~ © DISCRETE MATHEMATICS 4 (1973) 77-32. North-Holland Publishing Company

A BRYLAWSKI DECOMPOSITION FOR FINITE ORDERED SETS

Richard P. STANLEY
Massachusetis Institute of Technology, Cambridge, Mass.. USA

Received 22 November 1971

Abstract. A decomposition is given for finize ordered sets P and is shown to be a unique decom-
position in the sense of Brylawski. Hence there exists a universal invariant g(P) for this decom-
position, and we compute g(P) explicitly. Some modifications of this decomposition are con-
sidered; in particular, one which forms a bidecomposition together with disjoint union.

1. Introduction

Let P be a finite ordered set of cardinality p > 0, and let s denote a
chain (totally ordered set) of cardinality s. Joh~ ion [3] considers a
polynomial, which we shall denote by A(P), defined by

p
AP) = 21 en’
s:

where e = ¢,(P) is the number of surjective order-preserving maps
0:P>s(sox<yinP= o(x)<o(y)} Johnson’s polynomial, callec
the representation polynomial of P, is closely related to the order poly-
nomial SU(P) of P [4;5, § 19], defined by

14
sz(P)=s§ e, (1) .

Let x and y be any two incomparable elements of P. Define the
ordered sets P,”, P,* and P, as follows: P, is obtained from P by
introducing the new relation x < y (and all relations implied from this
by transitivity);Py" is obtained by introducing y < x;and P, is ob-
tained by identifying x wiih y. Hence [P, | = u’-’yx l=p, P, i=p-—1.
Johnson [3] cbserves that
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AP) = AR + AP )~ APyy) .

By defining A'(P) = (—1)? A(P), we get

(1) NP = NPZ)+ NP+ N (Py)) .

Eq. (1) motivates us to determine every invariant I'(P), defined on all
finite ordered sets P, satisfying

(2 Py =T@7) +I'(#,") +T'(Pyy)

for all incomparable x, y € P. This will be done by showing that the de- .
composition

(3) P->PY+P* +P,

forms a unique decomposition in the sense of Brylawski [1; 2]. Basical-
ly, this means that by continually applying (3), we can express P in a
unique way as a sum of finitely many indecomposables.

We call (3) the A-decomposition of P, and we call any function F(P)
satisfying (2) an A-invariant of P. It follows from Brylawski’s iesults
that there is a universal A-invariant g(P) which is a pol’nomial in vari-
ables corresponding to the A-indecomposable elements. Clearly the A-
indecomposable elements are just the chains s. Hence g(P) will be a poly-
nomial in infinitely many variables z;, s = 1, 2, ...; and any A-invariant
I'(P) is obtained from g(P) by setting z, = I'(s).

Our proof that (3) forms 2 unique decomposition automatically pro-
vides an expl cit expression for g(P). This situation differs from Brylaw-
ski's decompuosition of pregeometries, where the universal invariant (the
Tutte polynomial) is difficult to give explicitly. We will also consider
some modifications of the decomposition (3), in particular one which
allows us to introduce disjoint union as a multiplicative dv.. omposition

forming a distributive bidecomposition together with the modified
form of (3).



§2. The A-decomposition 79

2. The A-decomposition

We wish to prove that (3) forms a unique decomposition. All of
the properties are trivially verified except for uniqueness, i.e., given
any two decompositions of P into indecomposables s (obtiined by
iterating (3)), the multiplicity of each chain s is the same in both.

Proposition 2.1. The only way of A-decomposing P into indecompos-
ables is

D
P=;Es s,

where € = &(P) is the number of strict surjective order-preserving
maps 7: P> s (so x <y in P= 7(x) < 7(y)).

Proo’. Induction on p = |P| and on the number of incomparable pairs
of el:ments of P. The proposition is clearly true if P = s. Now assume
it is true for all P’ with |P'| = p—1, or with [P’} = p bit with less in-

comparable pairs than P. Thus from (3), one /. decomgosition of P
into indecomposables is

P =fi_)é“g(Px-") s +27?, e(Py")s + pz—l:l e"s\(ny) s.
Hence we need only show
4) e(P) = e, (P7) + &(P)*) + ey(Py,) .
for any incomparable pair x, y of .
Now the number of surjective strict order-preserving maps 7: P - s

satisfying 7(x) < 7(v) is &,(P,” ). satisfying 7(x) > 7(y ) 18 é’S(P_vx ); and
satisfying r(x) = 7(y) is €;(Py, ). From this follows (4).

Corollary 2.2. The universal A-irvariant g(P) is gives: by

P
g(P) = le'e”s zg
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Hence any A-invariant ['(P) is given by
<
') =,?_’1_4 e, I'(s) .

Example 2.3. The modified representation polynomial A'(P) =
(=1)? A(P) is an A-invariant and A'(s) = (—=1) n (n+ 1)1, Hence
we get the identity

(5) A'(P) = (—1)”}1}3s n =};)és (-1F n(n+1y!,

Example 2.4. It is easily seen that the modified order polynomial
(—l)p (P) is an A-invariant, and (-1)° Q(s) = (‘;’ ). Hence

p p
(-1)? QP) = (—I)P;es ® =;zs G™h .

This identity is equivalent to (5). F xr further ramifications of the re-
lation between ¢; and €, see [4] or [5,§ 19].

Example 2.5. An order ideal of P is a subset I of P such that if x € I
and y < x. then y € I. Let j(P) denote the number of order ideals of

P. Then (—1)? j(P) is an A-invariant, and (—1)° j(s) = (=1} (s+1).
Hence

p
P = (—1)";@; (=1 +1) = QP),-, .

3. The M-decomposition

Suppose P is a disjoint union (direct sum) of P, and P,. We consider
the multiplicative decomposition

(6) P->p, - P,

(not to be confused with the direct product P, X P,), which we call
the M-decomposition. A function I'(P) satisfying I'(P) = ') I'eg,)
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is called an M-invariant of P. For instance, (—1)° $.(P) :s an M-in-
variant while (—1)” A(P) is not.

Note that the ordered sets P which are both A- and M-indecompos-
able are still the chains s.

Suppose F consists of two disjoint points. Then applving the M-de-
composition we get P =1 - 1, while by the A-decomposition, P =
2 + 2 + 1. These decompositions differ because the M-decomposition
is not distributive over the A-decomposition (in the sense of Brylawski).
Heuce we modify the A-decomposition by req' ..ing that in (3), x and
¥ must belong to the same connected component (or M-indecompos-
able factor) of P. This new decomposition we call ti¢ A’-decomposi-
tion. It is easily seen that the A'- and M-decomposit:ons form a distri-
butive bidecomposition in the sense of Brylawski. Hence by Brylawski’s
results there is a universal A'- and M-invariant ¢(P).

We state the results for #(P) corresponding to tho e for g{”). The
proofs are basically the same and wil! be omitted.

Proposition 3.1. Let Py, P,, ..., P, be the connected components of P.
The only way of bidecomposing P into A'- and M-indecomposables is

pP= q e (P s) .
= s

I

Corollary 3.2. The universal A'- and M-invariant t(P) is given by

P =11 CaP) z) .

4. The E-decomposition
Suppose we modify the A-decomposition by
) P> P> +PJ
wherniever x and y are incomparable in P. We call (7) the E-decompo-

sition of P. Let e(P) be the number of ways of extending P to a total
order, so e(P) = €, = Ep. Then reasoning as in §2, we obtain:
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Proposition 4.1. The only way of E-decomposing P into indecompos-
ables is P = e(P) p.

Corollary 4.2. The universal E-invariant h(£) s given by h(P) = <(P) z,.

Some further aspects of the number e(P) are discussed in [5] and

{6].
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