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Abstract. For a compact manifold with boundary X we introduce the n-fold
scattering stretched product Xn

sc which is a compact manifold with corners
for each n; coinciding with the previously known cases for n = 2; 3: It is
constructed by iterated blow up of boundary faces and boundary faces of
multi-diagonals in Xn: The resulting space is shown to map smoothly, by
a b-�bration, covering the usual projection, to the lower stretched products.
It is anticipated that this manifold with corners, or at least its combinatorial
structure, is a universal model for phenomena on asymptotically 
at manifolds
in which particle clusters emerge at in�nity. In particular this is the case for
magnetic monopoles on R3 in which case these spaces are closely related to
compacti�cations of the moduli spaces with the boundary faces mapping to
lower charge idealized moduli spaces.
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Introduction

One of the natural tools for the study of asymptotically translation-invariant
phenomena on Euclidean spaces is the passage to the `radial compacti�cation'
X = Rm = Rm [ Sm�11 : This translates asymptotic behaviour to behaviour at
the boundary of X and allows similar phenomena to be considered on arbitrary
compact manifolds with boundary, in terms of the intrinsic scattering structure at
the boundary. In this approach, emphasized in [4], typical kernels and functions,
such as Euclidean distance, d(z1; z2)

2 = jz1� z2j
2 which are quite singular near the
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corner of the compact space X�X are resolved to `normal crossings', i.e. conormal
singularities, by lifting to the the scattering stretched product X2

sc: This space is
obtained by iterated real blow-up of X2: The corresponding triple product X3

sc

has also been discussed and here we consider the `higher scattering products' of
an arbitrary compact manifold with boundary. These inherit the permutation
invariance of Xn and, apart from their construction, the most important result
here is that the projections onto smaller products also lift to be smooth b-�brations,
giving

(I.1) Xn
sc

���
//

���
//
Xn�1
sc : : : X4

sc

//
//
//
//
X3
sc

//
//
// X

2
sc

//
// X:

It is our basic contention that the spaces Xn
sc; despite the apparent complexity or

their de�nition, are universal for asymptotically translation-invariant phenomena.
There is of course a relation between the spaces considered here and the seminal

work of Fulton and MacPherson, [1]. This relationship is strongest at a combinatorial
level but the di�erences are also quite substantial. Apart from the distinction
between real and complex spaces in the two settings, it should be noted that all
the blow ups carried out here are in the boundary. As a result the space Xn

sc can
be retracted to Xn and in this sense the topology has not changed at all. These
spaces are designed to give `more room' for geometric and analytic objects.

One justi�cation for the introduction of these `higher' stretched products is
that they are anticipated to serve as at least combinatorial models for a natural
compacti�cation of the moduli space of magnetic monopoles on R3 and allow the
detailed asymptotic description of the hyper-K�ahler metric. This will be shown
elsewhere and is closely related to the existence of the maps in (I.1). Given the
permutation-invariance of the spaces, the existence of these maps can be reduced
to one case in each dimension and then corresponds to a commutative diagramme

(I.2) Xn
sc

//

�n;sc

%%

��

Xn�1
sc �X // Xn�1

sc

��

Xn
�n

// Xn�1

where �n;sc is the new map and �n is projection o� the last factor. In fact this lifted
map is a b-�bration, meaning in particular that push-forward under it of a function
with complete asymptotic expansion (so in essence `smooth' up to the boundary
faces) again has such an expansion.

In the rest of this Introduction, we give an outline of this construction, deferring
the proofs to the main body of the article. Given their fundamentally combinatorial
nature the constructions here also extend to the more general `�bred-cusp' con�guration
spaces Xn

�; corresponding to the double and triple spaces introduced by Mazzeo and
the �rst author in [2]. These arise naturally when @X comes with a �bration over
a space Y: The scattering case appears when this �bration is the identity map
@X �! @X:

The main issue in what follows is the fundamental fact about iterated blow-ups,
which is that di�erent orders generally lead to non-di�eomorphic spaces. Thus while
it is clear which submanifolds of the boundary must be blown up in the construction
of Xn

sc; the order in which this is done has to be speci�ed. Moreover, having
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determined this order, the existence of the map �n;sc in (I.2) corresponds to the
possibility of obtaining the same space by a performing these blow ups in a di�erent
order. In a manifold with corners, M; such as Xn and the manifolds obtained by
subsequent blow up from it, admissible `centres' of blow up, H � M; which is
to say manifolds which have a collar neighbourhood, are called p-submanifolds (for
product-) and are always required here to be closed. The blow up of a p-submanifold
is then always possible and is denoted, with its blown-down map,

(I.3) � : [M ;H] �!M:

Thus we are interested in the circumstances in which two p-submanifolds H1 and
H2 of a manifold with corners commute in the sense that the natural identi�cation
of the complement of the preimage of H1 [H2 in the blown up spaces extends to
a smooth di�eomorphism allowing us to identify

(I.4) [M ;H1;H2] = [M ;H2;H1]:

Here, and throughout the paper, we have identi�ed submanifolds with their lifts to
the blow-up. The lift of H2 to [X;H1] is the closure in [X;H1] of �

�1
1 (H2 n H1)

if this is non-empty and is ��11 (H2) in the opposite case (i.e. if H2 � H1). In
particular to conclude (I.4) we need to know that each lifts to be a p-submanifold
under the blow-up of the other. In fact, as is well-known, H1 and H2 commute in
this sense if and only if they are either transversal (including the case that they are
disjoint) or comparable, meaning either H1 � H2 or H2 � H1: To prove our results,
we need to show that whole families of blow-ups commute and this is where the
combinatorial complexity lies.

I.1. Boundary products. The `scattering structure' on a manifold with corners
can be identi�ed with the intrinsic Lie algebra of `scattering vector �elds' consisting
precisely of the products fV where V 2 Vb(X); meaning that V is a smooth vector
�eld which is tangent to the boundary, and f 2 C1(X) vanishes at the boundary.
The larger Lie algebra Vb(X) is the `boundary (b-) structure'; it can also be thought
of as representing the asymptotic multiplicative structure near the boundary or
geometrically as the `cylindrical end' structure on the manifold.

Not surprisingly then, our construction begins from the corresponding n-fold
stretched b-product Xn

b : This resolves, near the diagonal in the boundary, the
pairwise distance functions (and of course much more besides) for a cylindrical-end
metric, also called a b-metric, on X: Assuming, for simplicity and from now on,
that @X is connected, Xn

b is obtained from Xn by the blow up of all boundary
faces.

In order to describe the construction, consider the collection of all boundary
faces, M(Xn); of Xn: Blowing up boundary hypersurfaces of a manifold with
corners does noting, so let Bb �M(Xn) be the subset of boundary faces of Xn of
codimension at least 2; if @X is not connected Bb is a smaller collection.

As standard notation we shall not distinguish between boundary faces of Xn and
their lifts to blown up versions of the manifold, except where absolutely necessary.

De�nition I.1. The b-stretched products of X; Xn
b are de�ned to be

(I.5) Xn
b = [Xn;Bn;Bn�1; : : : ;B2]:

where Br �M(Xn) is the collection of boundary faces of codimension r:
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Note the contracted notation in (I.5) for iterated blow ups. Since we have not
speci�ed an ordering of elements within each of the families Br; it is implicit that
the result does not depend on these choices. In fact at the stage at which the
elements of Br are blown up they are disjoint so the order is immaterial and Xn

b

is well-de�ned. It also follows from this that the permutation group lifts to Xn
b as

di�eomorphisms.
Consider the analogue of (I.2) in this simpler setting:

(I.6) Xn
b

//

�n;b

&&

��

Xn�1
b �X // Xn�1

b

��

Xn
�n

// Xn�1

To show the existence of �n;b we divide Br into two pieces, the vertical and non-
vertical boundary faces (with respect to the projection �n): Namely Bvr consists of
those boundary faces B of Xn of codimension r such that the n-th factor of B is
X: Similarly, Bnvr consists of those boundary faces B of Xn of codimension r such
that the n-th factor of B is @X: Thus B 2 Bvb if B = B0 �X with B0 2M(Xn�1);
i.e. B = �n(B)�X: Otherwise the nth factor is necessarily @X and then B 2 Bnvb :
Equivalently, the vertical boundary faces are those that are unions of �bres of �n:

Now observe that

(I.7) Xn�1
b �X = [Xn;Bvn�1; : : : ;B

v
2 ]

since the last factor of X is unchanged throughout. Thus the existence of �n;b in
(I.6) follows if we show that the non-vertical boundary faces can all be commuted
to come last and hence that

Xn
b = [Xn�1

b �X;Bnvn ;Bnvn�1; : : : ;B
nv
2 ];

so exhibiting Xn
b is an iterated blow-up of Xn�1

b �X:

I.2. Multi-diagonals. The spaceXn
sc is constructed fromXn

b by the blow up of the
intersections of the (lifts of the) `multi-diagonals' in Xn with the various boundary
components of Xn

b ; again with strong restrictions on the order in which this is done.
The total diagonal Diag � Xm is di�eomorphic to X and the simple diagonals in
Xn are the images of Diag(Xm) � Xn�m under the factor permutation maps.
The multi-diagonals (later called simply diagonals) are the intersections of these
simple diagonals. Since we are assuming the boundary of X to be connected, we
can identify a simple diagonal, involving equality for some collection of factors,
with the boundary face B 2 B(2) which has a factor of @X exactly in each of
the factors involving equality. Then the multi-diagonals Db can be identi�ed with
transversally-intersecting subsets b � B(2); meaning that di�erent elements do not
have a boundary factor in common.

It is important to understand that the diagonals are not p-submanifolds in Xn:
Nor, in general, are their boundary faces (which is what we are most interested
in). Indeed there are always points analogous to the boundary of the diagonal in
[0; 1]2 and hence they do not have a local product structure consistent with that



SCATTERING CONFIGURATION SPACES 5

of the manifold. However, the e�ect of the construction above is to resolve these
`singularities'.

(I.8) The lift from Xn to Xn
b of each Db is a p-submanifold

Now, the lift of Db will generally meet many boundary faces of Xn
b : In particular it

meets the lift of every boundary face B 2 B(2) with B � \b and these intersections
are the `boundary diagonals' which are to be blown up. Thus, (recalling that the
lift of B 2 B(2) to X

n
b is also denoted simply as B) set

(I.9) H = fHB;b = B \Db � Xn
b ;B 2 B with B � \bg:

To blow up all these submanifolds we need to choose an order and this is required
to respect the `lexicographic' partial ordering of H

(I.10) HA;a 6 HB;b () Da � Db or if Da = Db then A � B:

Then the scattering con�guration space Xn
sc is de�ned to be

(I.11) Xn
sc = [Xn

b ;H]:

with blow up in such an order. Of course it needs to be checked that the result
is independent of the choice of order consistent with (I.10). As in the case of
Xn
b follows from the fact that the changes in order correspond to transversal

intersections (including disjointness).
As noted above, these results are already known in the cases n = 2 and n =

3: Two new phenomena make the general case more complicated. The �rst is
the necessity to blow-up multi-diagonals with the �rst non-trivial multi-diagonal
occuring for n = 4: The second is the issue of the ordering of H:

I.3. Stretched projections. As noted above, the existence of the `stretched projections'
in (I.1) and (I.2) is the crucial property of the spaces Xn

sc: The proof of their
existence is in essence the same as that outlined above, see (I.7), for the simpler
�n;b maps but the required commutation results are necessarily more intricate. In
particular we need to consider various spaces intermediate between Xn and Xn

sc

which arise in this argument. For instance, the p-submanifold HA;a � Xn
b actually

makes sense already in [Xn; a] from which it can be lifted under further blow up.
These issues are discussed extensively in the article below, here we ignore such
niceties to explain the procedure used later.

The notion of vertical and non-vertical for boundary faces with respect to the
last factor discussed above extends to the boundary diagonals HA;a: First extend
it to transversal subsets a � B(2) where a is vertical if and only if \a is vertical.
Thus

(I.12)

Hv;v = fHA;a 2 H; a and B are verticalg;

Hnv;v = fHA;a 2 H; a is vertical but B is non-verticalg;

Hnv;nv = fHA;a 2 H; a and B are non-verticalg:

Notice that A � \a in the de�nition of HA;a so if a is non-vertical, then so is A:
From the de�nitions, it is clear that we have

(I.13) Xn�1
sc �X = [Xn;Bv;Hv;v]

with the appropriate order on the blow ups. So the task is to recognize Xn
sc as an

iterated blow-up of this space. To do this, we �rst show that all the `purely non-
vertical' boundary diagonals can be blown down so that, as always with appropriate
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orders on the collections of centres,

Xn
sc = [Xn

b ;Hv;v [Hnv;v;Hnv;nv]

= [Xn�1
b �X;Bnv;Hv;v [Hnv;v;Hnv;nv]:

Thus all the boundary faces of non-vertical diagonals are �rst removed.
To proceed further, we remove the `last' (which means originally largest) boundary

face from B 2 Bnv by showing that it can be commuted past all the subsequent
boundary diagonals. Then all the HB;a corresponding to this boundary face are
commuted out and blown down. Then this procedure is iterated, at each step
removing the last remaining non-vertical boundary face and then the boundary
diagonals contained in it.

The rest of this article is devoted to providing a rigorous discussion of this outline.
In x1 material on manifolds with corners and blow up is brie
y recalled and in x2 the
e�ect of the blow up of boundary faces is considered. This is extended in x3 to get
a basic result on the reordering of boundary blow up, which is used extensively in
the remainder of the article. In particular in x4 the results described above for the
boundary con�guration spaces Xn

b are derived. The diagonals and their resolution
is examined in x5 and the properties of these submanifolds are slightly abstracted
in x6 to aid the discussion of iterative blow up. Collections of boundary diagonals
are described in x7 and used to construct the spaces Xn

sc in x8. Three results on the
reordering of blow ups of boundary diagonals are given in x9 and these are used to
carry out the construction of the stretched projections in x10. A simple application
of these spaces in x11 is inserted to indicate why these resolutions should prove
useful.

1. Manifolds with corners

Since we make heavy use of conventions for manifolds with corners , we give a
brief description of the basic results which are used below. These can also be found
in the [3].

1.1. De�nition and boundary faces. By a manifold with corners we shall mean
a space modelled locally on products [0;1)k �Rn�k with smooth transition maps
(meaning they have smooth extensions across boundaries.) For such a space, M;
C1(M) is well-de�ned by localization and at each point the boundary has a de�nite
codimension, corresponding to the number, k of functions in C1(M) vanishing at
the point which are non-negative nearby and have independent di�erentials. We
will insist that the boundary hypersurfaces, the closures of the sets of codimension
1; be embedded. This corresponds to the existence of functions �i 2 C

1(M) which
are everywhere non-negative and have d�i 6= 0 on f�i = 0g and such that @M =
f
Q

i �i = 0g: The connected components of the sets f�i = 0g are the boundary
hypersurfaces, the collection of which is denoted M1(M): The components of the
intersections of these hypersurfaces form boundary faces, all are closed and are
the closures of their interiors the points of which have �xed codimension; thus
Mk(M) consists of all the (connected) boundary faces of (interior) codimension k
and M(k)(M) denotes the collection of codimension at least k: By convention, we
shall include M 2M(M) as a `boundary face of codimension zero'.

Near a point ofM; where the boundary has codimension k; it is generally natural
to use coordinates adapted to the boundary. That is, local coordinates xi � 0;
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i = 1; : : : ; k and yj ; j = 1; : : : ; n�k where the boundary hypersurfaces through the
given point are the fxi = 0g:

If B1; B2 2 M(M) then their intersection is a boundary face (possibly empty)
but their union is not. However the union is contained in a smallest boundary face
which we will denote

(1.1) B1 uB2 =
\
fB 2M(M);B � B1 [B2g:

1.2. p-submanifolds. Embedded submanifolds of a manifold with corners can be
rather more complicated locally than in the boundaryless case. The simplest type
is a p-submanifold. This is a closed subset Y � M which has a local product
decomposition near each point, consistent with a local product decomposition ofM:
An interior p-submanifold (not necessarily contained in the interior) is distinguished
by the fact that locally in a neighbourhood U of each of its points there are l
independent functions Zi 2 C1(U) which de�ne it and which are independent of
the local boundary de�ning functions, i.e. it is de�ned by the vanishing of interior
coordinates. A general p-submanifold is an interior p-submanifold of a boundary
face. Any p-submanifold Y of M can be locally put in standard form near a point
p in the sense that there are adapted coordinates xi; yj ; based at p such that in the
coordinate neighbourhood U

(1.2) U \ Y = f(x; y) 2 U ;xj = 0; 1 � j � l; yi = ci for i 2 Ig

where I is some subset of the index set for interior coordinates and the ci are
constants.

1.3. Blow-up and lifting of manifolds and maps. The (radial) blow up of a p-
submanifold is always well-de�ned and yields a new compact manifold with corners
[M ;Y ] with a blow-down map � : [M ;Y ] �! M which is a di�eomorphism from
the complement of the preimage of Y to the complement of Y:

Lemma 1.1. Under blow up of a boundary face of a manifold with corners, any p-
submanifold H lifts to a p-submanifold which is contained in the lift of its boundary-
hull, the smallest boundary face containing H:

Note that the lift, also called the `proper transform', of a subset S � M under
the blow up of a centre, B � M; which is required to be p-submanifold for this
to make sense, is the subset of [M ;B] which is either the inverse image ��1(S); if
S � B; or else the closure in [M ;B] of ��1(S n B) if it is not. Of course this is a
useful notion only for sets which are `well-placed' with respect to B:

1.4. Comparable and transversal submanifolds. In the sequel the intersection
properties of boundary faces, and later manifolds related to multi-diagonals, play
an important role. The manifolds we consider here will always intersect cleanly, in
the sense of Bott. That is, at each point of intersection they are modelled by linear
spaces and their intersection is therefore also a manifold. This is immediate from
the de�nition for boundary faces and almost equally obvious for the diagonal-like
manifolds we consider later. We will say that two such manifolds, and this applies
in particular to boundary faces, H1 and H2; of M are

� Comparable if H1 � H2 or H2 � H1:
� Transversal, written H1 t H2 if N

�B1 and N�B2 are linearly independent
at each point of intersection.

� Neither comparable nor transversal, abbreviated to `n.c.n.t.' otherwise.
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More generally a collection of submanifolds Hi; i = 1; : : : ; J is transversal if at
every point p of intersection of at least two of them, the conormals N�

pHi for those
i for which p 2 Hi are independent. This in particular implies that the intersection
is a manifold.

If B1 t B2 are two p-submanifolds of M then the lift of B2 to [M ;B1] which is
de�ned above to be the closure of B2 n B1 in the blown up manifold, is also equal
to the inverse image, ��1(B2):

1.5. b-maps and b-�brations. A general class of maps between manifolds with
corners which leads to a category are the b-maps. These are maps f : M �! M 0

which are smooth in local coordinates and have the following additional property.
Let �0i be a complete collection of boundary de�ning functions on M 0 and �j a
similar collection on M: Then there should exist non-negative integers �ij and
positive functions ai 2 C

1(M) such that

(1.3) f��0i = ai
Y
j

�
�ij

j :

Such a map is b-normal if for each j; �ij 6= 0 for at most one i: This means that
no boundary hypersurfaces of M is mapped completely into a boundary face of
codimension greater than 1 in M 0:

The real vector �elds on M which exponentiate locally to di�eomorphisms of M
are the elements of Vb(M); meaning smooth vector �elds onM which are tangent to
all boundary faces. These form all the smooth sections of a natural vector bundle
bTM over M and each b-map has a b-di�erential at each point f� : bTpM �!
bTf(p)M

0: A b-map is said to be a b-submersion if this map is always surjective.
Blow-down maps are always b-maps and for boundary faces they are b-submersions
but not for other p-submanifolds. A b-map which is both a b-submersion and b-
normal is a b-�bration; blow down maps are never b-�brations. With the notion
of smoothness extended to include classical conormal functions on a manifold with
corners, b-�brations are the analogues of �brations in the sense that such regularity
is preserved under push-forward.

2. Boundary blow up

Each boundary face B 2M(M) of a manifold with corners is, as a consequence
of the assumption that the boundary hypersurfaces are embedded, a p-submanifold.
Thus, it is always permissible to blow it up. If B has codimension one (or zero), this
does nothing. If k = codim(B) � 2; i.e. B 2 M(2)(M); one gets a new manifold
with corners, [M ;B]; with one new boundary hypersurface �([M ;B]) { which is the
positive 2kth part of a trivial (k�1)-sphere bundle over B; k being the codimension
of B: This fractional-sphere bundle is the inward-pointing part of the normal sphere
bundle to B and is trivialized by the choice of a de�ning function for each of the
boundary hypersurfaces of M containing B: More generally, the other boundary
hypersurfaces of [M ;B] are in 1-1 correspondence with the boundary hypersurfaces
of M where again the assumption that the boundary hypersurfaces are embedded
means that the connectedness cannot change on blow up of B: More generally, the
boundary faces of [M ;B] not contained in �([M ;B]) are the lifts (closures of inverse
images of complements w.r.t. B) of the boundary faces of M not contained in B:
The boundary faces of [M ;B] contained in �([M ;B]) are either preimages (also
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called lifts) of boundary faces of B { hence are the restrictions of the fractional-
sphere bundles to boundary faces of B { or else are proper boundary faces of the
fractional balls over one of these faces (including of course B itself). The latter ones
are `new' boundary faces, not the lifts of old ones. We identify, at least notationally,
each boundary face B0 of M with its lift to a boundary face of [M ;B]; even though
the latter may be either a blow-up of B0; if B0 is not contained in B initially, or a
bundle over B0 if it is { in which case the dimension has increased.

For later reference we examine the e�ect of the blow up of a boundary face on
the intersection of two others.

Lemma 2.1. Consider two distinct boundary faces B1 and B2 in a manifold with
corners M and their lifts to [M ;B] where B 2M(2)(M) :

(i) If B1 t B2 then their lifts are transversal in [M ;B]; they are disjoint if and
only if B1 \B2 � B but B1 nB 6= ; and B2 nB 6= ;:

(ii) If B1 � B2 in M; then their lifts to [M ;B] are never disjoint, they are
comparable in [M ;B] if and only if

(2.1)

B1 nB 6= ;;

B1 � B and B t B2

or B2 � B;

the lifts are transversal if

(2.2) B1 � B ( B2

and are otherwise n.c.n.t. (that is if B = B2 or B1 � B but B and B2 are
neither transversal nor is B2 � B):

(iii) If B1 and B2 are n.c.n.t. in M then their lifts are never comparable, are
disjoint in [M ;B] if and only if

(2.3) B1 \B2 � B and both B1 nB 6= ; and B2 nB 6= ;;

they lift to meet transversally if and only if (using (1.1))

(2.4) either B1 � B ( B1 uB2 or B2 � B ( B1 uB2

and otherwise their lifts are n.c.n.t..

Proof. When discussing the local e�ect of the blow up of a boundary face we may
always choose adapted coordinates xi � 0; yj ; in fact the `interior coordinates' yj
play no part in the discussion here.

There exist subsets I, I1, I2 of f1; : : : ; kg such that

(2.5) Bi = fxj = 0 : j 2 Iig; i = 1; 2; B = fxj = 0 : j 2 Ig:

The three parts of the Lemma correspond to the mutually exclusive cases where (i)
I1 \ I2 = ;; (ii) I1 � I2 or I2 � I1; (iii) neither of these conditions hold. Of course
we only need consider the �rst of the cases in (ii).

Near any point of the front face of [X;B] there are adapted coordinates with the
interior coordinates, yj ; lifted from X, and the boundary coordinates xj replaced
by

(2.6) tB =
X
i2I

xi; and tj =

(
xj=tB if j 2 I

xj if j 62 I:
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Note that

(2.7)
X
j2I

tj = 1:

Here tB de�nes the new front face, i.e. the lift of B: The lifts ~Bi of the Bi to
[X;B] are given by

(2.8) ~Bi =

(
ftB = 0; tj = 0; j 2 Ii n Ig if Bi � B () I � Ii

ftj = 0; j 2 Iig if Bi nB 6= ;; () I 6� Ii:

We can now examine the intersection properties of ~B1 and ~B2.

(a) First assume B1 and B2 are both contained in B. Then from (2.8) it is clear

that the lifts ~B1 and ~B2 are never transversal, since tB ; the de�ning function
of the front face, vanishes on the both of them. They are clearly comparable
if and only B1 and B2 are comparable and are otherwise n.c.n.t..

(b) Second, suppose B1 � B but B2 n B 6= ;. From (2.8) we see that ~B1 and
~B2 meet transversally if and only if I1 n I and I2 are disjoint. The lifts can

only be comparable if ~B1 � ~B2 and this occurs if and only if I1 n I contains
I2: Otherwise, ~B1 and ~B2 are n.c.n.t..

(c) Finally, suppose that B1 n B and B2 n B are both non-empty. Then each
~Bi is given by the vanishing of the tj for j 2 Ii: Now I1 [ I2 � I if and

only if B1 \ B2 � B: Hence ~B1 and ~B2 are disjoint in this case in view of
(2.7). Otherwise, the transversal, comparable or n.c.n.t.according as this is
the case for the original submanifolds B1 and B2:

It is now a simple matter to use these observations to prove the Lemma. Consider
part (i) in which B1 and B2 are transversal, or equivalently, I1 and I2 are disjoint.

Running through cases above, (a) cannot arise and in (b) and (c) ~B1 and ~B2 are
transversal and are disjoint exactly as claimed.

Next consider part (ii) of the Lemma: without loss of generality, suppose B1 �
B2, so I1 � I2: Then in case (a) the lifts are comparable if both are contained
in B and according to (c) they are comparable if both are not contained in B:
Comparable lifts arise in case (b) if I2 � I1 n I; or equivalently if I and I2 are
disjoint subsets of I: Thus the lifts are comparable in this case if B1 � B2; B1 � B;
B and B2 are transversal.

We also see from (b) that the lifts of ~B1 and ~B2 are transversal if and only if
I1 \ I2 n I \ I2 = ; or equivalently if I2 � I: This proves (2.2).

Finally consider part (iii) of the Lemma. Under case (a) the lifts are always
n.c.n.t.. Under case (b), the lifts are transversal if and only if (I1 n I)\ I2 = ;; that
is, if and only if I1\I2 � I\I2: Since I � I1, this just means that I1\I2 � I which
gives (2.4). Otherwise, they are n.c.n.t.. Under (c), the lifts are n.c.n.t.unless the
B1 \B2 � B; in which case they are disjoint, giving (2.3). �

We are most interested in the transversality of the intersections of the lifts,
meaning either they are disjoint or meet transversally.

Corollary 2.2. If B1 and B2 are distinct boundary faces of a manifold with corners
and B 2M(2)(M) then B1 and B2 are (i.e. lift to be) transversal in [M ;B] if and
only if they are initially transversal or if not then

(2.9) B1 � B ( B1 uB2 or B2 � B ( B1 uB2:
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Two boundary faces lift to be disjoint if

(2.10) B1 \B2 � B and both B1 nB 6= ; and B2 nB 6= ;:

Note that if B1 t B2 then B1 uB2 =M:

3. Intersection-orders

Since boundary faces lift to boundary faces under blow up of any boundary face,
any collection, C � M(M); in any manifold with corners, can be blown up in any
preassigned order, leading to a well-de�ned manifold with corners. Of course this
actually means that after the �rst blow-up the lift of the second boundary face is
blown up, and so on. Let the order of blow up be given by an injective function

(3.1) o : C �! N
where for simplicity we also assume that the range is an interval [1; N ] in the
integers. Denote the total blow-up as [M ; C; o]; in general the choice of order does
make a di�erence to the �nal result but the interior is always canonically identi�ed
with the interior of M:

From now on we will assume that the initial collection of boundary faces, C; of
M which are to be blown up is closed under non-transversal intersection in M :

(3.2) B; B0 2 C �M(2)(M) =) B t B0 or B \B0 2 C:

It should be noted that this is a condition in M and can fail for the lifts under blow
up of boundary faces in that the intersection of the lifts may not be equal to the
lift of the intersection.

Lemma 3.1. If C � M(M) is closed under non-transversal intersection then
it is a disjoint union of collections Ci � C which are also closed under non-
transversal intersection, each contain a unique minimal element, and are such that
all intersections between elements of di�erent Ci are transversal.

These Ci may be called the transversal components of C:

Proof. Consider the minimal elementsAi 2 C; those which contain no other element.
These must intersect transversally, since otherwise the intersection would be in C
and they would not be minimal. Then set Ci = fF 2 C;F � Aig; these are
certainly closed under non-transversal intersection. On the other hand the de�ning
functions for elements of Ci are amongst the de�ning functions for Ai: It follows that
the di�erent Ci are disjoint, since their elements cannot have a de�ning function in
common, and also that intersections between their elements are transversal. �

De�nition 3.2. An order o on a collection C of boundary faces is an intersection-
order if for any pair B1 and B2 2 C which are not transversal or comparable,
B1 \B2 comes earlier than at least one of them, i.e.

(3.3) B1; B2 2 C =) B1 t B2 or o(B1 \B2) � max(o(B1); o(B)2)):

Of course if B1 and B2 are comparable then the intersection is equal to one
of them so (3.3) is automatic. On the other hand if B1 and B2 intersect non-
transversally then (3.3) implies that the intersection comes strictly before the second
of them with respect to the order. We will not repeatedly say that C is closed under
non-transversal intersection, just that it has an intersection-order which is taken to
imply the closure condition.
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De�nition 3.3. An order o on a collection C of boundary faces is a size-order if the
codimension is weakly decreasing with the order, i.e.

(3.4) o(B1) < o(B2) =) codim(B1) > codim(B2):

Clearly a size-order is an intersection-order since the intersection of n.c.n.t.
boundary faces necessarily has larger codimension than either of them and so must
occur �rst in the order of the three.

Lemma 3.4. The iterated blow up in a manifold with corners M of a collection of
boundary faces C; which is closed under non-transversal intersection, with respect to
any two size orders gives canonically di�eomorphic manifolds, with the di�eomorphism
being the extension by continuity from the identi�cations of the interiors.

Proof. The �rst element, B; in the order necessarily has maximal codimension so
cannot contain any other. Thus all lifts of elements of C0 = C n fBg are closures
of complements with respect to B; their lifts therefore have the same dimension as
before and hence in the induced order on C0 in [M ;B] the codimension is weakly
decreasing.

Now, we proceed to show that the lift of the elements of C0 to [M ;B] is closed
under non-transversal intersection. So, consider two distinct elements B1; B2 2 C

0:
If they are comparable then B cannot contain the smaller so by, Lemma 3.1 they
lift to be comparable. If they are transversal then again by Lemma 2.1 they lift to
be transversal. Finally, suppose B1 and B2 are n.c.n.t.. Since (2.4) cannot arise
here, either (2.3) holds, and hence B1 \B2 = B and they lift to be disjoint, or else
B1\B2 nB 6= ; and they lift to be n.c.n.t. with intersection the lift of B1\B2 2 C

0:
Thus after the blow up of the �rst element of C the remaining elements lift

to a collection of boundary faces closed under non-transversal intersection and in
size-order. Now we can proceed by induction on the number of elements of C and
hence assume that we already know that the result of the blow up of C0 in [M ;B]
is independent of the size-order. If B is the only element of maximal codimension
in C the result follows. If there are other elements of the same codimension then
by Lemma 3.1 they meet B transversally. Thus, the order of B and the second
element can be exchanged. Applying discussion above twice it follows that the
same manifold results from blow up in any size-order on C: �

We proceed to show that the the same manifold results from the blow up in any
intersection-order.

Proposition 3.5. The iterated blow up of M; [M ; C; o]; of an intersection-ordered
collection of boundary faces is a manifold with corners independent of the choice of
intersection-order in the sense that di�erent orders give canonically di�eomorphic
manifolds, with the di�eomorphism being the extension by continuity from the
identi�cations of the interiors.

Proof. Let o be the order in the form (3.1). For such an order we de�ne the defect
to be

(3.5) d(o) =
X
J2C

o(J)maxf(codim(J)� codim(I))+; o(I) < o(J)g:

Here the codimensions are as boundary faces of M; not after blow-up. Thus the
defect is the sum over all sets of the maximum di�erence (if positive) between the
codimensions of the `earlier' sets and of that set, weighted by the position of the
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set. Thus, for a size-order the defect vanishes, because all these di�erences are
non-positive, otherwise it is strictly positive.

For a general intersection-order take the �rst set, with respect to the order, I;
such that its successor, J; had larger codimension in M; and consider the order o0

obtained by reversing the order of I and J: We claim that this is an intersection-
order and of strictly smaller defect, and that [M; C; o] = [M; C; o0].

The last point will be checked �rst. Certainly I cannot be the last element
with respect to the order. Note also that the boundary faces up to, and including,
I are in size-order, by the choice of I: Let P � C be the subcollection of strict
predecessors of I: Let M 0 be the manifold obtained from M by blowing up P: In
order to be able to commute the lifts, ~I and ~J; of I and J to M 0; we need to rule
out the possibility that they are n.c.n.t.; Lemma 2.1 will be used repeatedly for
this.

Suppose �rst that I and J are comparable in M: Then J � I: According to
Lemma 2.1, such a comparable pair of submanifolds can remain comparable, can
become transversal, or can become n.c.n.t.in M 0: If they ever become transversal,
then they remain so under all subsequent blow-ups. Now comparable submanifolds
B1 � B2 can only become n.c.n.t.under a blow-up with centre B satisfying B1 �
B = B2 or B1 � B; B nB2 6= ;. Since the centres of the blow-ups leading toM 0 are
all of smaller dimension than I; which here plays the role of B2; we see that these
conditions can never be met by elements B 2 P: So if I and J are comparable in
M; their lifts to M 0 cannot be n.c.n.t..

The only remaining possibility is that I and J are n.c.n.t.inM: In this case, I\J
has strictly dimension than I and so, because o is an intersection-order, this must
be an element of P: Moreover, because P is in a size-order, the lifts of I and J
meet in the lift of I \J until this manifold is blown up, at which point they become
disjoint and then remain disjoint under all subsequent blow-ups. This shows that
~I and ~J commute in M 0:
To show that o0 is an intersection-order, consider an n.c.n.t.pair A; B: The only

possibility of a failure of the intersection-order condition for o0 is if I was the
intersection and J the second element, in the order, of such a pair. However this
means that, initially in M; codim(I) > codim(J) and from the discussion above,
this cannot occur.

Now, to compute the defect of o0 observe that each of the sets which came after J
initially still have the same overall collection of sets preceding them, and the same
order, hence make the same contribution to the defect. The same is true for the
sets which preceded I: Thus we only need to recompute the contributions from I
and J after reversal. In its new position, J has one less precedent, viz. I now comes
later, so the set of di�erences codim(J)� codim(I 0) where o(I 0) < o0(J) is smaller
and the order of J has gone down, so it makes a strictly smaller contribution.
The contribution of I was zero before and is again zero, since the only extra set
preceding it, namely J; has larger codimension than it.

Thus this `move' strictly decreases the defect. Repeating the procedure a �nite
number of times (note that after the �rst rearrangement, J might well be the `new
I') must reduce the defect to 0: Hence the blow up for any intersection-order is
(canonically) di�eomorphic to one for which codim(B) is weakly decreasing, i.e.
to a size-order and hence by Lemma 3.4 all intersection-orders lead to the same
blown-up manifold. �
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De�nition 3.6. We denote by [M; C] the iterated blow-up of any collection of
boundary faces which is closed under non-transversal intersection, with respect
to any intersection-order.

One simple rearrangement result which follows from this is:

Lemma 3.7. Suppose C1 � C � M(M) are both closed under non-transversal
intersection, then there is an intersection order on C in which the elements of C1
come before all elements of C n C1:

Proof. Let o be a size-order on C and consider the new order o0 on C de�ned by
o0(B) = o(B) if b 2 C1; o

0(B) = o(B) +N otherwise, where N = max(o): Then o0

has the desired property that every element of C1 comes before every element of
C n C1: Moreover, o0 must be an intersection-order. Thus we wish to show that if
B1 and B2 are n.c.n.t.then

(3.6) o0(B1) < o0(B2) < o0(B1 \B2)

is not possible. This certainly cannot happen unless B1; B2 2 C1; B1 \B2 2 C n C1;
because o0 restricts to give a size-order on each of C1 and C n C1: However, if B1

and B2 lie in C1 then so does B1 \ B2 because C1 is closed under non-transversal
intersection. Thus (3.6) is indeed impossible. �

Corollary 3.8. If C1 � C2 are two collections of boundary faces of M; both closed
under non-transversal intersection, then there is an iterated blow-down map

(3.7) [M ; C2] �! [M ; C1]:

Proof. By the preceding lemma, there is an intersection-order on C2 with respect
to which all elements of C1 come �rst. The existence of the blow-down map follows
immediately from this. �

We will use the freedom to reorder blow ups frequently below. For instance if C
is closed under non-transversal intersection then any given element is �rst or last
in some intersection-order. In fact if the elements are �rst given a size-order then
any one element can be moved to any other point in the order and the result is an
intersection-order. Another use of the freedom to change order established above
is to examine the intersection properties of boundary faces, as in Lemma 2.1, but
after a sequence of boundary blow ups.

Proposition 3.9. If B1; B2 are distinct boundary faces of M and C � M(M) is
closed under non-transversal intersection then

(1) The lifts of B1 and B2 to [M ; C] are disjoint if they are disjoint in M or
there exists B 2 C satisfying (2.10).

(2) The lifts of B1 and B2 meet transversally in [M ; C] if they are transversal
in M or there exists B 2 B satisfying (2.9).

(3) If B1 � B2 in M then this remains true for the lifts to [M ; C] if

(3.8) B 2 C; B1 � B =) B2 � B or B2 t B:

Proof. We can assume that B1 and B2 are both proper boundary faces. If there
exists an element of C satisfying (2.10) then, as noted above, there is an intersection-
order on C in which a given element comes �rst. Lemma 2.1 shows that blowing
it up �rst separates B1 and B2 which thereafter must remain disjoint. Thus shows
the su�ciency of 2.1.



SCATTERING CONFIGURATION SPACES 15

As above, if there is an element of C satisfying (2.9) then it can be blown up
�rst in an intersection-order which makes B1 and B2 transversal; then Lemma 2.1
shows that persists under subsequent blow up.

In the third part of the Proposition the su�ciency of the condition follows
immediately from Lemma 2.1 since the elements of C of codimension two or greater
containing B1; and so by hypothesis either containing B2 or transversal to it, form
a collection closed under non-transversal intersection. In fact this is separately true
of those containing B2 and those which contain B1 but are transversal to B2 since
no intersection of the latter can contain B2: So all these blow ups can be done �rst.
In each case once the minimal element of a transversal component is blown up the
other elements do not contain B1 so all blow ups preserve the inclusion of B1 in
B2: �

Lemma 3.10. For any two boundary faces B1; B2 2 C; with lifts denoted ~Bi;
i = 1; 2 it is always the case that

(3.9) ~B1 \ ~B2 � B̂1 \B2 in [M ; C]:

Proof. Consider the decomposition C = C0[C00 into the collections of elements which
do not contain B1 \ B2 and those which do contain it. These must separately be
closed under non-transversal intersection. Under blow up of an element of C0; B1;
B2 and B1 \ B2 all lift to the closure of their complements with respect to the
centre so the lift of the intersection is the intersection of the lifts. Moreover the
other elements of C0 lift not to contain the intersection while the elements of C0

lift to contain it. Thus after blowing up all the elements of C0 we are reduced to
the case that C0 is empty, so we may assume that B1 \ B2 is contained in each
element of C: Now, consider the decomposition of C as in Lemma 3.1. Consider
the e�ect of the blow up of the minimal element A1 2 C1: Now the lift of B1 \ B2

to [M;A1] is its preimage, the lifts of B1 and B2 depend on whether they are, or
are not, contained in A1 but in any case (3.9) holds after this single blow up. If
A1 contains neither B1 nor B2 then by (2.10) the lifts are disjoint and we need
go no further. On the other hand if A1 � B1 [ B2 then all three manifolds lift to
their preimages and equality of intersection of lifts and the lift of the intersections
persists. The lifts of the other elements of C1 contain no �bres of the front face
of [M ;A1] over A1 and so cannot contain the intersection. Hence these blow ups
again preserve the equality. The only case remaining is where A1 contains one, but
not both, of B1 and B2: We can assume that A1 � B1 and then all the elements
of C1 satisfy this. Let C1 = C01 [ C

00
1 be the decomposition into those (before blow

up of A1) which do not contain B2 and do contain B2; where the second collection
may be empty. Blowing up in size-order for each of these subcollections, observe
that after the blow up of A1; the other elements of C01 lift to the closures of their
complements with respect to A1 and hence cannot contain �bres of A1 and hence
cannot contain the lift of B1 or the intersection. They intersection of the lifts in
[M ;A1] is the intersection of the lift of B2 and the front face. No other element of
C01 can contain this, since then it would contain B2 contrary to assumption. Thus
the elements of C01 lifted to [M ;A1] do not contain the intersection of the lifts of
B1 and B2 so after their blow up the inclusion (3.9) still holds. On the other hand
the elements of C001 do contain the lift of B2 and continue to do so after all elements
of C01 have been blown up. They therefore contain the intersection of the lifts but
cannot contain the lift of B1: Again C

00
1 can be decomposed using Lemma 3.1 and
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a minimal element can be blown up. For the elements which contain this minimal
one the argument now proceed as for A1 and C1 above, except that the lift of B1

can never be contained in these centres. This means that (3.9) holds at the end
of the blow up of one of the transversal parts of C001 : However the other transversal
components lift under these blow ups to their preimages, so they contain the lift
of B2 but not of B1 and the argument can be repeated. Thus at the end of the
blow up of C1; (3.9) holds. However the other transversal components of C again
lift to their preimages so contain the intersection of the lift of B1 and B2 (and even
the lift of the intersection). So the argument above for C1 can be repeated a �nite
number of times to �nally conclude that (3.9) remains true in [M ; C]: �

4. Boundary configuration spaces

Let X be a compact manifold with boundary and consider M = Xn for some
n � 2: The boundary faces of Xn are just n-fold products with each factor either X
or a component of its boundary. De�ne Bb �M(2)(X

n) to be equal to M(2)(X
n)

if the boundary of X is connected, otherwise to be the proper subset consisting
of those n-fold products where each factor is either X or the same component of
the boundary in the remaining factors, and where there are at least two of these
factors.

Lemma 4.1. The collection Bb �M(Xn) is closed under non-transversal intersection.

Proof. The intersection of two elements where all boundary factors arise from the
same boundary component of X are certainly in Bb: So consider two elements B1;
B2 of Bb with di�erent boundary components, A1 � X for the �rst and A2 � X
for the second. Then A1 \A2 = ;; since X is a manifold with boundary, so has no
corners. Thus if di�erent boundary components occur in any one factor in B1 and
B2 then B1 \B2 = ;: The only remaining case is when each boundary factor in B1

corresponds to a factor of X in B2 and then the intersection is transversal. Thus
Bb is closed under non-transversal intersection. �

De�nition 4.2. The n-fold b-stretched product of X is de�ned to be

(4.1) Xn
b = [Xn;Bb]:

This de�nition relies on Proposition 3.5 and De�nition 3.6 to make it meaningful.
Boundary faces of codimension one, or indeed the whole of Xn; could be included
since blow up of these `boundary faces' is to be interpreted as the trivial operation.

Remark 4.3. We will generally concentrate on the case that X has one boundary
component so (4.1) amounts to blowing up all the boundary faces; in this case
Bb = B(2): Even if the boundary of X is not connected then blowing up all elements
of B(2) =M(2)(X

n); in an intersection order, is perfectly possible. The result may
be called the `overblown' product

(4.2) Xn
ob = [Xn;B(2)(X

n)]; @X not connected.

Since we are mainly interested in considering the resolution of diagonals, the smaller
manifold in (4.1) is more appropriate here.

Next we give a more signi�cant application of Proposition 3.5.
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Proposition 4.4. If m < n; each of the projections o� n � m factors of X;
� : Xn �! Xm; �xes a unique `b-stretched projection' �b giving a commutative
diagramme

(4.3) Xn
b

�b
//

�

��

Xm
b

�

��

Xn
�
// Xm

and furthermore �b is a b-�bration.

Proof. The existence of �b follows from Corollary 3.8. Namely, taking � to be the
projection o� the last n�m factors for simplicity of notation, the subcollection of

B
v(�)
b for Xn; consisting of the boundary faces of Xn in which the last n�m factors

consist ofX; is closed under non-transversal intersection. Thus, using Corollary 3.8,
there is an iterated blow-down map

(4.4) f : [Xn;Bb] �! [Xm;Bb �Xn�m]:

Composing this with projection o� the last n�m factors gives a map �b for which
the diagramme (4.3) commutes. Since both the iterated blow-down map and the
projection are b-submersions, so is �b: To see that it is a b-�bration it su�ces to
show that each boundary hypersurface of Xn

b is mapped into either a boundary
hypersurface of Xm

b or onto the whole manifold; this is `b-normality'. As a b-map
�b maps each boundary face into a boundary face so it is enough to see what
happens near the interior of each boundary hypersurface of Xn

b : If the boundary
hypersurface in question is not the result of some blow up then �b looks locally
the same as � and local b-normality follows. If it is the result of blow up then
�b maps into the interior provided the boundary face is not the lift of a boundary
face, necessarily of codimension two or greater, from Xm: If it is such a lift then �b
is locally the projection onto Xm

b ; i.e. maps into the interior of the corresponding
front face. �

We shall analyze more fully the structure of the boundary faces of [Xn; C]
where C � Bb is some collection closed under non-transversal intersection. Unless
otherwise stated below, although mostly for notational reasons, we will make the
simplifying restriction that

(4.5) The boundary of X is connected so Bb = B(2) =M(2)(X
n):

For a boundary faceB 2 B(2) it is convenient to consider three distinct possibilities

(i) B 2 C
(ii) B =2 C but there exists A 2 C; B � A:
(iii) B =2 C and A � B =) A =2 C:

In the �rst case

(4.6) C = fBg [ Sm(B) [ Bi(B) [Nc(B)

is a disjoint union, where

(4.7)

Sm(B) = fB0 2 C;B0 $ Bg

Bi(B) = fB0 2 C;B0 % Bg

Nc(B) = fB0 2 C;B and B0 are not comparableg:
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Proposition 4.5. If C � Bb is closed under non-transversal intersection and B 2 C
then under any factor exchange map of Xn which corresponds to a permutation of
f1; : : : ; ng transforming B to (@X)c � Xn�c; c = codim(B); the lift of B 2 C to
[Xn; C] is di�eomorphic to

(4.8) (@X)c � [Sc�1;c�1; CBi]� [Xn�c; CSm]

where CBi is the collection of boundary faces of the totally positive part Sc�1;c�1
of the (c � 1)-sphere corresponding to the elements of Bi(B) in (4.6) and CSm is
the collection of boundary faces B0 � Xn�c arising from the elements of Sm(B) in
(4.6).

Proof. The ordering of C arising from (4.6), in which the pieces are size-ordered,
is an intersection-order. Since C is closed under non-transversal intersection, each
element B0 2 Nc(B) corresponds to an element B0 \ B 2 Sm(B): Once this is
blown up the lifts of B and B0 are disjoint, which accounts for the absence of terms
from Nc(B) in (4.8). Moreover this argument shows that the result as far as B is
concerned is the same if C is replaced by the union of the �rst three terms in (4.6).
Relabelling the factors so that B has the boundary of X in the �rst c factors, the
result of blowing up B in Xn is to replace a neighbourhood of it by

(4.9) (@X)c � Sc�1;c�1 �Xn�c � [0; 1)

where the last factor is a de�ning function for the front face. Moreover, the
boundary faces in C (excluding those not comparable toB) lift either to the products
of boundary faces of Sc�1;c�1 with the other factors except the last, or else products
of all the other factors with boundary faces of Xn�c: The e�ect of the subsequent
blow-ups on the lift of B is therefore as indicated in (4.8). �

So, next suppose instead that B =2 C: The decomposition (4.6) still exists, of
course without B itself. Case (ii) above corresponds to Bi(B) being non-empty.
Since Bi(B) � C consists of those elements which contain B it is also closed under
non-transversal intersection. For a �xed element A0 2 Bi(B) no two elements
contained in A0 can be transversal, so this subcollection is closed under intersection
and hence has a minimal element. Since Bi(B) is closed under non-transversal
intersection, the collection of minimal elements must be transversal in pairs. Denote
this collection
(4.10)

b(B) = fA 2 C;B � A; B � A0 � A; A0 2 C =) A0 = Ag then

Bi(B) =
[

A2b(B)

BiA(B) is a disjoint union, where BiA(B) = fA0 2 C;A � A0g:

Proposition 4.6. If B =2 C; where C � B(2) is closed under non-transversal
intersection, but Bi(B) 6= ; then b(B) � C de�ned by (4.10) is a non-empty
collection of transversally intersecting boundary faces and B lifts to be a common
boundary face (i.e. in the intersection of) the lifts of the elements of b(B); in
(4.10), and is di�eomorphic to

(4.11) [B; Sm(B)]�
Y

Ai2b(B)

[Sd(i)�1;d(i)�1; Bi(Ai)]; d(i) = codim(Ai);
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where Sm(B) is interpreted as a collection of boundary faces of B and where for

each Ai 2 b(B); Bi(Ai) is the collection of boundary faces of Sd(i)�1;d(i)�1 arising
from the lifts of the elements of Bi(B) strictly containing Ai:

Proof. Give C an intersection-order in which the elements of b(B) come �rst,
followed by the other elements of Bi(B) in a size-order, followed by the elements of
Sm(B) in size-order, followed by the elements of Nc(B); also in size-order. Since
the elements of b(B) are transversal, they can be in any order. Since B lifts into
the front face under the �rst blow-up and remains a boundary face of the lifts of
the others it lifts to be in the intersection of the lifts of the elements of b(B) and
after they are blown up is of the form

(4.12) B �
Y

Ai2b(B)

Sd(i)�1;d(i)�1; d(i) = codim(Ai):

The other elements of Bi(B) contain one of the Ai and are transversal to the others
and it follows that they lift to be boundary faces of the corresponding fractional
sphere, as indicated. The boundary faces in Sm(B) lift in the obvious way and
(4.11) results from the fact that the subsequent blow ups of boundary faces not
comparable to B do not a�ect its lift, since their intersections with B have already
been blown up. �

The third case is then B =2 C and such that there is no element of C containing
it.

Proposition 4.7. If B � A implies that A =2 C then B lifts to a boundary face of
[Xn; C] of the same dimension which is di�eomorphic to

(4.13) [B; fF 2M(2)(B);F = G \B; G 2 Cg]:

Proof. Give C the intersection order in which all the B0 � B come �rst (size-
ordered) and then all the faces which are not comparable to B (size-ordered as
well). The e�ect on B is then as indicated! �

5. Multi-diagonals

The main utility of the manifold Xn
b as constructed above is that it resolves

the intersection with the boundary of each of the multi-diagonals in Xn: The total
diagonal in Xn is the submanifold, di�eomorphic to X; which is the image of the
map X 3 p 7�! (p; p; p; : : : ; p) 2 Xn;

(5.1) Diag(Xn) = fm 2 Xn;m = (p; p; : : : ; p) for some p 2 Xg:

The partial diagonals in Xn are the inverse images of the total diagonal in Xk;
for some k � n; pulled back to Xn by one of the projections Xn �! Xk: Thus
a partial diagonal involves equality in at least two factors. Since we are assuming
that the boundary of X is connected, there is a 1-1 correspondence between partial
diagonals, projections onto Xk for k � 2; and elements of Bb: Thus if B 2 Bb
it will be convenient to denote the correspond partial diagonal as DB and the
corresponding projection as �B ; where the partial diagonal is given by equality in
exactly those factors in which B has a boundary component.

Diagonals are however more complicated than boundary faces, at least when
n � 4: Namely the intersection of two partial diagonals is not necessarily a partial
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diagonal. Indeed

(5.2) DB \DB0 = DB\B0 if and only if B \B0 is non-transversal:

Non-transversality of intersection of B and B0 is the condition that @X appears
in at least one factor in common. Then equality of points in all the factors in
which the boundary occurs in B and also in B0 separately, implies that they are
equal in all factors in B \ B0 giving equality in (5.2) in the non-transversal case.
Conversely, if the intersection is transversal then separate equality does not imply
overall equality. Thus

Lemma 5.1. The submanifolds of Xn arising as the intersections of collections
of partial diagonals in Xn form the collection of multi-diagonals which are in 1-1
correspondence with the (non-empty) transversal collections of boundary faces of
codimension at least two

(5.3) b � B(2) s.t. B1; B2 2 b =) B1 t B2:

The multi-diagonal corresponding to the transversal family b will be denoted by
Db, so

(5.4) Db = fm 2 Xn;�B(m) 2 Diag(Xk); k = codim(B) 8 B 2 bg:

Let us now clarify the sense in which Xn
b resolves the multi-diagonals. Consider

�rst the total diagonal.

Lemma 5.2. The total diagonal in Xn is naturally di�eomorphic to X and is
a b-submanifold but never a p-submanifold. Under blow-up of the boundary face
of maximal codimension, (@X)n; the total diagonal lifts to (i.e. the closure of its
interior is) a p-submanifold.

Proof. A neighbourhood of this `maximal corner' ofXn is of the form [0; 1)n�(@X)n

with the coordinate in each of the �rst factors given by a �xed boundary de�ning
function lifted from each factor and then denoted xj : The total diagonal meets this
in the b-submanifold fx1 = � � � = xng�Diagtot(@X)n: After blowing up the corner
a neighbourhood of the front face is of the form

(5.5) [0; 1)� � Sn�1;n�1 � (@X)n; � = x1 + � � �+ xn

to which the total diagonal lifts as

(5.6) [0; 1)� f�!g �Diagtot(@X)n; �! 2 Sn�1;n�1

being the `centre' of the fractional sphere and hence an interior point. This shows
that the total diagonal in Xn is resolved to a p-submanifold. �

The general case of a multi-diagonal Db is similar; the next lemma shows that
it is resolved in [Xn; C] for any collection of boundary faces C; closed under non-
transversal intersection and containing b:

Proposition 5.3. Let C be an intersection-ordered family of boundary faces of Xn

and b � C a transversally intersecting subcollection then the lift of Db to [Xn; C] is
a p-submanifold.

Proof. Let C = b [ C0 (disjoint union). Because C is closed under non-transversal
intersection and b is a transversal collection, there is an intersection order on C such
that all elements of b come before any element of C0, and C0 itself is size-ordered.
We claim that the lift of Db to [Xn; b] is a p-submanifold.



SCATTERING CONFIGURATION SPACES 21

If a factor-exchange map is used to identify

(5.7) Xn � Xn�k �
LY
i=1

Xki

in such a way that the each element Bi 2 b is identi�ed with the corner of maximal
codimension in Xki then the space obtained by blow up of the elements of b is
identi�ed smoothly with

(5.8) Xn�k �
LY
i=1

[Xki ; (@X)ki ]:

Then Lemma 5.2 shows that Db; which is identi�ed with the product of Xn�k and
the maximal diagonals in the Xki ; is resolved to a p-submanifold in [Xn; b]:

As noted earlier, under the blow-up of boundary faces, a p-submanifold (in this
case an interior p-submanifold) lifts to a p-submanifold. This proves that the lift
remains a p-submanifold under subsequent blow-up of the elements of C0. �

Let us next gather some notation and information about intersections of multi-
diagonals. Since the intersection of any two multi-diagonals is another multi-
diagonal, given b1 and b2; there exists a transversal family b1 d b2 uniquely de�ned
by the condition

(5.9) Db1 \Db2 = Db1db2 :

The family b1 d b2 will be called the `transversal union' of b1 and b2: It is de�ned
as follows. Partition b1 [ b2 into subsets where two elements lie in the same subset
if and only if there is a chain of elements connecting them, each intersecting the
next non-transversally. Then the elements of b1 d b2 consist of the intersections
over these subsets.

Clearly, if all pairs (B1; B2) 2 b1 � b2 meet transversally then b1 d b2 = b1 [ b2:
Otherwise the transversal union has fewer elements than the union and they need
not be elements of either collection.

It is also convenient to introduce the following notation:

� Write b1 t b2 if Db1 t Db2 ; or equivalently if b1 [ b2 = b1 d b2:
� Say b1 and b2 are comparable if b1 d b2 = b2 or b1 d b2 = b1 which is
equivalent to Db2 � Db1 or Db1 � Db2 :

� Otherwise say b1 and b2 are n.c.n.t.: this is equivalent to Db1 and Db2

being n.c.n.t., or combinatorially, to the condition that b1 d b2 is neither
the union nor either of the individual sets of boundary faces.

To motivate the discussion of the next section, let us give a local coordinate
description of the multi-diagonal Db and its lift to [Xn; b]: Explicitly, there is a set
(I1; : : : ; IL) of disjoint subsets of f1; : : : ; ng, each of cardinality > 2, such that

(5.10) Db = \Lr=1fzk = zl for all k; l 2 Irg:

Using adapted local coordinates z = (x; y) near the boundary of X; a full set of
local boundary de�ning functions for [Xn; b] are given by the tr; Br 2 b; which are
the sums

(5.11) Tr =
X
j2Ir

xj
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of the local de�ning functions for Br and the tj = xj=Tr if j 2 Br for some r and
and tj = xj otherwise. Interior coordinates lift to interior coordinates.

In order to describe the lift of Db to [M ; b] introduce new variables

(5.12) sj = log tj ; uj = yj � yar if j 2 Jr for some r:

Then the variables

(5.13) (sj ; uj ; tk; yk) for j 62 J; k 2 J; where tk > 0

(J = J1[ : : :[JL) form an adapted local coordinate system on [Xn; b] with respect
to which

(5.14) ~Db = fsj = 0; uj = 0; j 2 Jg:

Let us now consider the family D(b) of all multi-diagonals containing Db: It is
clear that if D 2 D(b); then D must be an intersection of the form

(5.15) D = fsj = 0; uj = 0; j 2 K0g \ \
M
r=1fsi = sj ; ui = uj for all i; j 2 Krg:

where K0;K1; : : : ;Kr are disjoint subsets. In fact, for each r = 1; : : : ;M , Kr must
be contained in one of J1; : : : ; JL:

This discussion shows that any given multi-diagonal lifts to a p-submanifold,
but that there is no single system of adapted coordinates which put all elements of
D in standard form. The notion of a d-collection, which we introduce in the next
section, is designed to capture the local structure of families like D:

6. D-collections

Next we introduce a notation for collections of p-submanifolds which includes
the resolutions of diagonals.

Any p-submanifold is locally of the form (1.2) in adapted coordinates. The
interior codimension is d = jIj; Y is an interior p-submanifold if k = 0; i.e. no
boundary variables are involved in its de�nition, otherwise it is contained in a
unique boundary face of codimension k (its boundary hull B(Y)). If N is such
that d + N is less than or equal to the number of interior variables then Y can
alternatively be brought to a local diagonal form relative to the adapted coordinates
in the sense that

(6.1) U\Y = f(x; y) 2 U ;xi = 0; 1 � i � k; yi = yj for all i; j 2 ll; l = 1; : : : ; Ng

where the ll are some disjoint subsets (including possibly none) each having cardinality
> 2:

Of course to get (6.1) one just needs to divide the interior coordinates into groups
and subtract one of N of the remaining interior variables from each element of each
set. The interior codimension of Y (which is constant, since Y is connected by
assumption) is

P
l

(jllj � 1):

The important property of boundary diagonals that we wish to capture in the
notion of a d-collection is that they can simultaneously brought to such diagonal
form near any point.

De�nition 6.1. A collection E of p-submanifolds (if not connected then each must
have �xed dimension) in M is called a d-collection if for each point p 2 M there
is one set of adapted coordinates based at that point in terms of which all the
elements of E through that point take the form (6.1).
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Clearly this condition is void locally at any point not contained in one of the
elements of E and for any single p-submanifold which does not have maximal interior
codimension. Any collection of boundary faces can be added to a d-collection and
it will remain a d-collection since they are automatically of the form (6.1) (for any
adapted coordinates) for the empty collection of disjoint sets ll:

We will decompose a d-collection into the subcollections of elements which are
and those which are not boundary faces.

(6.2) E = Eb [ E
0; Eb = E \M(M):

As usual, including a boundary hypersurface in a given collection E is a matter of
convention; for the sake of de�niteness we exclude hyerpsurfaces.

Lemma 6.2. Any subcollection of the boundary faces of the elements of a d-
collection (with the addition of any of the non-hypersurface boundary faces of the
manifold) is a d-collection.

Proof. Immediate from the de�nition. �

As already mentioned, the lifts of the diagonals give examples of d-collections
provided the appropriate boundary faces have been blown up.

Proposition 6.3. If C � Bb is closed under non-transversal intersection then all
the diagonals Db with b � C lift from Xn to [Xn; C] to interior p-submanifolds
which form a d-collection.

Proof. This follows from the discussion at the end of the preceding section since
the same coordinates work for all diagonals. �

For a d-collection E of p-submanifolds we consider a closure condition corresponding
to the index sets in (6.1) that de�ne them. Let l and l

0 be two subpartitions of the
index set (of interior coordinates). Then as in xI.2 we write

(6.3)
l b l

0 if each set li 2 l is contained in one of the l
0
j

l t l
0 all sets li are disjoint from all sets lj :

Thus in the second case l [ l
0 is still a subpartition.

Now the condition we impose on E concerns the elements which are not boundary
faces, and which pass through a given point

(6.4)

8 E; E0 2 E 0 and p 2 E \ E0 if neither condition in (6.3) holds

for the index sets de�ning them then

9 F 2 E 0; p 2 F with the same index set as E \ E0;

containing it and with boundary hull in B(E)uB(E0):

Proposition 6.4. If E is a d-collection of p-submanifolds all contained in (or
equal to) proper boundary faces of a manifold with corners M for which the closure
condition (6.4) holds then on the blow up of an element G 2 Eb or an element E 2 E 0

of maximal interior codimension the elements of E n fEg lift to a d-collection in
[M ;E] which again satis�es the closure condition.

Proof. Certainly the blow up of E is well-de�ned, since it is a p-submanifold by
assumption.

The simplest case is if G 2 Eb is actually a boundary face. Then all the other
p-submanifolds certainly lift to p-submanifolds. The other elements of Eb lift to
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boundary faces, the elements of E 0 which are not contained in G lift to the closures
of the complements with respect to G and the elements of E 0 which are contained
in G lift to their preimages. Away from G nothing has changed and near it, the
boundary de�ning functions x1; : : : ; xk which de�ne it are replace by their sum TG
and tj = xj=TG: The de�ning conditions involving interior variables are unchanged
by the blow up. The changes of intersections of elements of E 0 correspond to whether
they are contained in G or not and so (6.1) persists everywhere locally, with only
the boundary functions changing. The closure condition also persists at every point
of intersection after blow up, since the only problem would from E; E0 � G but
F nG 6= ;; since then the lift of F would not contain the lift of the intersection of
E and E0: The last condition in (6.4), on the hulls, prevents this from happening,
since if E E0 � G both then the boundary hull of F must also be contained in G
and the boundary hull of its lift must be contained in the hull of the lifts of E and
E0:

So next consider the blow up of an element Y 2 E 0 with boundary hull B: The
condition of maximality of its interior codimension, i.e. the number of equations
de�ning it within B; means, by (6.4) that the only other elements of E 0 it meets
must satisfy one of the conditions in (6.3), since otherwise the F whose existence is
demanded by (6.4) would have larger interior codimension. In particular the only
way another element of E 0 can be contained in Y is if it is a boundary face of Y;
hence has the same index set but boundary hull which is a boundary face of the
boundary hull of Y: On blow up of Y these p-submanifolds lift to boundary faces of
the front face produced by the blow up (which is one good reason boundary faces
are allowed in the de�nition of d-collections). So consider elements of E 0 which
meet, but are not contained in Y: By the maximality of the interior codimension of
Y; these corresponds to index sets in one of the two cases in (6.3) so fall into two
classes, those with interior de�ning conditions implied by the de�ning conditions for
Y and those involving variables which are completely independent of those de�ning
Y: The latter clearly lift to have the same de�ning conditions and with hull simply
the lift of the previous hull.

The blow up of Y can be made explicit locally by choosing one of the elements
labelled by the li and subtracting it from the others. This changes the de�ning
conditions for Y into the vanishing of interior variables and boundary variables,
so locally the blow up corresponds to polar coordinates in these variables. All the
elements of E 0 meeting Y; but not contained in it, and corresponding to the �rst
case in (6.3) have lifts de�ned by some of the new boundary variables (not including
��) and the vanishing of some of the interior polar variables. It follows that the
same intersection property (6.4) results by simply adding the lifted `extra variable'
to each of these lifted interior variables. Thus it follows that the the d-submanifold
condition holds for the lift of the elements of E n fY g:

It remains only to check the closure condition, but this persists from the same
arguments since the local index sets have not changed. �

Notice that the interior codimension of each element of the lift of the d-collection
on the blow up of a boundary face is the same as before blow up. On blow up of an
element of Y 2 E 0 with maximal interior codimension, all the lifts have the same
interior codimension except for any which are boundary faces of E itself, which lift
to boundary faces of [M ;E] and hence are subsequently boundary faces, for which
the notion of an interior codimension is not de�ned.
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7. Boundary diagonals

In Proposition 5.3 it is shown that the diagonal Db associated to a transversal
subset b � B(2) lifts to a p-submanifold of [Xn; C] provided b � C: If A 2M(\b) is

a boundary face of the intersection of the elements of b and ~A is its lift to [Xn; b]
we denote the intersection by

(7.1) HA;b = ~A \Db A � \b:

These are all p-submanifolds, indeed they are each interior p-submanifolds of the
corresponding boundary face ~A; henceforth denoted A again, which is the boundary-
hull, i.e. HA;b is contained in no smaller boundary face than A: As such their lifts
are always well-de�ned under blow up of boundary faces (for us only lifted from
Xn) and HA;b remains an interior p-submanifolds of the lift of A: Thus we conclude
that

(7.2)
Provided b � C; HA;b � [Xn; C] is an interior p-submanifold of

A lifted to [Xn; C]; 8 A � B(b) = \b:

If fact if b � C then (7.1) still holds in after further blow ups:

(7.3) HA;b = A \Db in [Xn; C]; A � \b:

This allows us to compute the intersection of HA;b and HA0;b0 in any [Xn; C] in
which they are both de�ned, i.e. if b [ b

0 � C; A � \b and A0 � \b0:
First, if b; b

0 � B(2) are each transversal subsets their `transversal union' is
de�ned by, and following, (5.9).

Consider the boundary diagonals which lie in a given boundary face. As already
noted, if A 2 B(2) then HA;b is a p-submanifold of the lift of A to [Xn; C] provided
b � C and A � \b: We need to blow up all these submanifolds, as A and b vary
over all such possibilities. Notice that if b; b0 � C; with the latter closed under non-
transversal intersection, then b d b

0 � C since the elements are all non-transversal
intersections of elements of b and b

0:
From (5.9) we conclude:

Lemma 7.1. If bi � C � B(2) are two transversal subsets for i = 1; 2 and A �
(\b1) \ (\b2) is a common boundary face then b1 d b2 � C; A � \(b1 d b2) and

(7.4) HA;b1 \HA;b2 = HA;b1db2 in [Xn; C]:

Proof. This follows from the fact that we can identify Db1 in [Xn; b1]; then blow
up the elements of b1 d b2 and then b2: There is an intersection order of C in which
these are the �rst blow-ups and are in this order; it then follows that (7.4) holds in
general. �

De�nition 7.2. The codimension of a transversal collection b � B(2) is the sum
of the codimensions of its elements, so is the codimension of their intersection. A
size-order on such transversal collections is an order in which this total codimension
is weakly decreasing.

In the second stage of the construction of the scattering n-fold product we need
to blow up all of the HA;b: Since this has to be done step by step we consider a
closure condition under intersection on a collection of the submanifolds which is
enough to allow them all to be blown up unambiguously.
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De�nition 7.3. A collection G � fHA;bg in [Xn; C]; so by assumption HA;b 2 G
implies b � C; is intersection-closed if

(7.5) HAi;bi 2 G; i = 1; 2 =) HA;b 2 G; A = A1 \A2; b = b1 d b2:

A chain-order on G is an order in which each b which occurs does so only in an
uninterrupted interval with the codimension of b weakly decreasing overall and
when b is unchanging, the codimension of A is weakly decreasing.

Thus this is a `lexicographic order' in which b is the �rst `letter' and A the second.

Proposition 7.4. An intersection-closed collection, G; of boundary diagonals in
[Xn; C] can be blown up in any chain-order (so under such blow ups all later
elements lift to p-submanifolds) and the resulting manifold is independent of the
chain-order chosen.

Proof. It follows from Proposition 6.3 that the elements of G form a d-collection of
p-submanifolds in [Xn; C]: To apply Proposition 6.4 we need to check the closure
condition (6.4). Consider two elements HAi;bi of G; by assumption HA;b in (7.5) is
also an element of G: Applying Lemma 24.5.2008.150 to A1 and A2 shows that

(7.6) A1 \A2 � A in [Xn; C]:

However from (7.3) we conclude that

(7.7) HA1;b1 \HA2;b2 � HA;b in [Xn; C]:

Since the index sets as a d-collection are just the b's this shows that the closure
condition (6.4) for G follows from (7.5).

Thus Proposition 6.4 shows that the elements of G can be blown up in any order
so when blown up each element has maximal interior codimension or is a boundary
face. Clearly a chain-order as de�ned above has this property.

To complete the proof of the Proposition it remains to show that di�erent chain-
orders lead to the same blown up manifold. To see this means �rst showing that
two neighbouring elements HAi;b with the same b and with Ai of the same original
codimension in Xn can be interchanged. By (7.5), HA1\A2;b 2 G must already
have been blown up. As follows from (7.7), before it is blown up this contains the
intersection of the HAi;b but cannot contain either of them. It follows as in the
case of boundary faces that after this boundary diagonal has been blown up these
two are disjoint and hence can be interchanged. It is also necessary see that the
ordering amongst the b can be changed, subject to the decrease of codimension of
b: That this is possible follows from the next result which completes the proof of
the Proposition. �

De�nition 7.5. Let H�;C be the collection of the HA;b � [Xn; C] where b � C is
a transversal subcollection of boundary faces and A � \b: A collection G � H�;C

is face{closed if HA;b1db2 2 G whenever HA;bi 2 G for i = 1; 2: Thus each of the
subcollections which have a given boundary face as boundary hull is closed under
intersection.

Such a collection is chain{closed if HA;b 2 G � H�;C and A0 � A � \b; implies
HA0;b 2 G:

A collection G � H�;C is fc-closed if it is both face-closed and chain-closed.

Now, for a collection G � H�;C let �(G) be the collection of transversal boundary
faces which occurs, that is, b 2 �(G) if and only if HA;b 2 G for some A:
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Lemma 7.6. If C � B(2) is closed under non-transversal intersection then G � H�;B

is fc-closed if and only if it is intersection-closed in the sense of (7.5) and

(7.8)
b 2�(G) =)

fA 2 B(2);HA;b 2 Gg is closed under passage to boundary faces.

Proof. Indeed, (7.8) is just a restatement of the chain-closure condition. The
intersection-closure property (7.5) implies the face-closure condition by applying
it with A1 = A2: Conversely (7.5) must always hold for an fc-closed collection in
the sense de�ned above since HAi;bi 2 G for i = 1; 2 implies HA1\A2;bi 2 G for
i = 1; 2 by chain-closure and then HA1\A2;b1db2 2 G by face-closure. �

Remark 7.7. Thus Proposition 7.4 applies to an fc-closed collection of boundary
diagonals. It also follows that the part of an fc-closed collection G � H�;C which
occurs before any given point in a chain-order is also fc-closed and chain-ordered,
since the elements the existence of which is required by (9.2) and (7.8) must occur
earlier in the chain-order.

8. Scattering configuration spaces

In this section we complete the de�nition of the scattering con�guration space
Xn
sc: This is de�ned by blowing up the boundary d-collection of boundary multi-

diagonals in Xn
b :

De�nition 8.1. The n-fold scattering con�guration space (or stretched product) of
a compact manifold with boundary is de�ned to be

(8.1) Xn
sc = [Xn

b ;H�;Bb ]

where the boundary diagonals are to be blown up in a chain-order.

That this manifold exists and is independent of choice of the chain-order chosen
follows from the fact that Proposition 7.4 certainly applies to the collection of all
boundary diagonals when C = Bb: Moreover the same argument applies to show
the symmetry of the resulting object.

Proposition 8.2. The permutation group �n acts on Xn
sc as the lifts of the factor

exchange di�eomorphisms of Xn:

Proof. This just amounts to carrying out the blow up in (8.1) in a di�erent chain-
order. �

This means that to construct all the maps Xn
sc �! Xm

sc ; m < n; covering the
projections o� various factors, it su�ces to consider the casem = n�1 with the last
factor projected o� and then apply permutations and compose. This is discussed
in detail in x10 where the arguments depend on more complicated commutation
results which we proceed to discuss.

9. Reordering blow-ups

From Proposition 7.4 it follows that the blow up in [Xn; C] of an fc-closed
subcollection G � H�;C ; where C � Bb is closed under non-transversal intersection,
is iteratively de�ned with respect to any chain-order and the �nal result is a
manifold with corners which is independent of the chain-order. Thus, under these
conditions, [Xn; C;G] is well-de�ned. In this section we give three results which
relate these manifolds under blow-down.
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Remark 9.1. In the blow up of an fc-closed collection G of boundary diagonals
the order is such that all lifts are closures of inverse images of complements with
respect to the centre. It follows that the intersection properties of any two elements,
meaning whether they are transversal, comparable or n.c.n.t., remain unchanged
unless their (original and hence persisting) intersection is blown up in which case
they become disjoint.

Proposition 9.2. Let C � B(2) be closed under non-transversal intersection and
suppose G � H�;C is an fc-closed subcollection of boundary diagonals such that

(9.1) HA;a 2 G =) A 2 C

and consider a particular element HC;c 2 G with the additional properties

(9.2)
fHC;b 2 G; b 6= cg is closed under intersections and

C 3 A ) C =) HA;c =2 G

then there is a blow-down map

(9.3) [Xn; C;G] �! [Xn; C;G0]; G0 = G n fHC;cg:

Proof. First observe that the collection G0 is fc-closed. The chain-closure condition
is just (7.8) and this holds for b 6= c since it holds for G: For b = c the only danger is
that the element in question is HC;c: However, the second assumption in (9.2) shows
that C cannot be a boundary face of A with HA;c 2 G

0: Similarly if HAi;bi 2 G
0 for

i = 1; 2; the element required in (7.5), which exists in G by hypothesis, is certainly
in G0 unless A1 \ A2 = C and c = b1 d b2: Thus C must then be a boundary face
of both A1 and A2: It cannot be that bi = c for either i = 1 or 2 since this would
mean Ai = C by the second part of (9.2) and hence the corresponding boundary
diagonal would not be in G0: Thus bi 6= c and then (7.8) implies that HC;b1 and
HC;b2 2 G: Their intersection being HC;c then violates the �rst condition in (9.2)
so (7.5) does hold for G0:

Thus the right side of (9.3) is indeed de�ned. The body of the proof below is
devoted to showing that if HA;a is the last element in G0 with respect to a chosen

chain-order and eG is G0 with this removed then

(9.4) [Xn; C; eG;HC;c;HA;a] = [Xn; C; eG;HA;a;HC;c]

including of course showing that both are de�ned.
To see that this identity proves the Proposition, observe, following Remark 7.7,

that the Gj obtained from G by dropping the last j terms for 1 � j � j0; where
HC;c is j

0 + 1 terms from the end, are fc-closed and chain-ordered. Moreover, the
conditions of the Proposition hold for all these j: Then iterating (9.4) shows that all
the manifolds obtained by blowing up HC;c at some later point are all canonically
di�eomorphic and hence there is a blow-down map (9.3).

Thus we are reduced to showing (9.4) under the assumptions of the Proposition.
To do so we consider that the intersection properties of HC;c and HA;a (which is the
last element of G) in the manifold M1 = [Xn; C] and subsequently in the manifold
M2 which is M1 with all elements preceding HC;c blown up.

All boundary faces B forming the boundary-hull of elements HB;b 2 G are, by
assumption in (9.1), in C and hence have already been blown up inM1: In particular
if the intersection A \ C is n.c.n.t., then A \ C has been blown up, the lifts of A
and C are disjoint and hence so are HC;c and HA;a: On the other hand, if A t C
in Xn then \a and \c; which contain them, must also be transversal so in fact a
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and c must meet transversally as subsets of B(2): It follows that HA;a and HC;c are
transversal in M1: By Remark 9.1 they remain transversal in M2:

So we need consider the intersection properties of HC;c and a later HA;a with A
and C comparable. The chain-order condition on blow-ups, in which HA;a comes
after HC;c implies that a > c since the second part of (9.2) implies that HC;c is
the last element corresponding to the diagonal Dc: It follows that a d c < c unless
c b a: In the �rst case HA\C;adc precedes HC;c and so has already been blown up,
and hence by Remark 9.1, HC;c and HA;a are disjoint at some point before HC;c in
the order of G and so remain so in M2:

Summarizing we see that

(9.5)
Either A and C not comparable or a 6b c =)

HC;c and HA;a are transversal (or disjoint) in M2:

Thus it remains to consider the cases in which A and C are comparable and the
diagonals Da and Dc are also comparable.

Suppose �rst that A � C with strict inclusion, before blow up. Then HA;c has
been blown up earlier and

(9.6) A ( C; c b a =) HC;c and HA;a are disjoint in M2

by Remark 9.1. Next

(9.7) A = C; c b a =) HC;c � HC;a in M2

since this is true in M1 and not a�ected by subsequent blow ups. Finally

(9.8) C ( A; c b a =) HC;c � HA;a in M2 and HC;a 2 G:

Combining (9.5), (9.6), (9.7) and (9.8) we see that inM2; i.e. immediately before
HC;c is to be blown up in G; all the subsequent lifted boundary diagonals are
transversal (including disjoint) or closed else HC;c is contained in HA;c with HC;a

coming earlier if C ( A: From this (9.4) follows.
This completes the proof of (9.4) and hence of the Proposition. �

Next we consider a result which allows a boundary face to be blown down without
blowing down the boundary diagonals which are (or rather were) contained in it
provided the diagonals do not `involve' the given boundary face.

Proposition 9.3. Let B 2 C � B(2) be such that both C and C0 = C n fBg are
closed under non-transversal intersections and suppose G � H�;C0 is an fc-closed
subcollection of boundary diagonals such that in addition

(9.9)
B comes last in some intersection-order of C and

HA;b 2 G implies A 2 C

then there is a blow-down map

(9.10) [Xn; C;G] �! [Xn; C0;G]:

Proof. By hypothesis both sides of (9.10) are well de�ned and at least at a formal
level di�er by the blow-up of B: Furthermore, the hypotheses continue to hold if
the `tail' of G is cut o� at any point, with respect to a given chain-order. Thus we
only need to show that under the given hypotheses, blowing up (the lift of) B in
[Xn; C0;G] gives the same manifold as blowing it up before the last element of G
since then we can use induction over the number of elements in G to prove (9.10)
in the general case.
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So, let the last element of G be HA;a: Thus a � C0 is a transversal collection of
boundary faces and by the second hypothesis, either A = B or else A 2 C0: Now,
if B and A are n.c.n.t., then A \ B must already have been blown up and as a
result B and HA;a are disjoint in [Xn; C0] and this must remain true at the point of
interest, so commutation is possible. If A and B are transversal, then so are HA;a

and B for any a so the same conclusion follows.
Thus we need only consider the case that A and B are comparable. Suppose �rst

that B � A is a strict inclusion. Then, by the chain condition on G; HB;a 2 G must
already have been blown up. However, initially, this is the intersection of HA;a and
B and by Remark 9.1 remains so until it is blown up. Thus the manifolds HA;a

and B must be disjoint at the point of interest and commutation is trivial.
Thus we may suppose conversely that B � A; at �rst strictly. Then A 2 C0 has

been blown up, and in doing so it becomes transversal to B and this implies that
B is transversal to HA;a so this remains true at the end of the blow up of G and
commutation of the blow up of B and HA;a is again possible.

Thus only the case B = A remains. Then A = B � \a and indeed HA;a =
HB;a � B: By Remark 9.1, this must still be true at the point of interest since
no HB;c containing BB;a can have been blown up (since G is chain-ordered), so
commutation is again possible.

This proves, inductively, that there is a blow-down map (9.10). �

The third result in this section corresponds to blowing down boundary diagonals
with boundary hull which has not been blown up.

Proposition 9.4. Suppose C � B(2) and B 2 C is such that both C and C0 = CnfBg
are closed under passage to boundary faces (in Xn) and G � H�;C0 is fc-closed and
such that

(9.11) HA;b 2 G =) A 2 C

then there is an iterated blow-down map

(9.12) [Xn; C0;G] �! [Xn; C0;G0]; G0 = fHA;b 2 G;A 6= Bg:

Proof. Under the hypotheses of the Proposition it su�ces to show that there is a
blow-down map

(9.13) [Xn; C0;G] �! [Xn; C0;L]

where G = L [ fHB;bg with HB;b 2 G where b is of minimal codimension for the
existence of such an element. The general case then follows by iteration. Thus
we need to show that HB;b can be blown down, and to do this it needs to be
commuted through the boundary diagonal faces HA;a which come after it. We
can take the chain-order of G so that HB;b is followed only by elements HC;b with
codimC < codimB or by HA;a with a of smaller codimension than b:

Consider the intersection properties of HB;b and HA;a in M = [Xn; C0] with the
boundary diagonals preceding HB;b also blown up. Certainly neither A nor C can
contain B since then C0 would not contain the boundary faces of all its elements. It
follows that HC\B;b has already been blown up so HB;b and HC;b are disjoint, by
Remark 9.1. So, consider a later element HA;a 2 G where codim(a) < codim(b): As
already noted, A � B is not possible. Thus either A and B are not comparable or
A � B strictly. In either �rst case, A\B 2 C0 has been blown up so HB;b and HA;a
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are disjoint. In the second, HA;adb has been blown up and again these manifolds
are disjoint in M:

Thus all the boundary diagonals followingHB;b are disjoint from it and commutation
is possible, proving (9.13) and hence the Proposition. �

10. Scattering stretched projections

For any compact manifold X with connected boundary the n-fold scattering
space is de�ned has been de�ned in x8.

Theorem 10.1. The stretched boundary projection o� any n � l factors lifts to a
uniquely de�ned smooth map which is a b-�bration giving a commutative diagramme
with the vertical blow-down maps

(10.1) Xn
sc

�sc
//

��

X l
sc

��

Xn
b

�b
//

��

X l
b

��

Xn �
// X l:

Proof. It su�ces to prove this in case l = n � 1 with the last factor projected o�
and then iterate; the lower part of the diagramme has already been constructed in
Proposition 4.4. We proceed to show there is an iterated blow-down map

(10.2) � : Xn
sc �! Xn�1

sc �X

starting from the corresponding map for the boundary stretched products

(10.3) � : Xn
b �! Xn�1

b �X:

The scattering n-fold stretched product is obtained from Xn
b by blowing up, in

chain-order, all the HA;b: Each b � B(2) either has \b � Xn�1 � @X; or not, and

similarly either A � Xn�1 � @X or not. This leads to the decomposition

(10.4) H�;� = Hv;v [Hnv;v [Hnv;nv

where the �rst part corresponds to those HA;b with \b � Xn�1 � @X (and hence
also A � Xn�1 � @X; the second part to those with A � Xn�1 � @X but \b \
Xn�1�(Xn@X) 6= ; and the third part being the remainder. Note that the implied
order here is very far from a chain-order.

Since Hv;v is just the lift from Xn�1
b of all the boundary diagonals there

(10.5) [Xn;Bv(2);Hv;v] = Xn
sc �X

which is the space we wish to map to. Thus we need to show that the elements of
Hnv;nv and Hnv;v can all be blown down.

Proposition 9.2 applies directly to the elements ofHnv;nv: Thus we de�ne successive
subsets of the set of all boundary diagonals by dropping the elements of Hnv;nv;
starting with the last, in an overall chain-order. Then (9.1) holds for each G so
constructed as do the two conditions in (9.2). Thus, the elements of Hnv;nv can
indeed be blown down in reverse order and we have shown the existence of an
iterated blow down map

(10.6) Xn
sc �! [Xn;B(2);Hv;v [Hnv;v]:
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Now, we order the boundary faces of Xn by taking �rst the elements of Bv(2);

products of the boundary faces ofXn�1 withX; in size-order, and then the remainder
which form Bnv(2) in a size-order. Overall this is an intersection order so Xn

b =

[Xn�1
b �X;Bv(2)]:

Propositions 9.3 and 9.4 can now be applied to show the existence of successive
blow-down maps

(10.7) [Xn�1
b �X;B;Hv;v;Hnv;v] �! [Xn�1

b �X;Bnv(j);Hv;v;Hnv;v(j)]

where Bnv(j) � Bnv is obtained by removing the last element j elements and
Hnv;v(j) � Hnv;v is obtained by removing all those HB;v corresponding to the
B 2 Bnv n Bnv(j): This can be accomplished inductively, so it su�ces to show that
we can pass from the space on the right in (10.7) for j to the same space for j + 1:
Thus, the objective is to remove the last element of Bnv(2); Proposition 9.3 shows

that this is possible. Thus there is a blow down map
(10.8)
[Xn�1

b �X;Bnv(j);Hv;v;Hnv;v(j)] �! [Xn�1
b �X;Bnv(j + 1);Hv;v;Hnv;v(j)]

for each j: Now, Proposition 9.4 can then be applied to `remove,' i.e. blow down,
all elements of Hnv;v(j) n Hnv;v(j); these are of the form HB;b where Bnv(2)(j + 1) =

Bnv(2)(j)[fBg: Thus, by alternating between Propositions 9.3 and 9.4 we have shown

the existence of an iterated blow-down map

(10.9) Xn
sc �! [Xn�1

b �X;Hv;v] = Xn�1
sc �X

as desired. Composing with the projection shows the existence of a b-map �sc
giving the commutative diagramme of smooth maps (10.1).

By construction the stretched projection is a b-map. To show that it is a b-
submersion we proceed backwards through the construction above. Starting from
Xn�1
sc � X all of the blow-ups of elements of Hnv;v and Bnv(2) are of boundary

faces. Thus these blow-ups are indeed b-submersions. However, the remaining
blow-ups, of the elements of Hnv;nv are not of boundary faces and so these are not
b-submersions. Rather it is only the map back to Xn�1

sc ; i.e. after the projection
o� the factor of X that is a b-submersion. �

11. Vector spaces

As one indication of the claimed `universality' of these scattering-stretched products
alluded to in the Introduction we consider here the case of a vector space, V
over R: As noted in the Introduction the `model' asymptotic translation-invariance
structure for a general manifold with boundary is the radial compacti�cation V of
V to a ball. This has useful analytic properties, for instance the space S0(V ) of
classical (1-step) symbols on V of order 0 is identi�ed with C1(V ): The question
we consider here is the extension of the di�erence map

(11.1) � : V � V 3 (u; v) 7�! u� v 2 V

and its higher variants

(11.2) �ij : V
n �ij
�! V � V

�
�! V :
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Proposition 11.1. The di�erence map (11.1) extends to a b-�bration ~� : (V )2sc �!
V and the higher maps (11.2) similarly extend to b-�brations

(11.3) ~�ij : (V )
n
sc �! V

for all i 6= j:

Proof. The second result follows from the �rst and the properties of (V )nsc since
~�ij = ~� � �ij;sc where �ij;sc is the scattering stretched projection corresponding to
�ij : As the product of two b-�brations it is also a b-�bration. The proof that �
extends to a b-�bration is elementary. First, the di�erence extends smoothly to
either V � V or V � V so it su�ces to consider a small neighbourhood of (@V )2 in
(V )2: This is of the form [0; 1)2 � Sn�1 with the boundary variables being inverted
radial variables, so the di�erence, written in terms of inverted polar coordinates in
V is

(11.4) ((x; !); (s; �)) 7�! (js! � x�j;
!=x� �=s

j!=x� �=sj
):

The blow up to (V )2b replaces x; s by T = x+ s and y = x�s
x+s so the di�erence map

becomes

(11.5) X = T j(1� y)! � (1 + y)�j; � =
(1� y)! � (1 + y)�

j(1� y)! � (1 + y)�j
2 Sn�1:

This is smooth away from T = 0; ! = � and the scattering blow up, precisely of
this set, resolves the singularity. �

As an example consider the following result on `multilinear convolution' examining
integrals of the form

(11.6)

Z
V n

a0;1(z0�z1) � � � a0;n(z0�zn)a1;2(z1�z2) � � � an�1;n(zn�1�zn)dz1 : : : dzn:

Corollary 11.2. If ai;j 2 �n+1C1(V ) are classical symbols of order �n� 1 for all
0 � i < j � n and

(11.7) A =
Y

0�i<j�n

~��ijai;j 2 C
1((V )n+1sc )

then A pushes forward to a classical symbol, with logs, on V :
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