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by Richard P. Stanley

version of 4 June 2023

. [2] Find the number f(n) of pairs (A, ) such that A - n and p covers A
in Young’s lattice Y. Express your answer in terms of p(k), the number
of partitions of k, for certain values of k. Try to give a direct bijection,
avoiding generating functions, recurrence relations, induction, etc.

. [2] Let p.(n) denote the number of partitions of n of rank r. Find the

generating function
Fo(t) =) pi(n)t".
n>0

. [1] Express the symmetric function pjey in terms of elementary sym-
metric functions.

. [2] Let
Folz) = (o1 + x4+ a3+ +a,) (01 —22+ 23+ + 24)
(T et T — T).
Show that

n

Fo(x) =) (—1)" 2 epei™ — e,
k=2

in the ring A,, of symmetric functions in n variables.

. [2] Show that
m 1 - m— m m—
€ = om Z(—l) k(k>P%kp2 g

. [24] Complete the “missing” expansion in Exercise 7.48(f) of EC2 by
showing that

- (n+2)(n+3)--(n+EN)
=25 O (V)] i
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10.
11.

12.

13.

14.

[2+] For what real numbers a is the symmetric formal power series
F(z) = [[,(1 + az; + z7) e-positive, i.e., a nonnegative (infinite) linear
combination of the e)’s?

[2+] Find all symmetric functions f € A" that are both e-positive and
h-positive.

(a) [5-] Let f(n) (respectively, g(n)) denote the maximum (respec-
tively, the absolute value of the minimum) of the numbers (e,,, m,),
where A - n. For instance,

€4 — hil — 3h%h2 + 2h1h3 + hg — h4,
so f(4) =2 and g(4) = 3. The values f(3), f(4),..., f(20) are 1,
2, 3, 6, 10, 15, 30, 60, 105, 168, 252, 420, 756, 1260, 2520, 5040,
9240, 15840. For ¢(3),g(4),...,g(20) we get 2, 3, 4, 6, 12, 20, 30,
42, 60, 140, 280, 504, 840, 1512, 2520, 4620, 7920, 13860. What
can be said about these numbers? If an exact formula seems
difficult, what about an asymptotic formula? Can one describe

those n for which f(n) = g(n)? Those n satisfying 3 < n < 50
with this property are 6, 9, 17, 21, 24, 48. It seems quite likely

that lim,, ., f(n)/g(n) = 1.

(b) [5-] Is the largest entry of the inverse Kostka matrix (K/\_Ml) for
A, 1w mnequal to f(n)? Is the smallest entry equal to —g(n)?

[1+] Find all f € A™ for which wf = 2f.
(a) [2-] Let A, ;o = n. Show that (ex, h,) < (ha, hy).
(b) [2+] When does equality occur?

2] Let P(x) be a polynomial satisfying P(0) = 1. Express w[[. P(z;)
as an infinite product.

[2-] Let j,k > 1. Expand the monomial symmetric function m; as a
linear combination of power sums p,.

(a) [3-] Let A} denote the (additive) abelian group with basis {m } -n.
Let IT% denote the subgroup generated by {py}-n. Thus by the
Note after Corollary 7.7.2,

(A : 115) = [ dus

ukEn



15.

16.

17.

18.

19.

20.

where d,, = [[,5, mi(p)!. Show that in fact

Ay = P z/d, 2.

pukEn

(b) [2] (for readers familiar with Smith normal form) Let X,, denote
the character table of &,,. Deduce from (a) that X,, has the same
Smith normal form as the diagonal matrix with diagonal entries
dy, p = n.

[2-] Let a € R (or consider « to be an indeterminate). Expand the
product [[,(1 + x;)* as an (infinite) linear combination of the power
Sums py.

2] Let f(z,y) € A(x)®A(y), where the notation means that f(x,y)
is a formal power series that is symmetric with respect to xi, o, ...
and separately with respect to yq,9s,.... Let #(x)f(f, y) denote the
partial derivative of f(x,y) with respect to px(x) when f(x,y) is written

as a polynomial in the p;(z)’s (regard the y;’s as constants). Find a

simple formula for
0
1—ay;) "
apk (LL’) 12_3[( xz y])

[2+] Fix n > 1. Find a simple formula for the number of pairs (u,v) €
S,, X 6,, such that uv = vu. Generalize to any finite group G instead
of G,,.

[2+] Let p be prime, and let f,(n) denote the number of partitions
A F n for which z, # 0(modp). Find a simple expression (expressed
as an infinite product) for Fy,(z) = 3 - fp(n)a™.

(a) [3] Fix n > 1, and let S be an n-element subset of P. Show
that the field Q(pi(x1,...,2n), pa(T1, ..., xy),...) of all rational
symmetric functions over QQ in the variables x4, . . ., x, is generated
by {pi(z1,...,2,) : i € S} if P— S is closed under addition.

(b) [5] Prove the converse.

(a) [2+] Show that the symmetric power series
T — ano h2n+1
ano h2n



is a power series in the odd power sums py, p3, ps, - - ..

(b) [3-] Identify the coefficients when T is written as a power series
in the power sums.

21. [3] Let f € Az N Qp1,ps,ps,-. .|, and write f = >, a\px. Show that
when the rational number a, is written in lowest terms, then the de-

nominator is odd.

22. [2+4] Let k£ > 1 and A - n for some n. Find a simple formula for the

scalar product
(14 hy + hy +--)* hy).

23. (a) [2+] Let p be a prime, and define the symmetric polynomial

Fp:Fp(l’l,...,l'Qp_l) = Z <Zl’z) s

SC[2p—1] €S
#S=p

where the first sum ranges over all p-element subsets of 1,2, ...,
2p — 1. Show that when F}, is written as a linear combination of
monomials, every coefficient is divisible by p.

(b) [2+4] Deduce from (a) the Erd6s-Ginzburg-Ziv theorem: given any
(2p — 1)-element subset X of Z, there is a p-element subset Y of
X such that ) ., i = 0 (modp).

(c) [2+] Show that when F), is written as a linear combination of
power sums p,, every coefficient is an integer divisible by p.

24. Given f € Af and k € P, let f(kx) denote the symmetric function f in
k copies of each variable xy, zo, .. .. Thus for instance p, (kx) = kp,(z).

(a) [2-] Let {uy : A n} be a basis for A, and let

flkz) = ex(k)ux. (1)

AFn

Show that ¢y (k) is a polynomial in k& (with rational coefficients).
This allows us to use equation (1) to define f(kz) for any k (in
some extension field F' of Q, say).



(b) [2-] For any j € F, let g(z) = f(jx). For any k € F show that
g(kx) = f(jkz).
(c) [2] Express f(—x) in terms of f(z) and w.

25. [2+] Evaluate the scalar product (hojn—2, hojn—2).

26. [2+] Fix n > 1. Find the dimension of the subspace of Af, spanned by
{hx+ex : A n}.

27. (a) [3-] Define a linear transformation ¢ : A — Af by ¢(ex) = my.
Find the size of the largest block in the Jordan canonical form of
©.

(b) [5-] Find the entire Jordan canonical form of ¢.

(c) [5-] Do the same for such linear transformations as ey +— my,
ho = my, pa =y, pa e b

28. Let (-,-) denote the standard scalar product on Ag. Two linear trans-
formations A, B : Ag — Ag are adjoint if (Af,g) = (f, Bg) for all

f.9 € Ag.

(a) [2] Find the adjoint to w+ al, where I denotes the identity trans-
formation and a is a constant.

(b) [2] Let aipi f denote the partial derivative of f € Ag with respect
to p; when f is written as a polynomial in py,ps,.... Define the
linear transformation M; by M;(f) = p,f. Express the adjoint of

M; in terms of the operators (%_.

29. [2] Let k > 2. Compute the Kostka number Ky i 1) (5—15—1,16+2)-

30. (a) [2+] Let A+ n and A C (k™). Give a bijective proof that
K gy g1y = f2-

(b) [2] Deduce from (a) that K ny (x—1)»1n) is equal to the number
of permutations in &,, with no increasing subsequence of length
kE+1.



31. (a) [3-] Let g(n) denote the number of odd Kostka numbers of the
form K oy, where A F 2n and (2") = (2,2,...,2) (n 2’s). Show

that ) .
T4+
2") = .
g(2") ( ) )

(b) [3] Let n = 2" + s, where 1 < s < 27! — 1. Show that g(n) =
9(2")g(s).

(c) [5-] What about g(2" — 1) and g(2" +2"1)?

(d) [5-] The values of g(n) for 1 <n < 24 are 1, 3, 5, 10, 10, 30, 50,
36, 36, 108, 180, 312, 312, 840, 1368, 136, 136, 408, 630, 1360
1360, 6800, 4352. Can it be proved that g(4n) = g(4n + 1)7

32. [2-] How many SY'T of shape (n") have main diagonal (1,4,9,16,...,n%)?

33. [2] Let A b n. Define g(A) = >_ ,, Ky, where K, denotes a Kostka
number. Set g() = 1. Find a formula for the generating function
>y 9(A)sy, where the sum ranges over all partitions A of all nonnegative
integers. Your formula should be a simple infinite product.

34. (a) [2] Let A\ d > 1. Find a simple expression for the average number
of 1’s in an SSY'T of shape A and maximum part at most n.

(b) [3-] Let my(T) be the number of 1’s in the SSYT T, and let
B (k) denote the kth binomial moment of m; (1) with respect to
the uniform distribution on SSYT’s of shape A I d and maximum

part at most n. That is, By, (k) is the expected value of (mlk(T)).
Show that )
d
B/\,n(k) = ( )k / A

where (m)y, is the falling factorial.

(c) [2] Find a simple expression for the average of the square of the
number of 1’s in an SSYT of shape A and maximum part at most
n.

(d) [2] With A d as above, prove the identity

@ PO T (Dsam(17)
(n—l—k‘—l)k f>‘ SA(I") '

NoTE. We always define f# = Sy =0if p & A
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35. [3] Let d,, = (m —1,m —2,...,1). Define skew shapes

a, = (mynn—1n-—2...,2)/6,1
Bn = (nyn,nn—1,n-2,...,2)/5,
Y = (myn,nn—1,n—2...,1)/0,.

For instance, the diagram below shows ag.

Show that
o (3n — 2)1Ey, 1
/ (2n — 1)1220-2
o = (3n — 1) Ey, 1
(2n — 1)122n—1
o= (3n)!1(22"71 — 1) Ey, 4

(2n — 1)1227-1(220 — 1)’
where Es,,_1 denotes an Euler number.

36. [3] Let n > 1. Show that

Z fz)\ _ f(k’k712n72k:)

AEn k=1
(N<3

Z f,)\ _ f,(k7k7l2n—2k+1)‘

AF2n41 k=1
£(N)=3
Ai>0=>); odd
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37. (a) [2] True or false? There exists a nonzero symmetric function f for
which y := (254 — 531 + S22 — S211 + 281111) f s Schur-positive, i.e.,
(y,sx) >0 for all .

(b) [5-] What can be said about the set of symmetric functions g € A}
for which there exists 0 # f € A such that that fg is Schur-
positive? Is there a finite algorithm for determining whether f
exists?

(c) [5-] What if we require f to be Schur-positive in (b)?
38. [34+] Let A n, p b k, and ¢ = ¢(\). Let RT(u, ) be the set of all

reverse SSY'T of shape p and largest part at most £. For a square u € p
let ¢(u) denote its content. Write (n)y =n(n—1)---(n—k+1). Show

that
fA/u Z H)‘T —c(u

TERI(MZ ) uEN
where T'(u) denotes the entry in square u of T'.

Ezample. For p = (2,1) we get

= (Z i (A +1)

1<j<l
+ > NN DN =D+ D M - DN+
i<j<t i<j<k<t
+ Y =D+ 1)) .
1<j<k</t

39. (a) [2+] Let A € Par and n > A; + \|. Show that there are exactly n
ways to add a border strip of size n to \.

(b) [2] Show that (a) is equivalent to the following statement. Let
f:Z — {0,1}, such that f(n) = 0 for n sufficiently small (that is,
—n is sufficiently large) and f(n) = 1 for n sufficiently large. Let
a be the least integer for which f(i) = 1, and let b be the greatest
integer for which f(j) = 0. Then for n > b — a,

#{i: f(1) =0, f(i+n)=1} =n.



40.

41.

42.

[3-] Define an outer square of a skew shape to be a square (i, j) of the
shape for which (7 4+ 1,5 + 1) is not in the shape. Define recursively a
skew shape A/u to be totally connected as follows: (1) a (nonempty)
border strip is totally connected, and (2) a skew shape A/p which is not
a border strip is totally connected if its outer squares form a border strip
whose removal results in a totally connected skew shape. The depth of
any skew shape is the number of times the outer squares have to be
removed until reaching the empty set. For instance, 7666653/43221 has
depth three: remove the outer squares to get 555542/43221, then the
outer squares to get (up to translation) 221/1, and finally the outer
squares to get (.

Let bi(n) be the number of totally connected skew shapes, up to trans-
lation, of size n and depth k. Thus b;(n) = 2"°!, with generating

function
T

Bi(z) = bh(n)a" = o

Show that

(1 —22%) L5 (1 - 207)2

Ezample. by(4) = 1 (corresponding to the skew shape 22, which hap-
pens to be an ordinary shape), while by(5) = 4 (corresponding to 222/1,
32, 33/1, and 221).

(a) [2-] For any partitions A\ and p, express sys, as a skew Schur
function.

(b) [2] Show that every skew Kostka number K/, , is equal to some
Littlewood-Richardson coefficient c3. .

(a) [3-] Let Hy denote the product of the hook lengths of A\. Show
that Hys, is p-integral. (The only known proof uses representation
theory. It would be interesting to give a more elementary proof.
The difficulty rating assumes a knowledge of the representation
theory of finite groups.)



(b) [3] Let A - n and p = k. Show that (n),f*/f* € Z. You may
assume (a).

43. [3] Let A\/p be a skew partition and D a subset of A (identified with its

44.

Young diagram). A cell (i,7) € D is called active if (i +1,7), (4,7 + 1),
and (i + 1,74 1) arein A — D. If u is an active cell of D, then define
a, (D) to be the set obtained by replacing (i,7) in D by (i + 1,5 + 1).
This replacement is called an excited move. An excited diagram \/pu
is a subdiagram of A\ obtained from p by a sequence of excited moves
on active cells. Let £(A/u) be the set of excited diagrams of \/u. (We
allow the sequence of excited moves to be empty, so u itself is always
an excited diagram.)

Show that if [A\/u| = n then

1
R Z
EeE(N\/n) HUE/\ g h(u)’

where h(u) is the hook length of w in the diagram .

Ezample. Let A/ = 2221/11. There are three excited diagrams for this
skew shape, shown below with the hook lengths of the complementary

cells A — F.
3 3 5
2 2 4

31
1

WS
W

It follows that

1 1 1
2221/11 _ 5 —_9
/ (3-3-2-1-1+4-3-3-2-1+5-4-3-3-1)

[3-] Let A/ be a skew shape and k > 0. Let M; be the set of all skew
shapes obtained from A/pu by removing a vertical strip of size 0 < i < k
from p (i.e., adding this strip to the inner boundary of A\/u) and adding

10



a horizontal strip of size k — i to A (i.e., adding this strip to the outer
boundary of A/u). Show that

k

SkSA/M = Z(—l)l Z Sp-

=0 peEM;

45. (a) [2+] Let A be a partition and m > A;. Let AUm denote the parti-
tion obtained by adding a part of length m to . Let e;- denote the
linear operator on symmetric functions adjoint to multiplication
by e;. Show that

SxUm = <Z(—1)ihm+ief) Sy.

i>0

(b) [2+] Let 1 < k <n/2. Let fy(n) be the number of permutations
w = a---a, € 6, such that a1 < ay < --- < a,_, and the
longest increasing subsequence of w has length exactly n—k. Show
that

=0

(c) [3-] Is there a “nice” proof of (b) based on the Principle of Inclusion
Exclusion?

46. [2-] Let 1 < k < nand A = (k,1"%) (called a hook shape). For any
w1 n find a simple formula for the Kostka number K.

47. [2+4] Let A be the m x n matrix of all 1’s. If A =X (P, Q), then describe

the SSYT’s P and Q.

48. (a) [3] Let A be a partition with distinct parts. A shifted standard
Young tableau (SHSYT) of shape A is defined just like an ordi-
nary standard Young tableau of shape A, except that each row is
indented one space to the right from the row above. An example
of an SHSY'T of shape (5,4, 2) is given by

112]3]5]9)
11

10

11



(b)

Call two permutations u,v € &,, W-equivalent if they belong to
the same equivalence class of the transitive closure of the following
relation: either (i) they have the same insertion tableau under the
RSK-algorithm or (ii) u(1) = v(2), u(2) = v(1), and u(i) = v(i)
for 3 < i < n. For instance, the W-equivalence classes for n = 3
are {123,213,231,321} and {312, 132}. Show that the number of
W-equivalence classes in &,, is equal to the number of SHSYT of
size n.

[5-] Can this be generalized in an interesting way?

49. Let X be a partition of n with distinct parts, denoted X\ = n. Let ¢g*
denote the number of shifted SY'T of shape A, as defined in Problem 48.

50.

(a)

(b)

[3-] Prove by a suitable modification of RSK that

Z gn—t) (g)‘)2 =nl. (2)

AEn

[3] The “shifted analogue” of Corollary 7.13.9 is the following cu-
rious result. Let ¢ = (1414)/v/2 = €*>™/%. Let

u(n) = Z CEN =L /2 A,
AEn
Show that i
> u(n)— = e, (3)
n!
n>0
[2+] Let A be a partition with distinct parts. A strict shifted
SSYT (or SAYT) of shape A is a way of filling the squares of the
shifted diagram of A with positive integers such that each row and
column is weakly increasing, and every diagonal from the upper
left to lower right is strictly increasing. A component of an S4YT

is a maximal connected set of equal entries. For instance, the
diagram

N |

W[ N |-
B BN

AW W|F
N | IWN

12



is an S4Y'T with seven components, where we have outlined each
component. Given an S4YT T, let k(T') denote its number of
components. Define

summed over all S4YT of shape A\. Show that Q,(z) is a symmetric
function. For instance

Qs1(x) = 4mgy + 8mag + 16ma11 + 32myi13.

(b) [3] Show that

> 27N =] ek

1— 2y,
A i, iY5

where the sum is over all partitions of all n > 0.

(c) [3-] A diagonal-strict plane partition (DSPP) is a plane partition
such that there are no 2 x 2 squares of equal positive entries. If
m is an DSPP, then define k() as before (ignoring 0 entries). Let
|| denote the sum of the parts of m. Use (b) to show that

N
zﬂ: g = T G J_r Z;)

Jj=1
= 1+2q+64¢° + 16> + 38¢* +88¢° +196¢° + - - -,

where 7 ranges over all DSPP.

51. [3-] Let f(n) be the number of plane partitions (7;;); j>1 of n satisfying
92 S 1. Show that

oo~ 1) (5) 22
Zf(n)x" - T 3
o1 szl(l — )
= x4+ 327+ 62° + 132* + 242° + 4825 + 8627
+1592% + 2792° + 488210 + - - . .
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52. [2+] Evaluate the sums
Z f,\/zf,\ and Z (f,\/2)2
An AFn

Here A\/2 is short for the skew shape \/(2).

53. (a) [3-] Given an SYT T, define sgn(7") as in Problem 117(b). If T
has shape A, then let v(T) = v(A) = >_ Ag;. Suppose that w € &,

and w =5 (P, Q). Show that
sgn(w) = (—1)"sgn(P) - sgn(Q).

(b) [2] Let wr be the reading word of 7" as in Problem 117(b), and let
q> _ Z qinv(wT)’
T

summed over all SYT T of shape A\, where inv(wz) denotes the
number of inversions of wr. Show that

S ()W (-1)* =0,

AFn

54. Let o(\) denote the number of odd parts of the partition A, and d(\)
the number of distinct parts. Let ¢,,_; denote the number of involutions
in 6n—1~

(a) [2] Use the RSK algorithm to show that
Z o(\) f* = nt,_;.

AEn

(b) [2+] Show that

> A\ =nt, .

AEn

55. [3] With o(\) as in Problem 54(a), show that

ZF(lJrq) ZfAl—Ileq()’

AFn q AFn UEN

14



where h(u) denotes the hook length of u. Equivalently,

h(w)
eXP(itqth t2) ZR,ZFHHQ

n>0 AEn UEA

56. [2+] Given an SYT T, let o(T) be the largest integer k such that
1,2,...,k appear in the first row of 7. Let F, denote the expected
value of o(ins(w)), where w is a random (uniform) permutation in &,,
and ins(w) denotes the insertion tableau of w under the RSK algorithm.

Thus
E, o Z o(ins(w

weS,

Find lim,,_, E,.

57. Let p;j(n) be the average value of the (i,j)-entry P(i,j) of P when
w +— (P, Q) under RSK, for w € &,,. (If P has no (i, j)-entry, then set
P(i,j) = 0.) For instance, p12(3) = $(2+2+2+ 343 +0) = 2. Set
Vij = lim,, 00 pn(%])

(a) [1] Find py;(n) for all n > 1.
(b) [2+4] Show that v = e.
(c) [3-] Show that

1
Vi3 = €2 = 5.090678 - - -
b HZZI (n—1)!(n+1)!

(d) [3-] Show that vye = 1 + v33. (The only known proof is computa-
tional. No simple reason is known.)

(e) [5-] Show that
vij = e(i+3)? +o((i+5)?)
as i, j — 0o. Can better information be found about v;;?

58. (a) [3] Let T" be a random SYT of shape (n,n) (uniform distribution
on all C,, such tableaux). Let p;;(n) be the expected value of the
entry T;;, where 1 <7 <2 and 1 < j <n. Let

pij = Hm p(n).

15



Show that

d 2d
Pra-1 = 2d— 4&1)
2d

(b) [5-] Are there analogous results for other shapes nA as n — oo?

59. [3] Show that as n — oo, for almost all (i.e., a (1 — o(1))-fraction)
permutations w € &,, the number of bumping operations performed in
applying RSK to w is

128
1+ 0(1)) o—n®2.
(1+0(1)) 5 g

Moreover, the number of comparison operations performed is

(1+ 0(1))—7rn3/2 log, n.

60. (a) [2+] Let n = pg, w € &,, and w iy (P,Q). Suppose that the
shape of P and () is a p x ¢ rectangle. Show that when the RSK
algorithm is applied to w, every bumping path is vertical (never
moves strictly to the left).

(b) [2] Let P = (a;;) and Q = (b;;) in (a). Deduce from (a) that
w(bij) = api1-ij-

61. [2] Let 4,j,n > 1. Evaluate the sum

Falind) = sa(1)sa (V).

AFn

62. [3-] Let y,, = >_,., s3. Find the generating function

F@) =3 (g )"

n>0

Express your answer in terms of the generating function P(x,t) =
[1i>,(1 —ta")~" (for a suitable value of ).

16



63.

64.

65.

66.

67.

[3] Let

f(n) = <Z‘9;2u ZS2A> ’

ukn AFn

where 2\ = (2A1, 2\, ...). Thus
(£(0), F(1),..., £(10)) = (1,1,3,5,12, 20,44, 76, 157, 281, 559).

Show that

n— 1 . 1 —
> fn)g H\/l_—qu H(l_qu)Qm

n>0 i>1 j>1

[24] Find all symmetric functions G € Ag (the completion of Ag as
defined on page 291 of EC2) such that (G, fg) = (G, f) - (G, g) for all

fag € [\R~
[3+] Let Vi, = [],<ij<n (i — x;). Show that for k > 0,

((2k + 1)n)!

2k 2k _

The notation (,), indicates that the scalar product is taken in the
ring A, i.e., the Schur functions s,(z1,...,z,) with /(A\) < n form an
orthonormal basis.

[2+] Let

Uy = <h§, Z s,\> )
AF2n

Find the generating function F'(t) = > -, an ;. (A result in Chapter 5
may prove useful.)

(a) [3-] Find the number f(n) of ways to move from the empty parti-
tion () to () in n steps, where each step consists of either (i) adding
a box, (i) removing a box, or (iii) adding and then removing a
box, always keeping the diagram of a partition (even in the middle

17



of a step of type (iii)). For instance, f(3) = 5, corresponding to
the five sequences

0 (10) (1,0) (1,0)
0 (1,0) 1 0
01 (21) 0
o 1 (L1 0
0 1 0 (1,0

Express your answer as a familiar combinatorial number and not,
for instance, as a sum.

(b) [3-] Given a partition A, let fy(n) be the same as in (a), except
we move from ) to A in n steps. Define

T, = Zf,\(n)sk.
A

For instance,
T3 =5+ 1081 + 682 + 6811 + 83 + 2821 + S111-

Find (T,,,T,). As in (a), express your answer as a familiar com-
binatorial number.

68. (a) [2+] Let h(t) € C[[t]] with h(0) # 0, and let g(t) € C[[t]]. Write
p=p1 = > x; Let Q be the operator on A¢ defined by

szm+mm§;

Define N
x
Flap) =Y 0 (1)
n>0 ’
Show that
F(z,p) =exp [-M(p) + M(L" " (z + L(p)))] ,
where

o - [

and where L=1 denotes the compositional inverse of L.

18



(b) [14] Let g(t) = t and A(t) = 1, so (2"(1), s)) is the number of
oscillating tableaux of shape A and length n, as defined in Exer-
cise 7.24(d). Show that

1
F(z,p) = exp <px + §x2> )

(c) [2] Let fi(n) be the number of ways to move from the empty
partition () to A in n steps, where the steps are as in Problem 67(a).
Use (a) to show that

S Ay =exp (-1 - pt (14 p)e).

n:
n>0 AePar

(d) [2-] Let ga(n) be the number of ways to move from () to A in n
steps, where each step consists of adding one square at a time
any number ¢ of times (including ¢ = 0) to the current shape and
then either stopping or deleting one square (always maintaining
the shape of a partition). Show that

l.TL
Z Z ga(n)s\— = exp (1 —p—+(1—p)?— 2:)3) :
n>0 AePar s
In particular,

Zg@(n)% = exp (:B + Z(?k‘ - 3)!!%) :

n>0 k>2

(e) [2-] Let jx(n) be the number of ways to move from () to A - k in n
steps, where each step consists of adding one square at a time any
number ¢ of times (including i = 0) to the current shape or else
deleting one square (always maintaining the shape of a partition).

Show that
=)

where as usual f* denotes the number of SYT of shape .

69. [3] Let w = ajas - - - ag, € Sy,. Suppose that a; + ag,1-; = 2n + 1 for
all 1 <7 <n. Show that the shape of the insertion tableau ins(w) can
be covered with n dominos.
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70. [2-] Let d,n > 1 and ¢ = €?>/? a primitive dth root of unity. Let
f € A" Show that f(1,(,...,¢% ) =0 unless d|n.

71. [3-] Let (n — 3)/2 < m <mn — 1. Show that

> e Y Eg,

An i,5,1>0
(A)<m 2i4j+2l=n—m—1

where t(j) denotes the number of involutions in &;.

72. [2] Let u be a square of the skew shape A\/u. We can define the hook
H(u) = Hyj,(u) just as for ordinary shapes, viz., the set of squares
directly to the right of u and directly below u, counting w itself once.
Similarly we can define the hook length h(u) = hy/,(u) := #H (u). Let
(A )" denote A/pu rotated 180°, as in Exercise 7.56. Show that

D @)=Y hoguy(w).

ueN u€(N/p)"

73. (a) [2+] For any partition A - n, show that

S b =nt+> cu)?,

UEN UEN
where h(u) denotes the hook length and c(u) the content of the
square u.
(b) [5] Find a bijective proof.

74. (a) [3-] Let mx(\) be the number of hooks of length & of the partition

A. Show that
Z me(A) =k Z my(A).

AFn AFn

As usual, my(\) denotes the number of parts of A equal to k. Note
that Problem 1 is equivalent to the case k£ = 1. Is there a simple
bijective proof similar to the solution to Problem 17

(b) [3-] Part (a) can be rephrased as follows. For u = (4,j) € A, let
r(u) = \;, the length of the row in which u appears. Then the
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75.

76.

77.

78.

statistics h(u) and r(u) have the same distribution over all squares

of all A\Fn,i.e.,
Y2 S ) oA

AFn ue AFn ue

Show in fact that h(u) and r(u) have a symmetric joint distribu-

tion, i.e., if
Flz,y) =YY a"y ™),

AFn uex
then F(z,y) = F(y,z).
(¢) [2] Let n > 1. For any real (or complex) number z, show that

YD) DITTIEED B) BFT

AFn ueX AFn 1

[3+] Given a partition A and u € A, let a(u) and ¢(u) denote the arm
and leg lengths of u as in Exercise 7.26. Define

Y(A) =#{ue X alu)—1l(u) =0or 1}.

Z g™ = Z '™,

AFn An
where /(\) denotes the length (number of parts) of A.

Show that

[2-] Let a(\,n) be the degree of the polynomial s)(1,q,...,¢" "), and
let b(\, n) be the exponent of the largest power of ¢ dividing this poly-
nomial. Show that a(\,n) + b(\,n) depends only on |A| and n.

2] Let 0 = (n—1,n—2,...,0) as usual, and let A € Par with n > ¢()).
Find the Schur function expansion of the product

ss(@, ..., x)sx (22, ... 22).

[24] Let ¢ be an indeterminate. When (3, s,)" is expanded in terms of
power sums, the coefficient of py will be a polynomial Py(t). If A\ - n,

then show that
nIPy(t) = > "),

weSy,
p(w?)=X

where k(w) denotes the number of cycles of w.
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79.

80.

81.

2] Let Ej, denote an Euler number (the number of alternating permu-

tations of 1,2,..., k). Evaluate the determinants
A - ‘ Eoiyaj1 |"
(20 4+25 —1)! i j=1
and .
B, — ‘ .E2i+?j—3 '
(20 +25 = 3)!; 2y

HinT. Use Exercise 7.40.

[2+] Let f(n) be the number of permutations w € &,, such that both
w and w™! are alternating. Let
1 1+

L(z) = 5 log

1—=x
2
= Tttt
3 5

Use Corollary 7.23.8 and Exercise 7.64 to show that

Sk D = Y E—LQ(;)I :
k>0 k>0 ( + )
2k
;Of(%)x = xQ ;OE%

where F,, denotes an Euler number.

[3-] Let a(n) denote the number of alternating involutions in &, i.e.,
the number of involutions in &,, that are alternating permutations in
the sense of the last two paragraphs of Section 3.16. Let F,, denote an
Euler number. Use Problem 126 below and Exercise 7.64 to show that

Esiyo; 1\ 2i+1 1422\’
2k et = ZW@ ) ()
2 1l

k>0

Esiyoj 1 N2 1+ 22\’
Za(2k)x m Z o) 143 (tan™"' z) 10g1—:c2 :

k>0
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82.

83.

[3+] Let A = n, and let a, b, ¢, d be (commuting) indeterminates. Define
w(\) = a2=lr2i-1/21 P30 A2i1/2] 30TA2i /2] 122 A2i /2]

For instance, if A = (5,4, 4, 3,2) then w(\) is the product of the entries
below in the diagram of A:

ababa
cdced
abab
cdc
ab

Let y = >, w(\)sy, where X ranges over all partitions. Show that

1 1
log(y) — ) oy @ (0" =" )pan — > Ea"b"cnd"pin € Ql[p1, ps, ps; - - - J]-

n>1 n>1

Note that if we set a = qt, b=q¢ ', c = qt~ ', d = ¢ '¢t~! and then set
q =t =0, then y becomes ), sy, where \ ranges over all partitions
such that each \; and A} is even.

Let wy : A(z,y) = A(z) ® A(y) be the algebra homomorphism defined
by
wWyPn (7, y) = pa(®) + (—=1)" " 'pa(y). (4)

Equivalently, w, is the automorphism w acting on the y-variables only.
Write wy, f(x,y) = f(z/y). In particular, sy(x/y) is called a super Schur
function. Let

Y =im(wy) ={f(z/y) : [ €A},
a subalgebra of A(x) ® A(y).

(a) [2-] Show that

sx(@/y) =D sul@)sxyuly (5)

nCA

(b) [3-] Let g(z,y) € A(x) ® A(y), and let ¢t be an indeterminate.
Show that g € ¥ if and only if

9@ Yy mtgyet = 9T Y) om0 - (6)
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(c)

[3] Prove the following “finite analogue” of (b). Let g € A(xy,...,2,)®

Alyr, ..., Yn). Then

g|x1=t7 yi=—t g(:l?, y) |:c1=y1=0

if and only if ¢ is a polynomial in the “variables” p;(x1,..., %)+
(=) 'pi(yry -y yn), i > 1.

[2-] Show that for any f € A, f(z/x) is a polynomial in the odd
power sums pi, ps, Ds, - - - -

[3-] Define a supertableau of shape A to be an array T of positive
integers of shape A such that (i) the rows and columns are weakly
increasing, and (ii) the diagonals from the upper left to lower
right are strictly increasing (equivalently, there is no 2 x 2 square
of equal entries). A maximal rookwise-connected subset of equal
entries is called a component of T. Let ¢(T') denote the number
of components. For instance, if 7" is given by:

3]

A A~ N

then T has one component of 1’s, two components of 2’s, three
components of 3’s, and two components of 4’s, so ¢(T") = 8. Show

that
sy(x/x) = Z 26T
T

where T' ranges over all supertableaux of shape A and z” has its
usual meaning.

2] Let (n™) denote an m x n rectangular shape. Show in two
different ways that

m n

Sy (L1, T [YL, - Un) = HH@ + ).

i=1j=1

The first proof (easy) should use Exercises 7.41 and 7.42. The
second proof should use (b) above (in the easy “only if” direction)
but no RSK, Cauchy identity, etc.
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(2)

84. (a)

[3-] More generally, let a, 8 be partitions with ¢(a) < m and
((B) < n. Let [m,n,a,B] denote the partition obtained by ad-
joining « to the right of (n™) and f’ below (n™), as illustrated
below.

Nn
a
m
B’
S
Show that
S[m,n,a,ﬁ](xh S ,LL’m/yl, S 7yn)
= Sa(T1, -, Tm)s(Y1, - -y Yn) - H H(x, + ;).
i=1 j=1

[3] Define a grading on the ring A of symmetric functions by setting
deg(p;) =1 for all i > 1. Thus deg(p,) = (). Let s, denote the
sum of the terms of least degree appearing in the expansion of sy
in terms of power sums, called a bottom Schur function. It is an
easy consequence of Exercise 7.52 and the Murnaghan-Nakayama
rule that this least degree is equal to rank(\). For instance,

1 5 1 3 1 2 1, N 1 1
Soo] = —P] — — — = — — - =
221 5 4171 12]92171 6]93]91 8172]91 4174171 6]93]927
SO 1 1
S§221 = Zp4p1 - 6293292-

Let V,, denote the subspace of Ag spanned by all §) such that
A F n. Show that a basis for V,, is given by {5, : rank(\) = ¢(\)}.

[2] Deduce from (a) that dimV,, is the number of p = n whose
parts differ by at least 2. (By the Rogers-Ramanujan identities,
this is also the number of p F n whose parts are = +1 (mod 5).)
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(c)

(d)

(e)

(f)

85. (a)

(b)

86. (a)

[3] Define the augmented monomial symmetric function my =
rilrol - -my, where A = (1",2™ ...). Let t\ denote the result
of substituting ¢p; for p; in the expansion of §, in terms of power
sums. Suppose that ¢, = Zu axup,. Show that

t)\: E awmu.
I

[5-] Let W, denote the space of all f € Ag such that if f =
Zu axupy, then f = Zu ay,my,. Find dim W,,. Does W,, have a
nice basis?

[5-] Let ¢k (s)) denote the sum of the terms of the least k degrees
(that is, of degrees rank(\), rank(\) + 1,..., rank(\) + & — 1)
appearing in the expansion of sy in terms of power sums, so in
particular §y = ¢1(sy). Let Vi) denote the subspace of Af

spanned by all ¢x(sy). Show that a basis for Vi s given by
{8\ : rank(\) > £(\) — 1}

[5-] Find a basis and/or the dimension of V") for k > 3. NoTE. It
is false that a basis for Vi) is given by {8x : rank(\) > () —2}.

[2+] Show the Z-linear span of all the augmented monomial sym-
metric functions m, of Problem 84(c) is equal to the Z-linear span
of all power sum symmetric functions p,.

[5-] Let v be the linear transformation on Ag defined by v(m,) =
my. Does v have any interesting properties?

2] Let s denote the adjoint to multiplication by sj, so sp is
the linear operator on A defined by sis,\ = Sy/k- ohow that
Siipxn = Y., Pu, where v is obtained from A by removing a set
of parts (regarding equal parts as distinguishable) summing to k.
For instance, s3 pipa = 10p?ps + 5pi.

2] Let ¢ be the linear operator on A defined by ¢ f =", ., si [
Show that ¢ f = f\pi_m#l, i.e., expand f as a polynomial in the
p;’s and substitute p; + 1 for each p;. In particular, ) is an algebra
automorphism.
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87. [3] Let ¢ be an indeterminate. Let ¥ : A — A[t] be the specialization
(homomorphism) defined by

Show that
f/\/u

UENEDY

= A/ ul!

IT &+ C(U))) S

ueEN/ 11

where c(u) denotes the content of the square u.
88. [3-] Define a Q-linear transformation ¢: Ag — Q[t] by

Pt N+ —1
ploy) = A H D)
A

where A = (A,...,\,) b n and H, denotes the product of the hook
lengths of A. Show that for any p = n with ¢(u) = ¢ and mqy(p) = m
(the number of parts of i equal to 1), we have

o) = 0 (M) i)

89. (a) [3] Define a Q-linear transformation ¢: Ag — Q[n] by

vlm) = (30 A2) ma(17).

Let A F d. Show that
nn—1)(n—-2)---(n—d+1)

P(s14) =

(d—1)!
_ (dnHan)sa(17)
P(sn) = i+ DH, AL > 2,

where H, denotes the product of the hook lengths of A and

ay= Y A +2) NN,

1<J
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(b) [3-] Show that

b(py) = ((Z /\2) ntd -y >\2>

(c) [3-] Show that
dn+2>,_ N _ ,
'l/)(eA) = +n I_IZZZ;:‘ H(n — 1+ 1))\2'

i>1

(d) [3-] Show that

dn? + (2d*> —d — 2> AA)n+ 230 A\ ,
¢(hA) _ ( Zz<] J) Zz<] J H(n‘i"l—l))\l
n(n+1) [ \!

1>1

(e) [3-] Show that

e (CA)n+2d— N |
[Limi(M)!

Plw(my)) = (n +i—1).

_,’:y

e
Tl
o

(f) [3-] Extend to
Ur(m) (Z )\T) mx(1").
where r > 3. In particular, if A; > r then show that v,(s,) is
divisible by
Sx(ln)
m+1)n+2)---(n+r—1)

90. [5] Let Z be a collection of subintervals {i,i+1,...,i+j} of [n]. (With-
out loss of generality we may assume that Z is an antichain, i.e., if
I,J€Zand I C J, then I = J.) Define

= E Ly Tig * Ly s
1142+ "in

where 115 - - -4, ranges over all n-tuples of positive integers such that
if j,k €l €Zand j+#k, then x;; # x;,. Thus fr € A. For instance, if
Z = () then fr =€}, and if Z = {[n]} then fr = nle,. Show that fr is
e-positive.
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91. (a) [2+] Fix integers 1 < m < n. Find simple formulas for the four
sums

a(mn) = > Y Y e,

puFEm vkEn—m AFn

bim,n) = D> Y > e,

puFEm vkEn—m AFn

c(m,n) = Z Z Zf” ’\cf;,/

puFEm vkEn—m AFn

d(m,n) = Z Z Z ’\cﬁy,

puFm vkEn—m AFn

where cfw denotes a Littlewood-Richardson coefficient. Some of
the formulas may involve the number ¢(k) of involutions in &y, for

certain k.
(b) [3] Suppose that ¢, = 2. Show that 2} ., = n + 1 for every
positive integer n.
(c) [2+] Let
elmm) =2 3, > I
puFEm vkEn—m AFn
Show that
k 2
mY ) Y
ZZe(m,m+k)x e P(x)exp <1 — + o _172)) ,
m>0 k>0

where P(x) = [[;5,(1 —2")~"
(d) [5-] Do something similar for

fmm =2 > > e

pFm vEn—m AFn

92. (a) [3-] Show that

A2 il A 1
2 L) M = e gy "

HVs A
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(b) [5-] Part (a) when t = 1 can be restated as follows: Let

2
) =% ()"
JTR7Z9N
AFn
Then f(n) is equal to the number of partitions A - n, with each

part A\; > 0 colored either red or blue. Find a bijective proof.

(c) [5-] Develop a theory of the largest or the typical Littlewood-
Richardson coefficient ci‘w, where \ F n, analogous to what was
done for f* (Exercise 7.109(e)). It follows from (a) that

n

log, max '  ~ —

&2 P
AFn

but this gives no insight into what partitions A, y, v achieve the
maximum value. It also follows from (a) that the maximum of
¢, for X=n occurs when |p| and [v| are both near n/2.

(d) [2] Generalize (a) as follows: let & > 1. Then

1 K 1
(S-S0, sa) Tl gn = - .
1Z“k/\ g 8 ' g Hi21 (1_(t1+"'+tk)ql)
An
Here (p1, ..., py) runs over all k-tuples of partitions, which with-

out loss of generality satisfy > |u‘| = n. (Difficulty rating of [2]
assumes that (a) has been solved.)

(e) [2] Let 1, denote the character of the action of &,, on itself by
conjugation. Show that for A F n,

<Ch¢n7h>\> = Z <S>\73u15,u2 >2

An
w2 e,

93. [3-] Let £ > 1 and
Bi(z)= > sal2),

(N)<k
as in Exercise 7.16(a). Show that

> (=1)s,(x)
Hi(l — ;) - Hi<j(1 - xixj)’
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94.

95.

96.

97.

98.

where p ranges over all partitions whose Frobenius notation has the
form

o aq a9 Q-
F=\a+k atk - atk )
and where ¢, = (|p| —rk +1)/2.

[5-] Let n be even. Show that the symmetric function Y 1 (—1)%ebhs ™"
is Schur positive.

(a) [3] For two skew shapes A/p and v/p such that A + v and p+ p
both have all even parts, show that
2
(S%/#Tﬂ’) s SN/ uSv/ps

where f >, g means that f — g is Schur-positive.

(b) [3] For two partitions A and p, let AU p = (v1,v0,15,...) be
the partition obtained by rearranging all parts of A and p in
weakly decreasing order. Let sorty(A,p) = (v1,vs,v5,...) and
sorte(A, ) = (va, 4, Vg, ... ). Show that

Ssorty (\,u) Ssorta (\,u) > SASp-

[3+] Let A\, pi, v be partitions and n € P. Show that cf;u # 0 if and only

it e, # 0.

[4-] Let A, p, v be partitions of length at most n. If A is an n x n
hermitian matrix with eigenvalues ay > as > --- > «,, then write
spec(A) = (au,...,a,). Show that the following two conditions are
equivalent:

e There exist n xn hermitian matrices A, B, C such that A = B+C,
spec(A) = A, spec(B) = u, and spec(C) = v.

o c,’)u # 0, where cf;u denotes a Littlewood-Richardson coefficient.
(a) [3+] If A n and p is prime, then an abelian p-group of type A is

the direct sum Z/pMZ @ Z/p7 @ - --. Show that the following
two conditions are equivalent:

e There exists an abelian p-group G of type A and a subgroup
H of type u such that G/H has type v.
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99.

100.

101.

102.

103.

o cf;u # 0, where cf;u denotes a Littlewood-Richardson coeffi-
cient.

(b) [5] Let n > 2. Suppose that G has type n\, H has type nu, and
G/ H has type nv. Is there a subgroup K of G of type A such that
K N H has type u and K/(K N H) has type v?

(a) [2-] Find all partitions A - n such that x*(u) # 0 for all u - n.
(b) [5-] Find all partitions u = n such that x*(u) # 0 for all X - n.

2] Show that for every partition A there exists a partition p for which
XMu) = £L1.

[2+] Given A F n, let H, denote the product of the hook lengths of A,
so Hy = n!/f*. Show that for k € N,

1
ZH/’\’C_Q = g#{(wl,wg,...,wk) €Sk wiwl-wi =1}
AFn ’

HINT. Use Exercises 7.69(b) (or more precisely, its solution) and 7.70.

[2+4] For any partition \ # ), show that

S)\/l(1>qaq2>"') Cu
= q,
=2

_ 2
(1 Q)S)\(l,q,q PRI WEN

where ¢, denotes the content of the square u of \.

(a) [2+] Show that
ST+ =0

where ¢, denotes the content of the square u in the diagram of \.
(b) [3+] Show that

" N1
S 2 =TT -
n>0 Arn ue i>1
where h, denotes the hook length of the square u in the diagram

of \.
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(¢) [3] Show that for any r > 0 we have

2r
,ZfA ZHC — 42 r(—l—z)ﬂ( Vri1- (8)

AEn ueX =0

(d) [2] Deduce from equation (8) that

,Zf/\ ZC% ZT _|_1,2( n)j+1;

AFn UEN

where T'(k, j) is a central factorial number (Exercise 5.8).
(e) [3] Show that for any r > 0 we have

ESSIRD N | (T == G [ [0

AFn ueN i=1
(9)

(f) [2] Deduce from (e) that

a A Sreenag (V7))o

AN weM
where T'(k +1,7) is as in (d).
(g) [3] Let F' = F(x) € Ag be a symmetric function. Define

D, ( 'Zf)‘ (h2 : uweN).

P\

Here F'(h? : u € \) denotes substituting the quantities h2, where
u is a square of the diagram of A, for n of the variables of F,
and setting all other variables equal to 0. Show that ®,(F) is a
polynomial function of n.

(h) [3] Let G(x;y) be a power series of bounded degree (say over Q)
that is symmetric separately in the x variables and y variables.
Let

U,.(G) :%Z(fA)QG(cu CTUEN N —1:1<i<n).

" Akn

Show that ¥,,(G) is a polynomial function of n.
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104. [2+] Let £ > 1 and p > 2. Show that the number of p-cores (as defined
Fp-2)

in Exercise 7.59(d)) with largest part k is ( P
105. Let p,q > 2. A (p,q)-core is a partition that is both a p-core and a
g-core. Assume now that ged(p, q) = 1.

1

(a) [3-] Show that the number of (p, g)-cores is - (* ;q). For instance,

there are seven (5, 3)-cores, namely, (), 1,2, 11,31, 211, 4211.
(b) [3] Let ¢ = [p/2]| and d = |g/2]. Show that the number of self-
conjugate (p, q)-cores is equal to (Ctd).

(c) [3] Show that the largest n for which some partition of n is a
(p, q)-core is equal to

(p> = 1)(¢* = 1)
24 '

Moreover, this (p, ¢)-core is unique (and therefore self-conjugate).

(d) [3+] Show that the average size of a (p, ¢)-core is equal to

P+e+D—-1(g-1)
24 '

(e) [3+] Show that the average size of a self-conjugate (p, q)-core is

also equal to
P+e+D)p—1(—1)
24 '

106. (a) [2+] For a positive integer k and partitions A', ..., \* - n, define

1 2 k n
ek =0 ™).

(Note that ™ is the trivial character of &,,, with x™) (w) = 1 for
all w € G,,.) Show that
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(b) [2+4] Show that
Uk(n) = Z GAT N2, Nk

where
sq(w) = #{y € &, : y* = w},

the number of square roots of w.
(c) [2+] For fixed n, let M(n) be the maximum value of gy,, as A, f,
v range over partitions of n. Show that

log M (n) = glogn—gjLO(\/ﬁ), as n — o0o.

107. Fix a partition p = k, and define N(n;u) = >, fM*. Let ¢(j) denote
the number of involutions in &;.

(a) [2+] Show that for all n,k > 0 we have

N(n+k;u)=§:<3) (Z f‘””) t(n — 7).

j=0 vhk—j

(b) [3-] Let o be the partition obtained from v by replacing each even
part 2¢ with ¢,¢. Equivalently, if w is a permutation of cycle type
v, then w? has cycle type ©. Show that for n > k,

N(n;p) = Z t((kn__jj).? Z 2 (o, 1579).

k
7=0 vkj

my (v)=mg (1)=0

For instance,

N(n:32) = N(n: 221) 2—14(t(n) — dt(n —3) + 6t(n — 4)).

108. (a) [2] Let A+ pg and pu = (p?). Show that x*(u) = 0 unless A has an

empty p-core.
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(b) [3-] Let A F pg, and suppose that A has an empty p-core. Let
i = (p?). Show that when we use equation (7.75) to evaluate
x (1), then every term (—1)") has the same value.

(c) [2+] Let Y denote Young’s lattice and Y, the sublattice of Y
consisting of partitions with empty p-core. Let ¢: Y, p — YP? be
the isomorphism of Exercise 7.59(e). Let A € Y,y with A F pq.
Suppose that (X)) = (AL, ..., ), where \' - n;. With u as above,

show that
q p
xk(u)zi( )fA1-~-fA-
ny,...,ny
109. (a) [3-] Fix a partition pu - k. Given A - n > k, define
(n)kX)‘(Ma 1n—k>
xA(1)

Let p x ¢ denote the partition with p parts equal to ¢. Fix a
partition w, € &y, of cycle type 1, and let (w) denote the number
of cycles of the permutation w € &;. Show that

XU, 1) = (=1)F Y p (=),

uUv=wy,

XM, 1) =

where the sum ranges over all k! pairs (u,v) € &) x & satis-
fying wv = w,. HINT. Use the Murnaghan-Nakayama rule and
Exercise 7.70.

(b) [3+] Suppose that (the diagram of) the partition A is a union of m
rectangles of sizes p; x ¢;, where ¢; > ¢ > --+ > q,,, as shown in
Figure 1. Let 6,(;”) denote the set of permutations u € &, whose
cycles are colored with 1,2, ..., m. More formally, if C'(u) denotes
the set of cycles of u, then an element of 6,(;”) is a pair (u, @),
where u € & and ¢ : C(u) — [m]. If & = (u,p) € G,Em) and
v € &y, then define a “product” av = (w,v) € 6,(;”) as follows.
First let w = uv. Let 7 = (a1, as,...,a;) be a cycle of w, and let
p; be the cycle of v containing a;. Set

Y(7) = max{p(p1), ..., (pj)}-
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M

A

Figure 1: A union of m rectangles

For instance (multiplying permutations from left to right),

1 2 3 2 3 3 2
~ N

T 23X 3)(E (8 )(1,7)(2.4,8,5)(3,6) = (1,4.2,0)(3,7)(5.8).

Note that it is an immediate consequence of the well-known for-

mula
Z:): rz+1)---(x+k—1)

weGy

that #6\™ = (k+m —1);.
Given a = (u,¢) € &™) let p*©@ = [[,p*, where k;(a) de-
notes the number of cycles of u colored i, and similarly ¢*®, so
(=0 = T (~a)" .
Let X\ be the partition of n given by Figure 1. Let u F k and fix a
permutation w,, € &y, of cycle type p. Define

F,u(p7 q) = F;L(plv <oy Pmiqa, - 7qm> = 55)\(:“’7 1n_k)
Show that

FM( Z p/i(a Ii(ﬁ

Q=
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where the sum ranges over all (k+m — 1), pairs («a, ) € 6,(;”) X
6](:”) satisfying cw, = B. In particular, F},(p; q) is a polynomial
function of the p;’s and ¢;’s with integer coefficients, satisfying

(=DFF, (1., =1, =1) = (k+m — 1),

110. (a) [2+] Let x(w) denote the number of cycles of w € &,,. Show that
1

Pn — k(w(1,2,...,n)) _ . . . )
(q) ;q nn+1) (¢ +71)nt1 = (@ns1)
where w ranges over all (n — 1)! n-cycles in &,, and w(1,2,...,n)
denotes the product of w with the n-cycle (1,2,...,n). For in-

stance,

1
Z qn(w(1,2,3)) - E((q +3)s — ()a)
p(w)=(3)

= ¢’ +q
HinT. Use Exercise 7.70.

(b) [2+4] Show that all the zeros of P, (¢) have real part 0.
(c) [3-] It follows from (a) that

| Loy |
Pa(q) = (@3] > cn+1,n—20)g"",
2 =0

where ¢(n + 1,n — 2i) denotes the number of permutations w €
S,e1 with n — 2i cycles. Is there a bijective proof? (In fact, it
isn’t so obvious that c(n+1,n —2i) is divisible by ("1'). J. Burns
has proved the stronger result that if A\ n+1 and €y, = —1, then

(n+1)!/zy is divisible by ("11).)
(d) [3] Generalize (b) as follows. Fix A i n. Define

where w ranges over all permutations in &,, of cycle type A\. Show
that all the zeros of Py(q) have real part 0.
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111.

112.

113.

(a) [3] Define two compositions o and /5 of n to be equivalent if sp, =
sp, (as defined in §7.23). Describe the equivalence classes of this
equivalence relation, showing in particular that the cardinality of
each equivalence class is a power of two.

NoOTE. A “trivial” equivalence is given by
(Oél, Ao, ..., Oék) ~ (Ozk, .., O, 041).

It is surprising that an equivalence class can have more than two el-
ements, e.g., {(1,2,1,3,2),(2,3,1,2,1),(2,1,2,3,1),(1,3,2,1,2)}.

(b) [3] Let f(n) denote the number of different symmetric functions
sp, for a € Comp(n). Thus f(1) = 1, f(2) = 2, f(3) = 3,
f(4) =6, f(5) =10, f(6) = 20. Show that

f(n) =2 <2n—l woln/2l (2! + 2\_n/2j)_1> ’
where * denotes Dirichlet convolution, defined by

(a*b), = Z agbrq,
dln

and where ! denotes inverse with respect to Dirichlet convolution.

[3] Define the rank of a skew shape A/p to be the minimal number of
border strips in a border strip tableau of shape A\/u. It it easy to see
that when g = () this definition agrees with that on page 289 of EC2.
Let [\/u| = n, and let v be a partition of n satisfying ¢(r) = rank(\/u).
Show that x*/*(v) is divisible by m; (v)!my(v)! - - -. (Incidentally, note
that by the definition (7.75) of x**(v) we have x**(v) = 0 if (v) <
rank(A/p).)

Let A/ be a skew shape, identified with its Young diagram {(,7) :
wi < j < N}. We regard the points (7, j) of the Young diagram as
squares. An outside top corner of \/u is a square (i,7) € A/p such
that (i — 1,7), (4,7 — 1) € A/p. An outside diagonal of A/ consists of
all squares (i + p,j + p) € A/u for which (4, 7) is a fixed outside top
corner. Similarly an inside top corner

of A\/u is a square (i,7) € A/p such that (i —1,7),(i,7 — 1) € A u
but (i — 1,7 — 1) € A p. An inside diagonal of \/u consists of all
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+[—| [+

Figure 2: Outside and inside diagonals of the skew shape 8874/411

squares (i +p,J +p) € X\/u for which (7, j) is a fixed inside top corner.
If 4 =0, then \/u has one outside diagonal (the main diagonal) and
no inside diagonals. Figure 2 shows the skew shape 8874/411, with
outside diagonal squares marked by + and inside diagonal squares by
—. Let dt(\/p) (respectively, d=(A\/u)) denote the total number of
outside diagonal squares (respectively, inside diagonal squares) of A/ .

Generalizing the code C) of Exercise 7.59, define the code Cl,, of A/
to be the two-line array whose top line is C and whose bottom line is
C}, where the indexing is “in phase.” For instance,
c - 0111101110100°1
WML ... 001001 11011111

[3—, for the first four] Show that the following numbers are equal:

The rank of \/pu, as defined in Exercise 112 above.

dT (A p) —d=(A/p)

The number of rows in the Jacobi-Trudi matrix for A/u (i.e., the
matrix of Theorem 7.16.1) which don’t contain a 1.

e The number of columns of C}/, equal to é (or to (1])

e [3-+] The largest power of ¢ dividing the polynomial s, ,(1").

114. [24] Let k(w) denote the number of cycles of w € &,,. Regard k as a
class function on &,,. Let A F n. Show that

> it %7 if A= (n)
(o, xY) = ¢ ()" P s A= (p,q, 17777, ¢ >0

0, otherwise.
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115. (a) [3] Define a class function f, : &,, — Z by
fa(w) = nl(k(w) + 1)")=1
where x(w) denotes the number of cycles of w. Show that f, is a

character of G,,.

(b) [3-] Let F(z) =27 | so F(x)"" = 2'/7. Let the Taylor series
expansion of F'(x) about x = 1 be given by

Fo) = Y ai=

n!
n>0
u2 u3 U4 u5 U6
= Lt ut 25y + 95 + 565 + 4807 + 5094+

where u = x — 1. Show that (f,,sgn) = a,, where sgn denotes the
sign character of &,,.

(¢) [2] Show that for n > 1,

n

ay, = Z s(n, k)(k+ 1)",

k=1
where s(n, k) is a Stirling number of the first kind.

116. Let E()) (respectively, O(X)) be the number of SYT of shape A whose
major index is even (respectively, odd).

(a) [2+] Express the symmetric function

R = 3 (BQ) = 00))s)

AEn

in terms of the power sum symmetric functions.

(b) [2+4] Deduce from (a) that if A - n, then F(\) = O()) if and only
if one cannot place |n/2] disjoint dominos (i.e., two squares with
an edge in common) on the diagram of \.

(c) [2+] Show that (b) continues to hold for skew shapes A/ when
|A/u| is even, but that the “only if” part can fail when |\/u] is
odd.
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(d) [2+] Let p be prime. Generalize (a)—(c) to the case Ag(\) =
Ay(N) =--- = A, 1()N), where A;(\) denotes the number of SYT
T of shape A satisfying maj(7") = i (mod p).

117. (a) [5] A problem superficially similar to 116(b) is the following. We
can regard an SYT of shape A (or more generally, a linear ex-
tension of a finite poset P) as a permutation of the squares of A
(or the elements of P), where we fix some particular SYT T to
correspond to the identity permutation. Define an even SYT to
be one which, regarded as a permutation, is an even permutation,
and similarly odd SYT. For which A is the number of even SYT
the same as the number of odd SYT? (It’s easy to see that the
answer does not depend on the choice of the “identity SYT” T'.)
This problem has been solved for rectangular shapes by a difficult
argument (rating [3] or even [3+]).

(b) [3] Given an SYT T with n squares, let wy be the permutation
of [n] obtained by reading the elements of 7" in the usual reading
order (left-to-right, top-to-bottom). Write sgn(7T") = sgn(wr), i.e.,
sgn(T') = 1 if wr is an even permutation, and sgn(7") = —1 if wy
is an odd permutation. Show that

Z sgn(T) = 27/2),
T

where T' ranges over all SYT with n squares.

118. Let X denote the chromatic symmetric function of the graph G, as
defined in Exercise 7.47. Define

Fn:ZXGv
G

where G ranges over the incomparablity graphs of all (3 4+ 1)-free and
(2 + 2)-free n-element posets, up to isomorphism. (The number of
such posets is the Catalan number C,,; see Exercise 6.19(ddd).) Write

Fn = ZAI—n C)\EN.

(a) [2] Show that (F,,, py) = n!C,,. Equivalently, if we regard F,, as the
Frobenius characteristic of a character 1, then dim,, = n!C,.
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NOTE. A priori v, is the Frobenius characteristic of a virtual
character. However, it follows from Exercise 7.47(h) that 1, is in
fact the Frobenius characteristic of an actual character of &,,.

] Show that c¢(ny = 1.

2+4] Show that c(1n—2y = 3n — 4.

3-] Show that ), ¢y = (2n — 1!

3-] Show that c(,y = n(2n — 3)!L.

3-] Note that (2n — 1)!! is the number of (complete) matchings
on the vertex set [2n]. Find a combinatorial interpretation of ¢y
as the number of such matchings with a suitable property indexed
by partitions of n.

(g) [3] Let wk, = _,.,, dapx. It follows from Exercise 7.47(d,e) that
dy € N, and it is easy to see from (e) above that > dy = (2n —
!, Find a combinatorial interpretation of dy as the number of

matchings on the vertex set [2n| with a suitable property indexed
by partitions of n.

(b) [2
(©) [
(d) [
(e) [
() [

(h) [5-] Is there a “natural” action of &,, on a space of dimension n!C,
with Frobenius characteristic F;,?

The symmetric functions F;, for 1 < n < 5 are given by
Fi=e =p
Fy = e} + 2ey = 2p7 — po
Is = ei{’ + begeq + 9e3 = 5p§’ — Tpap1 + 3p3
F, = 6‘11 + 8626% + 66% + 30eze1 + 60ey

= 14p} — 3Tpapi + 30pspr + 9p3 — 15ps

Fy = e‘;’ + 11626% + 53636% + 216%61 + 259¢4e1 + Theses + 525e5

= 42p) — 176pop] + 204psp; + 122p3py — 196pap1 — 100psps + 105ps.

119. [3-] Let P be a finite poset with n elements, and let &p denote the set
of all permutations of elements of P. Given w = wiws---w, € Gp,
define the P-descent set of w by

PDes(w)={1<i<n—1: w; >p w1}
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120.

Set
Yp = Z Lappes(w)s
weSp

where L denotes the fundamental quasisymmetric function of equa-
tion (7.89), and g denotes the composition of n corresponding to the
set S C [n — 1] (page 356 of EC2). Show that

YP - WXinc(P)a

where X¢ is the chromatic symmetric function of the graph G (Exer-
cise 7.47), and inc(P) is the incomparability graph of G.

Given n € P, let X be any subset of {(i,7) : 1 <i<mn, 1 <j <
n, i # j}. An X-descent of a permutation w = ay---a, € &, is
an index 1 < i < n — 1 for which (a;,a,41) € X. The X-descent set
Xdes(w) of w is the set of all X-descents of w. If « is a composition of
n, then we write Lg for the fundamental quasisymmetric function L,
where if & = (aq,...,a;) € Comp(n), then S = {ay, 01 + ag,..., a1 +
as+ -+ ag_1} C [n—1]. Define a quasisymmetric function Ux by

Ux = Z LXDes(w)-
weS,

(a) [2+] Show that Uy is a p-integral symmetric function, i.e., a sym-
metric function whose power sum expansion has integer coeffi-
cients.

(b) [2+] Let
X ={(i,j) :1<i<n, 1<j<n,i#j}-X.
What is the relationship between Ux and Ux?

(c) [3] The record set rec(w) consists of all indices 0 < i < n — 1 for
which a; 11 is a left-to-right maximum. Thus always 0 € rec(w). If
rec(w) = {ro,...,r;}<, then define the record partition rp(w) to
be the numbers ry — rg, 79 — 71, ..., n — 7; arranged in decreasing
order. Let X have the property that if (¢,j) € X then i > j.

Show that
Ux = Zprp(w)u

where w ranges over all permutations in &,, with no X-descents.
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(d) [2+] Is it always true that Uy is p-positive, as is the case in (c¢)?

(e) [2] Let P be a partial ordering of [n]. Let Y = {(i,7) : i >p
j}. Show that Uy = wXinep), Where Xj,p) is the chromatic
symmetric function of the incomparability graph inc(P) of P.

(f) [2+] Let X ={(2,1),(3,2),...,(n,n—1)}. Set f, =#{w e S, :
XDes(w) = (0}. Show that

UX = Z fiSiJnfi. (11)
=1

For instance, when n = 4 we have Uy = 11s4 + 3s31 + So11 + S1111-
NOTE. It is known that

xT

" e~
Zf"ﬁ T (1—2)

n>0

(g) [2+] (a g-analogue of (f)) Let X be as in (f). Define

es(w™!
UX(q) = Z qd ( )LXDes(w)>

’LUEG'!L

where des denotes the number of (ordinary) descents. Set
es ’11)71
falg) =D g™,

where w ranges over all permutations in &,, with XDes(w) = 0.
For instance,

file) = falg) = 1
falq) = 1+4+2q
filg) = 1+8¢+2¢
f5(q) = 1422¢+28¢* +2¢°.

Show that

n

Ux(q) =Y q"7 filq)sipnr.

i=1
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(h) [2+] Find analogues of (f) and (g) for X = {(2,1), (3,2),...,(n,n—
1),(1,n)}.

121. (a) [2-] In the previous problem, we can consider X to be a directed

graph on the vertex set [n], with an edge from i to j if (i,j) € X.
A Hamiltonian path of X is a permutation ¢1iy---7,, € &,, such
that (ix,ix+1) € X for 1 < k < mn —1. Let ham(X) denote the
number of Hamiltonian paths in X. For a symmetric function
f write f(1) for f(1,0,0,...). Show that ham(X) = Ux(1) and
ham(X) = Ux(1).

(b) [2] Show that for any p-integral symmetric function f we have
f(1) =wf(1) (mod?2).

(c) [2] Deduce that

ham(X) = ham(X) (mod 2).

122. (a) [24] A tournament is a digraph X (as in the previous problem)
such that for all 1 < i < j < n, either (i,j) € X or (j,i) € X,
but not both. Assume for the rest of this problem that X is a
tournament. Show that wUx = Ux.

(b) [3] Extending (a), show that

UX = Z 2O(w)pp(w)> (12)

where w ranges over all permutations in &,, for which every cycle
length is odd and every nonsingleton cycle of w is a cycle of X,
and where O(w) is the number of nonsingleton cycles of w.

(¢) [2+] Deduce from (b) that every tournament has an odd number
of Hamiltonian paths.

123. Let A = (a;j) be an n x n matrix, say over R. Define the “symmetric
function determinant” sfdet(A) by

sfdet(A) = Z A1w(1) *  Anw(n)Pp(w)-
w€6n
(a) [2-] Show that sfdet(A) specializes to the usual determinant by ap-
plying the homomorphism ¢: Ag — R satisfying ¢(p;) = (—1)""L.
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(b) [3] Show that sfdet(A) is Schur positive if A is positive definite.
(c) [5-] Show that sfdet(A) is h-positive if A is positive definite.

(d) [3+] A real matrix is totally nonnegative if every minor (deter-
minant of a square submatrix) is nonnegative. Show that if A is
totally nonnegative, then sfdet(A) is Schur positive.

(e) [5] Show that if A is totally nonnegative, then sfdet(A) is h-

positive.
(f) [3] Show that (d) implies that the answer to Exercise 7.47(j) is
affirmative.
124. (a) [3-] Let gy = 32 a5* ™2™ ... where 7 ranges over all reverse

plane partitions of shape A, and ¢;(7) is the number of columns
of w that contain the part i. Show that g, is an (inhomogeneous)
symmetric function whose highest degree part is s,.

(b) [3] Define an elegant SSYT of skew shape A\/p to be an SSYT
of shape A/u for which the numbers in row i lie in the interval
[1,7—1]. In particular, there are no elegant SSYT of shape A/ if

the first row of A/p is nonempty. Let f{ be the number of elegant
SSYT of shape A/u. Show that

g)\:foSu.

HCA
In particular, gy is Schur positive.

Ezample. Let A\ = (2,1). Then there is one elegant SSYT of
the empty shape (2,1)/(2,1) and one elegant SSYT of shape
(2,1)/(2). Hence go1 = s2.1 + 2.

(¢) [3] Fork > 0andn > 1, let g = P ('“_]1_“) hy,—;. For instance,
g,(LO) = h,, and gﬁl) =h,+hp_1+---+h +1. Set gék) =1 and
g(_kg =0 for n > 0. Show that if A = (Ay,...,\,,), then

gx = det <9§i:1,)4r]>

ij=1

125. (a) [2] A set-valued tableau of shape A\/p is a filling of the diagram of
A/p with nonempty finite subsets of P such that if each subset is
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replaced by one of its elements, then an SSYT always results. If T’
is a set-valued tableau, then let 27 = 2522 ™ ... where ¢;(T)

is the number of boxes of T" containing i. Set |T'| = > ¢;(7T'), the
total number of elements appearing in all the boxes. Define

G)\/M(SL’) = Z(_1)|T\—IA/ule’

T

where T ranges over all set-valued tableaux of shape A/u. For
instance,

n—+1 n -+ 2
Gin =€, —nepyr + 5 Jenr2— | Cpa3 e

Show that G, is a symmetric formal power series (i.e., an element

of the completion A of the ring A of symmetric functions) whose
least degree part is sy /.

(b) [3] Let f{ have the meaning of the previous problem. Show that
sp= Y [{G.
ADu
For instance,

n+1 +2
sln:en:Gn—l—nGnH—l—( 9 )Gn+2+<n3 )Gn+3+

(c) [2] Deduce from (a) and (b) that (g, G,,) = 0, where g, has the
meaning of the previous problem.

(d) [3] For k > 0 and n > 1, let GP = >ijzo(—1) (k+§_2)s(n+i,1j).
For instance, GS) = Sp = S(n,1) + S(n,1,1) — . Oet G(()k) =1 and
G%) =0 for n > 0. Show that if A = (A1,..., An), then

Gy = det (GW‘””)

Ai—i+j ij=1 :

126. (a) [3] Let L) be the symmetric function of Exercise 7.89(f), where
A n. Let a € Comp(n), and let B, be the corresponding border
strip (as defined on page 383). Show that

(Ly,sp,) =#{w € &, : p(w) =\, D(w)=5,},
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where D(w) denotes the descent set of w. Equivalently, writing F,,
for the fundamental quasisymmetric function which we denoted by
L, in Corollary 7.23.6 and elsewhere in EC2, it follows from this
corollary that

L)\: Z Fco(w)- (13>
’LUEG'!L
p(w)=A

(b) [2] Let A = (1"™2™2...) I n with m; = my = 0 and my = 1. Let
1 be obtained from A by changing the part equal to 4 into 2,1, 1.
Show that for any S C [n — 1],

#{w e S, : p(w) =\, D(w)=S}

= #{w € &, : p(w) = p, D(w) = S}.
Is there a combinatorial proof?
(c) [5-] Find the dimension f(n) of the Q-span of all Ly € Af.

127. (a) [2+] Let Ly be as in the previous exercise. Show that

> Ly=pi.

AFn

(b) [3-] Show that

S L@@ =ep Y pnale) paly)

AePar m,n,d>1

where )\ ranges over all partitions of all nonnegative integers. Note
that this formula makes Exercise 7.89(g) obvious.

(c) [3-] Show that

(ot + pg/ %), if nis even
Z Ly= 1 (n—1)/2 .
An 2 (p? + P1po ) if n is Odd>

6)\:1

where A ranges over all partitions of n satisfying €, = 1.
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128. (a) [24] Let A+ k. Show that

mn_ _H()
ZL 1 )\t)k—l—l’

n>0

where

f)\(t): Z tdes(w)-l—l

weSy
p(w)=A

Here p(w) is the cycle type of w, and des(w) is the number of
descents of w.

(b) [2+4] Let A = (1™ ... k™) b k. Define

Z’u ny/d

d|j

s -1((%)

J

Show that

(c) [2+] Let k > 1. Define the even Eulerian polynomial Aj(t) by

Az(t) _ Z tdes(w)+1’

weAy

where 2(;, denotes the alternating group of degree k. Show that

_Zn+nk/21 A ()

_ #)k+1°
n>1 (1 t) "

129. (a) [3-] Let S = {iy,...,ix}< C [n—1]. Write Bg for the border strip
B, (as defined on page 383 of EC2), where av = (iy,19 — 41,13 —
i, ...,n—ix) € Comp(n). Now suppose that n is even, and let Bg
be a border strip of size n. There is a unique way to tile Bg with
n/2 dominos. If we shrink each of these dominos to a single square
(a monimo), we obtain a border strip of size n/2 which we denote
by Bg/s. For instance, if S = {3,5,6,7} then S/2 = {3} (for any
even n > 8). Let v(Bg) be the number of vertical dominos in the
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domino tiling of Bg. For S C [n — 1], let 8,(S) be the number
of permutations in &,, with descent set S, and let ~,(S) be the
number of such permutations that are even (i.e., belong to the
alternating group 2(,,). Show that

1(8) = 5 (Ba(S) + (=1)"59)5,12(5/2)) .

1
2
(b) [3-] What is the corresponding result when n is odd?

(c) [2] Let EX be the number of even alternating permutations w =
aijas -+ -a, in S, i.e., w €A, and a; > as < az > ag < ---. Show
that

o (B, + (=1)"%), ifnis even
n 1E,, ifnisodd (n > 1),

where E,, denotes an Euler number.

(d) [2+] Let E! be the number of even reverse alternating permuta-
tions ajas - --a, in 6, ie., w €W, and a1 < as > az < ag > ---.
Show that

/ %(En—i-l), if n is even
E =
! %En, if n is odd (n > 1).
(e) [2] Show that if n is even and S C {1,3,5,...,n — 1}, then

'Vn(S> = (ﬁn(s) + (_1>#S) :

N —

130. [3-] (the Equivariant Exponential Formula) In Corollary 5.1.6 (the Ex-
ponential Formula) think of f(n) as the number of structures of a
certain type that can be put on an n-element set S. The allowable
structures depend only on n, not on the elements of S. Assume that
every structure is a unique disjoint union of connected structures. The
symmetric group &,, acts on the n-element structures by permuting the
elements of S. Let F), denote the Frobenius characteristic symmetric
function of this action. The group &,, also acts on the set C, of all
connected n-element structures. Let G, (p1,pa,...) be the Frobenius
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characteristic symmetric function, regarded as a polynomial in the p;’s,
of the action of G,, on C,,. Show that

1
Z Fntn = exXp Z EGk(pmp2mp3m s )tkn

n>0 kn>1

Example. Suppose that the only connected structure is a single edge
between two vertices. Thus an arbitrary structure is a complete match-
ing on 2m vertices. Example A2.9 on pages 449-450 becomes a special
case of the present problem.

131. (a) [24] Fixn > 1. Given S,T C [n — 1], let
B(S,T)=#{w €&, : D(w)=S, D(w™) =T}.

Let f(n) = maxgrcp—1 B(S,T). Show that there is some S C
[n — 1] for which f(n) = 5(S,9).

(b) [5-] Show that f(n) = £(S,S), where S ={1,3,5,...} N[n—1].

132. (a) [24] Let Ly be as in #127 above, and let © F n. Show that
(L, hy) is equal to the number of permutations of the multiset
{1m 2#2 .} that standardize (in the sense of §1.7) to a permu-
tation of cycle type A.

(b) [3] The symmetric group &, acts on the set of all parking functions
of length n (defined in Exercise 5.49) by permuting coordinates.
Define the parking function symmetric function PF, to be the
Frobenius characteristic of this action (or of its character). Show
that PF,, = wFxc,,,, using the notation of Exercise 7.48(f).

(c) [2] Show that (L,,PF,) is the number of parking functions of
length n that standardize to a permutation of cycle type A.

(d) [2] Show that the number f(n) of parking functions of length n
that standardize to an n-cycle is given by

Fln) = 13wl + 1)i

din

133. (a) [2] With PF,, as in the previous exercise (with PFy = 1), define
PF, = PF,,PF,,---. Show that the set {PF, : A F n} is a
Z-basis for A".
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(b) [3-] Show that if A - n, then

1 1 ((n+ DN+ +N\—1

(PF,,,PF,) =

In particular,

(PF,,, PF,,) — ﬁ <”(”n+ 3)) .

(c) [5-] Is there a nice formula for, or combinatorial interpretation of,
(PFy,PF,)? In general, it has large prime factors.

(d) [3-] Write d; for the number of parts of 1 equal to i. Show that

_ 1 n—_4(p) n_'_g(ru’)
e = g 2D didy,. ) 0

cey

ukn
+ () — 1
- —1)f)+1 n PF
p ,ukzn( ) (dl,d2,...,n—1 H
1 n+0(u) —2
hy = — 1)ttt PF,, n> 2.
n—l;( ) (dl,dg,...,n—2 po 1=

(e) [2+] Write PFy = 3 raue,. Let Ry = [rau]aun, the transition
matrix from the e, basis to the PF basis in degree n. Show that
R? = I, the identity matrix.

(f) [2] Let PF}, denote the dual basis to PFy. Show that PF} =
Y o Taufr, where fy is a forgotten symmetric function.

(g) [2+] Show that PF} = p, and PF}, = papy — (@ + b + 1)pays if
a > b, while PF} = £(p2 — (2a + 1)p2a).
(h) [2] Show that
S n+(p)
Ty = :
n-+1 dl,dg,...,n

(i) [24] Show that ryin = [[;5; C);, where C,, denotes a Catalan
number. -

(j) [24] Show that 7y 21n-2 = —5(n — £(A)) [[,5; Ch,-
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(k) [5-] What else can be said about the numbers 7,,? It is easy
to see that €,ry, > 0. Does g,ry, have a nice combinatorial
interpretation? In general, it has large prime factors.

(1) [5-] Since {e,} and {PF,} are multiplicative bases, the linear map
¢: A — A defined by ¢(e,) = PF, is an algebra automorphism (as
well as an involution). What can be said about ¢? For instance,
is there a “nice” Z-basis for A that is permuted by ¢? Is there a
“nice” Q-basis for Ag consisting of eigenvectors for ¢?

(m) [3-] Show that

2m — 1\ t™
PF1., PFI )" = —.
Z< 1 i) expz < m ) m

n>0 m>1

134. [3-] Let y := ), sx. Show that

—1/2
() (1)

n>1

where * denotes internal product.

135. [2+] Let n > 1, and let M,, be the matrix M, = [s\ * 5,|x un. Show
that the eigenvalues of M,, are the power sums p,, v = n. What is the
eigenvector corresponding to p,?

136. (a) [3-] The “defining representation” of &,, is the usual definition of
S, as the set of all permutations of [n]. The Frobenius charac-
teristic of the character of this representation is s,, + s,-11. Show
that for any k£ > 1, we have

k

(Sn + Sn—l,l)*k - Z S(ka z.)Silsn—ia (14)

i=1
where ** denotes the k-fold internal product and S(k,4) is a Stir-
ling number of the second kind.

(b) [5-] The action of &,, on two-element subsets of [n] has Frobenius
characteristic s, + s,-11 + Sp,—22. Find a formula analogous to
equation (14) for (s, + Sy_1.1 + Sn_22)*".
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137.

138.

139.

140.

(c) [5-] Generalize.
[5-] Let |[A/u| =n and

e = 1=l =¢) 1 =q")snula.4%...)

= 3 ),
T

where 7" ranges over all skew SYT of shape \/pu. (See Proposition 7.19.11.)
We can regard f#(q) as the “natural” g-analogue of f**. Investigate
when f**(q) has unimodal coefficients. This isn’t always the case (e.g.,

A =(2,2), = 0) but it does seem to be unimodal in certain cases, such
as when = () and X is an arithmetic progression ending with 1.

[3-] For any sequence v = (V1,...,7,) € N¥, we can define the Schur
function s,(x1,...,x,) by the bialternant formula of Theorem 7.15.1.
It is clear by permuting the rows of a,ys that s (z1,...,x,) is either
equal to 0 or to +sy(z1,...,x,) for some partition A. Given a com-
position & = (av,...,q;) with k < n, let @ denote o with n — k 0’s
appended at the end, so @ has length n. Let L, denote the funda-
mental quasisymmetric function of Section 7.19. Let f(xq,...,x,) be
a homogeneous quasisymmetric function of degree n, with L-expansion

flan,xn) = Y cala(a, ... x),
acComp(n)

where Comp(n) is the set of all compositions of n and ¢, € C (or
any commutative ring in place of C). Suppose that f(xy,...,z,) is a
symmetric function. Show that

flxy, ... x,) = Z CaSalT1, .y Tp).

acComp(n)

[2-] We follow the notation of Sections 7.19 and 7.23. Let v € Comp(n)
and A F n. Show that (sp_, s)) is equal to the number of SYT of shape
A and descent set S,.

(a) [2-] For a sequence u = uy ---u, of positive integers, define the
descent set D(u) in analogy to permutations, i.e.,

D(u) ={i : u; > ujs1} C [n—1].
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141.

142.

143.

144.

Given S C [n — 1], define

fs =D wu .

where uq - - - u, ranges over all sequences u of positive integers of
length n satisfying D(u) = S. Show that fs = sp_, ., using the
notation of Sections 7.19 and 7.23.

(b) [2+] Let Sk denote the set of all finite sequences ujug - --u, of
positive integers containing no strictly decreasing factor of length
k, i.e., we never have u; > u;4 1 > -+ > U p_1. Show that

1

1 —er+ep— epp1 + e — €41 + €36 — €3441 + -

(a) [3-] Let L, be as in equation (7.89). (Don’t confuse with the Ly
of Exercise 7.89.) Suppose that sy = f + g, where f,g € A and
f, g are L-positive. Show that f =0 or g = 0.

(b) [2+] Give an example of an L-positive symmetric function that
isn’t s-positive.

2] Let 2, denote the alternating group of degree n (regarded as a
subgroup of &,,). Express the cycle index polynomial Zy, as a linear
combination of Schur functions.

[24+] Let x be a character of &,,. Let ch(x) = >_ ., ¢umu. Show that

ukEn
cu = (X|ps Le,)s

the multiplicity of the trivial character 1g, of the Young subgroup
S, =6, x6,, x--- in the restriction x|, of x to &,. In particular,
if x is a permutation representation then ¢, is the number of orbits of
S,.

(a) [14] Let X be a nonempty subset of &,,. Suppose that the cycle
indicator Zx is s-positive. Show that X contains the identity
element of G,,.
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(b) [5] What can be said about subsets X of &,, for which Zx is s-
positive or h-positive? (See equation (7.120), Exercise 7.111(c,d),
and Problem 145 below for some information.)

145. Let G be a subgroup of &,, for which the cycle indicator Zg is h-positive.

(a) [2+] Show that Zg = hy for some A - n.
(b) [3-] Show in fact that G is conjugate to the Young subgroup &,.
146. [2] Let J,, denote the set of all indecomposable permutations in &,,

as defined in EC1, second ed., Exercise 1.128(a). Let Z;, denote the
augmented cycle indicator of J,,, as defined in Definition 7.24.1. Show

that .
A P S
nZZ; ano n!h,x"

a direct generalization of Exercise 1.128(a) (second ed.).

147. (a) [3] let y = > s, Gww € RS, (the real group algebra of &,,).
Suppose that the action of y on RG,, by right multiplication has
only nonnegative (real) eigenvalues. Show that the symmetric
function Zwe@n AwPp(w) 18 Schur-positive.

(b) [3] Let m = {Ay,...,A;} and 0 = { By, ..., B;} be two partitions
of the set [n]. Let x and ¢ be any characters of &,,. Define

f= > > X (0)py-

uEGAl ><~~~><6Aj UEGBl x---xGBk

Show that f is Schur positive.

(c) [2] Show that the analogue of (b) for three partitions of [n] is false,
even when the three characters are the trivial characters.

148. [34] For any 1 < k < n, show that the symmetric function

Crl(xy,. .., x,) = H (i, + iy + -+ 24,)

1<t <9< <1 <n

is Schur-positive.
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149. (a) [3-] Let Ay,..., Ay be subsets of [n] satisfying |JA; = [n] and
A, NA; = {1} for all i < j. Set a; = #A;. Show that the
symmetric function

Ga1 ..... ap “— Z Z Pp(wy--wy) (15>

w1€6 4, wr€Sa,
is equal to [[(a; — 1)! times the coefficient of z{* - - - z}* in
i ir
( g Piy o tig—k+1T1 - Ty ) H(zq) - H(zy),
Uyl 21

where H(t) =3 oo hat".
(b) [3-] Show that

min(a—1,b—1)
Gap = (a=DIO=1! Y (a— 50— 5)saro-1-5
=0
min(a—1,b—1)
= (CL— 1)'(()- 1)' (a+b— 1 _2j>ha+b—1—jhj-
=0

(c) [2] Show that Gy, 4,4, need not be s-positive.

(d) [5>-] Let A, B C [n] such that #A = a, #B = b, and #(ANB) =
m. Show that

1
(a—m)! (b —m)! Z Z Dp(uv)

ueS 4 veEG B

min(a—m,b—m) m
= > (H(a—m+i—j)(b—m+i—j)> Satbom—j.j

j=0 i=1
= m!l(m—1)!
min(a—m,b—m) . .
—-1- b—1-—
. Z <a ]) ( ]> (a+b—m— 2j)ha+b—m—jhj-
= a—m-—73)\b—m—}

(e) [5-] Extend to other sets A, ..., Ag.
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150. [3-] Give a super-analogue of Theorem 7.24.4 (Pdlya’s theorem). More
precisely, when Zg(x/y) is expanded as a linear combination of the
my(z)m,(y)’s, give a combinatorial interpretation of the coefficients.

151. (a) [2+] Let 7" be an SYT of shape A - n. We can regard the tableau
evac(T) (as defined in Appendix 1) as a permutation of the entries
1,2,...,n of T. Show that this permutation is even if and only if
the integer (5) +(O(X)—O(X))/2 is even, where O(u) denotes the
number of odd parts of the partition p. (Note that this condition
depends only on the shape A of T.)

(b) [3] Let e(n) denote the number of partitions A F n for which
evac(7) is an even permutation of 7', for some (or every) SYT T
of shape A. Let p(n) denote the total number of partitions of n.

Show that e(n) = (p(n) + (—=1)(2) f(n))/2, where

n 1+ 2!
Z fn)z" = H (1 — 24)(1 + ai-2)2’

n>0 i>1

152. [2] Express ex f[g] in terms of ex f and exg, where ex denotes the
exponential specialization and f|g] denotes plethysm.

153. [2+] Expand the plethysm hy[h,] in terms of Schur functions.

154. [2+] Express the plethysm e,[e?] in terms of sums and products of Schur
functions. For instance, when n = 1 either s% or ss + s11 are acceptable
answers.

155. [2] Define ®: A — A by
O(f) = (L+hi+ha+ hs +---)[f],
where brackets denote plethysm. Show that
O(f +9) = 2(/)2(g). (16)

Equivalently,
half +9) = hi[fha—ilg]-
k=0
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156. The plethystic inverse of f € A is a symmetric function g € A satisfying
flg] = glf] = p1 (the identity element of the operation of plethysm).
(See Exercise 7.88(d).) It is easy to see that if g exists, then it is unique.
Moreover, g exists if and only if f has constant term 0 and [p;]f # 0.

(a) [2] Describe the plethystic inverse of f = ., a,py, where a; # 0,
in terms of “familiar” objects.

(b) [2] Let f = > -, anpn, where a; # 0. Describe the plethystic
inverse of f in terms of Dirichlet convolution. The Dirichlet con-
volution f x g of two functions f, g : P — C is defined by

(fxg)(n) =Y _ f(d)g(n/d).

din

157. Let Lie, denote the symmetric function ch 1, of Exercise 7.88, so
Lie,, = Z u(d "/ ¢

(a) [3-] Show that the symmetric functions %iiszzl and ) -, Lieg, 11
are plethystic inverses. -

b) [3-] Show that the symmetric functions Lnzo(Z)"eani1 nd

(b) [ y

ano(_l)n@n
> nso(—1)"Liey, 11 are plethystic inverses.

158. [2-] The group GL(n,C) acts on the space Mat(n,C) of n x n complex

matrices by left multiplication. Express the character of this action as
a linear combination of irreducible characters.
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CHRONOLOGY OF NEW PROBLEMS (beginning 4,/13/02)

96. April 13, 2002

97. April 13, 2002
151. May 5, 2002

92. June 8, 2003

14. June 10, 2003

114. October 6, 2003
115. October 6, 2003
82. October 10, 2003
84. October 10, 2003
134. October 10, 2003
111. October 13, 2003

4. July 3, 2004

113. August 17, 2004
91. (b) January 1, 2005
47. February 13, 2005
60. April 16, 2005

59. April 17, 2005

68. December 13, 2005
80. December 13, 2005
146. December 31, 2005
81. January 3, 2006
140. August 2, 2006
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23.
93.

35.
124.
125.
30.
143.
124(c).
125(d).
104.
131.
103.

103.
88.

54.

55.

50.

44,

45,
74(b).
19.
111(b).

October 22, 2006
August 7, 2007
September 4, 2007
September 29, 2007
September 29, 2007
November 22, 2007
February 13, 2008
March 14, 2008
March 14, 2008
March 25, 2008
April 26, 2008
June 29, 2008

July 11, 2008
(expanded) July 15, 2008
July 15, 2008
October 9, 2008
February 20, 2009
February 20, 2009
March 22, 2009
March 22, 2009
April 4, 2009
November 17, 2009

August 17, 2010
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102.
11.
18.
22.
31.
o7.

105.
42.

37.

95.
38.
106.
76.
78.
40.
106.
135.
92.
105.
36.
31.

August 14, 2013

August 30, 2013

August 30, 2013

August 30, 2013

August 30, 2013

August 31, 2013

August 31, 2013

December 11, 2013
December 18, 2013
December 18, 2013
December 21, 2013
December 21, 2013
December 23, 2013
December 23, 2013
December 23, 2013
December 23, 2013
December 23, 2013
December 3, 2014 (corrected)
December 3, 2014

December 3, 2014 (part (a) refined)
August 6, 2015 (difficulty rating of (d) and (e))
September 21, 2015

September 21, 2015 (part (b) modified)
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6. October 23, 2015

147. March 2, 2017
149. March 3, 2017
108. December 25, 2017

64. February 14, 2018

89. July 29, 2018

64. August 4. 2018 (corrected)

36. August 31, 2018 (updated and corrected)
73. October 14, 2018

37(b). November 6, 2018 (typo corrected)

57. May 11, 2019 (slightly modified)

58. May 18, 2019
148. January 10, 2020
132. January 15, 2020
118. May 6, 2020
157. May 6, 2020
118. (expanded) May 18, 2020
133. May 19, 2020
132. (expanded) May 22, 2020
149. (expanded) May 24, 2020
106. (expanded) May 26, 2020

33. May 26, 2020 (from a quiz for the course 18.315, fall 2013)
100. May 26, 2020 (from a quiz for the course 18.315, fall 2013)

64



154. May 26, 2020 (from a quiz for the course 18.315, fall 2013)
34. May 26, 2020 ((a) and (c) from a quiz for the course 18.315, fall 2013)
34. (expanded) May 28, 2020

133. (expanded) June 2, 2020

118. (expanded) June 2, 2020

136. June 14, 2020

138. June 18, 2020

136. (expanded) June 19, 2020

133. (expanded) July 5, 2020
39. July 26, 2020
04. July 26, 2020
41. (expanded) July 31, 2020
92. (expanded) August 29, 2020
92. (expanded) September 3, 2020
51. September 15, 2020
98. October 3, 2020
98. (expanded) October 5, 2020

115. (expanded) October 13, 2020
86. November 15, 2020

123. February 24, 2021

123. February 28, 2021 (expanded)
43. March 14, 2021

155. August 17, 2021
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130.

21.
127.
128.
129.
119.
120.

85.
126.
133.

53.

74.

93.
129.
120.
121.
122.

August 17, 2021

September 15, 2021

September 23, 2021 (expanded)
September 23, 2021

September 23, 2021

October 17, 2021

November 10, 2021

November 10, 2021

November 23, 2021 (expanded)
November 27, 2021 (expanded)
December 20, 2021

December 23, 2021 (expanded)
December 26, 2021

January 3, 2022 (expanded)
January 7, 2022 (expanded)
April 18, 2022

April 19, 2022
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