) ≥ 0 and u(v) ≤ 0 so
u(v) = 0 and from the last property of u this implies v ∈ µ ∗ (τ1 ∩ τ2). Since u is a
supporting hyperplane for both µ∗ τi, it follows that µ∗ (τ1∩ τ2) is a boundary face
of each of these full submonoids. This in turn implies that the intersection of any
two elements of S(σ, µ) is a common boundary face of both and hence an element
of S(σ, µ). Indeed, such an intersection must be contained in two µ∗ τi with τi ∈ Λ.
If they are the same, the conclusion is immediate, and if not then they are both
contained in the common boundary face (2.8) and again the result follows.

That µ is a boundary face of each µ ∗ τ, τ ∈ Λ follows from existence of a
functional u ∈ N∗σ such that u > 0 on the generators of τ and u(M) = 0. �

For any v ∈ σ, if Z+v is a full submonoid, then S(σ,Z+v) is just the ordinary
star subdivision of σ along v. Note however, that in the case of star subdivision we
can relax the condition that σ be smooth, as well as the condition that Z+v be full.

3. Generalized blow-up of Rn+
In preparation for the global case of generalized boundary blow-up of a manifold

with corners treated in Section 6, we first discuss the ‘local case’ of generalized blow-
up of the model space Rn+. Associated with this basic space is the ‘basic monoid’

consisting of the integral points with non-negative entries in bN {0}, the b-normal
to the maximum codimension boundary face {0}. We show how to construct a
blown-up space mapping surjectively onto Rn+ corresponding to any smooth re-
finement of this basic monoid. The functoriality of this operation with respect to
diffeomorphisms and b-maps is then considered.

Consider Rn+ with coordinates (x1, . . . , xn) and the vector space

bN {0} = spanR {x1∂x1
, . . . , xn∂xn} .

As pointed out in Section 1, the vectors (x1∂x1
, . . . , xn∂xn) are invariantly defined

up to reordering with respect to diffeomorphisms (indeed, any diffeomorphism of
Rn+ to itself must take 0 to 0). The basic monoid of Rn+ consists of the inward
pointing lattice points

σRn+ = Z+ 〈x1∂x1
, . . . , xn∂xn〉 in bN {0} ;

it is clearly smooth. To any smooth refinement R of σRn+ we proceed to associate a

generalized blow-up of Rn+, which will be denoted, with its blow-down map

[Rn+;R]
β−→ Rn+.

The blow-down map β : [Rn+;R] −→ Rn+ is an interior b-map from this new manifold
with corners, which is proper, surjective and restricts to a diffeomorphism on the
interior of its domain to the interior of Rn+. We construct [Rn+;R] and β from explicit
coordinate patches and transition diffeomorphisms.

For brevity we will say that a monoid σ ∈ R of maximal dimension n is maximal.
To any such maximal monoid σ = Z+ 〈v1, . . . , vn〉 , we associate a copy of the model
space Uσ = Rn+ with coordinates t = (t1, . . . , tn), where the order of the coordinates
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is associated to the order of the vectors. Let ν ∈ GL(n,Q) be the matrix whose
rows are the coordinates of the vectors vi, so that ν has entries νij , where

vi =

n∑
j=1

νijxj∂xj .

Since R is a refinement of σRn+ , ν has non-negative integral entries:

ν ∈ Mat(n× n,Z+) ∩GL(n,Q).

Then consider the smooth map

βσ : Uσ 3 t 7−→ tν = x ∈ Rn+
where the image space is the fixed model manifold, and we use the notational
convention established in Section 1. This is an interior b-map (which will be the
local coordinate version of the blow-down map) under which

b(βσ)∗(ti∂ti) =
∑
j

νijxj∂xj = vi.

To each face τ ≤ σ given by a collection of generators, τ = Z+ 〈vi〉i∈I , I ⊂
{1, . . . , n} we associate the (relatively) open set

(3.1) Uσ,τ = {(t1, . . . , tn) ∈ Uσ ; tj 6= 0 if j /∈ I} ⊂ Uσ.

Thus, Uσ,τ ∼= Rk+ × (0,∞)n−k ⊂ Rn+, where the coordinates allowed to take the
value 0 are the ti1 , . . . , tik , corresponding to those generators of σ which are also
generators of τ.

Proposition 3.1 (Generalized blow-up of Rn+). For any two maximal monoids
σ1 and σ2 in a smooth refinement R of σRn+ , with common face τ = σ1 ∩ σ2, the

diffeomorphism of the interiors of the Uσi given by β−1
σ2
βσ1

extends by continuity to
a diffeomorphism χ12 : Uσ1,τ −→ Uσ2,τ and the quotient space

(3.2) [Rn+;R] =
(⊔

Uσ

)/
{χ∗}

is a manifold with corners, with coordinate charts the Uσ; it is equipped with a
well-defined blow-down map β : [Rn+;R] −→ Rn+ given by βσ on each Uσ.

Proof. The space Uσ, with its local blow-down map βσ, really depends on the
choice of the order of the generators implicit in the definition of the map. However,
the coordinates tj are each naturally associated to the corresponding generator
and change of order of the generators corresponds to the same reordering of the
coordinates in Uσ. Thus we can freely reorder the generators.

For two maximal monoids, σ1 and σ2, τ = σ1 ∩ σ2 is generated by the common
generators of σ1 and σ2. For convenience of notation we can assume that these are
the first k generators:

τ = Z+ 〈v1, . . . , vk〉 = σ1 ∩ σ2,

σ1 = Z+ 〈v1, . . . , vk, vk+1, . . . , vn〉 , σ2 = Z+

〈
v1, . . . , vk, v

′
k+1, . . . , v

′
n

〉
.

Since the σi are smooth, their generators form bases so for i > k,

vi =

k∑
j=1

bijvj +

n∑
j=k+1

cijv
′
j , bij , cij ∈ Q,
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where the coefficients are rational since both bases are integral with respect to
{x1∂x1 , . . . , xn∂xn}.

Now, the map χ12 = β−1
σ2
βσ1 between the interiors of the two cones is given by

t 7−→ tµ = t′, where

µ =

(
Id 0
b c

)
[b]ij = bij , [c]ij = cij .

In other words,

χ12 (t1, . . . , tn) = (t′1, . . . , t
′
n) ∈ Rn+ = Uσ2

, where

t′i = ti
∏
j>k

t
bji
j , i ≤ k, t′i =

∏
j>k

t
cji
j , i > k.

Since, in Uσ1,τ , tj > 0 for j > k, χ12 extends smoothly from the interior to Uσ1,τ .

Since the inverse, χ21(t′) = (t′)ν
−1

, has a similar form, χ12 is a diffeomorphism onto
Uσ2,τ .

Next we show that the quotient (3.2) is Hausdorff. Consider points pi ∈ Uσi ,
i = 1, 2 which are not identified by χ12. If p1 ∈ Uσ1,τ then its image lies in Uσ2,τ

and a sufficiently small neighborhood of p2 does not contain χ12(p1) in its closure,
so the points have neighborhoods in the Uσi with no χ12 related points. Using the
inverse the same is true if p2 ∈ Uσ2,τ so we may assume both are in the complements
of the respective Uσi,τ .

Since σ1 ∩ σ2 = τ, there is a separating hyperplane, u⊥ for u ∈ bN∗ {0} so that

〈u, vi〉 = 0, i = 1, . . . , k

〈u, vi〉 > 0, 〈u, v′i〉 < 0, i = k + 1, . . . , n.

Let w and w′ be the coordinates of u with respect to the bases dual to the generators
of σ1 and σ2, respectively. Thus wi = w′i = 〈u, vi〉 = 0 for i = 1, . . . , k and
wi = 〈u, vi〉 > 0, w′i = 〈u, v′i〉 < 0 for i > k.

Then χ∗12(t′)w
′

= tw, and p1 and p2 can be separated by the explicit open sets{
tw < ε

}
⊂ Uσ1

and
{

(t′)−w
′} ⊂ Uσ2

since

χ12 ({tw < ε} ∩ Uσ1,τ ) =
{

(t′)w
′
< ε} ∩ Uσ2,τ =

{
(t′)−w

′
> 1/ε} ∩ Uσ2,τ ,

so these sets do not meet in the quotient by χ12.
Thus [Rn+;R] defined by the quotient (3.2) has the structure of a Hausdorff, para-

compact smooth manifold with corners arising from the covering by the coordinate
charts which are the images in [Rn+, R] of the Uσ. Smooth functions on [Rn+;R] are
those which are smooth in each of the coordinate patches and the blow-down map

β : [Rn+;R] −→ Rn+
is a well defined smooth b-map since it is such on each coordinate patch and these
maps form, by construction, a commutative diagram with the transition maps. �

The coordinate chart Uσ is related to the affine variety Spec(R[σ̂]), where σ̂ is the
dual monoid of σ, which is realized as a monoid in the dual lattice to Nσ.

In fact, Uσ consists precisely of the “R+-valued” points in Spec(R[σ̂]), which
are given by monoid homomorphisms Hommon (σ̂,R+), with R+ considered as a
multiplicative monoid. This is the “singular manifold with corners” [Ful93] in
the case of a toric variety, though our setup is more closely related to toroidal
embeddings [KKMSD73] and logarithmic geometry [Kat94], [Ogu06]. In any case,
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our explicit construction gives immediately a topology and smooth structure to this
set.

The boundary faces of [Rn+;R] correspond precisely to the monoids in the re-
finement R. If τ ∈ R and σ ≥ τ is a maximal monoid of which it is a face then τ
defines the boundary face Fσ,τ ⊂ Uσ = Rn+ which is the closure of Uσ,τ \ (0,∞)n,
the part of the boundary where the coordinates corresponding to the generators of
τ vanish (and the other coordinates may or may not vanish).

Proposition 3.2. The manifold [Rn+;R], fixed by a smooth resolution of σRn+ , has

interior diffeomorphic to (0,∞)n and its boundary faces are in 1-1 correspondence
with the monoids τ ∈ R where the face Fτ corresponding to τ is the quotient in
(3.2) of the union of the Fσ,τ ⊂ Uσ for the maximal monoids σ with τ ≤ σ; this
correspondence satisfies codim(Fτ ) = dim(τ) and is inclusion-reversing:

Fτ ′ ⊆ Fτ ⇐⇒ τ ≤ τ ′.

Proof. The boundary faces of each Uσ = Rn+ are, as follows from (3.1), precisely
the Fσ,τ for all faces τ ≤ σ, since these correspond to all subsets of the coordinate
functions. Under the transition maps χ12 defined above and corresponding to two
monoids, σ1 and σ2, of maximal dimension, the interior of each Fσ1,τ is mapped
onto the interior of Fσ2,τ , if τ ≤ σ1 ∩ σ2. Otherwise if τ is not contained in either
σ1 or σ2 then Fσ1,τ does not meet the domain of definition of χ12 or does not meet
the range.

Thus the interiors of the Fσ,τ are globally well-defined subsets of [Rn+;R]. For
each τ ∈ R, the closure in [Rn+;R] of the interior of Fσ,τ is the image of the union of
the closures in the Uσ that it meets. It is therefore everywhere locally a manifold
with corners, and hence is globally a manifold with corners. In particular each
boundary face is embedded in [Rn+;R]. Finally, the fact that τ ≤ τ ′ ⇐⇒ Fτ ′ ⊆ Fτ
is evident in Uσ for a maximal monoid σ ≥ τ ′ ≥ τ . �

Next consider the relationship between the blow-up, [Rn+;R], of Rn+ defined by

a refinement R of σRn+ , and the blow-up [Rk+;R(τ)] where R(τ) is the induced

refinement of τ ≤ σRn+ as in Lemma 2.6 and k = dim(τ).

Lemma 3.3. If R(τ) is the refinement of τ = Z+ 〈xi∂xi〉i∈I ≤ σRn+ obtained from

a smooth refinement R of σRn+ , where I ⊂ {1, . . . , n}, and dim(τ) = #I = k, there
is an injection

(3.3) [Rk+;R(τ)]× (0,∞)n−k ↪−→ [Rn+;R]

giving a commutative diagram

[Rk+;R(τ)]× (0,∞)n−k [Rn+;R]

Rk+ × (0,∞)n−k Rn+

ββ

where the bottom map is the inclusion

(3.4) Rk+ × (0,∞)n−k ∼= {xi 6= 0 ; i /∈ I} ⊂ Rn+.
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Proof. Consider a maximal monoid σ′ ∈ R(τ) (so dim(σ′) = k). As a monoid in
R(τ), σ′ gives rise to a coordinate chart

Rk+ ∼= U ′σ′ ⊂ [Rk+;R(τ)],

while considered as a monoid in R, σ′ corresponds to the open set

Rk+ × (0,∞)n−k ∼= Uσ,σ′ ⊂ Uσ ∼= Rn+,
for a maximal monoid σ ∈ R such that σ′ ≤ σ. This σ is unique since dim(σ′) =
dim(τ) and τ is a face of σRn+ .

Thus there are natural identifications U ′σ′ × (0,∞)n−k ⊂ Uσ′ , which are compat-
ible with the face relations, and so patch together to form the map

[Rk+;R(τ)]× (0,∞)n−k ↪−→ [Rn+;R]

as claimed. �

As a crucial step in the passage from the local construction of generalized blow-
up above to the global setting of general manifolds with corners, we consider the
lifting of smooth diffeomorphisms to the generalized blow-up. As for standard radial
blow-up although the local construction is algebraic, it turns out to be compatible
with diffeomorphisms.

Proposition 3.4. Any diffeomorphism of open submanifolds of Rn+, f : O1 ⊂
Rn+

∼=−→ O2 ⊂ Rn+, which maps boundary hypersurfaces onto themselves lifts to a
unique diffeomorphism,

f ′ : O′1 ⊂ [Rn+;R] −→ O′2 ⊂ [Rn+;R]

where O′i = β−1(Oi), such that the diagram

O′1 O′2

O1 O2

f ′βfβ

commutes and then f ′ also maps boundary hypersurfaces onto themselves.

Proof. Fix an n-dimensional monoid σ = Z+ 〈v1, . . . , vn〉 ∈ R. Let ν ∈ Mat(n ×
n,Z+)∩GL(n,Q) be the matrix for which β acts by β : t 7−→ tν on Uσ (recall that
the rows of ν are the coordinates of the vi).

By the assumption that f maps boundary faces onto themselves, f : O1 ⊂
Rn+ −→ O2 ⊂ Rn+ has an expression in coordinates of the form

f : (x1, . . . , xn) 7−→
(
f1(x), . . . , fn(x)

)
=
(
a1(x)x1, . . . , an(x)xn

)
,

where ai > 0, i = 1, . . . , n. Indeed, if O1 meets part of the hypersurface xi = 0,
then fi(x) must obviously have this form, and otherwise (if O1 ∩ {xi = 0} = ∅), we
can set ai = fi/xi. We use the notational shorthand

a(x)x =
(
a1(x)x1, . . . , an(x)xn

)
,

where a(x) =
(
a1(x), . . . , an(x)

)
.

Define f ′σ on Uσ by

f ′σ : t 7−→ a (tν)
ν−1

t,
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that is,

f ′σ
∗

(ti) =

∏
j

aj(t
ν)ν
−1
ij

 ti.

The coefficients are smooth functions since t 7−→ tν is smooth, the coefficients of
ν−1 are in Q, and the ai are strictly positive.

The composition f ◦ β : O′1 ∩ Uσ −→ O1 ⊂ Rn+ has the form

f ◦ β : t
β7−→ tν = x

f7−→ a(x)x = a (tν) tν

while β ◦ f ′σ has the form

β ◦ f ′σ : t
f ′7−→ a (tν)

ν−1

t
β7−→
(
a (tν)

ν−1

t
)ν

= a (tν) tν

and so they agree. It is easy to see that the f ′σ defined on each coordinate chart
Uσ are compatible on overlaps, i.e. that f ′σi commute with the transition maps
χ12 : Uσ1,τ −→ Uσ2,τ , and so these maps patch together to define a map

f ′ : β−1(O1) ⊂ [Rn+;R] −→ β−1(O2) ⊂ [Rn+;R].

We next verify that this lifting is functorial; that is, (g ◦ f)
′

= g′ ◦ f ′, which will

also prove that f ′ is a diffeomorphism with inverse
(
f−1

)′
, since clearly Id′ = Id.

Suppose then that f : O1

∼=−→ O2 has the form

f : x 7−→ a(x)x

while g : O2

∼=−→ O3 has the form

f : x 7−→ b(x)x.

Thus g ◦ f has the form

g ◦ f : x 7−→ c(x)x c(x) = b
(
a(x)x

)
a(x),

and therefore on a coordinate chart Uσ as above, (g ◦ f)
′

has the form

(g ◦ f)
′

: t 7−→ c (tν)
ν−1

t = b
(
a (tν) tν

)ν−1

a (tν)
ν−1

t.

On the other hand, g′ ◦ f ′ acts by

g′ ◦ f ′ : t 7−→ b
((
a (tν)

ν−1

t
)ν)ν−1

a (tν)
ν−1

t = b
(
a (tν) tν)ν

−1

a (tν)
ν−1

t,

which is the same. �

In fact we will need a slightly more technical version, involving passage to the
induced refinements R(τ) as in Lemma 3.3.

Corollary 3.5. Let R (τI) and R (τJ) be the refinements of τI , τJ ≤ σRn+ induced

by R for I, J ⊂ {1, . . . , n}, where dim(τI) = k and dim(τJ) = l. Suppose

f : O1 ⊂ Rk+ × (0,∞)n−k
∼=−→ O2 ⊂ Rl+ × (0,∞)n−l

is a diffeomorphism of open submanifolds, which maps boundary faces to them-
selves when both sides are included in Rn+ as in (3.4). Then f lifts to a unique
diffeomorphism

f ′ : O′1 ⊂ [Rk+;R (τI)]× (0,∞)n−k −→ O′2 ⊂ [Rl+;R (τJ)]× (0,∞)n−l
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where O′i = (β × Id)
−1

(Oi), which commutes with blow-down maps as above, and
also maps boundary hypersurfaces to themselves when both sides are considered as
subsets of [Rn+;R] as in (3.3).

Proof. Using the inclusions Rk+ × (0,∞)n−k ⊂ Rn+ and Rl+ × (0,∞)k−l ⊂ Rn+ cor-
responding to sets {xi 6= 0}i/∈I and {xj 6= 0}j /∈J , respectively, we consider O1 and

O2 to be open sets in Rn+, and then the result follows immediately from Lemma 3.3
and Proposition 3.4. �

Finally, we establish a local version of a result we shall prove in more generality
in Section 6 about lifting b-maps to a generalized blow-up. Suppose

f : Rm+ −→ Rn+
is an interior b-map for which f(0) = 0. Then f has the explicit coordinate expres-
sion

f : x 7−→ x′ = a(x)xδ =

(
a1(x)

m∏
j=1

x
δj1
j , . . . , an(x)

m∏
j=1

x
δjn
j

)
where δ ∈ Mat(m×n,Z+) and 0 < ai(x) ∈ C∞(Rm+ ). Because of the non-negativity

and integrality of the δij , the b-differential bf∗ : bN0 {0} −→ bN0 {0} (which is rep-
resented by the matrix δT with respect to the bases {xi∂xi} and

{
x′i∂x′i

}
) restricts

to a monoid homomorphism

bf∗ = δT : σRm+ −→ σRn+ .

Proposition 3.6. If f : Rm+ −→ Rn+ is an interior b-map such that bf∗ : σRm+ −→
σRn+ factors through a monoid homomorphism φ : σRm+ −→ τ for some τ ∈ R where

R is a smooth refinement of σRn+ then there exists a unique b-map f ′ : Rm+ −→
[Rn+;R] such that

[Rn+;R]

Rm+ Rn+

β

f

f ′

commutes and the range of f ′ is contained in the coordinate chart Uτ ⊂ [Rn+;R].

Moreover this construction is functorial in that for a b-map g : Rl+ −→ Rm+ ,
b (f ◦ g)∗ factors through τ ∈ R if and only if bf∗ does, and then (f ◦ g)′ = f ′ ◦ g.

Proof. Taking a maximal dimension monoid containing τ if necessary, it suffices
to assume that τ is maximal, dim(τ) = n. Then let (Uτ , t = (t1, . . . , tn)) be the
coordinate chart associated to τ = Z+ 〈v1, . . . , vn〉 ∈ R, and let ν ∈ GL(n,Z+)
denote the matrix such that vi =

∑
j νijx

′
j∂x′j as in the construction of generalized

blow-up, so that the blow-down acts by β : t 7−→ x = tν on Uτ . Alternatively,
one can view νT as the matrix defining the monoid inclusion νT : τ ↪−→ σRn+ with

respect to the bases {vi} and
{
x′i∂x′i

}
.

In a similar manner, let µ ∈ Mat(m×n,Z+) denote the matrix whose transpose
represents the given homomorphism

φ = µT : σRm+ −→ τ = Z+ 〈v1, . . . , vn〉
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with respect to the bases {xi∂xi} and {vi}. From the assumption that bf∗ factors
through φ it follows that

δT = νTµT = (µν)T.

Define f ′ : Rm+ −→ Uτ in coordinates by

f ′ : x 7−→ a(x)ν
−1

xµ = t.

Then observe that β ◦ f ′ has the form

β ◦ f ′ : x 7−→
(
a(x)ν

−1

xµ
)ν

= a(x)xµν = a(x)xδ,

and is therefore equal to f. The form of any f ′ : Rm+ −→ Uτ such that β ◦ f ′ = f is
determined in these local coordinates, giving uniqueness.

To show functoriality, suppose that g : Rl+ −→ Rm+ acts by z 7−→ b(z)zκ = x.
We have the commutative diagram

τ

σRl+ σRm+ σRn+ .
κT δT

µT

νT

The composition f ◦ g acts by

f ◦ g : z 7−→ a
(
b(z)zκ

)
bδzκδ =: c(z)zκδ.

Then on one hand (f ◦ g)
′

has the form

(f ◦ g)
′

: z 7−→ c(z)ν
−1

zκµ = a
(
b(z)zκ

)ν−1

bδν
−1

zκµ,

while on the other hand f ′ ◦ g acts by

f ′ ◦ g : z 7−→ a
(
b(z)zκ

)ν−1

(bzκ)
µ
,

which is the same since δν−1 = µ. �

Modifying the proof slightly, we obtain a version of the above which includes
“interior” coordinates.

Corollary 3.7. If f : Rl+ × Rm−l −→ Rk+ × Rn−k is an interior b-map such

that f(0) = 0 and bf∗ : σRl+ −→ σRk+ factors through a monoid homomorphism

σRl+ −→ τ ∈ R, then f lifts to a unique b-map f ′ : Rl+ ×Rm−l −→ [Rk+;R]×Rn−k

such that f = (β × Id) ◦ f ′, and this is functorial with respect to composition.

Proof. Such a map f has the coordinate representation

f : (x, y) 7−→
(
a(x, y)xδ, b(x, y)

)
with a, b > 0. With µ, ν as in the proof above, f ′ : Rl+ × Rm−l −→ Uτ × Rn−k
defined by

f ′ : (x, y) 7−→
(
a(x, y)ν

−1

xµ, b(x, y)
)

has the desired properties. The proof of functoriality is similar. �
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4. Monoidal complexes

In Section 6 we show how to associate a natural monoid to each boundary face of
a manifold with corners, with the compatibility condition that whenever F ⊆ G, the
monoid associated to G is a face of the one associated to F , i.e. that face relations
persist in an inclusion-reversing sense. We have already seen such an example,
which is the association between monoids in R and faces in [Rn+;R], where R is a
refinement of σRn+ . The notion of a refinement (where all the monoids reside in the

same vector space) is not sufficiently flexible to capture the ways in which boundary
faces may be related for general X so we introduce the concept of a monoidal
complex; this should be thought of by analogy to a simplicial or CW complex. It
is a generalization of the structure of a refinement in which the monoids are still
“attached together nicely along faces”, but in which the monoids reside in separate
vector spaces and there is no ‘base’ monoid (as when R is a refinement “of σ”). The
contents of this section are all that is needed for the discussion of the generalized
blow-up of a manifold in Section 6, apart from Theorem 6.5 which uses the fiber
product of monoidal complexes discussed in the next section.

Consider a finite partially ordered set by A = (A,≤). It is convenient to think
of A as a category, with objects the elements a ∈ A and morphisms given by the
order relation: a→ b ∈ Hom(a, b) ⇐⇒ a ≤ b.
Definition 4.1. Let (A,≤) be a finite ordered set. A monoidal complex Q over
A is a covariant functor from A to the category of monoids, where all morphisms
are isomorphisms onto faces; subsequently these are required to be complete and
reduced.

That is, Q consists of a monoid σa for each a ∈ A, along with isomorphisms
called face maps

(4.1) iab : σa
∼=−→ τ ≤ σb whenever a ≤ b,

for some τ ≤ σb. This relation will be denoted

(4.2) σa ≤ σb, for a ≤ b.
We say Q is complete, respectively reduced, if for every b ∈ A and every face

τ ≤ σb, there exists at least one (resp. at most one) a ∈ A such that a ≤ b and
iab : σa ∼= τ .

Lemma 4.2. If Q is complete and reduced, then the directed sets (A,≤) and ΓQ =
{τ ≤ σ ; σ ∈ Q}

/
i∗ with the order (4.2) are isomorphic.

Proof. Consider the composition of the map A 3 a 7−→ σa ∈ Q with the quotient
by the face maps (4.1). This map A −→ ΓQ intertwines the orders by (4.2); it must
be injective by the assumption that Q is reduced, and surjective by the assumption
that it is complete. �

From this it follows that for a complete, reduced monoidal complex, A is entirely
determined by the set of σ ∈ Q and the face relations (4.2). Nevertheless, it is
often convenient to be able to refer explicitly to an indexing set A, as in the case
(A,≤) = (M(X),≤) below, which we will most often encounter.

There are evidently some obstructions for a general ordered set to index a com-
plete, reduced monoidal complex, but we shall not concern ourselves with them
here; all complete reduced monoidal complexes will arise naturally. From now on,
all monoidal complexes will be complete and reduced.
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c

a

d

b

0

Figure 2. A manifold whose boundary face relations do not index
a monoid refinement.

Example 4.3. The faces of a single monoid σ form a monoidal complex over the
ordered set {τ ; τ ≤ σ}.

More generally, any refinement R of σ forms a monoidal complex over the set
R with the order coming from the face relations, if we take iab in (4.1) to be the
identity maps.

For an example which is not a refinement, consider the following.

Example 4.4. Let σ0 = {0}, σa = Z+(1, 0) ⊂ R2, σb = Z+(0, 1) ⊂ R2, and let σc
and σd be two distinct copies of the monoid Z+ 〈(1, 0), (0, 1)〉 ⊂ R2. Let the face
maps be the obvious ones in the diagram

σa σc

σ0

σb σd.

This complex cannot be realized as a refinement, since otherwise σc and σd would
have to be identified; here they remain distinct. Note that the ordered set under-
lying this complex is the same as the one given by the boundary faces (with the
order of reverse inclusion) of the 2-dimensional manifold with corners pictured in
Fig. 2.

Definition 4.5. A morphism of monoidal complexes φ : QA −→ QB consists
of a map of ordered sets φ# : (A,≤) −→ (B,≤) and monoid homomorphisms
φab : QA 3 σa −→ σb ∈ QB for all a ∈ A, where b = φ#(a) ∈ B. These are
required to commute with the homomorphisms iaa′ for a ≤ a′, so that

σa σb

σa′ σb′

φabibb′φa′b′iaa′

commutes, where a ≤ a′, φ#(a) = b, φ#(a′) = b′, and thus b ≤ b′. We say φ is
injective if all the morphisms φab are injective, though we do not necessarily require
that φ# : A −→ B be injective.

An elementary example of a morphism is the inclusion of a subcomplex:
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R Q

Figure 3. A refinement of monoidal complexes. Only maximal
dimension monoids are pictured. In this example, R → Q is injec-
tive, though R is not smooth, and the individual monoid homo-
morphisms do not cover their targets.

Definition 4.6. Let Q be a monoidal complex over (A,≤). A monoidal subcomplex
of Q is a complex Q0 obtained by restricting Q to a subset A0 ⊂ A:

Q0 = {σa ; a ∈ A0}
such that Q0 is complete and reduced. There is then an injective morphism

Q0 ↪−→ Q
consisting of the identity homomorphisms over A0 ⊂ A.

In Section 6, we will show that a b-map f : X −→ Y gives rise to a morphism
f\ : PX −→ PY of the basic monoidal complexes associated to X and Y .

Another important class of morphisms consists of refinements.

Definition 4.7. Let Q be a monoidal complex. A refinement of Q is a morphism
φ : R −→ Q all of whose homomorphisms are injective and for all σ ∈ Q,

(i)
⋃
τ∈φ−1

# (σ) φ
(
supp(τ)

)
= supp(σ), and

(ii) for τ1, τ2 ∈ φ−1
# (σ), relint

[
φ
(
supp(τ1)

)]
∩ relint

[
φ
(
supp(τ2)

)]
= ∅ unless τ1 =

τ2,

where the relative interior of a cone C = spanR+
{v1, . . . , vk} is the set relint[C] =

span(0,∞) {v1, . . . , vk}.

Condition (i) requires that the support of each monoid in Q is covered by the
supports of monoids in R, and condition (ii) demands that these supports only
intersect along mutual faces. These, along with our assumption that R is complete
and reduced, are analogous to the conditions in Definition 2.4 for the refinement of
a monoid. Figure 3 depicts a refinement.

Proposition 4.8. If φ : R −→ Q is a refinement then for each σ ∈ Q, the collection

(4.3) R(σ) :=
{
φ(σ′) ; σ′ ∈ φ−1

# (τ), τ ≤ σ
}

is a refinement of σ. Conversely, let {R (σ) ; σ ∈ Q} be a collection of refinements
which are compatible in that whenever τ ≤ σ, the refinement R(τ) is identical to the
induced refinement

(
R(σ)

)
(τ) as in Lemma 2.6. Then the quotient R =

⋃
R(σ)

/
i∗
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of the set of all monoids in the collection by the face maps i∗ of Q forms a refinement
φ : R −→ Q of monoidal complexes.

Proof. Let R(σ) be the set in (4.3). Certainly

R(σ) ⊇
{
φ(σ′) ; σ′ ∈ φ−1

# (σ)
}

and it follows that R(σ) satisfies property 2.4.(iii) for a refinement of σ by property
(i) in Definition 4.7 above.

To see that R(σ) satisfies the other two properties of a refinement, let τ ′i ∈ R,
i = 1, 2 with φ(τ ′i) ∈ R(σ), and for convenience of notation, identify these with
their images in σ. Let τ ≤ σ be the smallest face such that τ ′1 ∩ τ ′2 ⊂ τ . Since φ is
a morphism it follows that each τ ′i ∩ τ is a face of τ ′i , hence also in R, and it must
be that τ ′i ∩ τ ∈ φ

−1
# (τ) (or else there would be a smaller τ), so it follows that the

face τ ′i ∩ τ ≤ τ is also in R(σ).
By property (ii) above for τ ′i ∩ τ ∈ φ

−1
# (τ), it follows that τ ′1 ∩ τ ′2 = (τ ′1 ∩ τ) ∩

(τ ′2 ∩ τ) must be a face of each. To see that R(σ) contains the faces of all its
monoids, simply let τ ′1 be the face in question of τ ′2; we conclude that τ ′1 = τ ′1∩ τ ′2 ∈
R(σ). Thus R(σ) is a refinement of σ.

For the converse, let R be the set of all monoids in the refinements R(σ), σ ∈ Q,
modulo the identification of monoids in (R(σ))(τ) with those in R(τ) for τ ≤ σ, as
above. That R is a complex follows easily from the fact that each R(σ) forms a
monoidal complex.

For notational clarity, denote the ordered sets for R and Q by (A,≤) and (B,≤),
respectively. We take φ# : A −→ B to be the map which sends a to the smallest
b ∈ B such that σ′a ∈ R is in the refinement Rσb , and then φab : σ′a −→ σb is given
by the inclusion Rσb 3 σ′a ⊂ σb which is of course injective.

Finally, it follows directly from the fact that the R(σ) are refinements that
φ : R −→ Q satisfies the properties in Definition 4.7. �

The remainder of this section is devoted to specific algorithms for obtaining and
extending various refinements of complexes.

A primary means of obtaining refinements is star subdivision; we extend this to a
monoidal complex. The proof of the following follows directly from Propositions 4.8
and 2.7.

Proposition 4.9 (Star subdivision). Let Q be a monoidal complex, σa ∈ Q, and
v ∈ σa the monoids

S(Q, v)(σb) =

{
S
(
σb, (iabv)

)
if σa ≤ σb, and

σb otherwise

form a monoidal complex which refines Q; if Q is smooth, then S(Q, v) is smooth.

Recall that in Section 2 an extension of star subdivision is discussed, giving
a refinement S(σ, µ) of a smooth monoid, σ, with respect a monoid µ given by
the intersection of σ with an integral subspace. We now extend this to monoidal
complexes, which will be of use in Section 10.

Proposition 4.10 (Planar refinement). Let P a smooth monoidal complex and
suppose i : Q −→ P is an injective morphism such that for all σ ∈ P, (i#)−1(σ) ⊂
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Q contains at most one monoid µ, and i(µ) ⊂ σ is the intersection of σ with an
integral subspace, then

S(P,Q)(σ) = S(σ, µ), µ = (i#)−1(σ)

form a complex, containing Q as a subcomplex, which refines P.

Proof. This follows directly from Proposition 2.9, using the fact that S(τ, µ∩ τ) =
S(σ, µ)(τ). �

The smoothing of a simplicial monoid also extends to monoidal complexes.

Proposition 4.11 (Smoothing). Let Q be a simplicial complex. Then the collection
of monoid refinements σsm −→ σ, where σsm = Z+ 〈v1, . . . , vn〉 is freely generated
by the extremals of σ as in Example 2.5, forms a smooth refinement Qsm −→ Q.

Proof. This follows directly from the fact that the faces of σsm, namely the monoids
Z+ 〈vi〉i∈I , I ⊂ {1, . . . , n} are the smoothings of the corresponding faces of σ. �

5. Fiber products of complexes

In this section we discuss the existence of fiber products for monoidal complexes
and then cover some specific algorithms for producing smooth refinements and
extending a refinement of a subcomplex to the whole complex. Apart from the
proof of Theorem 6.5, the material here is not used until Section 10.

Given a morphism Q1 −→ Q2 of complexes and a refinement R2 −→ Q2, one
can consider the problem of finding a refinement R1 −→ Q1 such that

R1 R2

Q1 Q2

commutes. This leads to the consideration of the pullback, or fiber product, of two
morphisms in the category of monoidal complexes.

Before discussing fiber products in this category, we examine fiber products in
the categories of ordered sets and monoids. Thus, let (A,≤), (B,≤) and (C,≤) be
ordered sets, with order preserving maps (φ1)# : A −→ C and (φ2)# : B −→ C.

The product A × B is an ordered set with elements (a, b) : a ∈ A, b ∈ B and
order given by

(a1, b1) ≤ (a2, b2) ⇐⇒ a1 ≤ a2 and b1 ≤ b2.

The fiber product is the subset

A×C B = {(a, b) ∈ A×B ; (φ1)#(a) = (φ2)#(b) = c} ⊂ A×B,

with the order induced from A×B, which is well-defined since the (φi)# are order
preserving.

Proposition 5.1 (Fiber products of monoids). If φi : σi −→ σ, i = 1, 2 are monoid
homomorphisms, then there is a unique monoid σ1 ×σ σ2 with homomorphisms to
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σi such that

σ1 ×σ σ2 σ2

σ1 σ

φ′2φ2φ1φ
′
1

commutes, and which has the universal property that any other monoid τ forming
such a commutative square factors through a unique homomorphism to σ1 ×σ σ2.

Its faces can be described as follows. Let A, B and C be the ordered sets whose
elements are faces of σ1, σ2, and σ, respectively, and define (φi)# : Ai −→ A by
taking (φi)#(τi) to be the smallest τ ∈ A such that φi(τi) ⊂ τ . Then faces of
σ1 ×σ σ2 are indexed by an ordered subset of A×C B.

Faces of σ1 ×σ σ2 are not necessarily in 1–1 correspondence with A ×C B, since
there will generally be distinct pairs (τ1, τ2) 6= (τ ′1, τ

′
2) ∈ A×B (with τ ′i ≤ τi) such

that τ1 ×τ τ2 = τ ′1 ×τ τ ′2.

Proof. The set σ1 × σ2 is a monoid in Nσ1
× Nσ2

, generated by {(vi, 0), (0, wj)}
where {v1, . . . , vn} generate σ1 and {w1, . . . , wk} generate σ2. Then the set

σ1 ×σ σ2 = {(v, w) ∈ σ1 × σ2 ; φ1(v) = φ2(w)}
(which might be trivial) is evidently closed under addition. It is the intersection of
Nσ1 ×Nσ2 with the cone

supp(σ1)×supp(σ) supp(σ2) = supp(σ1)× supp(σ2) ∩NR
σ1
×NR

σ
NR
σ2
,

and hence is a monoid.
We will construct a map I from faces of σ1 ×σ σ2 to A×C B. Let τ ≤ σ1 ×σ σ2

be a face. Since σ1 ×σ σ2 ⊂ σ1 × σ2, there is a smallest face of σ1 × σ2 containing
τ , which must be of the form τ1 × τ2 for some τi ≤ σi, i = 1, 2. Observe that
(φ1)#(τ1) = (φ2)#(τ2) ∈ C, otherwise there would be strictly a smaller τ1 or
τ2. Thus (τ1, τ2) ∈ A ×C B and we set I(τ) = (τ1, τ2). I is injective, since τ is
determined by (τ1, τ2) by the obvious formula τ = τ1 ×σ τ2.

The universal property of σ1 ×σ σ2 in the category of monoids follows from the
analogous property in the category of sets, since the maps factoring through σ1×σσ2

are additive. �

As a special case of the fiber product, observe that if φ2 : σ2 −→ σ is injective,
then σ1 ×σ σ2 = φ−1

1 (σ2), where we identify σ2 with its image in σ. In this case φ′2
is also injective since we can identify it with the inclusion φ−1

1 (σ2) ⊂ σ1. If both
φ1 and φ2 are injective, then we can identify σ1 ×σ σ2 with σ1 ∩ σ2 ⊂ σ, and both
of the φ′i are injective.

Note that σ1× σ2 is smooth if σ1 and σ2 are, but this is not true of σ1×σ σ2, as
in the following example.

Example 5.2. Let σ1 = σ2 = Z2
+ and let φ1 = φ2 : Z2

+ −→ Z+ = σ be the map
(m,n) 7−→ m+n. Then it is a simple exercise to verify that σ1×σ σ2 is the monoid
of Example 2.2, which is not even simplicial.

Since the intersection of smooth monoids need not be smooth, it is similarly easy
to come up with examples where the σi are smooth and the φi are even injective
but σ1 ×σ σ2 = σ1 ∩ σ2 is not smooth.
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Proposition 5.3 (Fiber product of monoidal complexes). If Q1, Q2 are monoidal
complexes over A and B, respectively, and if φi : Qi −→ Q are morphisms to a
complex Q over C, then there exist monoidal complexes Q1 ×Q2 over A × B and
Q1 ×Q Q2 over an ordered subset of A ×C B with morphisms φ′i to Q1, Q2 such
that

Q1 ×Q Q2 Q2

Q1 Q

φ′1φ2φ1φ
′
2

commutes, and this is universal with respect to complexes forming a similar com-
mutative square with the Qi and Q.

Proof. To define Q1 ×Q2, let σ(a,b) = σa × σb for each (a, b) ∈ A×B. Likewise, to
define Q1 ×Q Q2, for (a, b) ∈ A ×C B take σ(a,b) = σa ×σc σb. It suffices to verify
that these collections of monoids form complexes.

Consider first Q1 × Q2. The faces of σa × σb are the monoids σa′ × σb′ where
σa′ ≤ σa and σb′ ≤ σb. Since the Qi are complete and reduced, these are in 1–1
correspondence with the elements (a′, b′) ∈ A×B such that (a′, b′) ≤ (a, b).

Next, it follows from Proposition 5.1, that the faces of σa ×σc σb are monoids
of the form σa′ ×σc σb′ = σa′ ×σc′ σb′ where (φ1)#(a′) = (φ2)#(b′) = c′ ≤ c and
(a′, b′) ≤ (a, b) ∈ A×C B.

The universal properties of Q1×Q2 and Q1×QQ2 follow from the corresponding
universal properties of A×B and A×C B among ordered sets, and of σ1 × σ2 and
σ1 ×σ σ2 among monoids. �

Proposition 5.4 (Refinements pull back). If φ : R −→ Q is a refinement, and
ψ : Q1 −→ Q is any morphism of complexes, then

φ′ : Q1 ×Q R −→ Q1 is a refinement.

In particular, the fiber product R1×QR2 of two refinements is a mutual refinement
of each.

Proof. Fix σ ∈ Q, and consider τ ∈ R(σ) and σ1 ∈ Q1 such that ψ : σ1 −→ σ. If
we identify τ with its image in σ, then as noted above,

φ′ : σ1 ×σ τ ∼= ψ−1(τ) ↪−→ σ1

is identified with an inclusion and therefore injective. From the identity

ψ−1(τ1 ∩ τ2) = ψ−1(τ1) ∩ ψ−1(τ2)

it then follows that σ1 ×σ R(σ) = {σ1 ×σ τ ; τ ∈ R(σ)} is a refinement of σ1, and
by commutativity of φ and ψ with the face maps that Q1 ×Q R −→ Q1 forms a
refinement of complexes. �

Note that Q1 ×Q Q2 need not be smooth even if Q1 and Q2 are smooth, and
even if they are refinements as the discussion following Example 5.2 shows. For this
and other reasons, it is desirable to know that smooth refinements exist.

In fact the usual algorithms for obtaining a smooth refinement of a fan in toric
geometry, [Ful93], [DCP83], go through essentially unchanged in the theory of
monoidal complexes. However, these algorithms are not functorial with respect
to the inclusion of subcomplexes, a feature we shall later require.
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As far as the authors know the following algorithm is new, though it follows
such an intuitive strategy for subdivision (starting with the monoids of highest
dimension and proceeding downward, in contrast to the usual algorithms which go
the other way), that it would not be surprising if it has already appeared in the
toric literature.

Theorem 5.5 (Natural smooth refinement). Let Q be a monoidal complex. Then
there exists a natural smooth refinement NS(Q) −→ Q with the following properties.

(i) If Q is smooth then NS(Q) = Q.
(ii) If Q0 ⊂ Q is a subcomplex, then the corresponding subcomplex of NS(Q) is

the natural smooth refinement of Q0, i.e.

NS(Q0) = NS(Q)0 := {NS(Q)(σ) ; σ ∈ Q0} .

Proof. In fact we first construct a simplicial refinement NS′(Q) with the analogous
properties, and then take NS(Q) = NS′(Q)sm to be the smoothing of NS′(Q), as in
Proposition 4.11.

Consider a monoid σ with extremals V = {v1, . . . , vn}. Let Λ be the set of
those vi which are linearly independent from all of the others. In other words, Λ
consists of those v ∈ V with nonzero image under the quotient V/(V \ {v}). Then
the monoid τ which is the largest face of σ lying in the span of V \ Λ is uniquely
determined, and is either {0} or non-simplicial. It represents the ‘essential’ non-
simpliciality of σ, since σ consists of the join of τ and the smooth face generated
by Λ.

We define the non-simplicial dimension of σ by

nsdim(σ) = dim(τ)

so in particular, σ is simplicial if and only if nsdim(σ) = 0. If nsdim(σ) = dim(σ)
(i.e. Λ = ∅, so σ = τ), we call σ fully non-simplicial.

To construct the natural simplicial refinement, we will iteratively replace Q by
the star subdivision S(Q, v), where v is the sum of the extremals of a fully non-
simplicial monoid σ, starting with those of largest dimension and proceeding down-
ward. For brevity we refer to this operation as “subdividing σ” in Q.

For j ∈ N, let
Mj(Q) = # {σ ; nsdim(σ) = j} .

Since Q has a finite number of monoids which are each finite dimensional, each
Mj(Q) is finite, and Mj(Q) = 0 for all j ≥ N , for some N .

Proceeding by induction, assume that Mj(Q) = 0 for j > k. For the inductive
step, we will produce a refinement Q′ −→ Q for which Mj(Q′) = 0 for j ≥ k. If
there are no fully non-simplicial monoids of dimension k, then Mk(Q) = 0 (indeed,
if nsdim(σ) = k then it has a fully non-simplicial face τ ≤ σ as above of dimension
k), and the induction is complete. Otherwise, let σ with extremals {v1, . . . , vn}
be a fully non-simplicial monoid of dimension k, and consider the star subdivision
S(Q, v), where v = v1 + · · ·+ vn. Thus we remove all monoids µ in Q containing v
and replace them with new monoids consisting of their faces τ 63 v joined to v.

If v lies in a monoid µ, then necessarily σ ≤ µ, and by the induction hypothesis
k ≥ nsdim(µ) ≥ nsdim(σ) = k, so equality holds. Moreover, σ must be the unique
fully non-simplicial face of µ with dimension k, so any face τ ≤ µ with nsdim(τ) = k
must have σ ≤ τ . Thus if v /∈ τ ≤ µ, then σ 6≤ τ and therefore nsdim(τ +Z+v) < k
since v is independent from the generators of τ and nsdim(τ) < k.
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Since all monoids in S(Q, v) which are not in Q are of this form, we see that
Mj(S(Q, v)) ≤ Mj(Q) for j ≥ k. On the other hand, Mk must actually decrease
by at least one, since Q contains a monoid of non-simplicial dimension k which is
not in S(Q, v), namely σ. Thus

Mk(S(Q, v)) < Mk(Q)

and since Mk(Q) < ∞, after a finite number of such subdivisions, we obtain a
complex Q′ for which Mj(Q′) = 0 for j ≥ k and Mj(Q′) <∞ for j < k, completing
the inductive step.

Note that the inductive step does not depend on the order of the subdivisions.
Indeed, the result of subdividing σ1 and σ2 of dimension k in either order is the
same, unless there is a monoid µ with σ1 ≤ µ and σ2 ≤ µ. But such a µ would then
have nsdim(µ) > k, contradicting the induction hypothesis. Upon completion of
the induction, we obtain a complex NS′(Q) such that Mj

(
NS′(Q)

)
vanishes for all

j, thus NS′(Q) is simplicial. Since star subdivisions are refinements and refinements
compose, NS′(Q) −→ Q is a simplicial refinement.

Finally set NS(Q) = NS′(Q)sm. This involves a local operation on each monoid,
and does not depend on any choice of order of the monoids. The first property of
NS(Q) is clear, since if Q is smooth then Mj(Q) = 0 for all j, so NS′(Q) = Q and
Qsm = Q.

The second property follows from the fact that either
(
S(Q, v)

)
0

= Q0 if v ∈
σ /∈ Q0, or

(
S(Q, v)

)
0

= S(Q0, v) otherwise, along with the fact that NS′(Q)
depends only on the set of fully non-simplicial monoids, independent of any choice
of order. �

The following is an immediate corollary of Proposition 5.3 and Theorem 5.5.

Corollary 5.6. Let Ri i = 1, 2 be refinements of Q. Then a mutual smooth
refinement exists, namely NS(R1 ×Q R2) −→ Q.

Finally, we include here a lemma which will be of use in Section 9.

Lemma 5.7. Let Q0 ⊂ Q be a monoidal subcomplex, and R0 −→ Q0 a refinement.
Then there exists a refinement R −→ Q which extends R0, meaning that it contains
R0 as a subcomplex. If R0 is smooth, then a smooth extension exists.

Proof. Say a monoid τ ∈ Q is “refined by R0” if τ ∈ Q0 and R0(τ) −→ τ is a
nontrivial refinement (i.e. R0(τ) 6= τ). We then say that σ ∈ Q is “damaged by
R0” if some face τ ≤ σ is refined by R0, but σ itself is not. In particular, note that
if σ is damaged, then σ /∈ Q0, otherwise R0 −→ Q0 would fail to be a refinement.

If there are no monoids which are damaged by R0, then

R := R0 ∪Q \ Q0 −→ Q
is an extension of R0.

Let d(Q,R0) denote the minimum dimension of σ ∈ Q such that σ is damaged
by R0. We will produce a refinement R1 of a subcomplex Q1 ⊂ Q which extends
R0, and for which d(Q,R1) > d(Q,R0). Proceeding by induction, we eventually
obtain a refinement Rk of Qk ⊂ Q extending R0 which damages no monoids on Q,
since d(Q,Rk) is bounded by the maximum dimension of a monoid in Q, and then
we can take R = Rk ∪Q \ Qk as above.

For the induction, assume a refinement Rj−1 −→ Qj−1 ⊂ Q is given, which
extends R0. Let Qj be the subcomplex of Q consisting of Qj−1 and all monoids
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of dimension d(Q,Rj−1) which are damaged by Rj−1 along with their faces. Note
that none of their proper faces are damaged by definition of d(Q,Rj−1). Let Λj be
the set of all monoids of the form τ + Z+v where v = v1 + · · · vn is the sum over
extremals of a damaged monoid σ in Qj , and either

(i) τ ≤ σ, such that τ /∈ Qj−1, or
(ii) τ ∈ Rj−1(τ ′) for some τ ′ ≤ σ.

Then set

Rj = Rj−1 ∪ Λj .

We claim Rj refines Qj , and d(Q,Rj) > d(Q,Rj−1).
Indeed, identifying monoids in Rj with their images in monoids in Q, the inter-

section of a monoid in Rj−1 and one in Λj must be a face of each in Rj−1; the
intersection of two monoids in Λj is a face of each in Λj ; and it is clear that the
support of any σ ∈ Qj is covered by the supports of monoids in Rj , so Rj −→ Qj
is a refinement.

For the second claim, suppose there was a monoid σ ∈ Q with dim(σ) ≤
d(Q,Rj−1) which was damaged by Rj . As noted above, σ /∈ Qj , which means that
σ is not damaged by Rj−1 and therefore must be damaged by Rj \ Rj−1 = Λj . In
other words, σ has a proper face τ which is non-trivially refined by Λj , but then
τ ∈ Qj and dim(σ) > dim(τ) = d(Q,Rj−1), a contradiction.

Finally, if R0 is smooth, then we can replace R by NS(R) since (NS(R))0 =
NS(R0) = R0 by Theorem 5.5. �

6. Generalized blow-up of a manifold with corners

We first describe a functor X 7−→ PX which assigns to a manifold with corners
its ‘basic smooth monoidal complex’ over the ordered set of the boundary faces of
X; and assigns to a b-map f : X −→ Y a morphism f\ : PX −→ PY . Next we show
that for any smooth refinement R −→ PX , the local construction of generalized
blow-up in Section 3 extends to give a new manifold with corners [X;R] with basic
complex realizing R.

Let X be a compact manifold with corners, and consider the set M(X) =⋃n
k=0Mk(X) of its boundary faces. It is partially ordered with respect to inclusion,

but here we will equip it with the reverse order (M(X),≤), in which

(6.1) (M(X),≤) 3 G ≤ F ⇐⇒ G ⊇ F.

If F ∈ Mk(X), recall that bNF −→ F is canonically trivialized by the frame
(x1∂x1

, . . . , xk∂xk) where the xi are any boundary defining functions for the hyper-
surfaces Hi such that F is a component of

⋂
iHi. These elements are well-defined

independent of the choices of the xi, and they therefore generate a smooth monoid.

Proposition 6.1 (Basic monoidal complex). For a manifold X, the basic monoidal
complex PX over (M(X),≤) consisting of the monoids

σF = Z+ 〈x1∂x1
, . . . , xk∂xk〉 ⊂ bNF, F ∈M(X)

is smooth, complete and reduced.

Proof. Let F ∈ Mk(X), and let (x1∂x1
, . . . , xk∂xk) be the trivializing frame for

bNF . Since the xi∂xi are independent, σF is smooth. If F ⊆ G, then bNG is
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trivialized by a frame (xi∂xi)i∈I , I ⊂ {1, . . . , k}, and at any p ∈ F , we have a natural

inclusion bNpG ⊂ bNpF which induces over G ≤ F the natural homomorphism

iGF : σG = Z+ 〈xi∂xi〉i∈I ↪−→ σF = Z+ 〈x1∂x1 , . . . , xk∂xk〉

which is an isomorphism onto the corresponding face of σF . Moreover, every face of
σF corresponds in this way to σG for a unique G ⊇ F , so the complex is complete
and reduced. �

If f : X −→ Y is a b-map

(6.2) f# : (M(X),≤) −→ (M(Y ),≤)

is order preserving.

Proposition 6.2 (Morphism of a b-map). Let f : X −→ Y be an interior b-map.
Then bf∗ : bNF −→ bNf#(F ) induces a morphism

(6.3) f\ : PX −→ PY

of monoidal complexes over f# :M(X) −→M(Y ).

Proof. If f#(F ) = G, then at any point p ∈ F ,

bf∗ : bNpF −→ bNf(p)G

is linear, and with respect to bases
{
xi∂xi

}
for bNF and

{
x′j∂x′j

}
for bNG, bf∗ is

integral with non-negative coefficients, thus

f\ := bf∗ : σF −→ σG

is a monoid homomorphism.
If F ⊆ G, the face map iGF : σG −→ σF comes from the inclusion bNG ⊆ bNF

as a subspace and bf∗ intertwines this with the corresponding inclusion bNf#(G) ⊆
bNf#(F ), from which it follows that f\ ◦ iGF = if#(G)f#(F ) ◦ f\. �

Theorem 6.3 (Generalized blow-up of a manifold). If X is a manifold with corners
then any smooth refinement, R of PX , defines a manifold [X;R], the generalized
blow-up of X with respect to R, equipped with a blow-down map

β : [X;R] −→ X,

restricting to a diffeomorphism of the interiors and such that β\ : P[X;R] −→ PX
factors through an isomorphism

P[X;R]

∼=−→ R

of monoidal complexes.

In particular M([X;R]) is determined as an ordered set by R, so [X;R] has a
unique boundary face Fτ for each τ ∈ R, with codim(Fτ ) = dim(τ) and

Fσ ⊆ Fτ ⇐⇒ τ ≤ σ.

We prove below in Corollary 8.8 that

[X;R1] ∼= [X;R2] ⇐⇒ R1 = R2.
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Proof. As a manifold X =
⋃
Wi has a locally finite open covering by coordinate

charts φi : Wi
∼= Vi ⊂ Rk(i)

+ × Rn−k(i). It can further be arranged that the cover is
‘good’ in the sense that all intersections of the coordinate sets are contractible and
that the origin is in the image of each coordinate chart, so that the codimension
k(i) is achieved. Then the image of each coordinate chart is actually diffeomorphic

to Rk(i)
+ ×Rn−k(i) so, by composing with such a diffeomorphism, it can be assumed

that each coordinate chart is surjective. The manifold is then recovered, up to
global diffeomorphism, by gluing

X ∼=
⊔
i

Vi/ ∼

where the equivalence relation is generated by the transition maps, p ∼ q if and only
if fij(p) = q for some i and j. Here, fij = φj ◦φ−1

i : Oij −→ Oji is a diffeomorphism
on the sets Oij = φi(Wi ∩Wj), whenever Wi ∩Wj 6= ∅.

In essence the blown-up manifold is obtained by blowing up each coordinate
chart and showing that the transition maps lift to be smooth.

For each i, let Fi ∈ Mk(i)(X) be the unique boundary face of codimension k(i)
such that Fi ∩Wi 6= ∅ and let R(Fi) = R(σFi) be the induced refinement of σFi ,
interpreted as a refinement of the basic monoid σFi

∼= σRn+ of Rn+. Whenever

Wi ∩Wj 6= ∅, there is a unique smallest boundary face Gij ∈ M(X) which meets
Oij and contains both Fi and Fj , so that R(Fi) = (R(Gij)) (σFi). Then set

V ′i = [Rk(i)
+ ;R(Fi)]× Rn−k(i)

and for each pair (i, j), set

O′ij = (βi × Id)−1(Oij) ⊂ [Rk(i)
+ ;R(Fi)]× Rn−k(i).

In light of Corollary 3.5, there are unique diffeomorphisms

f ′ij : O′ij
∼=−→ O′ji

lifting fij , and we can therefore define

[X;R] =
⊔
i

V ′i / ∼

where p ∼ q ⇐⇒ f ′ij(p) = q for some pair (i, j).
Since they commute with the transition maps, f ′ij , the local blow-down maps

βi : V ′i −→ Vi patch together to define the global blow-down map

β : [X;R] −→ X.

Clearly [X;R] is paracompact. To verify that it is Hausdorff, let p and q be
distinct points. If β(p) 6= β(q), then they can be separated by sets of the form
β−1(Oi) where Oi for i = 1, 2 are open sets in X separating β(p) and β(q). On the
other hand, if β(p) = β(q), then p and q can be separated inside some set V ′i , as in
the proof of Proposition 3.1.

For a fixed F ∈ M(X), it follows from Proposition 3.1 that each V ′i for which
Fi = F has boundary faces (Fi)σ in correspondence with monoids σ ∈ R(F ).
These are connected in [X;R] for adjacent pairs such that Vi ∩ Vj ∩ F 6= ∅ since
the diffeomorphisms f ′ij preserve the identification of boundary hypersurfaces with
monoids in R(F ). Thus for each σ ∈ R there is a unique boundary face Fσ ∈
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M([X;R]) given by the quotient of the union of the local boundary faces (Fi)σ,
and hence the blow-down maps give an identification

P[X;R]
∼= R. �

In fact the blow-up can be defined globally near each boundary face since F ∈
Mk(X) has a neighborhood in X which is diffeomorphic to Rk+ × F and then the

preimage of this open set in [X;R] is diffeomorphic to [Rk+;R(F )]×F obtained by
localizing the resolution to boundary faces containing F.

If f : X −→ Y is a b-map and β : [Y ;R] −→ Y is a generalized blow-down map
we say f is compatible with β if the morphism f\ : PX −→ PY factors through a
morphism φ : PX −→ R:

(6.4)

R

PX PY

f\β\φ

Theorem 6.4 (Lifting b-maps). If f : X −→ Y is an interior b-map compatible
with a generalized blow-up in the sense of (6.4) then f lifts uniquely to a b-map
f ′ : X −→ [Y ;R] such that

[Y ;R]

X Y

fβf ′

commutes, and such that f ′\ = φ : PX −→ R ∼= P[Y ;R].

Proof. Again, the construction is local. We consider a covering of Y by coordinate

charts Vi ∼= Rk(i)
+ ×Rn−k(i) and, refining if necessary, a covering of X by coordinate

charts Wj
∼= Rl(j)+ × Rm−l(j) such that for all j, f(Wj) ⊂ Vi for some i. As in

the previous proof, for each i there is a maximal codimension face Fi ∈ Mk(i)(Y )
such that Fi ∩ Vi 6= ∅ and similarly for each j a face Gj ∈ Ml(j)(X) such that
Wj ∩Gj 6= ∅. Shrinking the coordinate charts if necessary, we can assume without
loss of generality that f#(Gj) = Fi.

Locally, f has the form

fj = f|Wj
: Rl(j)+ × Rm−l(j) −→ Rk(i)

+ × Rn−k(i)

which lifts by Corollary 3.7 to a b-map

f ′j : Wj
∼= Rl(j)+ × Rm−l(j) −→ V ′i

∼= [Rk(i)
+ ;R(Fi)]× Rn−k(i).

It follows from the functoriality of these local lifted maps that they are compatible
with the transition maps g′ij : O′ij −→ O′ji used to construct [Y ;R], and so the f ′j
patch together to form a b-map

f ′ : X −→ [Y ;R]

as claimed. �
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Even if f : X −→ Y is not necessarily compatible with the refinement giving
the blow-up [Y ;R], there are generalized blow-ups of X through which f does
lift. Indeed, from Theorem 6.4 above a generalized blow-up [X;S] admits a map
to [Y ;R] over f : X −→ Y precisely when f\ ◦ β\ : S −→ PY factors through
R −→ PY . Such a blow-up always exits.

Theorem 6.5 (Blowing up the domain). Let f : X −→ Y be an interior b-map
and [Y ;R] −→ Y a generalized blow-up. Then there exists a generalized blow-up
[X;S] −→ X and a map f ′ : [X;S] −→ [Y ;R] such that

[X;S] [Y ;R]

X Y

f ′

βR
f

βS

commutes.

Proof. First we consider PX ×PY R −→ PX , which is a refinement by Proposition
5.4. If it is a smooth refinement, then we take S = PX×PY R and we are done. Note
that in this case [X;S] is the unique “minimal” blow-up, meaning it is universal
among blow-ups of X which lift f : any other blow-up which lifts f must factor
through [X;S] by the universality of fiber products of monoidal complexes and
Theorem 6.4. In general however, PX×PY R is not smooth. We let S be any smooth
refinement of PX×PY R, for instance the natural smooth refinement NS(PX×PY R)
of Theorem 5.5. There are many other choices, none of which is universal. �

Note that this includes Theorem 6.4 as a special case, as follows from the fact
that f\ : PX −→ PY is compatible with R −→ PY if and only if PX×PY R −→ PX
is an isomorphism, which we leave as an exercise for the reader.

7. Ordinary blow-up and examples

Recall the ordinary blow-up of [X;F ] of a boundary face F ∈Mk(X). As a set
this is

[X;F ] = X \ F ∪ SN+F

where SN+F
π−→ F denotes the inward-pointing spherical normal bundle, and the

blow-down map β : [X;F ] −→ X is given by the identity on X \ F and by π on
SN+F (see Figure 4). The smooth structure on [X;F ] is generated by β∗C∞(X)
as well as the quotients xi/xj (where they are finite) of boundary defining functions
for the boundary hypersurfaces Hi such that F is a component of

⋂
iHi.

Proposition 7.1. The ordinary blow-up of X at the boundary face F is the gener-
alized blow-up corresponding to the star subdivision along the sum over generators
of σF . That is,

[X;F ] ∼= [X;S(PX , vF )],

where vF =
∑
i xi∂xi and σF = Z+ 〈xi∂xi〉1≤i≤codim(F ) .

Proof. With the smooth structure above, the “front face” SN+F ∈M([X;F ]) is a
boundary hypersurface which is fibered over F , whose fiber is a (k−1)-simplex where

k = codim(F ). In fact, for any coordinate chart (x, x′, y) : U ∼= Rk+ × Rl−k+ × Rn−l
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in X such that F ∩ U ∼= {x1 = · · · = xk = 0}, there are k coordinate charts Ũi,
i = 1, . . . , k covering β−1(U) in [X;F ]:

(ti, x
′, y) : Ũi ∼= Rk+ × Rl−k+ × Rn−l

where

ti,j =

{
xi if i = j,

xj/xi otherwise.

Thus β : Ũi −→ U has the form

β : (ti, x
′, y) 7−→ (tµii , x

′, y) = (x, x′, y)

where µi is the identity matrix with its ith row replaced by ones:

µi =



1 0 . . . . . . . . . . . 0
0 1 . . . . . . . . . . . 0
...

. . .
...

1 · · · 1 1 · · · 1
...

. . .
...

0 . . . . . . . . . . . . . . . . 1


.

Observe that µT
i represents the monoid inclusion

Z+

〈
x1∂x1

, . . . , xi−1∂xi−1
, vF , . . . , xk∂xk

〉
↪−→ Z+ 〈x1∂x1

, . . . , xk∂xk〉 ,

where vF = x1∂x1
+ · · ·+ xk∂xk . The collection of these µT

i , i = 1, . . . , k therefore
give the monoid homomorphisms from the maximal dimension τ ∈ S(P, vF ) (σF )
to σF .

All coordinate charts meeting F are blown-up in this way, according to the star
subdivision S(PX , vF ), and this is precisely the construction of the generalized
blow-up [X;S(PX , vF )] −→ X. �

The inhomogeneous blow-up of F ∈ M(X) is similar to ordinary blow-up but
more general. It consists again of the set X \F ∪SN+F , but the smooth structure

is generated over β∗C∞(X) by quotients of the form x
1/n(i)
i /x

1/n(j)
j , where the

n(i) ∈ Z+ are consistently associated with the boundary hypersurfaces through F .
The proof of Proposition 7.1 can be modified in a straightforward manner to

give the following result.

Proposition 7.2. Let n : {H ∈M1(X) ; F ⊆ H} −→ Z+ be an assignment of
integer roots to the boundary hypersurfaces through F . Then the inhomogeneous
blow-up of F with respect to n is realized by the generalized blow-up by the weighted
star subdivision [X;S(PX , vF,n)], where

vF,n =
∑
i

n(i)xi∂xi

is the corresponding weighted sum of the generators of σF = Z+ 〈x1∂x1
, . . . , xn∂xn〉.

Iterating either of these constructions, we find that iterated boundary blow-up is
also a special case of generalized blow-up. Recall that the lift (or proper transform)
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vF

S(PX , vF ) PX

SN+F

F

[X;F ] X

β\

β

Figure 4. The ordinary blow-up of F in X, and the associated
star subdivision. Only the monoids of maximal dimension are pic-
tured.

of a submanifold Y ⊂ X under a blow-up β : [X;F ] −→ X is the set

β#(Y ) =

{
β−1(Y ) if Y ⊆ F,
clos

(
β−1 (Y \ F )

)
, otherwise.

The iterated boundary blow-up [X;FN , . . . , F1], Fi ∈M(X) is defined by successive
lifting:

[X;F1, . . . , FN ] = [· · · [[X;F1], β#
1 (F2)], · · · , β#

1 ◦ · · · ◦ β
#
N−1(FN )]

where βi : [X;F1, . . . , Fi] −→ [X;F1, . . . , Fi−1], and can be extended similarly to
the case of inhomogeneous blow-up.

Observe that the lift of a boundary face G ∈M(X) to the blow-up β : [X;F ] −→
X is again a boundary face of [X;F ]. In light of the identification of boundary faces
of a generalized blow-up with monoids in the refinement, it follows directly that
iterated boundary blow-up is realized by iterated star subdivisions.

Corollary 7.3. Let F1, . . . , FN ∈ M(X), and let R1, . . . ,RN be the sequence
of refinements of PX obtained by iteratively defining Rj = S(Rj−1, vF̃j ), where

F̃j = β#
1 ◦ · · · ◦ β

#
j−1(Fj).

[X;FN , . . . , F1] = [X;RN ].
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One might wonder at this point if there are generalized blow-ups of X which
are not of the above type. In fact we will prove in Section 8 that generalized
blow-ups are determined uniquely up to diffeomorphism by their refinements. It
follows that any smooth refinement of PX which cannot be obtained by iterated
(possibly weighted) star subdivision gives a generalized blow-up which is not of this
classical type. Examples of these are easy to construct provided X has corners with
codimension at least 3.

8. Characterization of generalized blow-down maps

In this section we complete our treatment of generalized blow-up, showing that
blow-down maps from a generalized blow-up of the target are characterized among
b-maps in general by two properties.

Definition 8.1. A generalized blow-down map between manifolds with corners,
β : X −→ Y, is a proper b-map which is a diffeomorphism of the interiors and
which has b-differential, bβ∗ : bTxX −→ bTβ(x)Y, an isomorphism for each x ∈ X.

The range of a continuous proper map is closed, so it follows directly from the
definition that a generalized blow-down map is surjective. It is convenient, and
no restriction, to assume in the subsequent discussion that X, and hence Y, is
connected. We continue to follow the convention for local coordinates (x, y), where
xi ∈ R+ are local boundary defining functions and yi ∈ R are tangential variables.

First we find a local normal form for a generalized blow-down map.

Lemma 8.2. Let β : X −→ Y be a generalized blow-down map between compact
manifolds, p ∈ G \ ∂G a point in the interior of a boundary face G ∈ Mk(X),
and (x′, y′) = (x′1, . . . , x

′
k′ , y

′
1, . . . , y

′
n−k′) local coordinates near q = f(p) ∈ F =

β#(G) ∈Mk′(Y ). Then there exist local coordinates (x, y, z) near p, with the zi > 0,
such that, after perhaps renumbering the x′ coordinates near q, β has the local form

(8.1) β(x, z, y) = (xν1 , . . . , xνk , z1x
νk+1 , . . . , zk′−kx

νk′ , y1, . . . , yn−k′) = (x′, y′),

where the first k of the νi ∈ Zk are linearly independent.

Proof. Let xj , j = 1, . . . , k be local boundary defining functions for hypersurfaces
through p. Then, since β is an interior b-map,

(8.2) β∗(x′i) = ai x
νi = ai

k∏
j=1

x
νji
j , 0 < ai ∈ C∞(X)

where νji ∈ Z+. Indeed, νT ∈ Mat(k′ × k,Z+) is the matrix representing bβ∗ :
bNG→ bNF with respect to the bases

{
xi∂xi

}
and

{
x′j∂x′j

}
.

Since ν must have full rank (or else bβ∗ could not be bijective), relabeling the
x′i appropriately ensures that the k × k matrix formed by the first k entries in the
νji is invertible and these give the vectors νi := (ν1i, . . . , νki) for i = 1, . . . , k.

Changing the xj by positive smooth factors, xj = bjxj , 0 < bj ∈ C∞(X), multi-
plies the coefficient functions ai in (8.2) by the monomials bνi . The independence
of νi, i ≤ k means that the bj can be chosen so each ai ≡ 1 for i ≤ k. This gives
the first k equations in (8.1).

The tangential coordinates y′i pull back under β to be smooth and independent
at p, so we take yi = β∗y′i for i = 1, . . . , n − k′, ensuring the last n − k′ equations
in (8.1), without affecting the first k.
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Finally then consider the pull-back of the last k′ − k boundary defining func-
tions. The logarithmic differentials, bβ∗(dx′i/x

′
i) must be independent at p, and be

independent of the dxj/xj , j = 1, . . . k, and dyl, l = 1, . . . , n− k′. In view of (8.2)
this means precisely that the smooth differentials dai/ai must be linearly indepen-
dent at p for i = k + 1, . . . , k′ and since the ai > 0 this in turn is equivalent to
the independence of the corresponding dai, so zi := ak−i, i = 1, . . . , k − k′, can be
introduced as additional tangential coordinates giving (8.1). �

In fact, one can take the x′i to be globally defined boundary defining functions
on a neighborhood of F \ ∂F , and then it follows from the proof that the xi can
be taken to be global on a neighborhood of G \ ∂G. It follows similarly that the yi
and zj are globally defined on each fiber β−1(q′)∩G \ ∂G for q′ in a neighborhood
of q, and it follows that these fibers are contractible. In fact, more is true.

Lemma 8.3. The functions zi, i = 1, . . . , k′−k in (8.1) are globally defined on the
fibers β−1(q′) ∩G \ ∂G for q′ in a neighborhood of q, and the map

(8.3) z : β−1(q) ∩G \ ∂G −→ (0,∞)k
′−k

is surjective.

Proof. As noted, z is a globally defined map on the fiber in light of (8.2) and
the fact that zi = ak−i. Suppose then that (8.3) is not surjective, and consider
a point in the closure of the image under z of a component of β−1(q) ∩ G \ ∂G.
By compactness of G, this must be the image of a point p′ in ∂G, in the interior
of a boundary face H ⊆ G with H ∈ Mr(X), say. The assumption that z is not

surjective means that z(p′) lies inside (0,∞)k−k
′
, so that 0 < zi(p

′) < ∞ for all
i ≤ k − k′.

By continuity p′ is mapped by β to q. Consider the construction of the xi and zi
in the proof of Lemma 8.2, where we now begin with additional boundary defining
functions x′i, i = k + 1, . . . , r ≤ k′ for H. The equations (8.2) become

β∗(x′i) = ai x
νj = a′i x

′γi xνi , 0 < a′i,

where not all the γj ∈ Zr−k+ can vanish without violating the isomorphism condition

on bβ∗. It follows by going through the construction in the proof that zi = eix
′µ
i ,

where µi ∈ Qr cannot all vanish (though µji may be non-integral and/or negative
since the bj may now involve the x′i), so at least one zi tends to either zero or
infinity at H, giving a contradiction. �

From the normal form (8.1) we derive the following path lifting result, which
determines in which face G ∈ β−1(F ) a lifted path will hit the boundary of X from
its b-tangent at t = 0.

Lemma 8.4. Let β : X −→ Y be a generalized blow-down, G ∈ M(X), F =
β#(G) ∈M(Y ) and q ∈ F \ ∂F, with coordinates (x′, y′) centered at q. If

γ : [0, ε) 3 t 7−→ (tκ, 0) ∈ Y

is a path with endpoint at q and initial b-tangent vector κ =
∑
κix
′
i∂x′i ∈

bN+F ,

with all κi > 0 then the lift clos(β−1(γ((0, ε))) of the image of γ to X meets β−1(q)∩
G \ ∂G if and only if there exists λ =

∑
i λixi∂xi ∈ bN+G such that bf∗(λ) = κ.
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Proof. Since β is a diffeomorphism on the interiors, the smooth path γ : (0, ε) −→
Y \ ∂Y lifts to X \ ∂X. If such a λ ∈ bN+G does exist, then near a component of
β−1(q) ∩G \ ∂G it follows directly that γ has a lift

[0, ε) 3 t 7−→ (tλ, 0, 1) = (x, y, z)

extending to t = 0, with endpoint p = (0, 0, 1) ∈ G \∂G. (Observe that p lies in the
domain of the coordinates (x, y, z) in light of Lemma 8.3.)

If no such λ exists, then every point p of β−1(q) ∩G \ ∂G has a neighborhood

D(ε, p) = {(x, y, z) ; xi < ε, i = 1, . . . , k, |y| < ε} , ε > 0

which does not meet the lift of γ to X \ ∂X.
Indeed, the image of such a neighborhood under β contains a point of γ if and

only if
(tκ1 , . . . , tκk′ , 0) = (xν1 , . . . , xνk , z1x

νk+1 , . . . , zk′−kx
νk′ , y).

Taking the logarithm of the first k conditions gives

(8.4) κi log t =
∑
j

νji log xj = (bβ∗ log x)i

since νT is the matrix representing bβ∗. Now, in D(ε, p), the vector (log x) ∈
(−A,−∞)k where A = − log ε > 0. Thus, right side of (8.4) lies in −bβ∗(

bN+G),
but by assumption κ /∈ bβ∗(

bN+G) so (8.4) can have no solution with 0 < t < 1. �

In fact, though we do not use this directly below, Lemmas 8.2 and 8.4 show that
for all G such that β#(G) = F , the map β : G \ ∂G −→ F \ ∂F is a fibration, with

fibers diffeomorphic to (0,∞)k
′−k.

To see this note that since β : G −→ F is an interior b-map it follows from (8.1)
that

(8.5) β : G \ ∂G −→ F \ ∂F
is a submersion. By compactness of G, any limit point of the range of (8.5) must
be the image of a point in G, so it must be surjective, or else an interior point
of F would only meet the boundary of G which is inconsistent with the defining
properties of an interior b-map. By Lemma 8.2 it follows that z : β−1(q) ∩ G \
∂G −→ (0,∞)k

′−k is a covering map, hence the fibers of (8.5) are a disjoint union
of components diffeomorphic to the latter space, but by Lemma 8.4 these fibers
must be connected, since otherwise there would be multiple preimages of γ(t) for
small t.

We now proceed to show that for a generalized blow-down β : X −→ Y , the
image β\(PX) is a well-defined smooth refinement of PY .

Proposition 8.5. If β : X −→ Y is a generalized blow-down map then the mor-
phism of monoidal complexes

β\ : PX −→ PY
is a smooth refinement.

Proof. Since bβ∗ is bijective, β\ is necessarily injective, and it suffices to verify that
the cones{

supp
(
β\(σG)

)
= β∗(

bN+G) ; β#(G) = F
}
⊂ supp(σF ) = bN+F

have union equal to bN+F , and have no common interior vectors.
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First observe that the union of these cones is indeed bN+F . If not, the comple-
ment, which is open, would contain an interior point of bN+F . Thus, proceeding
by contradiction, we can suppose that there is a vector κ = (κ1, . . . , κk) ∈ bN+F ,
with positive integer entries, which is disjoint from all the β∗(

bN+G). By Lemma
8.4 there is a path γ(t) ∈ Y with initial b-differential equal to κ and endpoint at
q ∈ F \ ∂F whose lift to X does not meet any G with β#(G) = F . On the other
hand, by the properness of β there is a sequence 0 < tj → 0 such that the points
β−1(γ(tj)) converge in X. By continuity, the limit must be in β−1(q). However,
since q lies in the interior of F such a point must lie in the interior of one of the G
with β#(G) = F which is a contradiction.

Next consider two of the cones β∗(
bN+Gi), i = 1, 2 which contain an interior

vector κ of bN+F in both their relative interiors, i.e. this point is the image of an
interior vector λi of each of the bN+Gi. Lemma 8.4 applies to both faces, hence
the curve γ with endpoint q ∈ F \ ∂F and initial b-tangent vector κ has a lift
with endpoint in the interior of each boundary face. The assumption that β is a
diffeomorphism in the interior therefore ensures that these two boundary faces have
interiors which intersect and they are therefore equal.

We conclude that β\ : PX → PY is a refinement, which must be smooth since
each σG ∈ PX is smooth. �

Proposition 8.6. A generalized blow-down map β : X −→ Y is a diffeomorphism
if and only if

β\ : PX −→ PY
is invertible.

Proof. That PY ∼= β\(PX) if β is a diffeomorphism is clear, since β−1
\ furnishes an

inverse.
Assume then that β\ : PX ∼= PY . For any F ∈ Mk′(Y ), there is therefore

a unique G ∈ Mk(X) with β#(G) = F and β\ : σG ∼= σF (it follows that k =
k′). Since the νj , j = 1, . . . , k in Lemma 8.2 are precisely the coordinates for the
generators of σG in terms of those of σF , we can arrange that ν = Id, and there are
therefore local coordinates as in (8.1) near each point in which β = Id. �

Theorem 8.7. If β : X −→ Y is a generalized blow-down map then

X ∼= [Y ;PX ]

with respect to the simplicial refinement β\ : PX −→ PY .

Proof. Let Y0 = [Y ;PX ], and let β0 : Y0 −→ Y be the blow-down. The morphism
β\ : PX −→ PY is tautologically compatible with the refinement PX −→ PY , since
β\ factors through the identity morphism Id : PX −→ PX .

From Theorem 6.4 then, β lifts to a b-map

β′ : X −→ Y0

which is easily seen to be a generalized blow-down since β : X \ ∂X −→ Y \ ∂Y
factors through β′ : X\∂X −→ Y0\∂Y0, which must therefore be a diffeomorphism.
Since the lifted map on monoidal complexes is just the identity,

β′\ = Id : PX −→ PX ,

X ∼= Y0 by Proposition 8.6. �
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As noted earlier one consequence of this is that the blow-up with respect to a
refinement determines the refinement.

Corollary 8.8. Let Ri, i = 1, 2 be two refinements of PX , then [X;R1] ∼= [X;R2]
if and only if R1 = R2 as refinements of PX .

9. Binomial subvarieties

We consider subvarieties of a manifold which near the boundary have the local
form

(9.1) aix
αi = bix

βi , yj = 0, ai, bi > 0,

which is to say they are given by the vanishing of some binomial equations with
smooth positive coefficients in the boundary defining variables, and the vanishing of
some interior variables. Such objects occur naturally in the setting of fiber products
and in other contexts, for instance the embedding under a b-map of one manifold
into another.

After verifying that such subvarieties are well-defined and have a standard form,
we show that, although they are not in general smoothly embedded manifolds with
corners, they have enough structure to support the machinery of monoidal com-
plexes and b-maps. This allow us to develop their resolution theory in the next
section. While it would be possible to define an intrinsic category of abstract ‘bi-
nomial varieties’, since it suffices in our later treatment of fiber products, attention
here is restricted to the case of a binomial variety explicitly embedded in a manifold.

Observe in (9.1) that by dividing by bix
βi and also exponentiating the interior

coordinates, the equations take the unified form a′ix
γi = 1, with γi = αi − βi,

a′i = ai/bi > 0 in the first case and γi = 0, aj = exp(yj) in the second. This may
involve the cancellation of factors of xi which appear on both sides of the equation
and hence the loss of some solutions contained entirely in the boundary. In view
of this we will define binomial structures on sets which are the closure of their
intersection with the interior as in (9.4) below.

With this motivation in mind, on any manifold consider the set of functions

(9.2)

G(X) =
⋃

γ:M1(X)→Z

Gγ(X), where

Gγ(X) = {u ∈ C∞(X \ ∂X) ; u = aργ , 0 < a ∈ C∞(X)} ;

here ρ = (ρH)H∈M1(X) is a collection of global boundary defining functions. Ob-

serve that γ : M1(X) −→ Z induces a functional bγ : bNG −→ C for any
G ∈M(X) by setting

(9.3) bγ =
∑

M1(X)3H⊇G

γ(H)
dρH
ρH

.

The Gγ(X) are independent of the defining functions used in (9.2) and pull back
under any interior b-map f : Z −→ Y giving an inclusion f∗G(Y ) ⊂ G(X). Clearly
G(X) is an abelian group under pointwise multiplication, and Gγ1(X) · Gγ2(X) ⊂
Gγ1+γ2(X).

A function f ∈ G(X) can be extended by continuity to points in ∂X at which
it has finite limits but the logarithmic differential, df/f, extends by continuity to a
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smooth global section of bT ∗X since near the boundary it reduces to

df

f
= d log a+

∑
H

γ(H)
dρH
ρH

.

Definition 9.1. A local binomial structure on a closed subset D ⊂ X near a point
p ∈ D consists of a coordinate neighborhood U 3 p and functions fi ∈ Gγi(U),
i = 1, . . . , d which have independent logarithmic differentials dfi/fi ∈ bT ∗q U at each
q ∈ D ∩ U , and which define D locally in the sense that

(9.4) D ∩ U = closU {q ∈ U \ ∂U ; fi(q) = 1, i = 1, . . . , d} .
The codimension of D at p is d.

An exponent vector γ ∈ M1(X) −→ Z is said to be non-negative (resp. non-
positive) if γ(H) ≥ 0 (resp. ≤ 0) for all H ∈ M1(X) and γ is indefinite if it is
nonzero, and neither non-negative nor non-positive, so an indefinite γ must have
at least one positive and at least one negative coefficient. More locally, γ is non-
negative with respect to F ∈ M(X) if γ(H) ≥ 0 for all H ∈ M1(X) such that
F ⊆ H and non-positivity and indefiniteness with respect to F are defined similarly.

For a local binomial structure U on D ⊂ X, the boundary faces of X ∩U which
are met by D can be seen by examining the indefiniteness of the exponent vectors.

Lemma 9.2. If U, fi ∈ Gγi(U) is a local binomial structure on D near p and U
only meets boundary hypersurfaces which pass through p then every exponent vector
γi is either zero or indefinite. Similarly if D meets the interior of F ∈M(U) then
each γi is either zero or indefinite with respect to F.

Proof. By assumption all the local boundary defining functions vanish at p so if γi
is non-zero and has all entries of a fixed sign then aix

γi cannot be equal to 1 near
p. The same argument applies to other boundary points of D where fewer of the
boundary defining functions vanish. �

Next we establish a local normal form for local binomial structures.

Lemma 9.3. If U, fi ∈ Gδi(U) is a local binomial structure on D then near any
boundary point q ∈ D in U there are local coordinates (x, y) in a (possibly smaller)
neighborhood U ′ of q in terms of which

(9.5) D ∩ U ′ = {xγi = 1, i = 1, . . . , d′, yj = 0, j = d′ + 1, . . . , d}
where the γi are linearly independent and indefinite vectors with respect to the
maximal codimension boundary face through q.

Proof. By definition of local binomial structure, D ∩ U is the closure of its inter-
section with the interior, so there are interior points of D near q. Let F be the
boundary face of maximal codimension containing q; so q lies in the interior of
F. The b-cotangent space bT ∗q U , of which the d log fi are sections, has a ‘smooth

subspace’ bN⊥q F consisting of the differentials of smooth functions; it is the image

in bT ∗q U of the natural map T ∗q U −→ bT ∗q U , and is the annihilator of the b-normal

space bNqF.
The assumed independence of the logarithmic differentials dfi/fi in U ensures

that they span a linear space of dimension d at q,

(9.6) Aq(D) := span {dfi/fi} ⊂ bT ∗q U.
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Within this space consider the intersection

Asm
q (D) = Aq(D) ∩ bN⊥q F

with the smooth subspace and set d− d′ = dim(Asm
q (D)). In terms of local coordi-

nates (x, y) at q, the functions fi = ai x
δ′i where the δ′i are the restrictions of the δi

to the boundary hypersurfaces through q, and bN⊥q F is the span of the dyk. Thus
Asm
q (D) is spanned by those linear combinations of logarithmic differentials∑

i

tidfi/fi =
∑
i,j

tiδ
′
ijdxj/xj +

∑
i

tid log ai

for which
∑
i tiδ

′
i ≡ 0.

Thus, after some renumbering, an independent set of the δ′i can be chosen and
renamed γi, i = 1, . . . , d′. The remaining fj , j = d′ + 1, . . . , d can be replaced by

products f ′j =
∏
i f

ti
i corresponding to nontrivial independent relations

∑
i tiδ

′
i = 0.

Then the set
{
dfi/fi, df

′
j/f
′
j

}
is independent and spans Aq(D) and D is given locally

by the equations fi = f ′j = 1, but the f ′j = a′j x
0 are smooth and positive.

The functions log a′j , j = d′+ 1, . . . , d can then be introduced in place of some of
the tangential variables yj and their differentials span Asm

q (D). Since the γi are now
linearly independent, after changing the boundary variables from xk to gk xk with
gk > 0 and renumbering, ai x

γi is reduced to the desired form xγi giving (9.5). �

Definition 9.4. A connected, closed subset D ⊂ X of a manifold with corners is
an interior binomial subvariety if it has a covering by local binomial structures.

The codimension of D is well-defined as the local codimension by connectivity,
and D∩(X \ ∂X) is a smooth manifold of dimension dim(D) = dim(X)−codim(D).

It follows from the proof of Lemma 9.3 that the ‘b-conormal spaces’ Aq(D) ⊂
bT ∗qX in (9.6) are well-defined at each point q ∈ D and independent of the local
binomial structure used – for points in the interior Aq(D) is just the ordinary
conormal space to the smooth manifold D∩X \∂X, and its extension by continuity
to D∩∂X is unique. So we may proceed as for a smooth submanifold of a manifold
and set

(9.7)

bTqD = (Aq(D) ⊂ bT ∗qX)⊥ ⊂ bTqX,

bNqDG = bTqD ∩ bNqG, p ∈ D ∩G, G ∈M(X).

The b-tangent bundle bTD −→ D is actually independent of the ‘binomial em-
bedding’ of D in X once this is understood correctly, but here we persist with the
extrinsic discussion. Observe that each bNqDG is just the nullspace of the maps
bγi as in (9.3) for the γi occuring in any local binomial structure for D near p. In
particular it is invariant with respect to replacing the γi by linear combinations
with the same span.

From the local normal form (9.5) it follows that the intersection of D with a
boundary face through p is again a binomial subvariety, as we now show. By way
of motivation, notice that the behavior of the b-tangent spaces on passage to a
boundary face of X: for p ∈ G ∈M(X), bTpG = bTpX/

bNpG.

Lemma 9.5. Suppose D ⊂ X is an interior binomial variety with codimension d,
then for any G ∈M(X), such that D∩(G\∂G) 6= ∅, a component G′ of the closure
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DG := clos (D ∩G \ ∂G) is an interior binomial subvariety of G with codimension
d− dim(bNpDG), for any p ∈ G′ and

(9.8) bTpDG = bTpD/
bNpDG.

It may well happen that D ∩ (G \ ∂G) = ∅ but D ∩ G 6= ∅ in which case we do
not regard D ∩ G as an interior binomial subvariety of G since it lies only in the
boundary.

Proof. Let p be a limit point of G′∩G\∂G, and consider the local form for D near p
given on a neighborhood U ′ by (9.5); we can assume without loss of generality that
U ′ does not meet any other component of D ∩ G. Thus the x’s are local defining
functions for the boundary face F ⊆ G of maximal codimension through p. Divide
them as x = (x′, x′′) where the x′′ define G locally.

Following the proof of Lemma 9.3 above, a maximal subset of the γi may be
chosen so that their restrictions to the boundary faces containingG are independent,
i.e. the projections γi = (γ′i, γ

′′
i ) 7−→ γ′′i onto the subspace corresponding to the

x′′ are independent. The remaining γj may be replaced by independent linear
combinations δj =

∑
i tiγi which are non-zero only with respect to the boundary

hypersurfaces which do not contain G, i.e. their projections δj = (δ′j , δ
′′
j ) 7−→ δ′′j

vanish. The defining conditions (9.5) may therefore be rewritten, after renumbering,

(9.9)
(x′)γ

′
i(x′′)γ

′′
i = 1, i = 1, . . . , k, (x′)δ

′
i = 1, i = k + 1, . . . , d′,

yj = 0, j = d′ + 1, . . . , d,

where the γ′′i and δ′i are separately independent, and the γ′′i dx
′′
i /x
′′
i span bNpDG.

Then

(9.10) G′ ∩ U ′ =
{

(x′)γ
′
i = 1, i = k + 1, . . . , d′, yj = 0, j = d′ + 1, . . . , d

}
is a local binomial structure on G′. Certainly the right side of (9.10) is included
in the left. To see the converse, observe that, by the assumption that D meets
the interior of G near p, the system (9.9) must have a sequence of solutions with
x′′ → 0 and all entries of x′ positive but small.

Writing out first set of equations as the linear system γ′′i · log x′′ = ci for the
vector log x′′, with entries the logarithms of the x′′, we see that this system must,
for each N ∈ R, have a solution with all entries less than N with the ci bounded.
Since the γ′′i are linearly independent, it follows that the same is true for any ci.
Thus in fact any solution of the equations in (9.10) corresponds to a point in G′. �

In light of this result, we define the boundary faces of D to be the components
G′ of the nonempty DG = clos(D ∩G \ ∂G). The linear space bNpG

′ := bNpDG =
Null

{
bγi
}
⊂ bNpG as in (9.7) can then be identified as the ‘b-normal space to G′

as a boundary face of D,’ consistent with the smooth case. The codimension of
a boundary face G′ ⊂ DG with respect to D is given by dim(bNG′) as expected,
and we letMk(D) be the boundary faces of codimension k in this sense, equipping
M(D) =

⋃
kMk(D) with the order of reverse inclusion.

The intersection of the rational subspaces bNG′, G′ ∈ M(D) with the monoids
σG, G ∈M(X) gives the ‘basic monoidal complex’ of D.

Proposition 9.6. If D ⊂ X is an interior binomial subvariety the monoids

(9.11) σG′ = bNG′ ∩ σG, G′ ∈M(D)
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where G′ is a component of clos(D∩G\∂G) form a (not necessarily smooth) complex
PD over (M(D),≤) and there is a natural, injective morphism of complexes

(9.12) i\ : PD −→ PX
over i# :M(D) −→M(X), where i#(G′) = G such that G′ ⊂ DG as above.

Proof. The monoids σG′ are clearly well-defined and toric; it suffices to verify that
they form a complex. If F ′ ⊆ G′ ∈ M(D) and p ∈ F ′, then F ⊆ G ∈ M(X).
Since bNpG

′ = bTpD ∩ bNpG and similarly for bNpF
′, and since bNpG ⊆ bNpF ,

it follows that bNpG
′ ⊆ bNpF

′, giving an inclusion σG′ ⊂ σF ′ , which must be an
isomorphism onto a face since it is the intersection of σF with a subspace. Thus

PD = {σG ; G ∈M(D)}

is a (complete, reduced) monoidal complex over M(D), and the inclusions σG ⊂
σi#(G) produce a necessarily injective morphism i : PD −→ PX . �

A very special instance of an interior binomial subvariety is a ‘product-’ or p-
submanifold (see [Mel] for background). This is a smooth submanifold D ⊂ X which
meets all boundary faces of X transversally, and which is covered by coordinate
neighborhoods

(
U, (x, y)

)
in X such that

D ∩ U = {yj = 0 ; j = 1, . . . , codim(Y )} .

For a p-submanifold, it is evident that bNpG
′ ≡ bNpG whenever G′ ∈ M(D) is a

component of DG, G ∈ M(X), and so the morphism i\ : PD −→ PX consists of

monoid isomorphisms σG′
∼=−→ σG. In other words i\ is a local isomorphism, though

it need not be a global one, since the DG may consist of multiple components, and
therefore i# :M(D) −→M(X) need not be injective.

In fact this global issue of the failure of i# : M(D) −→ M(X) to be injective
arises as a technical obstruction to the resolution of a general interior binomial
variety D ⊂ X by generalized blow-up of X in the next section. Indeed, if there
are multiple components G′i ⊂ DG, there may be no way to refine σG ∈ PX in a
way which appropriately resolves the images i\(σG′i). Fortunately one can always

pass to a ‘collar neighborhood’ X ′ ⊃ D in X for which this obstruction does not
arise. The following lemma guarantees the existence of such a neighborhood; the
proof follows directly from the local normal form (9.5).

Lemma 9.7. If D ⊂ X is an interior binomial subvariety then there exists an open
submanifold X ′ ⊂ X containing D such that i# :M(D) −→M(X ′) is injective so
for each G ∈M(X ′) there is at most one connected component of DG.

Finally, observe that other concepts can be extended from the ‘smooth’ case of
manifolds to binomial subvarieties.

Definition 9.8. If D ⊂ X is a binomial subvariety, and Y a manifold with corners
then a map f : Y −→ D is a b-map if it is a b-map in the smooth sense, i.e. as a
map f : Y −→ X with f(Y ) ⊂ D.

For such a b-map, the range of the b-differential bf∗ will lie in bTD and if
G′ ∈M(D) is the highest codimension face such that f(F ) ⊂ G′ it follows that

(9.13) bf∗ : bNpF −→ bNf(p)G
′.
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Just as in Proposition 6.2 there is an induced map

(9.14) f\ : PY −→ PD
of monoidal complexes.

10. Resolution of binomial subvarieties

In this section we use show that a smooth refinement of the monoidal complex
of the ambient manifold X which also refines the monoidal complex of an interior
binomial subvarietyD ⊂ X leads to a blow-up under whichD lifts to p-submanifold,
in particular this resolves D. The resolution of D so obtained depends essentially
only on the choice of the smooth refinement of the monoidal complex PD.

The notion of a resolution is analogous to that of a generalized blow-up defined
earlier.

Definition 10.1. If D ⊂ X is an interior binomial subvariety then a manifold Y
with a b-map f : Y −→ X with f(Y ) ⊂ D is a resolution of D if bf∗ : bTpY −→
bTf(p)D is a bijection for all p ∈ Y and f : Y \ ∂Y −→ D \ ∂D is a diffeomorphism.

First observe that the lift of D under any blow-up of X is again an interior
binomial subvariety.

Proposition 10.2. If β : X1 −→ X is a generalized blow-down map between
manifolds and D ⊂ X is an interior binomial subvariety then the lift (or proper
transform)

(10.1) β#(D) = closX1

(
β−1(D \ ∂X)

)
is an interior binomial subvariety of X1.

Proof. Certainly β#(D) ⊂ X1 is a closed subset. It is a smooth embedded subman-
ifold in the interior, so it suffices to show that it has a local binomial structure at
each boundary point. If p ∈ ∂X1 ∩ β#(D) then by definition, β(p) ∈ ∂X ∩D and
D has a local binomial structure given by fi ∈ G(X). The pull-backs f∗fi ∈ G(X1)
define β#(D) locally and their logarithmic differentials are independent since the
b-differential of β is an isomorphism at each point. �

Let R −→ PX be a smooth refinement. If D ⊂ X is an interior binomial
subvariety then R is compatible with PD if there is a subcomplex RD ⊂ R such
that RD −→ PX factors through PD giving a commutative diagram

(10.2)

RD R

PD PX

⊂

i\

where the vertical arrows are smooth refinements and the top is the inclusion of a
subcomplex.

Proposition 10.3. If R −→ PX is a smooth refinement which is compatible
with an interior binomial subvariety D in the sense of (10.2) then D lifts to a

p-submanifold D̃ = β#(D) of the generalized blow-up

β : [X;R] −→ X.
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In particular β : D̃ −→ D is a resolution of D and β\ : PD̃ −→ PD factors through
an isomorphism PD̃ ∼= RD of monoidal complexes.

Proof. Consider an arbitrary p′ ∈ D̃ = β#(D), and let p = β(p′) ∈ D. There
is a unique face G′ ∈ M(D) such that p lies in the interior of G′, and we set
G = i#(G′) ∈ M(X). Since i\ : PD → PX in (9.12) and β\ : R −→ PX are both
injective, we identify monoids σG′ and τ ∈ R (G) with their respective images in
σG.

The point p′ ∈ D̃ ⊂ [X;R] lies in some coordinate chart Uτ ⊂ Rk+ × (0,∞)n−k

with coordinates (t, y) = (t1, . . . , tk, y1, . . . , yn−k), for some τ ∈ R (G), and we can
assume that the coordinates y are pulled back identically from those on X in which
D has the local normal form (9.5). Thus the equations {yj = 0 ; j = d′ + 1, . . . , d}
are the same in Uτ . We consider the lift of the other equations, xγi = 1 under β.
On Uτ , β has the form β : t −→ tµ = x, and we obtain

β∗ (xγi) = (tµ)
γi = tβi = 1,

where βi = µγi. Thus near p′, D̃ ⊂ [X;R] has the local binomial structure

D̃ =
{
tβi = 1, yj = 0

}
.

We will show that the βi are each non-negative or non-positive.
Indeed, the compatibility assumption implies that, for all τ ∈ R (G), either

τ ∈ RD(G′) and hence τ ⊂ σG′ , or τ ∈ R \ RD; in either case the intersection
τ ∩ σG′ must be a face of τ . Since σG′ = σG ∩Null

{
bγi
}

, it follows that

〈γidx/x, τ〉 ≥ 0 or 〈γidx/x, τ〉 ≤ 0, for each γi.

In other words, each vector γidx/x is either non-positive or non-negative with
respect to τ ∈ R(G). Let us assume non-negative; the other case is similar.

From this it follows that no βi is indefinite, since for any a ∈ Rk, ai > 0,

〈βi, a〉 = 〈βi dt/t, a t∂t〉 = 〈µγi dx/x, a t∂t〉 =
〈
γidx/x, µ

T(a t∂t)
〉
≥ 0

as µT(at∂t) ∈ τ . In light of Lemma 9.2, D̃ only meets boundary faces with respect

to which the βi are zero, hence D̃ has a covering by binomial structures such that

D̃ = {yj = 0 ; j = 1, . . . , d}

and is therefore a p-submanifold.

Since D̃ is a p-submanifold, for any G̃ ∈M(D̃), σG̃
∼= τ for some τ ∈ R ∼= P[X;R].

Finally, it follows from the fact that D̃ is the lift of D that σG̃ = τ is actually in

RD; hence PD̃ −→ RD is a local isomorphism onto its image and β : D̃ −→ D is a
resolution since it is a diffeomorphism on interiors. �

The resolution of binomial ideals in polynomial and power series rings by toric
methods are well-known, see [Tei] for a good overview. The previous proposition
can be seen as an extension of this theory to the interior binomial subvarieties we
have been discussing.

Next we show that we can obtain a unique resolution of D realizing any smooth
refinement RD −→ PD; in particular the resolution so obtained is essentially inde-
pendent of the ambient manifold X.
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Theorem 10.4 (Resolution of binomial varieties). If D ⊂ X is an interior binomial
subvariety, then for every smooth refinement RD −→ PD there exists a resolution

β : [D;RD] −→ D

which realizes the refinement in the sense that

β\ : P[D;RD]
∼= RD −→ PD,

and [D;RD] is unique up to diffeomorphism.
If f : Y −→ D is a b-map from a smooth manifold, and if f\ : PY −→ PD

factors through RD, then f factors through a unique b-map f̃ : Y −→ [D;RD].

Remark. The notation is meant to suggest that this is in some sense the generalized
blow-up in the category of (differentiable) ‘binomial varieties’ where the objects are
treated intrinsically. Indeed, we believe that such a category exists and that general-
ized blow-up extends to include arbitrary refinements, not necessarily smooth. This
would give essentially a realization of Kato’s theory of toric singularities [Kat94] in
a category of differentiable spaces with corners.

Proof. Assume that i# : M(D) −→ M(X) is injective, passing if necessary to a
collar neighborhood X ′ ⊂ D as in Lemma 9.7. By Proposition 10.3 it suffices to
show that, given RD −→ PD, there exists a refinement RX −→ PX extending
RD (that is, containing RD as a subcomplex), and that the resulting resolution
β#(D) ⊂ [X;RX ] is well-defined, independent of the choice of such extension.

For the first step the planar refinement of Proposition 4.10 S(PX ,PD) −→ PX
is a (not necessarily smooth) refinement containing PD as a subcomplex. Then by
Lemma 5.7 the refinement RD −→ PD can be extended to a smooth refinement
RX −→ S(PX ,PD), and the composition RX → S(PX ,PD)→ PX is therefore an
extension of RD.

Next suppose R1 and R2 are smooth refinements of PX extending RD, and set

D̃i := β#
i (D) ⊂ [X;Ri] i = 1, 2.

The blow-down β1 : D̃1 −→ D, considered as a map to X, lifts by Theorem 6.4 to

a b-map to [X;R2] whose range lies in D̃2, and vice versa. Thus we obtain b-maps

D̃1 ↔ D̃2

which are generalized blow-down maps and in fact diffeomorphisms by Proposition
8.6 since PD̃1

∼= RD ∼= PD̃2
.

Thus the lift D̃ ⊂ [X;RX ] is independent of the extension RX of RD up to

diffeomorphism, and we define [D;RD] = D̃ to be any such lift.
Recall that a b-map f : Y −→ D induces a monoidal complex morphism f\ :

PY −→ PX which factors through PD as in (9.14). If in addition f\ factors through
RD −→ PD, then it follows that f\ : PY −→ PX factors through any extension
RX , and f admits a unique lift f ′ : Y −→ [X;RX ] by Theorem 6.4. The image

of Y \ ∂Y under f ′ lies in D̃ \ ∂[X;RX ], and therefore by continuity f ′(Y ) ⊂ D̃

so f ′ : Y −→ D̃ is a b-map. Since the resolutions coming from different extensions
are diffeomorphic, it follows from the naturality of the lifted b-maps that

f ′ : Y −→ [D;RD]

is well-defined, independent of the choice of extension. �
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Observe that if PD is already smooth, then the above suggests that D is in some
sense already a smooth manifold, though it may not be smoothly embedded in X.
Indeed, it follows from the proof of Theorem 10.4 that there exists a refinement
RX −→ PX which is trivial on PD, and this gives a ‘minimal’ resolution of D
which is universal in this case.

Theorem 10.5. If D ⊂ X is an interior binomial variety and PD is smooth, then
there exists a universal resolution [D;PD] −→ D, with the property that any b-map
f : Y −→ D factors uniquely through [D;PD]. In particular, any other resolution
of D is a generalized blow-up of this universal resolution.

Proof. From Theorem 10.4, there exists a unique resolution [D;PD] coming from
the trivial refinement Id : PD −→ PD. Since any b-map f : Y −→ D induces a
morphism f\ : PY −→ PD which necessarily factors through this trivial refinement,
f necessarily factors through [D;PD]. If f itself is a resolution, it follows that
the lift f ′ : Y −→ [D;PD] is also diffeomorphic on the interiors, with bijective
b-differential; in other words, it is a generalized blow-down map onto the manifold
[D;PD], and hence a blow-up of this space by Theorem 8.7. �

In fact, though we shall not use this below, it is possible to show that in case
PD is smooth, the spaces D and [D;PD] are actually homeomorphic. Indeed, it is
straightforward to show that the map [D;PD] is a diffeomorphism on the interiors
of boundary faces, hence globally bijective, then since it is continuous and proper
it has a continuous inverse. Thus one can regard Theorem 10.5 as giving a natural
smooth structure on D itself, though this is not generally equal to the restriction
of the smooth structure on X, as illustrated by the example D =

{
x2

1 = x3
2

}
⊂ R2

+,

whose universal resolution is the usual one: [D;PD] = R+ 3 t 7−→ (t3, t2) ⊂ R2
+.

11. Fiber products

We finally bring the theory of the last two sections to bear on the question of fiber
products of manifolds with corners. Recall that in the category of manifolds without
boundary, smooth fiber products do not generally exist. A sufficient condition in
this context is transversality; namely two smooth maps fi : Xi −→ Y , i = 1, 2 are
transversal if (f1)∗(Tp1X1) + (f2)∗(Tp2X2) = TqY for all pairs (p1, p2) ∈ X1 ×X2

such that f1(p1) = f2(p2) = q, and then

(11.1) X1 ×Y X2 = {(p1, p2) ∈ X1 ×X2 ; f1(p1) = f2(p2)} ⊂ X1 ×X2

is a smooth manifold.
We show that the analogous condition of b-transversality in the category of

manifolds with corners implies that X1 ×Y X2 ⊂ X1 × X2 is a union of binomial
subvarieties, each of which is interior to some product of faces. The theory we have
developed then gives sufficient conditions for a fiber product (with the required
universal properties) to exist in the category of manifolds with corners, and gives
a coherent system of resolution by generalized blow-up even when these conditions
are not satisfied.

Note that even when a fiber product does exist in the category of manifolds
with corners, it is not generally equal as a set to (11.1). Indeed, one step in the
construction of the fiber product is to separate the binomial subvarieties of (11.1)
by taking their disjoint union, which is already a kind of resolution. Furthermore,
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as noted in the last section, even when a binomial subvariety has a smooth monoidal
complex, it need not be smoothly embedded in its ambient manifold X1 ×X2.

Definition 11.1. We say two b-maps fi : Xi −→ Y , i = 1, 2 are b-transversal if
for all points pi ∈ Xi such that f1(p1) = f2(p2) = q ∈ Y ,

b(f1)∗
(

bTp1X1

)
+ b(f2)∗

(
bTp2X2

)
= bTqY.

Proposition 11.2 (Iterated transversality). If fi : Xi −→ Y , i = 1, 2 are b-
transversal, then for every pair of Fi ∈M(Xi) such that (f1)#(F1) = (f2)#(F2) =
F ∈M(Y ), the induced b-maps

(fi)|Fi : Fi −→ F are b-transversal.

Proof. Choose pi ∈ Fi such that f1(p1) = f2(p2) = q. Suppose Gi ⊆ Fi are the
maximal codimension boundary faces containing pi (in particular pi ∈ Gi \ ∂Gi),
and set bNpi(Gi;Fi) = bNpiGi/

bNpiFi. These are the b-normal bundles to the Gi
in the manifolds Fi. The b-tangent spaces of the Gi are the quotients bTpiGi =
bTpiXi/

bNpiGi with respect to the natural inclusions bNpiGi ↪−→ bTpiXi, and
since the pi lie in the interior of the Gi,

bTpiGi = TpiGi.
Using a metric to replace the quotients by orthogonal decompositions,

bTpiXi = TpiGi ⊕ bNpi(Gi;Fi)⊕ bNpiFi.

The last two factors constitute bNpiGi, while the first two constitute bTpiFi. The
b-differentials b(fi)∗ have the form

b(fi)∗ =

∗ 0 0
∗ ∗ 0
∗ 0 ∗

 :
TpiGi
⊕bNpi(Gi;Fi)
⊕bNpiFi

−→
TqG
⊕bNq(G;F )
⊕bNqF

with respect to the quotients, where G = (fi)#(Gi), i = 1, 2. In particular, the only
vectors with image in bTqF = TqG ⊕ bNq(G;F ) must lie in the first two factors,
namely TpiGi ⊕ bNpi(Gi;Fi) ≡ bTpiFi, thus if

b(f1)∗ + b(f2)∗ : bTp1X1 × bTp2X2 −→ TqY

is surjective, then

b
(
(f1)|F1

)
∗ + b

(
(f2)|F2

)
∗ : bTp1F1 × bTp2F2 −→ bTqF

must be surjective. �

Proposition 11.3. If fi : Xi −→ Y , i = 1, 2 be b-transverse maps then the set-
theoretic fiber product (11.1) is a union of interior binomial subvarieties

D(F1, F2) = clos (F1 ×Y F2 \ ∂ (F1 × F2)) ⊂ F1 × F2 Fi ∈M(Xi).

Proof. Every point in X1 ×Y X2 lies in the interior of some F1 × F2, hence in
D(F1, F2). It suffices to verify that the D(F1, F2) ⊂ F1 × F2 are either empty or
interior binomial subvarieties. So we may restrict attention to the case Fi = Xi,
and assume that D(X1, X2) is nonempty.
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Suppose Xi 3 pi 7−→ q ∈ Y , and choose coordinates (x′, y′) centered at p1,
(x′′, y′′) centered at p2, and (x, y) = (x1, . . . , xk, yk+1, . . . , yn) centered at q. The
maps fi have the local form

f1 : (x′, y′) 7−→
(
a1(x′, y′)(x′)ν1 , b1(x′, y′)

)
= (x, y), and

f2 : (x′′, y′′) 7−→
(
a2(x′′, y′′)(x′′)ν2 , b2(x′′, y′′)

)
= (x, y).

Near (p1, p2) ∈ X1 × X2, (x, y) = (x′, x′′, y′, y′′) are local coordinates in terms of
which

D(X1, X2) ⊂
{
a1(x′, y′) (x′)

ν1 = a2(x′′, y′′) (x′′)
ν2 , b1(x′, y′) = b2(x′′, y′′)

}
which can be written in the form

D(X1, X2) ⊂ {ci xγi = 1 ; i = 1, . . . , n} , 0 < ci ∈ C∞(X1 ×X2)

where

(ci, γi) =

{(
(a1)i/(a2)i, (ν1 ⊕ 0)i − (0⊕ ν2)i

)
i = 1, . . . , k,(

exp
(
(b1)i − (b2)i

)
, 0
)

i = k + 1, . . . , n.

Thus it only remains to check the independence of the logarithmic differentials
of the cix

γi . Consider the b-map f1 × f2 : X1 ×X2 −→ Y × Y. There is an exact
sequence

0→ bTqY
b∆∗→ bT(q,q) (Y × Y )→ bTqY → 0

where ∆ : Y −→ Y × Y is the diagonal inclusion and the subsequent map is the
difference from bT(q,q) (Y × Y ) = bTqY × bTqY. The condition of b-transversality

condition means that b (f1 × f2)
∗

is injective as a map

b (f1 × f2)
∗

: bT ∗q Y −→ bT ∗(p1,p2)(X1 ×X2).

This can be identified with the map

bf∗1 − bf∗2 : bT ∗q Y −→ bT ∗(p1,p2)(X1 ×X2)

which is similarly injective. Taking the coordinate basis
{
dxi/xi, dyj

}
for bT ∗q Y ,

we obtain that {
(bf∗1 − bf∗2 )dxi/xi, (

bf∗1 − bf∗2 )dyj
}

is independent. Observe however that

(bf∗1 − bf∗2 )dxi/xi = d log
(
(a1x

′ν1)i
)
− d log

(
(a2x

′′ν2)i
)

= d log (cix
γi) , i = 1, . . . , k

and
(bf∗1 − bf∗2 )dyi = d(b1)i − d(b2)i

= d log
(

exp
(
(b1)i − (b2)i

))
= d log (cix

γi) , i = k + 1, . . . , n.

We conclude that D(X1, X2) has a covering by local binomial structures and is
therefore an interior binomial subvariety. �

While X1 ×Y X2 may therefore be a complicated and quite singular space, any
smooth maps factoring through it must actually factor through one of the subvari-
eties D(F1, F2).
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Proposition 11.4. If gi : Z −→ Xi are b-maps from a connected smooth manifold
such that f1 ◦ g1 = f2 ◦ g2 then the maps gi : Z −→ Xi factor through a unique
b-map h : Z −→ D(F1, F2) for some D(F1, F2):

Z

D(F1, F2) X2

X1 Y.

π2

f2π1

f1

g2

g1

h

Proof. Let F1, F2 be the minimal (largest codimension) faces such that gi : Z −→ Fi
are interior b-maps. Then g1× g2 : Z −→ F1×F2 ⊂ X1×X2 is an interior b-map,
and as such

g1 × g2 : Z \ ∂Z −→ F1 × F2 \ ∂ (F1 × F2) .

On the other hand, as a map of sets, g1 × g2 factors through (the set-theoretic)
F1 ×Y F2 by the assumption that f1 ◦ g1 = f2 ◦ g2. Finally, it follows by continuity
and taking the closure of the intersection with the interior of F1 × F2 that

h = g1 × g2 : Z −→ D(F1, F2) ⊂ X1 ×X2

which is by definition a b-map into an interior binomial subvariety. �

Note that the monoidal complex PD(F1,F2) consists of monoids of the form
σG1 ×σG σG2 , where σGi ∈ PFi , and G = (f1)#(G1) ∩ (f2)#(G2). Indeed, if F
is a boundary face of D(F1, F2), given by a component of D(F1, F2) ∩G1 ×G2 for
G1 ×G2 ∈M(X1 ×X2), then

σF = σG1×G2
∩ bNF = σG1

×σG σG2
.

It is generally not true that PD(F1,F2) is equal to PF1 ×PY PF2 as might at first be
expected, sinceD(F1, F2)∩G1×G2 may be empty or may have multiple components,
while σG1

×σG σG2
is nontrivial and appears exactly once in PF1

×PY PF2
. However,

this is true in some cases, as in example 11.8 below.

Theorem 11.5 (Existence of smooth fiber products). If fi : Xi −→ Y are b-
transverse maps and if in addition σF1

×σG σF2
is a smooth monoid whenever G =

(f1)#(F1) ∩ (f2)#(F2) ∈M(Y ) then

˜X1 ×Y X2 =
⊔
F1,F2

[D(F1, F2);PD(F1,F2)]

is a union of smooth manifold with corners and is the universal fiber product.

Remark. Observe that ˜X1 ×Y X2 is not equal to X1×Y X2. In categorical language,
the forgetful functor from manifolds with corners to sets does not preserve fiber

products. However there is a unique map ˜X1 ×Y X2 −→ X1 ×Y X2.

Proof. It follows from Theorem 10.5 that ˜X1 ×Y X2 is a smooth manifold with
corners, which has the requisite universal property by Proposition 11.4. Indeed,
any b-maps gi : Z −→ Xi from a manifold Z which commute with the fi factor
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through a unique map h : Z −→ D(F1, F2) for some D(F1, F2), and this has a
unique lift to the universal resolution [D(F1, F2);PD(F1,F2)]. Finally, the uniqueness

of ˜X1 ×Y X2 up to diffeomorphism follows from the universality. �

In general, even for b-transverse maps, a smooth fiber product does not exist.
Nevertheless, the space ⊔

F1,F2

D(F1, F2)

serves as a fiber product in the category of interior binomial subvarieties with its
attendant resolution theory, which we summarize below.

Theorem 11.6. Let fi : Xi −→ Y , i = 1, 2 be b-transverse maps and set D =⊔
Fi∈M(Xi),i=1,2D(F1, F2)

(a) For every smooth refinement RD −→ PD there is a smooth manifold with
corners [D;RD] with maps hi : [D;RD] −→ Xi forming a commutative square
with fi : Xi −→ Y :

[D;RD] X2

X1 Y.

h2

h1

f1

f2

(b) Any two such resolutions [D;Ri] i = 1, 2 have a mutual smooth resolution,
which is to say a third manifold [D;R0] with maps [D;R0] −→ [D;Ri], i = 1, 2
forming commutative diagrams with the maps [D;Ri] −→ Xj.

[D;R0] [D;R2]

[D;R1] X2

X1 Y

h12

h11

h21

h22

f2

f1

(c) If Z is a manifold with maps gi : Z −→ Xi such that f1 ◦ g1 = f2 ◦ g2, and if
the morphism PZ −→ PD factors through RD −→ PD, then there is a unique
map g : Z −→ [D;RD] such that hi ◦ g = gi.

Z

[D;RD] X2

X1 Y

g

h2

h1

f1

f2

g2

g1
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(d) Given a manifold Z with maps gi : Z −→ Xi such that f1 ◦g1 = f2 ◦g2, for any
resolution [D;RD] −→ D, there exists a generalized blow-up β : [Z;R] −→ Z
and a unique map g : [Z;R] −→ [D;RD] such that hi ◦ g = gi ◦ β:

[Z;R]

Z [D;RD] X2

X1 Y

g
β

h2

h1

f1

f2

g2

g1

Remark. For a manifold Z with maps gi : Z −→ Xi, it is not generally true that
there exists a resolution [D;RD] −→ D through which Z factors, without blowing
up the domain.

Proof. The smooth manifold [D;RD] is well-defined by the results in Section 10,
giving (a). (b) follows from the existence of mutual refinements, letting R0 be a
smooth refinement of R1 ×PD R2. (c) follows from Theorem 6.4, and (d) follows
from Theorem 6.5, letting R be a smooth refinement of PZ ×PD RD. �

Some of the situations we have already considered are interesting examples of
fiber products.

Example 11.7 (A blow-up and a binomial subvariety). Let Y be a smooth manifold
which is included in X as an interior binomial variety, and let X1 = [X;R] −→ X
be a generalized blow-down. Since i : Y ↪−→ X is injective, the fiber product
X1 ×X Y can be identified with β−1(Y ) ⊂ X1. The interior subvariety D(Y,X1) is
just the lift/proper transform β#(Y ), which we showed to be an interior binomial
subvariety in Section 10. Observe, however that β−1(Y ) generally contains other
subvarieties as well, namely F ∩ β−1(G), where F ∈ M(X1) and G ∈ M(D). See
Figure 5.

Example 11.8 (Two blow-ups). We leave it as an exercise for the reader to show
that the fiber product of two blow-down maps βi : [X;Ri] −→ X, i = 1, 2 is a
subvariety with the monoidal complex R1×PXR2. By Proposition 5.3 this is a (not
necessarily smooth) refinement of PX , which can be identified with the intersection
complex R1∩R2 = {σF1

∩ σF2
⊂ σF ; σFi ∈ Ri(F )}. While not smooth in general,

one can construct nontrivial examples where R1×PXR2 is smooth, which therefore
give nontrivial instances of Theorem 11.5.

Example 11.9 (Joyce’s fiber products). In [Joy09], Joyce proposes a category of
manifolds with corners in which the morphisms are what might be called ‘simple
b-maps’ f : X −→ Y which have the property that whenever

f∗IH =
∏

G∈M1(X)

Iα(H,G)
G , H ∈M1(Y )

the α(·, ·) are either zero or one, and furthermore for every H there is at most one
G such that α(H,G) 6= 0. As a consequence the morphisms

f\ : σF −→ σf#(F )
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˜[X;R]×X Y Y

[X;R] X

Figure 5. The fiber product of a generalized blow-down and the
inclusion of a manifold as an interior binomial subvariety.

are always injective, with images which have orthogonal generators {vi} all of whose
components are zero or one.

Joyce defines a transversality condition which is essentially equivalent to b-
transversality (though he does not use the b-differential, his is an iterated transver-
sality condition on boundary faces analogous to Proposition 11.2), and shows that
for two transversal maps in his sense, the set-theoretic fiber product is a manifold
with corners.

This also follows from Theorem 11.5. Indeed, for b-transversal simple b-maps,
the monoids σF1

×σG σF2
can be identified with the intersections σF1

∩σF2
⊂ σG by

injectivity, and with the properties above, these intersections are always smooth.

References

[DCP83] C. De Concini and C. Procesi, Complete symmetric varieties, II; Intersection theory,

Algebraic groups and related topics, Adv. Stud. Pure Math, vol. 6, Kyoto/Nagoya,
1983, pp. 481–513.

[Ful93] W. Fulton, Introduction to toric varieties, Princeton University Press, Princeton,

1993.
[Joy09] D. Joyce, On manifolds with corners, Arxiv preprint arXiv:0910.3518 (2009).

[Kat94] K. Kato, Toric singularities, American Journal of Mathematics 116 (1994), no. 5,

1073–1099.
[KKMSD73] G. Kempf, F. Knudsen, D. Mumford, and B. Saint-Donat, Toroidal embeddings I,

Lecture notes in mathematics, vol. 339, Springer Verlag, 1973.

[Mel] R.B. Melrose, Differential analysis on manifolds with corners, In preparation, par-
tially available at http://math.mit.edu/~rbm/book.html.

[Mel92] , Calculus of conormal distributions on manifolds with corners, International
Mathematics Research Notices 1992 (1992), no. 3, 51–61.

[Ogu06] A. Ogus, Lectures on logarithmic algebraic geometry, Notes available at

http://math.berkeley.edu/~ogus/preprints/log book/logbook.pdf (2006).
[Tei] B. Teissier, Monomial ideals, binomial ideals, polynomial ideals, Trends in commu-

tative algebra 51, 211–246.



GENERALIZED BLOW-UP OF CORNERS AND FIBER PRODUCTS 55

Department of Mathematics, Brown University

E-mail address: ckottke@math.brown.edu

Department of Mathematics, Massachusetts Institute of Technology
E-mail address: rbm@math.mit.edu


	Introduction
	1. Manifolds with corners
	2. Monoids
	3. Generalized blow-up of Rn+
	4. Monoidal complexes
	5. Fiber products of complexes
	6. Generalized blow-up of a manifold with corners
	7. Ordinary blow-up and examples
	8. Characterization of generalized blow-down maps
	9. Binomial subvarieties
	10. Resolution of binomial subvarieties
	11. Fiber products
	References

